27
KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association www.kit.edu Strong coupling approach to critical quasiparticles Jörg Schmalian Institute for Theory of Condensed Matter Institute for Solid State Physics Karlsruhe Institute of Technology Strange Metals workshop High Field Magnet Laboratory, Nijmegen, Jan. 2018

Strong coupling approach to critical quasiparticlesstrangemetals.nl/wp-content/uploads/2018/01/JorgSchmalian.pdf · KIT – University of the State of Baden-Wuerttemberg and National

Embed Size (px)

Citation preview

Page 1: Strong coupling approach to critical quasiparticlesstrangemetals.nl/wp-content/uploads/2018/01/JorgSchmalian.pdf · KIT – University of the State of Baden-Wuerttemberg and National

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

Strong coupling approach to critical quasiparticles

Jörg Schmalian Institute for Theory of Condensed Matter

Institute for Solid State Physics Karlsruhe Institute of Technology

Strange Metals workshop High Field Magnet Laboratory, Nijmegen, Jan. 2018

Page 2: Strong coupling approach to critical quasiparticlesstrangemetals.nl/wp-content/uploads/2018/01/JorgSchmalian.pdf · KIT – University of the State of Baden-Wuerttemberg and National

Collaborators

Elihu Abrahams (UCLA) Peter Wölfle (KIT)

Strong coupling theory of heavy fermion criticality, Elihu Abrahams, Jörg Schmalian, Peter Wölfle, Phys. Rev. B 90, 045105 (2014) Strong coupling theory of heavy fermion criticality II, Peter Wölfle, Jörg Schmalian, Elihu Abrahams Rep. Prog. Phys. 80 044501 (2017)

Page 3: Strong coupling approach to critical quasiparticlesstrangemetals.nl/wp-content/uploads/2018/01/JorgSchmalian.pdf · KIT – University of the State of Baden-Wuerttemberg and National

Motivation: AF - quantum critical points

H. v. Löhneysen, A. Rosch, M. Vojta, and P. Wölfle, RMP (2007)

correlation length of a soft, bosonic degree of freedom diverges

à motivation for purely bosonic theories (Hertz, Moriya, Lonzarich, Moriya...)

But all degrees of freedom should be critical.

⇠ / r�⌫ , T�1/z

� (Q+ q) / 1

⇠�2 + q2 � i�!

critical order-parameter fluctuations

Page 4: Strong coupling approach to critical quasiparticlesstrangemetals.nl/wp-content/uploads/2018/01/JorgSchmalian.pdf · KIT – University of the State of Baden-Wuerttemberg and National

Theory does not account for experiment in systems like CeCu6-xAux or YbRh2Si2

H. v. Löhneysen J. Phys. CM 8 (1998); H. v. Löhneysen et al. JMMM 177-181 (1998)

A. Schröder et al. PRL 80 (1998)

( )( )( )αα ωωγ

χsign1

2 iqT ++∝+qQ

74.0≈α 7.2≈⇒ z

Page 5: Strong coupling approach to critical quasiparticlesstrangemetals.nl/wp-content/uploads/2018/01/JorgSchmalian.pdf · KIT – University of the State of Baden-Wuerttemberg and National

Fermions coupled to singular bosons

Y. B. Kim, A. Furusaki, X. G.Wen and P. Lee, Phys. Rev. B 50 17917 (1994), B. L. Altshuler, L. B. Ioffe & A. J. Millis, Phys. Rev. B 50, 14048 (1995), A.  Abanov, A. V. Chubukov & J. Schmalian, Adv. Phys. 52 119 (2003), S.-S. Lee, Phys. Rev. B 78, 085129 (2008), M. A. Metlitski & S. Sachdev, Phys. Rev. B 82, 075128 (2010), D. F. Mross, J. McGreevy, H. Liu & T. Senthil, Phys. Rev. B 82 045121 (2010), A.  L. Fitzpatrick, et al. Phys. Rev. B 88 125116 (2013), B. Meszena, P. S�aterskog, A. Bagrov & K. Schalm, Phys. Rev. B 94, 115134 (2016)

...

hot and cold regions of the Fermi surface, with singular behavior in hot parts

beyond the order-parameter fluctuation approach :

Page 6: Strong coupling approach to critical quasiparticlesstrangemetals.nl/wp-content/uploads/2018/01/JorgSchmalian.pdf · KIT – University of the State of Baden-Wuerttemberg and National

Good metals Landau quasi-particles

G (k,!) =Z

! + i�� "⇤k+Ginc (k,!)

