Structural Design and Analysis

Embed Size (px)

Citation preview

  • 8/22/2019 Structural Design and Analysis

    1/52

    Appendices 54

    B. STRUCTURAL DESIGN AND ANALYSIS

    DESIGN PARAMETER

    1] Design Codes:

    ACI 318-95 Building Code Requirement for Reinforce Concrete

    UBC 1997 Uniform Building Code

    NSCP 6TH EDITION National Structural Code of the Philippines 2010

    ASTM C33 Standard Specifications for Concrete Aggregates

    PNS 16 Philippine National Standard for C.H.B

    AISC-LRFD 99

    2] Design Material Strength

    fc 25 mpa For all concrete sections without honeycomb and

    conformed to 40% by wt. water cement ratio

    (Footing,Column,Slab and Beam)

    fy 415 mpa For deformed reinforcing bars(for beam B1

    450 x 680 ONLY, note use fy 275 mpa for stirrup)

    fy 275 mpa For all deformed reinforcing bars

    (Footing,Column,Slab and Beam Rebars)

    Note 1: Material strength provided above shall be maintained

    in the construction.

    Compression testing for concrete and tensile for

    steel shall be conducted to maintained structural

    stability of the design.

    Note 2: Frame analysis and design results are purely based on

    code and material strength mention above.

  • 8/22/2019 Structural Design and Analysis

    2/52

    Appendices 55

    3] Design Loads

    3.1 Dead Loads

    a. concrete 23.56 kN/m3

    b. structural steel 78.60 kN/m3

    c. floor finishing 1.53 kPa

    d. ceiling 0.38 kPa

    e. construction loads 0.20 kPa

    f. CHB 5 2.75 kPa

    g. soil 16.00 kN/m3

    i. water 9.81 kN/m3

    3.2 Live Loads

    a. roof 0.75 kPa

    b. pedestrian walkways 4.80 kPa

    3.3 Wind Loads

    Where: Velocity pressure @ height z for

    windward wall at height z above the ground

    Velocity pressure @ height z = hFor leeward wall, side walls and roof

    at mean roof height

    Product of external pressure coefficient andgust effect factor

    Product of internal pressure coefficient andgust effect factor

  • 8/22/2019 Structural Design and Analysis

    3/52

    Appendices 56

    Velocity Pressure

    Velocity pressure exposure coefficient but

    Shall not be less than 1.0

    Basic wind speed Importance factor

    3.4 Earthquake Load

    Base shear

    Where: Effective weight at a given mode

    Gravitational acceleration Spectral acceleration at a given mode

    Where: Natural period of vibration Spectral velocity taken from response spectrum

    Where: Seismic deal load at level i Mode shape at level i

    Lateral force at level i

    [ ]

  • 8/22/2019 Structural Design and Analysis

    4/52

    Appendices 57

    SEISMIC ANALYSIS

    ETABS v9.6.0 File:OVERPASS Units: KN-m April 20, 2013 20:38

    PROJECT INFORMATION PROPOSED OVERPASS

    ETABS v9.6.0 File:OVERPASS Units:KN-m April 20, 2013 20:38

    S T O R Y D A T A

    STORY SIMILAR TO HEIGHT ELEVATION

    STORY2 None 3.000 8.100

    STORY1 STORY2 5.100 5.100

    BASE None 0.000

    ETABS v9.6.0 File:OVERPASS Units:KN-m April 20, 2013 20:38

    S T A T I C L O A D C A S E S

    STATIC CASE AUTO LAT SELF WT NOTIONAL NOTIONAL

    CASE TYPE LOAD MULTIPLIER FACTOR DIRECTION

    DEAD DEAD N/A 1.0000

    LIVE LIVE N/A 0.0000EQY QUAKE UBC97 0.0000

    EQX QUAKE UBC97 0.0000

    ETABS v9.6.0 File:OVERPASS Units:KN-m May 20, 2013 20:38

    A U T O S E I S M I C U B C 9 7

    Case: EQX

  • 8/22/2019 Structural Design and Analysis

    5/52

    Appendices 58

    AUTO SEISMIC INPUT DATA

    Direction: X

    Typical Eccentricity = 5%

    Eccentricity Overrides: No

    Period Calculation: Program Calculated

    Ct = 0.035 (in feet units)

    Top Story: STORY2

    Bottom Story: BASE

    R = 8.5

    I = 1

    hn = 8.100 (Building Height)

    Soil Profile Type = SC

    Z = 0.4

    Ca = 0.4400

    Cv = 0.7467

    Seismic Source Type = B

    Distance to Source = 4 km

    Na = 1.1000

    Nv = 1.3333

    AUTO SEISMIC CALCULATION FORMULAS

    Ta = Ct (hn^(3/4))

    If Z >= 0.35 (Zone 4) then: If Tetabs

  • 8/22/2019 Structural Design and Analysis

    6/52

    Appendices 59

    Ft Used = 0.00

    AUTO SEISMIC STORY FORCES

    STORY FX FY FZ MX MY MZ

    STORY2 121.07 0.00 0.00 0.000 0.000 -242.131

    STORY1 217.67 0.00 0.00 0.000 0.000 -435.341

    ETABS v9.6.0 File:OVERPASS Units:KN-m May 20, 2013 20:38

    A U T O S E I S M I C U B C 9 7

    Case: EQY

    AUTO SEISMIC INPUT DATA

    Direction: Y

    Typical Eccentricity = 5%

    Eccentricity Overrides: No

    Period Calculation: Program Calculated

    Ct = 0.035 (in feet units)

    Top Story: STORY2

    Bottom Story: BASE

    R = 8.5

    I = 1

    hn = 8.100 (Building Height)

    Soil Profile Type = SC

    Z = 0.4

    Ca = 0.4400

    Cv = 0.7467

    Seismic Source Type = B

    Distance to Source = 4 km

    Na = 1.1000

    Nv = 1.3333

    AUTO SEISMIC CALCULATION FORMULAS

    Ta = Ct (hn^(3/4))

    If Z >= 0.35 (Zone 4) then: If Tetabs

  • 8/22/2019 Structural Design and Analysis

    7/52

    Appendices 60

    If T > 0.7 sec, then Ft = 0.07 T V

  • 8/22/2019 Structural Design and Analysis

    8/52

    Appendices 61

    Mode 10 0.03529 28.33934 178.06135

    Mode 11 0.02782 35.94756 225.86518

    Mode 12 0.02508 39.87111 250.51760

    ETABS v9.6.0 File:OVERPASS Units:KN-m May 20, 2013 20:38

    M O D A L P A R T I C I P A T I N G M A S S R A T I O S

    MODE X-TRANS Y-TRANS Z-TRANS RX-ROTN RY-ROTN RZ-ROTN

    NUMBER %MASS %MASS %MASS %MASS %MASS %MASS

    Mode 1 0.00 < 0> 99.85 0.00 < 0> 96.74 < 97> 0.00 < 0> 0.00 < 0>

    Mode 2 99.92 0.00 0.00 < 0> 0.00 < 97> 96.33 < 96> 0.00 < 0>

    Mode 3 0.00 0.00 0.00 < 0> 0.00 < 97> 0.00 < 96> 99.73

    Mode 4 0.00 0.00 0.00 < 0> 0.00 < 97> 0.00 < 96> 0.27

    Mode 5 0.00 0.15 0.00 < 0> 3.26 0.00 < 96> 0.00

    Mode 6 0.08 0.00 0.00 < 0> 0.00 3.67 0.00

    Mode 7 0.00 0.00 0.00 < 0> 0.00 0.00 0.00

    Mode 8 0.00 0.00 0.00 < 0> 0.00 0.00 0.00

    Mode 9 0.00 0.00 0.00 < 0> 0.00 0.00 0.00

    Mode 10 0.00 0.00 0.00 < 0> 0.00 0.00 0.00

    Mode 11 0.00 0.00 0.00 < 0> 0.00 0.00 0.00

    Mode 12 0.00 0.00 0.00 < 0> 0.00 0.00 0.00

    ETABS v9.6.0 File:OVERPASS Units:KN-m May 20, 2013 20:38

    M O D A L L O A D P A R T I C I P A T I O N R A T I O S(STATIC AND DYNAMIC RATIOS ARE IN PERCENT)