L. D. Landau, Sov. Phys. JETP 3, 920 (1957); 5, 101 (1957).

S = �kBX

k,�

(nk� log nk� + (1� nk�) log (1� nk�))

quantum numbers map onto free Fermi gas

•  same “accounting”

•  quasi-particle response

�s,aqp,l = ⇢0F

m⇤/m

1 +F s,a

l2l+1

C =m⇤

m

⇡2k2B3

⇢0FTheat capacity:

susceptibilities: Pomeranchuk instabilities

I. Pomeranchuk, Sov. Phys. JETP 8, 361 (1958).

Page 7: Strong coupling approach to critical quasiparticlesstrangemetals.nl/wp-content/uploads/2018/01/JorgSchmalian.pdf · KIT – University of the State of Baden-Wuerttemberg and National

Critical quasi-particles

C.M. Varma et al, Phys. Rev. Lett. 63 (1989); T. Senthil, PRB 78 (2008); P. Wölfle and E. Abrahams, PRB 84 (2011).

quasi-particle concept beyond Fermi liquid theory

G (k,!) =Z(!)

! + i�! � "⇤k+Ginc (k,!)

scale-dependent weight:

Z (!) / |!|⌘

(Z (! ! 0) ! 0)0 ⌘ < 1

Page 8: Strong coupling approach to critical quasiparticlesstrangemetals.nl/wp-content/uploads/2018/01/JorgSchmalian.pdf · KIT – University of the State of Baden-Wuerttemberg and National

Critical quasi-particles (= unparticles)

spectral function

If : the width of the peak is smaller than its position

-1.0 -0.5 0.0 0.5 1.00.0

0.2

0.4

0.6

0.8

1.0

w

AHwL

-1.0 -0.5 0.0 0.5 1.00.0

0.2

0.4

0.6

0.8

1.0

w

AHwL

31

41

61

81 ,,,=η

ω ω

43=η

( )ωA ( )ωA21<η 12

1 <<η

⌃�! + i0+

�= �a |!|1�⌘

⇣sign (!) cot

⇣⇡⌘2

⌘+ i

⌘Z (!) / |!|⌘ ()

⌘ <1

2

Page 9: Strong coupling approach to critical quasiparticlesstrangemetals.nl/wp-content/uploads/2018/01/JorgSchmalian.pdf · KIT – University of the State of Baden-Wuerttemberg and National

Critical quasi-particles

C.M. Varma et al, Phys. Rev. Lett. 63 (1989); T. Senthil, PRB 78 (2008); P. Wölfle and E. Abrahams, PRB 84 (2011).

quasi-particle concept beyond Fermi liquid theory

G (k,!) =Z(!)

! + i�! � "⇤k+Ginc (k,!) Z (!) / |!|⌘

•  well defined Fermi surface:

•  dynamic scaling exponent:

•  marginal Fermi liquid:

nk � n(0)k / (vk · (k� kF ))

1�⌘⌘

zF =1

1� ⌘ C/T / T�⌘

C/T / log T⌘ ! 0

Page 10: Strong coupling approach to critical quasiparticlesstrangemetals.nl/wp-content/uploads/2018/01/JorgSchmalian.pdf · KIT – University of the State of Baden-Wuerttemberg and National

What can one do with such a theory?

naively: analyze Cooper instability

1 = gppTX

n

ZdkG (k,!)G (�k,�!)

A. Balatsky, Philos. Mag. Lett. 68, 251 1993. A. Sudbo, Phys. Rev. Lett. 74, 2575 1995. L. Yin and S. Chakravarty, Int. J. Mod. Phys. B 10, 805 1996.