    TYPE NAME STATIC DYNAMIC

    Load DEAD 0.0031 0.0000

    Load LIVE 0.0000 0.0000

    Load EQY 100.0000 100.0000

    Load EQX 100.0000 100.0000

    Accel UX 100.0000 100.0000

    Accel UY 100.0000 100.0000

    Accel UZ 0.0000 0.0000

    Accel RX 100.0000 100.0000

    Accel RY 100.0000 100.0000

    Accel RZ 100.0000 100.0000

    ETABS v9.6.0 File:OVERPASS Units:KN-m May 20, 2013 20:38

    TOTAL REACTIVE FORCES (RECOVERED LOADS) AT ORIGIN

    LOAD FX FY FZ MX MY MZ

    DEAD -1.185E-14 1.713E-14 2.725E+03 5.450E+03 -4.905E+04 4.624E-13

    LIVE 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.000E+00

    EQY 3.684E-11 -3.387E+02 -6.321E-14 2.091E+03 2.811E-10 -6.097E+03

    EQX -3.387E+02 3.471E-11 -1.620E-12 -2.709E-10 -2.091E+03 6.775E+02

    ETABS v9.6.0 File:OVERPASS Units:KN-m May 20, 2013 20:38 PAGE 12

    S T O R Y F O R C E S

    STORY LOAD P VX VY T MX MY

    STORY2 EQY -1.877E-13 2.988E-11 -1.211E+02 -2.179E+03 3.632E+02 9.500E-11

    STORY1 EQY -6.321E-14 3.684E-11 -3.387E+02 -6.097E+03 2.091E+03 2.811E-10

    STORY2 EQX -8.147E-13 -1.211E+02 3.075E-11 2.421E+02 -9.343E-11 -3.632E+02

    STORY1 EQX -1.620E-12 -3.387E+02 3.471E-11 6.775E+02 -2.709E-10 -2.091E+03

  • 8/22/2019 Structural Design and Analysis

    9/52

    Appendices 62

    ETABS v9.6.0 File:OVERPASS Units:KN-m May 20, 2013 20:38

    STORY DRIFTS

    STORY DIRECTION LOAD MAX DRIFT

    STORY2 Y EQY 1/616STORY1 Y EQY 1/122

    STORY2 X EQX 1/902

    STORY1 X EQX 1/124

    Staad.pro analysis-frame analysis

    Reactions

    Horizontal Vertical Horizontal Moment

    Node L/CFX

    (kN)FY

    (kN)FZ

    (kN)MX

    (kNm)MY

    (kNm)MZ

    (kNm)

    2 1:DEAD 42.744 533.863 0.000 0.000 0.000 -67.427

    2:LIVE 18.929 213.878 0.000 0.000 0.000 -29.889

    3:E1 -77.419 -35.205 0.000 0.000 0.000 197.513

    4:E2 77.011 33.836 0.000 0.000 0.000 -196.187

    5 1:DEAD 0.000 908.443 0.000 0.000 0.000 -0.000

    2:LIVE 0.000 388.083 0.000 0.000 0.000 -0.000

    3:E1 -89.270 1.369 0.000 0.000 0.000 215.877

    4:E2 89.270 1.369 0.000 0.000 0.000 -215.877

    8 1:DEAD -42.744 533.863 0.000 0.000 0.000 67.427

    2:LIVE -18.929 213.878 0.000 0.000 0.000 29.889

    3:E1 -77.011 33.836 0.000 0.000 0.000 196.187

    4:E2 77.419 -35.205 0.000 0.000 0.000 -197.513

    Beam Maximum Moments

    Distances to maxima are given from beam end A.

    Beam Node ALength

    (m)L/C

    d(m)

    Max My(kNm)

    d(m)

    Max Mz(kNm)

    1 10 3.000 1:DEAD Max -ve 0.000 0.000 3.000 228.863

    Max +ve 0.000 0.000

    2:LIVE Max -ve 0.000 0.000 3.000 112.725

    Max +ve 0.000 0.000

    3:E1 Max -ve 0.000 0.000 2.750 0.000

    Max +ve 0.000 0.000 0.000 -0.000

  • 8/22/2019 Structural Design and Analysis

    10/52

    Appendices 63

    4:E2 Max -ve 0.000 0.000 3.000 -0.000

    Max +ve 0.000 0.000 2.750 -0.000

    2 11 5.000 1:DEAD Max -ve 0.000 0.000 0.000 389.779

    Max +ve 0.000 0.000 5.000 -628.756

    2:LIVE Max -ve 0.000 0.000 0.000 188.109

    Max +ve 0.000 0.000 5.000 -275.724

    3:E1 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -201.858

    4:E2 Max -ve 0.000 0.000 0.000 197.638

    Max +ve 0.000 0.000

    3 12 5.000 1:DEAD Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.833 -620.664