G (k,!) = bG⇣bk, b

11�⌘ !

dgppd log(1/E)

= �⌘gpp + g2pp pairing instability is weakened

However: dynamic nature of the pairing interaction ignored

gpp ! gpp(!) / |!|�� A. V. Chubukov and J. Schmalian, PRB 72, 174520 (2005) J.-H. She and J. Zaanen, PRB 80, 184518 2009

Page 11: Strong coupling approach to critical quasiparticlesstrangemetals.nl/wp-content/uploads/2018/01/JorgSchmalian.pdf · KIT – University of the State of Baden-Wuerttemberg and National

Detour: Pomeranchuk instabiliy:

spontaneous deformation of the Fermi surface:

�pF,� (✓) = p(0)l,�Pl (cos ✓)

�E < 0 F s,al < � (2l + 1)

I. J. Pomeranchuk, On the stability of a Fermi liquid, Soviet Physics JETP 8,361(1959)

deformation is energetically favored if

�s,aqp,l = ⇢0F

m⇤/m

1 +F s,a

l2l+1

divergent quasi-particle susceptibility

l = 1spin instability: dynamic generation of spin-orbit coupling

C. Wu + S.-C. Zhang. Phys. Rev. Lett. 93, 036403 (2004) C. Wu, K. Sun, E. Fradkin, and S.-C. Zhang, Phys. Rev. B 75 115103 (2007)

E. I. Kiselev, M. S. Scheurer, P. Wölfle & J. Schmalian, PRB B 95, 125122 (2017)

Page 12: Strong coupling approach to critical quasiparticlesstrangemetals.nl/wp-content/uploads/2018/01/JorgSchmalian.pdf · KIT – University of the State of Baden-Wuerttemberg and National

coherent and incoherent response

G =Z

! � ✏k + i0!+Ginc =)

vertex correction due to coherent states

near the Fermi surface fully incoherent

response = �s,a

l (q = 0,! ! 0)

�s,al = (Z�s,a

l )2

m⇤

m ⇢0F

1 +F s,a

l2l+1

+ �s,ainc,l

Ward identity [Oq, Hint]� = 0 Oq =

Z

k †k+q,↵O

↵�k k�

Z

k(i!1 � (✏k+q1 � ✏k))O

↵�k G(4)

↵��� (k, q1, q2) = O��q2

⇣G(2)

q1+q2 �G(2)q2

Page 13: Strong coupling approach to critical quasiparticlesstrangemetals.nl/wp-content/uploads/2018/01/JorgSchmalian.pdf · KIT – University of the State of Baden-Wuerttemberg and National

coherent and incoherent response

G =Z

! � ✏k + i0!+Ginc =)

vertex correction due to coherent states

near the Fermi surface fully incoherent

response

1. conserved quantities: (charge, spin, momentum)

= �s,al (q = 0,! ! 0)

�s,al = Z�1

)

�s,al = (Z�s,a

l )2

m⇤

m ⇢0F

1 +F s,a

l2l+1

+ �s,ainc,l

�s,ainc,l = 0

�s,al = �s,a

qp,l =m⇤

m ⇢0F

1 +F s,a

l2l+1

pure quasi-particle response

Page 14: Strong coupling approach to critical quasiparticlesstrangemetals.nl/wp-content/uploads/2018/01/JorgSchmalian.pdf · KIT – University of the State of Baden-Wuerttemberg and National

coherent and incoherent response

G =Z

! � ✏k + i0!+Ginc =)

vertex correction due to coherent states

near the Fermi surface fully incoherent

response

e.g. Galilei invariant charge current:

= �s,al (q = 0,! ! 0)

)

�s,al = (Z�s,a

l )2

m⇤

m ⇢0F

1 +F s,a

l2l+1

+ �s,ainc,l

m⇤

m= 1 +

F s1

3

�sinc,l=1 = 0

�sl=1 = ⇢0F

pure quasi-particle response

Page 15: Strong coupling approach to critical quasiparticlesstrangemetals.nl/wp-content/uploads/2018/01/JorgSchmalian.pdf · KIT – University of the State of Baden-Wuerttemberg and National

coherent and incoherent response

G =Z

! � ✏k + i0!+Ginc =)

vertex correction due to coherent states

near the Fermi surface fully incoherent

response

2. current of a conserved quantities

= �s,al (q = 0,! ! 0)

)

�s,al = (Z�s,a

l )2

m⇤

m ⇢0F

1 +F s,a

l2l+1

+ �s,ainc,l

purely incoherent at the “PI”

�al=1 = 1 +

F a1

3vanishes at the

“Pomeranchuk instability”

�ainc,l=1 = ⇢0F

✓1� m

m⇤

✓1 +

F a1

3

◆◆

There is no instability as F a1 ! �3

Page 16: Strong coupling approach to critical quasiparticlesstrangemetals.nl/wp-content/uploads/2018/01/JorgSchmalian.pdf · KIT – University of the State of Baden-Wuerttemberg and National

coherent and incoherent response

G =Z

! � ✏k + i0!+Ginc =)

vertex correction due to coherent states

near the Fermi surface fully incoherent

response

3. generic non-conserved quantities

= �s,al (q = 0,! ! 0)

�s,al = (Z�s,a

l )2

m⇤

m ⇢0F

1 +F s,a

l2l+1

+ �s,ainc,l

Incoherent contribution to a susceptibility is generically large even for a Fermi liquid!

vertex of quasi-particles may be singular!

Page 17: Strong coupling approach to critical quasiparticlesstrangemetals.nl/wp-content/uploads/2018/01/JorgSchmalian.pdf · KIT – University of the State of Baden-Wuerttemberg and National

Back to critical quasi-particles

G (k,!) =Z(!)

! + i�! � "⇤k+Ginc (k,!) Z (!) / |!|⌘

0 ⌘ < 1

-1.0 -0.5 0.0 0.5 1.00.0

0.2

0.4

0.6

0.8

1.0

w

AHwL

-1.0 -0.5 0.0 0.5 1.00.0

0.2

0.4

0.6

0.8

1.0

w

AHwL

31

41

61

81 ,,,=η

ω ω

43=η

( )ωA ( )ωA

Page 18: Strong coupling approach to critical quasiparticlesstrangemetals.nl/wp-content/uploads/2018/01/JorgSchmalian.pdf · KIT – University of the State of Baden-Wuerttemberg and National

Hot spots (SDW-QCP)

Hot and cold regions of the Fermi surface, with singular behavior in hot parts

Ar. Abanov, AV Chubukov, J. S., Adv. in Phys 52 (2003); Ar. Abanov and A. V. Chubukov, PRL 93 (2004); M. A. Metlitski and S. Sachdev, PRB 82 (2010).

⌃ (khs,!) / i! |!|d�32

� (q,!)�1 / (q�Q)2 � i�! · · ·

Page 19: Strong coupling approach to critical quasiparticlesstrangemetals.nl/wp-content/uploads/2018/01/JorgSchmalian.pdf · KIT – University of the State of Baden-Wuerttemberg and National

Hot spots (SDW-QCP)

Cold regions: corrections due to composite energy-density fluctuations S. A. Hartnoll, D. M. Hofman, M. A. Metlitski, and S. Sachdev, PRB B 84 (2011)

φ φ φφ ⋅→

off-shell

→ ⌃ (kF ,!) / i! |!|d�32

sub-leading but non-analytic correction to Fermi liquid behavior (if d>3/2)

Page 20: Strong coupling approach to critical quasiparticlesstrangemetals.nl/wp-content/uploads/2018/01/JorgSchmalian.pdf · KIT – University of the State of Baden-Wuerttemberg and National

bootstrap approach

scattering process: = take your favored diagram

Z = 1 ! Z(!) / |!|⌘replace bare by critical quasi particles:

determine self energy ) Z(!)

demand self consistency

Same philosophy as Landau theory, but for singular quasi particles.

Page 21: Strong coupling approach to critical quasiparticlesstrangemetals.nl/wp-content/uploads/2018/01/JorgSchmalian.pdf · KIT – University of the State of Baden-Wuerttemberg and National

Scattering of singular quasiparticles

energy

microscopic model effective low-energy model ⌃>

k (!) �>k,q (!,⌦)

W⇤

matching at intermediate scales:

r = /Z1/2

�> ! g⇤

⌃qp (!) = Z (!)⌃> (!)

= take your favored diagram

E. Abrahams, J.S., and P. Wölfle, Phys. Rev B 90, 045105 (2014)

Page 22: Strong coupling approach to critical quasiparticlesstrangemetals.nl/wp-content/uploads/2018/01/JorgSchmalian.pdf · KIT – University of the State of Baden-Wuerttemberg and National

=Σq.p.hot =Σq.p.cold =Π

perturbation theory of renormalized quasi particles at low energies

P. Wölfle, J.S., and E. Abrahams, Reports on Progress in Physics (2017)

Scattering of singular quasiparticles

Γ= =

•  Singular low energy behavior (formally sub-leading) is boosted by high energy behavior •  There is always a weak coupling solutions:

•  strong coupling solution: Z(!) / |!|⌘Z = const.