    2:LIVE Max -ve 0.000 0.000

    Max +ve 0.000 0.000 1.250 -279.480

    3:E1 Max -ve 0.000 0.000 5.000 28.227

    Max +ve 0.000 0.000 0.000 -105.283

    4:E2 Max -ve 0.000 0.000 0.000 100.386

    Max +ve 0.000 0.000 5.000 -28.081

    4 13 5.000 1:DEAD Max -ve 0.000 0.000 5.000 1.2E 3

    Max +ve 0.000 0.000 0.000 -404.145

    2:LIVE Max -ve 0.000 0.000 5.000 538.976

    Max +ve 0.000 0.000 0.000 -169.189

    3:E1 Max -ve 0.000 0.000 5.000 127.005

    Max +ve 0.000 0.000 0.000 -13.3884:E2 Max -ve 0.000 0.000 0.000 11.997

    Max +ve 0.000 0.000 5.000 -122.568

    5 14 5.000 1:DEAD Max -ve 0.000 0.000 0.000 1.2E 3

    Max +ve 0.000 0.000 5.000 -404.145

    2:LIVE Max -ve 0.000 0.000 0.000 538.976

    Max +ve 0.000 0.000 5.000 -169.189

    3:E1 Max -ve 0.000 0.000 5.000 11.997

    Max +ve 0.000 0.000 0.000 -122.568

    4:E2 Max -ve 0.000 0.000 0.000 127.005

    Max +ve 0.000 0.000 5.000 -13.388

    6 15 5.000 1:DEAD Max -ve 0.000 0.000

    Max +ve 0.000 0.000 4.167 -620.664

    2:LIVE Max -ve 0.000 0.000

    Max +ve 0.000 0.000 3.750 -279.480

    3:E1 Max -ve 0.000 0.000 5.000 100.386Max +ve 0.000 0.000 0.000 -28.081

    4:E2 Max -ve 0.000 0.000 0.000 28.227

    Max +ve 0.000 0.000 5.000 -105.283

    7 16 5.000 1:DEAD Max -ve 0.000 0.000 5.000 389.779

    Max +ve 0.000 0.000 0.000 -628.756

    2:LIVE Max -ve 0.000 0.000 5.000 188.109

    Max +ve 0.000 0.000 0.000 -275.724

    3:E1 Max -ve 0.000 0.000 5.000 197.638

    Max +ve 0.000 0.000

    4:E2 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 5.000 -201.858

    8 17 3.000 1:DEAD Max -ve 0.000 0.000 0.000 228.863

    Max +ve 0.000 0.000 3.000 -0.000

    2:LIVE Max -ve 0.000 0.000 0.000 112.725

    Max +ve 0.000 0.000 3.000 -0.0003:E1 Max -ve 0.000 0.000 0.000 0.000

    Max +ve 0.000 0.000 3.000 -0.000

    4:E2 Max -ve 0.000 0.000 2.750 0.000

    Max +ve 0.000 0.000 3.000 -0.000

    9 19 3.000 1:DEAD Max -ve 0.000 0.000 3.000 97.928

    Max +ve 0.000 0.000 0.000 -0.000

    2:LIVE Max -ve 0.000 0.000 3.000 9.510

    Max +ve 0.000 0.000 0.000 -0.000

    3:E1 Max -ve 0.000 0.000 3.000 -0.000

    Max +ve 0.000 0.000 0.000 -0.000

  • 8/22/2019 Structural Design and Analysis

    11/52

    Appendices 64

    4:E2 Max -ve 0.000 0.000 3.000 0.000

    Max +ve 0.000 0.000 2.750 -0.000

    10 20 5.000 1:DEAD Max -ve 0.000 0.000 0.000 104.406

    Max +ve 0.000 0.000 4.583 -31.015

    2:LIVE Max -ve 0.000 0.000 0.000 20.986

    Max +ve 0.000 0.000 5.000 -17.848

    3:E1 Max -ve 0.000 0.000 5.000 14.979

    Max +ve 0.000 0.000 0.000 -24.854

    4:E2 Max -ve 0.000 0.000 0.000 21.881

    Max +ve 0.000 0.000 5.000 -13.262

    11 21 5.000 1:DEAD Max -ve 0.000 0.000 5.000 22.498

    Max +ve 0.000 0.000 2.083 -31.317

    2:LIVE Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.417 -9.538

    3:E1 Max -ve 0.000 0.000 5.000 20.572

    Max +ve 0.000 0.000 0.000 -21.943

    4:E2 Max -ve 0.000 0.000 0.000 20.960

    Max +ve 0.000 0.000 5.000 -19.755

    12 22 5.000 1:DEAD Max -ve 0.000 0.000 5.000 72.049

    Max +ve 0.000 0.000 1.250 -13.477

    2:LIVE Max -ve 0.000 0.000 5.000 23.214

    Max +ve 0.000 0.000 0.000 -11.953

    3:E1 Max -ve 0.000 0.000 5.000 17.923

    Max +ve 0.000 0.000 0.000 -17.7104:E2 Max -ve 0.000 0.000 0.000 17.120

    Max +ve 0.000 0.000 5.000 -17.497

    13 23 5.000 1:DEAD Max -ve 0.000 0.000 0.000 72.049

    Max +ve 0.000 0.000 3.750 -13.477

    2:LIVE Max -ve 0.000 0.000 0.000 23.214

    Max +ve 0.000 0.000 5.000 -11.953

    3:E1 Max -ve 0.000 0.000 5.000 17.120

    Max +ve 0.000 0.000 0.000 -17.497

    4:E2 Max -ve 0.000 0.000 0.000 17.923

    Max +ve 0.000 0.000 5.000 -17.710

    14 24 5.000 1:DEAD Max -ve 0.000 0.000 0.000 22.498

    Max +ve 0.000 0.000 2.917 -31.317

    2:LIVE Max -ve 0.000 0.000

    Max +ve 0.000 0.000 4.583 -9.538

    3:E1 Max -ve 0.000 0.000 5.000 20.960Max +ve 0.000 0.000 0.000 -19.755

    4:E2 Max -ve 0.000 0.000 0.000 20.572

    Max +ve 0.000 0.000 5.000 -21.943

    15 25 5.000 1:DEAD Max -ve 0.000 0.000 5.000 104.406

    Max +ve 0.000 0.000 0.417 -31.015

    2:LIVE Max -ve 0.000 0.000 5.000 20.986

    Max +ve 0.000 0.000 0.000 -17.848

    3:E1 Max -ve 0.000 0.000 5.000 21.881

    Max +ve 0.000 0.000 0.000 -13.262

    4:E2 Max -ve 0.000 0.000 0.000 14.979

    Max +ve 0.000 0.000 5.000 -24.854

    16 26 3.000 1:DEAD Max -ve 0.000 0.000 0.000 97.928

    Max +ve 0.000 0.000

    2:LIVE Max -ve 0.000 0.000 0.000 9.510

    Max +ve 0.000 0.000 3.000 -0.0003:E1 Max -ve 0.000 0.000 0.000 0.000

    Max +ve 0.000 0.000 3.000 -0.000

    4:E2 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -0.000

    18 2 4.800 1:DEAD Max -ve 0.000 0.000 4.800 137.742

    Max +ve 0.000 0.000 0.000 -67.427

    2:LIVE Max -ve 0.000 0.000 4.800 60.971

    Max +ve 0.000 0.000 0.000 -29.889

    3:E1 Max -ve 0.000 0.000 0.000 197.513

    Max +ve 0.000 0.000 4.800 -174.096

  • 8/22/2019 Structural Design and Analysis

    12/52

    Appendices 65

    4:E2 Max -ve 0.000 0.000 4.800 173.468

    Max +ve 0.000 0.000 0.000 -196.187

    21 5 4.800 1:DEAD Max -ve 0.000 0.000 4.800 0.000

    Max +ve 0.000 0.000 0.000 -0.000

    2:LIVE Max -ve 0.000 0.000 4.800 0.000

    Max +ve 0.000 0.000 0.000 -0.000

    3:E1 Max -ve 0.000 0.000 0.000 215.877

    Max +ve 0.000 0.000 4.800 -212.620

    4:E2 Max -ve 0.000 0.000 4.800 212.620

    Max +ve 0.000 0.000 0.000 -215.877

    24 8 4.800 1:DEAD Max -ve 0.000 0.000 0.000 67.427

    Max +ve 0.000 0.000 4.800 -137.742

    2:LIVE Max -ve 0.000 0.000 0.000 29.889

    Max +ve 0.000 0.000 4.800 -60.971

    3:E1 Max -ve 0.000 0.000 0.000 196.187

    Max +ve 0.000 0.000 4.800 -173.468

    4:E2 Max -ve 0.000 0.000 4.800 174.096

    Max +ve 0.000 0.000 0.000 -197.513

    27 11 3.000 1:DEAD Max -ve 0.000 0.000 3.000 6.479

    Max +ve 0.000 0.000 0.000 -23.174

    2:LIVE Max -ve 0.000 0.000 3.000 11.476

    Max +ve 0.000 0.000 0.000 -14.413

    3:E1 Max -ve 0.000 0.000 0.000 27.762

    Max +ve 0.000 0.000 3.000 -24.8544:E2 Max -ve 0.000 0.000 3.000 21.881

    Max +ve 0.000 0.000 0.000 -24.170

    28 12 3.000 1:DEAD Max -ve 0.000 0.000 3.000 23.020

    Max +ve 0.000 0.000 0.000 -22.211

    2:LIVE Max -ve 0.000 0.000 3.000 8.385

    Max +ve 0.000 0.000 0.000 -8.945

    3:E1 Max -ve 0.000 0.000 0.000 39.617

    Max +ve 0.000 0.000 3.000 -36.923

    4:E2 Max -ve 0.000 0.000 3.000 34.222

    Max +ve 0.000 0.000 0.000 -36.788

    29 13 3.000 1:DEAD Max -ve 0.000 0.000 0.000 30.161

    Max +ve 0.000 0.000 3.000 -27.395

    2:LIVE Max -ve 0.000 0.000 0.000 13.325

    Max +ve 0.000 0.000 3.000 -11.908

    3:E1 Max -ve 0.000 0.000 0.000 41.615Max +ve 0.000 0.000 3.000 -38.282

    4:E2 Max -ve 0.000 0.000 3.000 36.874

    Max +ve 0.000 0.000 0.000 -40.078

    30 14 3.000 1:DEAD Max -ve 0.000 0.000 3.000 0.000

    Max +ve 0.000 0.000 0.000 -0.000

    2:LIVE Max -ve 0.000 0.000 0.000 0.000

    Max +ve 0.000 0.000 3.000 -0.000

    3:E1 Max -ve 0.000 0.000 0.000 36.954

    Max +ve 0.000 0.000 3.000 -35.420

    4:E2 Max -ve 0.000 0.000 3.000 35.420

    Max +ve 0.000 0.000 0.000 -36.954

    31 15 3.000 1:DEAD Max -ve 0.000 0.000 3.000 27.395

    Max +ve 0.000 0.000 0.000 -30.161

    2:LIVE Max -ve 0.000 0.000 3.000 11.908

    Max +ve 0.000 0.000 0.000 -13.3253:E1 Max -ve 0.000 0.000 0.000 40.078

    Max +ve 0.000 0.000 3.000 -36.874

    4:E2 Max -ve 0.000 0.000 3.000 38.282

    Max +ve 0.000 0.000 0.000 -41.615

    32 16 3.000 1:DEAD Max -ve 0.000 0.000 0.000 22.211

    Max +ve 0.000 0.000 3.000 -23.020

    2:LIVE Max -ve 0.000 0.000 0.000 8.945

    Max +ve 0.000 0.000 3.000 -8.385

    3:E1 Max -ve 0.000 0.000 0.000 36.788

    Max +ve 0.000 0.000 3.000 -34.222

  • 8/22/2019 Structural Design and Analysis

    13/52

    Appendices 66

    4:E2 Max -ve 0.000 0.000 3.000 36.923

    Max +ve 0.000 0.000 0.000 -39.617

    33 17 3.000 1:DEAD Max -ve 0.000 0.000 0.000 23.174

    Max +ve 0.000 0.000 3.000 -6.479

    2:LIVE Max -ve 0.000 0.000 0.000 14.413

    Max +ve 0.000 0.000 3.000 -11.476

    3:E1 Max -ve 0.000 0.000 0.000 24.170

    Max +ve 0.000 0.000 3.000 -21.881

    4:E2 Max -ve 0.000 0.000 3.000 24.854

    Max +ve 0.000 0.000 0.000 -27.762

    Beam Maximum Shear Forces

    Distances to maxima are given from beam end A.

    Beam Node ALength

    (m)L/C

    d(m)

    Max Fz(kN)

    d(m)

    Max Fy(kN)

    1 10 3.000 1:DEAD Max -ve 0.000 0.000

    Max +ve 0.000 0.000 3.000 -121.975

    2:LIVE Max -ve 0.000 0.000

    Max +ve 0.000 0.000 3.000 -63.450

    3:E1 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -0.0004:E2 Max -ve 0.000 0.000 0.000 0.000

    Max +ve 0.000 0.000

    2 11 5.000 1:DEAD Max -ve 0.000 0.000 0.000 279.853

    Max +ve 0.000 0.000

    2:LIVE Max -ve 0.000 0.000 0.000 135.892

    Max +ve 0.000 0.000

    3:E1 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -27.238

    4:E2 Max -ve 0.000 0.000 0.000 26.808

    Max +ve 0.000 0.000

    3 12 5.000 1:DEAD Max -ve 0.000 0.000 0.000 29.634

    Max +ve 0.000 0.000 5.000 -122.658

    2:LIVE Max -ve 0.000 0.000 0.000 20.942

    Max +ve 0.000 0.000 5.000 -65.308

    3:E1 Max -ve 0.000 0.000Max +ve 0.000 0.000 0.000 -26.702

    4:E2 Max -ve 0.000 0.000 0.000 25.693

    Max +ve 0.000 0.000

    4 13 5.000 1:DEAD Max -ve 0.000 0.000

    Max +ve 0.000 0.000 5.000 -396.738

    2:LIVE Max -ve 0.000 0.000

    Max +ve 0.000 0.000 5.000 -184.758

    3:E1 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -28.079

    4:E2 Max -ve 0.000 0.000 0.000 26.913

    Max +ve 0.000 0.000

    5 14 5.000 1:DEAD Max -ve 0.000 0.000 0.000 396.738

    Max +ve 0.000 0.000

    2:LIVE Max -ve 0.000 0.000 0.000 184.758

    Max +ve 0.000 0.0003:E1 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -26.913

    4:E2 Max -ve 0.000 0.000 0.000 28.079

    Max +ve 0.000 0.000

    6 15 5.000 1:DEAD Max -ve 0.000 0.000 0.000 122.658

    Max +ve 0.000 0.000 5.000 -29.634

    2:LIVE Max -ve 0.000 0.000 0.000 65.308

    Max +ve 0.000 0.000 5.000 -20.942

    3:E1 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -25.693

  • 8/22/2019 Structural Design and Analysis

    14/52

    Appendices 67

    4:E2 Max -ve 0.000 0.000 0.000 26.702

    Max +ve 0.000 0.000

    7 16 5.000 1:DEAD Max -ve 0.000 0.000

    Max +ve 0.000 0.000 5.000 -279.853

    2:LIVE Max -ve 0.000 0.000

    Max +ve 0.000 0.000 5.000 -135.892

    3:E1 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -26.808

    4:E2 Max -ve 0.000 0.000 0.000 27.238

    Max +ve 0.000 0.000

    8 17 3.000 1:DEAD Max -ve 0.000 0.000 0.000 121.975

    Max +ve 0.000 0.000

    2:LIVE Max -ve 0.000 0.000 0.000 63.450

    Max +ve 0.000 0.000

    3:E1 Max -ve 0.000 0.000 0.000 0.000

    Max +ve 0.000 0.000 0.000 0.000

    4:E2 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -0.000

    9 19 3.000 1:DEAD Max -ve 0.000 0.000

    Max +ve 0.000 0.000 3.000 -50.445

    2:LIVE Max -ve 0.000 0.000

    Max +ve 0.000 0.000 3.000 -4.520

    3:E1 Max -ve 0.000 0.000 0.000 0.000

    Max +ve 0.000 0.000 0.000 0.0004:E2 Max -ve 0.000 0.000 0.000 0.000

    Max +ve 0.000 0.000

    10 20 5.000 1:DEAD Max -ve 0.000 0.000 0.000 56.745

    Max +ve 0.000 0.000 5.000 -2.597

    2:LIVE Max -ve 0.000 0.000 0.000 10.017

    Max +ve 0.000 0.000

    3:E1 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -7.967

    4:E2 Max -ve 0.000 0.000 0.000 7.028

    Max +ve 0.000 0.000

    11 21 5.000 1:DEAD Max -ve 0.000 0.000 0.000 23.583

    Max +ve 0.000 0.000 5.000 -35.759

    2:LIVE Max -ve 0.000 0.000 0.000 0.366

    Max +ve 0.000 0.000 5.000 -4.134

    3:E1 Max -ve 0.000 0.000Max +ve 0.000 0.000 0.000 -8.503

    4:E2 Max -ve 0.000 0.000 0.000 8.143

    Max +ve 0.000 0.000

    12 22 5.000 1:DEAD Max -ve 0.000 0.000 0.000 14.282

    Max +ve 0.000 0.000 5.000 -45.060

    2:LIVE Max -ve 0.000 0.000

    Max +ve 0.000 0.000 5.000 -9.283

    3:E1 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -7.127

    4:E2 Max -ve 0.000 0.000 0.000 6.923

    Max +ve 0.000 0.000

    13 23 5.000 1:DEAD Max -ve 0.000 0.000 0.000 45.060

    Max +ve 0.000 0.000 5.000 -14.282

    2:LIVE Max -ve 0.000 0.000 0.000 9.283

    Max +ve 0.000 0.0003:E1 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -6.923