⌘ =2d� 3

4d

dynamic scaling exponent

z =4d

3

Page 23: Strong coupling approach to critical quasiparticlesstrangemetals.nl/wp-content/uploads/2018/01/JorgSchmalian.pdf · KIT – University of the State of Baden-Wuerttemberg and National

Can one make this more systematic?

full solution in a “static” bosonic background J. Schmalian, D. Pines, and B. Stojkovic, Phys. Rev. Lett. 80, 3839 1998 .

a trick to sum all diagrams

recent development to “sum all diagrams” in the quantum regime

B. Meszena, P. Säterskog, A. Bagrov, and K. Schalm, PRB 94, 115134 (2016) P Säterskog, B. Meszena, and K. Schalm, PRB 96, 155125 (2017)

Nf ! 0, kF ! 1, Nkf = const

Page 24: Strong coupling approach to critical quasiparticlesstrangemetals.nl/wp-content/uploads/2018/01/JorgSchmalian.pdf · KIT – University of the State of Baden-Wuerttemberg and National

Scaling theory (collective modes)

E. Abrahams, J.S., and P. Wölfle, Phys. Rev B 90, 045105 (2014)

� (q,!)�1 / ⇠�2 + (q�Q)2 � i�!/Z(!)2

Z(!, T, x� xc) = b�⌘zZ⇣bz!, bzT, b1/⌫(x� xc)

⌫ =1

2 + ⌘z=

3

3 + 2d! 3

7 � = 1 + ⌫⌘z =4d

3 + 2d! 8

7 � = ⌫d/2 =! 3

7

“hyperscaling” for critical fermions:

Scaling theory (critical fermions)

f(T ) = b�(1+zF )f (bzF T )

there are two critical length scales:

Two dynamic scaling exponents z =4d

3zF =

4d

3 + 2d< zand

⇠ / T�1/z ⇠F / T�1/zF � ⇠

Page 25: Strong coupling approach to critical quasiparticlesstrangemetals.nl/wp-content/uploads/2018/01/JorgSchmalian.pdf · KIT – University of the State of Baden-Wuerttemberg and National

( )( )( )αωωγ

χsign1

2 iq +∝+qQ

( ) 75.02 ==dα 74.0exp ≈α

comparison with CeCu6-xAux (d=2)

8/1/ −∝TTC

E. Abrahams, J.S., and P. Wölfle, Phys. Rev B 90, 045105 (2014)

Page 26: Strong coupling approach to critical quasiparticlesstrangemetals.nl/wp-content/uploads/2018/01/JorgSchmalian.pdf · KIT – University of the State of Baden-Wuerttemberg and National

Renormalization group flow

�c(↵c)

↵c

weak coupling

strong coupling

↵⇤c

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

P. Wölfle, J.S., and E. Abrahams, Reports on Progress in Physics (2017)

the system flows to strong coupling à at lowest energies the power-law behavior may change

weak coupling à Hertz-Moria behavior

pole of the β-function Novikov-Shifman-Vainshtein-Zakharov function (n-extended SU(N) super symetric Y.-M. theories)

� (↵) =↵2

2⇡

(4� n)N

1� 2�n2⇡ N↵

Page 27: Strong coupling approach to critical quasiparticlesstrangemetals.nl/wp-content/uploads/2018/01/JorgSchmalian.pdf · KIT – University of the State of Baden-Wuerttemberg and National

•  Critical quasi-particles might be a powerful concept to combine Fermi liquid theory and quantum criticality.

•  Phenomenological approach: key assumption scale matching (high

energy dynamics boosts singularities at low temperatures) •  Coupling to composite modes (higher loop fluctuations) boosted in a

critical metal

•  Two non-trivial critical modes and two diverging length scales.

•  Results in good agreement with experiments on YbRh2Si2 (3-d fluctuations) and CeCu6-xAux (quasi-2-d fluctuations).

Conclusion

G (k,!) =Z(!)

! + i�! � "⇤k+Ginc (k,!) Z (!) / |!|⌘

⇠F / T�1/zF � ⇠

⌃ (kF ,!) / i! |!|d�32