    4:E2 Max -ve 0.000 0.000 0.000 7.127

    Max +ve 0.000 0.000

    14 24 5.000 1:DEAD Max -ve 0.000 0.000 0.000 35.759

    Max +ve 0.000 0.000 5.000 -23.583

    2:LIVE Max -ve 0.000 0.000 0.000 4.134

    Max +ve 0.000 0.000 5.000 -0.366

    3:E1 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -8.143

  • 8/22/2019 Structural Design and Analysis

    15/52

    Appendices 68

    4:E2 Max -ve 0.000 0.000 0.000 8.503

    Max +ve 0.000 0.000

    15 25 5.000 1:DEAD Max -ve 0.000 0.000 0.000 2.597

    Max +ve 0.000 0.000 5.000 -56.745

    2:LIVE Max -ve 0.000 0.000

    Max +ve 0.000 0.000 5.000 -10.017

    3:E1 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -7.028

    4:E2 Max -ve 0.000 0.000 0.000 7.967

    Max +ve 0.000 0.000

    16 26 3.000 1:DEAD Max -ve 0.000 0.000 0.000 50.445

    Max +ve 0.000 0.000

    2:LIVE Max -ve 0.000 0.000 0.000 4.520

    Max +ve 0.000 0.000

    3:E1 Max -ve 0.000 0.000 0.000 0.000

    Max +ve 0.000 0.000

    4:E2 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -0.000

    18 2 4.800 1:DEAD Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -42.744

    2:LIVE Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -18.929

    3:E1 Max -ve 0.000 0.000 0.000 77.419

    Max +ve 0.000 0.0004:E2 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -77.011

    21 5 4.800 1:DEAD Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -0.000

    2:LIVE Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -0.000

    3:E1 Max -ve 0.000 0.000 0.000 89.270

    Max +ve 0.000 0.000

    4:E2 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -89.270

    24 8 4.800 1:DEAD Max -ve 0.000 0.000 0.000 42.744

    Max +ve 0.000 0.000

    2:LIVE Max -ve 0.000 0.000 0.000 18.929

    Max +ve 0.000 0.000

    3:E1 Max -ve 0.000 0.000 0.000 77.011Max +ve 0.000 0.000

    4:E2 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -77.419

    27 11 3.000 1:DEAD Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -9.884

    2:LIVE Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -8.630

    3:E1 Max -ve 0.000 0.000 0.000 17.539

    Max +ve 0.000 0.000

    4:E2 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -15.350

    28 12 3.000 1:DEAD Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -15.077

    2:LIVE Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -5.7773:E1 Max -ve 0.000 0.000 0.000 25.513

    Max +ve 0.000 0.000

    4:E2 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -23.670

    29 13 3.000 1:DEAD Max -ve 0.000 0.000 0.000 19.185

    Max +ve 0.000 0.000

    2:LIVE Max -ve 0.000 0.000 0.000 8.411

    Max +ve 0.000 0.000

    3:E1 Max -ve 0.000 0.000 0.000 26.632

    Max +ve 0.000 0.000

  • 8/22/2019 Structural Design and Analysis

    16/52

    Appendices 69

    4:E2 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -25.651

    30 14 3.000 1:DEAD Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -0.000

    2:LIVE Max -ve 0.000 0.000 0.000 0.000

    Max +ve 0.000 0.000

    3:E1 Max -ve 0.000 0.000 0.000 24.125

    Max +ve 0.000 0.000

    4:E2 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -24.125

    31 15 3.000 1:DEAD Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -19.185

    2:LIVE Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -8.411

    3:E1 Max -ve 0.000 0.000 0.000 25.651

    Max +ve 0.000 0.000

    4:E2 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -26.632

    32 16 3.000 1:DEAD Max -ve 0.000 0.000 0.000 15.077

    Max +ve 0.000 0.000

    2:LIVE Max -ve 0.000 0.000 0.000 5.777

    Max +ve 0.000 0.000

    3:E1 Max -ve 0.000 0.000 0.000 23.670

    Max +ve 0.000 0.0004:E2 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -25.513

    33 17 3.000 1:DEAD Max -ve 0.000 0.000 0.000 9.884

    Max +ve 0.000 0.000

    2:LIVE Max -ve 0.000 0.000 0.000 8.630

    Max +ve 0.000 0.000

    3:E1 Max -ve 0.000 0.000 0.000 15.350

    Max +ve 0.000 0.000

    4:E2 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -17.539

    Beam Maximum Axial Forces

    Distances to maxima are given from beam end A.

    Beam Node ALength

    (m)L/C

    d(m)

    Max Fx(kN)

    1 10 3.000 1:DEAD Max -ve 0.000 0.000

    Max +ve 0.000 0.000

    2:LIVE Max -ve 0.000 0.000

    Max +ve 0.000 0.000

    3:E1 Max -ve

    Max +ve 0.000 -0.000

    4:E2 Max -ve 0.000 0.000

    Max +ve

    2 11 5.000 1:DEAD Max -ve 0.000 32.859

    Max +ve

    2:LIVE Max -ve 0.000 10.299

    Max +ve3:E1 Max -ve 0.000 25.340

    Max +ve

    4:E2 Max -ve 0.000 61.661

    Max +ve

    3 12 5.000 1:DEAD Max -ve 0.000 17.783

    Max +ve

    2:LIVE Max -ve 0.000 4.523

    Max +ve

    3:E1 Max -ve 0.000 50.854

    Max +ve

  • 8/22/2019 Structural Design and Analysis

    17/52

    Appendices 70

    4:E2 Max -ve 0.000 37.991

    Max +ve

    4 13 5.000 1:DEAD Max -ve 0.000 36.968

    Max +ve

    2:LIVE Max -ve 0.000 12.934

    Max +ve

    3:E1 Max -ve 0.000 77.486

    Max +ve

    4:E2 Max -ve 0.000 12.341

    Max +ve

    5 14 5.000 1:DEAD Max -ve 0.000 36.968

    Max +ve

    2:LIVE Max -ve 0.000 12.934

    Max +ve

    3:E1 Max -ve 0.000 12.341

    Max +ve

    4:E2 Max -ve 0.000 77.486

    Max +ve

    6 15 5.000 1:DEAD Max -ve 0.000 17.783

    Max +ve

    2:LIVE Max -ve 0.000 4.523

    Max +ve

    3:E1 Max -ve 0.000 37.991

    Max +ve4:E2 Max -ve 0.000 50.854

    Max +ve

    7 16 5.000 1:DEAD Max -ve 0.000 32.859

    Max +ve

    2:LIVE Max -ve 0.000 10.299

    Max +ve

    3:E1 Max -ve 0.000 61.661

    Max +ve

    4:E2 Max -ve 0.000 25.340

    Max +ve

    8 17 3.000 1:DEAD Max -ve

    Max +ve 0.000 -0.000

    2:LIVE Max -ve 0.000 0.000

    Max +ve 0.000 0.000

    3:E1 Max -veMax +ve 0.000 -0.000

    4:E2 Max -ve

    Max +ve 0.000 -0.000

    9 19 3.000 1:DEAD Max -ve 0.000 0.000

    Max +ve

    2:LIVE Max -ve

    Max +ve 0.000 -0.000

    3:E1 Max -ve 0.000 0.000

    Max +ve

    4:E2 Max -ve 0.000 0.000

    Max +ve 0.000 0.000

    10 20 5.000 1:DEAD Max -ve 0.000 9.884

    Max +ve

    2:LIVE Max -ve 0.000 8.630

    Max +ve3:E1 Max -ve 0.000 140.941

    Max +ve

    4:E2 Max -ve 0.000 15.350

    Max +ve

    11 21 5.000 1:DEAD Max -ve 0.000 24.961

    Max +ve

    2:LIVE Max -ve 0.000 14.406

    Max +ve

    3:E1 Max -ve 0.000 115.428

    Max +ve

  • 8/22/2019 Structural Design and Analysis

    18/52

    Appendices 71

    4:E2 Max -ve 0.000 39.020

    Max +ve

    12 22 5.000 1:DEAD Max -ve 0.000 5.776

    Max +ve

    2:LIVE Max -ve 0.000 5.996

    Max +ve

    3:E1 Max -ve 0.000 88.796

    Max +ve

    4:E2 Max -ve 0.000 64.671

    Max +ve

    13 23 5.000 1:DEAD Max -ve 0.000 5.776

    Max +ve

    2:LIVE Max -ve 0.000 5.996

    Max +ve

    3:E1 Max -ve 0.000 64.671

    Max +ve

    4:E2 Max -ve 0.000 88.796

    Max +ve

    14 24 5.000 1:DEAD Max -ve 0.000 24.961

    Max +ve

    2:LIVE Max -ve 0.000 14.406

    Max +ve

    3:E1 Max -ve 0.000 39.020

    Max +ve4:E2 Max -ve 0.000 115.428

    Max +ve

    15 25 5.000 1:DEAD Max -ve 0.000 9.884

    Max +ve

    2:LIVE Max -ve 0.000 8.630

    Max +ve

    3:E1 Max -ve 0.000 15.350

    Max +ve

    4:E2 Max -ve 0.000 140.941

    Max +ve

    16 26 3.000 1:DEAD Max -ve 0.000 0.000

    Max +ve

    2:LIVE Max -ve 0.000 0.000

    Max +ve 0.000 0.000

    3:E1 Max -ve 0.000 0.000Max +ve 0.000 0.000

    4:E2 Max -ve 0.000 0.000

    Max +ve

    18 2 4.800 1:DEAD Max -ve 0.000 533.863

    Max +ve

    2:LIVE Max -ve 0.000 213.878

    Max +ve

    3:E1 Max -ve

    Max +ve 0.000 -35.205

    4:E2 Max -ve 0.000 33.836

    Max +ve

    21 5 4.800 1:DEAD Max -ve 0.000 908.443

    Max +ve

    2:LIVE Max -ve 0.000 388.083

    Max +ve3:E1 Max -ve 0.000 1.369

    Max +ve

    4:E2 Max -ve 0.000 1.369

    Max +ve

    24 8 4.800 1:DEAD Max -ve 0.000 533.863

    Max +ve

    2:LIVE Max -ve 0.000 213.878

    Max +ve

    3:E1 Max -ve 0.000 33.836

    Max +ve

  • 8/22/2019 Structural Design and Analysis

    19/52

    Appendices 72

    4:E2 Max -ve

    Max +ve 0.000 -35.205

    27 11 3.000 1:DEAD Max -ve 0.000 111.608

    Max +ve

    2:LIVE Max -ve 0.000 14.537

    Max +ve

    3:E1 Max -ve

    Max +ve 0.000 -7.967

    4:E2 Max -ve 0.000 7.028

    Max +ve

    28 12 3.000 1:DEAD Max -ve 0.000 30.598

    Max +ve

    2:LIVE Max -ve

    Max +ve 0.000 -5.151

    3:E1 Max -ve

    Max +ve 0.000 -0.536

    4:E2 Max -ve 0.000 1.114

    Max +ve

    29 13 3.000 1:DEAD Max -ve 0.000 54.459

    Max +ve

    2:LIVE Max -ve

    Max +ve 0.000 -0.650

    3:E1 Max -ve 0.000 1.377

    Max +ve4:E2 Max -ve

    Max +ve 0.000 -1.220

    30 14 3.000 1:DEAD Max -ve 0.000 94.538

    Max +ve

    2:LIVE Max -ve 0.000 18.567

    Max +ve

    3:E1 Max -ve 0.000 0.203

    Max +ve

    4:E2 Max -ve 0.000 0.203

    Max +ve

    31 15 3.000 1:DEAD Max -ve 0.000 54.459

    Max +ve

    2:LIVE Max -ve

    Max +ve 0.000 -0.650

    3:E1 Max -veMax +ve 0.000 -1.220

    4:E2 Max -ve 0.000 1.377

    Max +ve

    32 16 3.000 1:DEAD Max -ve 0.000 30.598

    Max +ve

    2:LIVE Max -ve

    Max +ve 0.000 -5.151

    3:E1 Max -ve 0.000 1.114

    Max +ve

    4:E2 Max -ve

    Max +ve 0.000 -0.536

    33 17 3.000 1:DEAD Max -ve 0.000 111.608

    Max +ve

    2:LIVE Max -ve 0.000 14.537

    Max +ve3:E1 Max -ve 0.000 7.028

    Max +ve

    4:E2 Max -ve

    Max +ve 0.000 -7.967

  • 8/22/2019 Structural Design and Analysis

    20/52

    Appendices 73

    Staad.pro analysis-frame analysis

    Reactions

    Horizontal Vertical Horizontal Moment

    Node L/C FX(kN)

    FY(kN)

    FZ(kN)

    MX(kNm)

    MY(kNm)

    MZ(kNm)

    1 1:DEAD 5.524 90.605 0.000 0.000 0.000 -8.744

    2:LIVE 3.747 29.600 0.000 0.000 0.000 -5.919

    3:EQ1 -46.450 -76.204 0.000 0.000 0.000 161.084

    4:EQ2 46.380 76.204 0.000 0.000 0.000 -160.794

    2 1:DEAD -5.524 90.605 0.000 0.000 0.000 8.744

    2:LIVE -3.747 29.600 0.000 0.000 0.000 5.919

    3:EQ1 -46.380 76.204 0.000 0.000 0.000 160.794

    4:EQ2 46.450 -76.204 0.000 0.000 0.000 -161.084

    Beam Maximum Moments

    Distances to maxima are given from beam end A.

    Beam Node ALength

    (m)L/C

    d(m)

    Max My(kNm)

    d(m)

    Max Mz(kNm)

    1 3 4.000 1:DEAD Max -ve 0.000 0.000 0.000 25.222

    Max +ve 0.000 0.000 2.000 -17.504

    2:LIVE Max -ve 0.000 0.000 0.000 14.844

    Max +ve 0.000 0.000 2.000 -10.756

    3:EQ1 Max -ve 0.000 0.000 4.000 104.074

    Max +ve 0.000 0.000 0.000 -104.163

    4:EQ2 Max -ve 0.000 0.000 0.000 104.074

    Max +ve 0.000 0.000 4.000 -104.163

  • 8/22/2019 Structural Design and Analysis

    21/52

    Appendices 74

    2 5 4.000 1:DEAD Max -ve 0.000 0.000 0.000 9.919

    Max +ve 0.000 0.000 2.000 -13.115

    2:LIVE Max -ve 0.000 0.000 0.000 2.064

    Max +ve 0.000 0.000 2.000 -1.936

    3:EQ1 Max -ve 0.000 0.000 4.000 48.263

    Max +ve 0.000 0.000 0.000 -48.316

    4:EQ2 Max -ve 0.000 0.000 0.000 48.263

    Max +ve 0.000 0.000 4.000 -48.316

    3 1 4.800 1:DEAD Max -ve 0.000 0.000 4.800 17.769

    Max +ve 0.000 0.000 0.000 -8.744

    2:LIVE Max -ve 0.000 0.000 4.800 12.068

    Max +ve 0.000 0.000 0.000 -5.919

    3:EQ1 Max -ve 0.000 0.000 0.000 161.084

    Max +ve 0.000 0.000 4.800 -61.874

    4:EQ2 Max -ve 0.000 0.000 4.800 61.832

    Max +ve 0.000 0.000 0.000 -160.794

    4 2 4.800 1:DEAD Max -ve 0.000 0.000 0.000 8.744

    Max +ve 0.000 0.000 4.800 -17.769

    2:LIVE Max -ve 0.000 0.000 0.000 5.919

    Max +ve 0.000 0.000 4.800 -12.068

    3:EQ1 Max -ve 0.000 0.000 0.000 160.794

    Max +ve 0.000 0.000 4.800 -61.832

    4:EQ2 Max -ve 0.000 0.000 4.800 61.874

    Max +ve 0.000 0.000 0.000 -161.0845 3 3.000 1:DEAD Max -ve 0.000 0.000 3.000 9.919

    Max +ve 0.000 0.000 0.000 -7.452

    2:LIVE Max -ve 0.000 0.000 3.000 2.064

    Max +ve 0.000 0.000 0.000 -2.776

    3:EQ1 Max -ve 0.000 0.000 0.000 42.289

    Max +ve 0.000 0.000 3.000 -48.316

    4:EQ2 Max -ve 0.000 0.000 3.000 48.263

    Max +ve 0.000 0.000 0.000 -42.242

    6 4 3.000 1:DEAD Max -ve 0.000 0.000 0.000 7.452

    Max +ve 0.000 0.000 3.000 -9.919

    2:LIVE Max -ve 0.000 0.000 0.000 2.776

    Max +ve 0.000 0.000 3.000 -2.064

    3:EQ1 Max -ve 0.000 0.000 0.000 42.242

    Max +ve 0.000 0.000 3.000 -48.263

    4:EQ2 Max -ve 0.000 0.000 3.000 48.316Max +ve 0.000 0.000 0.000 -42.289

    Beam Maximum Shear Forces

    Distances to maxima are given from beam end A.

    Beam Node ALength

    (m)L/C

    d(m)

    Max Fz(kN)

    d(m)

    Max Fy(kN)

    1 3 4.000 1:DEAD Max -ve 0.000 0.000 0.000 42.725

    Max +ve 0.000 0.000 4.000 -42.725

    2:LIVE Max -ve 0.000 0.000 0.000 25.600

    Max +ve 0.000 0.000 4.000 -25.600

    3:EQ1 Max -ve 0.000 0.000Max +ve 0.000 0.000 0.000 -52.059

    4:EQ2 Max -ve 0.000 0.000 0.000 52.059

    Max +ve 0.000 0.000

    2 5 4.000 1:DEAD Max -ve 0.000 0.000 0.000 23.034

    Max +ve 0.000 0.000 4.000 -23.034

    2:LIVE Max -ve 0.000 0.000 0.000 4.000

    Max +ve 0.000 0.000 4.000 -4.000

    3:EQ1 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -24.145

    4:EQ2 Max -ve 0.000 0.000 0.000 24.145

  • 8/22/2019 Structural Design and Analysis

    22/52

    Appendices 75

    Max +ve 0.000 0.000

    3 1 4.800 1:DEAD Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -5.524

    2:LIVE Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -3.747

    3:EQ1 Max -ve 0.000 0.000 0.000 46.450

    Max +ve 0.000 0.000

    4:EQ2 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -46.380

    4 2 4.800 1:DEAD Max -ve 0.000 0.000 0.000 5.524

    Max +ve 0.000 0.000

    2:LIVE Max -ve 0.000 0.000 0.000 3.747

    Max +ve 0.000 0.000

    3:EQ1 Max -ve 0.000 0.000 0.000 46.380

    Max +ve 0.000 0.000

    4:EQ2 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -46.450

    5 3 3.000 1:DEAD Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -5.790

    2:LIVE Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -1.613

    3:EQ1 Max -ve 0.000 0.000 0.000 30.202

    Max +ve 0.000 0.000

    4:EQ2 Max -ve 0.000 0.000Max +ve 0.000 0.000 0.000 -30.168

    6 4 3.000 1:DEAD Max -ve 0.000 0.000 0.000 5.790

    Max +ve 0.000 0.000

    2:LIVE Max -ve 0.000 0.000 0.000 1.613

    Max +ve 0.000 0.000

    3:EQ1 Max -ve 0.000 0.000 0.000 30.168

    Max +ve 0.000 0.000

    4:EQ2 Max -ve 0.000 0.000

    Max +ve 0.000 0.000 0.000 -30.202

    Beam Maximum Axial Forces

    Distances to maxima are given from beam end A.

    Beam Node A

    Length

    (m) L/C

    d

    (m)

    Max Fx

    (kN)1 3 4.000 1:DEAD Max -ve

    Max +ve 0.000 -0.267

    2:LIVE Max -ve 0.000 2.134

    Max +ve

    3:EQ1 Max -ve 0.000 16.212

    Max +ve

    4:EQ2 Max -ve 0.000 16.212

    Max +ve

    2 5 4.000 1:DEAD Max -ve 0.000 5.790

    Max +ve

    2:LIVE Max -ve 0.000 1.613

    Max +ve

    3:EQ1 Max -ve 0.000 30.168

    Max +ve

    4:EQ2 Max -ve 0.000 30.168Max +ve

    3 1 4.800 1:DEAD Max -ve 0.000 90.605

    Max +ve

    2:LIVE Max -ve 0.000 29.600

    Max +ve

    3:EQ1 Max -ve

    Max +ve 0.000 -76.204

    4:EQ2 Max -ve 0.000 76.204

    Max +ve

    4 2 4.800 1:DEAD Max -ve 0.000 90.605

  • 8/22/2019 Structural Design and Analysis

    23/52

    Appendices 76

    Max +ve

    2:LIVE Max -ve 0.000 29.600

    Max +ve

    3:EQ1 Max -ve 0.000 76.204

    Max +ve

    4:EQ2 Max -ve

    Max +ve 0.000 -76.204

    5 3 3.000 1:DEAD Max -ve 0.000 27.452

    Max +ve

    2:LIVE Max -ve 0.000 4.000

    Max +ve

    3:EQ1 Max -ve

    Max +ve 0.000 -24.145

    4:EQ2 Max -ve 0.000 24.145

    Max +ve

    6 4 3.000 1:DEAD Max -ve 0.000 27.452

    Max +ve

    2:LIVE Max -ve 0.000 4.000

    Max +ve

    3:EQ1 Max -ve 0.000 24.145

    Max +ve

    4:EQ2 Max -ve

    Max +ve 0.000 -24.145

  • 8/22/2019 Structural Design and Analysis

    24/52

    Appendices 77

    DESIGN OF TWO-WAY SLAB

    Thursday, April 11, 2013 6:00:21 PM

    Data:

    Material

    Strength:

    fc' = 25 MPa fy = 275 MPa

    Slab Loads:

    Service Live Load: Service Dead Load:

    SLL = 4.8 KPa DLL = 5.3 KPa

    Slab

    Details:

    Clear Short Span: Clear Long Span:

    La = 3.50 m Lb = 4.75 m

    Select Case by pressing the BUTTON at the

    right

    Solution: Case : 3

    1. Effective Height

    h = Panel Perimeter = 2*3.5+2*4.75

    180 180

    = 0.092 m say 0.100 m

    2. Ultimate Load

    Consider a meter strip:

    Wslab = 23.56 * b *h = 23.56 * 1.0 * 0.1

    = 2.356 KN / mWdl = SDL * 1.0 m = 5.3 * 1.0 m

    = 5.3 KN / m

    Wll = SLL * 1.0 m = 4.8 * 1.0 m

    = 4.8 KN / m

    Wudl = 1.4*(Wslab + Wdl) = 1.4(2.356+5.3)

    = 10.718 KN / m

    Wull = 1.7 * Wll = 1.7 * 4.8

    = 8.16 KN / m

    Wu = Wull + Wudl = 4.8 + 10.718

    = 18.878 KN / m

    3. Calculate Moments Using Coefficients

    m = La / Lb = 3.5 / 4.75

    = 0.74 53 54

    m Ca.neg Ca.dl Ca.ll Cb.neg Cb.dl Cb.ll

    0.7400 0.0000 0.0412 0.0522

    ####

    # 0.0176 0.0184

    Values are interpolated from the moment coefficient table.

    See Table from the corresponding sheets.

  • 8/22/2019 Structural Design and Analysis

    25/52

    Appendices 78

    Short Span:

    I. Middle Strip

    a. Continuous Edge

    Ma.neg = Ca * Wu * La^2 = 0 * 18.878 * 3.5 ^2

    = 0 KN-m

    b.1 Midspan (Due to Dead Load)

    Ma.posdl = Ca * Wudl * La^2 = 0.0412 * 10.718 * 3.5 ^2

    = 5.409 KN-m

    b.2 Midspan(Due to Live Load)

    Ma.posll = Ca * Wull * La^2 = 0.0522 * 8.16 * 3.5 ^2

    = 5.218 KN-m

    Ma.pos = Ma.posdl + Ma.posll = 5.409 + 5.218

    = 10.627 KN-m

    II. Column Strip

    Long Span:

    I. Middle Strip

    a. Continuous Edge

    Mb.neg = Ca * Wu * Lb^2 = 0.0548 * 18.878 * 4.75 ^2

    = 23.341 KN-m

    b.1 Midspan (Due to Dead Load)

    Mb.posdl = Ca * Wudl * Lb^2 = 0.0176 * 10.718 * 4.75 ^2

    = 4.256 KN-m

    b.2 Midspan(Due to Live Load)

    Mb.posll = Ca * Wull * Lb^2 = 0.0184 * 8.16 * 4.75 ^2= 3.388 KN-m

    Mb.pos = Ma.posdl + Ma.posll = 4.256 + 3.388

    = 7.644 KN-m

    4. Design of Reinforcements

    Diameter of Bars:

    db = 16 mm

    Pmax =

    0.75*0.85*fc'*B1*60

    0 = 0.75*0.85*25*0.85*600

    fy (600 + fy) 275 (600 + 275)

    = 0.03378

    Asmin = 0.002*bh = 0.002 * 1000 * 0.1

    = 200.00 sqm

    Smax = 2 * h or 450 mm = 2 * 100

    = 200.00 mm

    ds = h - cc - db / 2 = 100 - 20 - 16 / 2

    = 72 mm

    dl = h - cc - db - db / = 100 - 20 - 16 - 16 / 2

  • 8/22/2019 Structural Design and Analysis

    26/52

    Appendices 79

    2

    = 56 mm

    Short Span:

    I. Middle Strip

    a. Continuous Edge

    Ma.neg = 0.90 * P * b * h ^ 2 * fy (1 - 0.59 * P * fy / fc')

    0e6 = 0.90 * P * 1000 * 72 ^ 2 * 275 (1 - 0.59 * P * 275 / 25)

    P = 0 OK = 0 (use)

    P = 0.002 P < Pmin. Use Pmin

    As = P* b * h = 0.002 * 1000 * 72

    = 144 sqm Use Asmin 200 sqm

    Sreqd =

    250 * PI * db^2 /

    As = 250*3.14159*16^2/200

    = 1396.26 mm Sreqd > Smax. Use SmaxS = 200 mm (suggested spacing)

    b. Midspan

    Ma.pos = 0.90 * P * b * h ^ 2 * fy (1 - 0.59 * P * fy / fc')

    10.627e6 = 0.90 * P * 1000 * 72 ^ 2 * 275 (1 - 0.59 * P * 275 / 25)

    P = 0.00878 OK = 0.00878 (use)

    P = 0.00878 OK! P > Pmin

    As = P* b * h = 0.008783 * 1000 * 72

    = 632.376 sqm OK! As > Asmin 632.376 sqm

    Sreqd =

    250 * PI * db^2 /

    As = 250*3.14159*^2/632.376

    = 317.947 mm Sreqd > Smax. Use Smax

    S = 200 mm (suggested spacing)

    II. Column Strip

    a. Continuous Edge

    Asreqd = 2 / 3 (Asms) = 2 / 3 (200)

    = 133.333 sqm = (use) 200 sqm

    Sreqd = 3 / 2 (Sms) = 3 / 2 (1396.263)= 2094.39 mm Sreqd > Smax. Use Smax

    S = 200 mm (suggested spacing)

    b. Midspan

    Asreqd = 2 / 3 (Asms) = 2 / 3 (632.376)

    = 421.584 sqm = (use) 421.584 sqm

  • 8/22/2019 Structural Design and Analysis

    27/52

    Appendices 80

    Sreqd = 3 / 2 (Sms) = 3 / 2 (317.947)

    = 476.921 mm Sreqd > Smax. Use Smax

    S = 200 mm (suggested spacing)

    Long Span:

    I. Middle Strip

    a. Continuous Edge

    Mb.neg = 0.90 * P * b * h ^ 2 * fy (1 - 0.59 * P * fy / fc')

    23.341e6 = 0.90 * P * 1000 * 56 ^ 2 * 275 (1 - 0.59 * P * 275 / 25)

    P = 0.04096 NOT OK = 0.03378 (use)

    P = 0.03378 OK! P > Pmin

    As = P* b * h = 0.03378 * 1000 * 56

    = 1891.68 sqm OK! As > Asmin 1891.68 sqm

    Sreqd =

    250 * PI * db^2 /

    As = 250*3.14159*16^2/1891.68

    = 106.287 mm Sreqd < Smax. OK!

    S = 100 mm (suggested spacing)

    b. Midspan

    Mb.pos = 0.90 * P * b * h ^ 2 * fy (1 - 0.59 * P * fy / fc')

    7.644e6 = 0.90 * P * 1000 * 56 ^ 2 * 275 (1 - 0.59 * P * 275 / 25)

    P = 0.01057 OK = 0.01057 (use)

    P = 0.01057 OK! P > Pmin

    As = P* b * h sqm = 0.010574 * 1000 * 56

    = 592.144 sqm OK! As > Asmin 592.144 sqm

    Sreqd =

    250 * PI * db^2 /

    As = 250*3.14159*^2/592.144

    = 339.549 mm Sreqd > Smax. Use Smax

    S = 200 mm (suggested spacing)

    II. Column Strip

    a. Continuous Edge

    Asreqd = 2 / 3 (Asms) = 2 / 3 (1891.68)= 1261.12 sqm = (use) 1261.12 sqm

    Sreqd = 3 / 2 (Sms) = 3 / 2 (106.287)

    = 159.431 mm Sreqd < Smax. OK!

    S = 150 mm (suggested spacing)

    b. Midspan

  • 8/22/2019 Structural Design and Analysis

    28/52

    Appendices 81

    Asreqd = 2 / 3 (Asms) = 2 / 3 (592.144)

    = 394.763 sqm = (use) 394.763 sqm

    Sreqd = 3 / 2 (Sms) = 3 / 2 (339.549)

    = 509.324 mm Sreqd > Smax. Use Smax

    S = 200 mm (suggested spacing)

    Summary:

    I. Moment Coefficients

    Ca.neg Ca.dl Ca.ll Cb.neg Cb.dl Cb.ll

    0 0.0412 0.0522 0.0548 0.0176 0.0184

    II. Computed Moments

    Short Direction Long Direction

    Ma.neg Ma.posdl Ma.posll Ma.pos Mb.neg Mb.posdl Mb.posll Mb.pos

    0 5.409 5.218 10.627 23.341 4.256 3.388 7.644

    III. Reinforcement and Spacing

    Short Direction

    Middle Strip

    Continuous Edge Midspan

    Asreqd As Sreqd S,mm Asreqd As Sreqd S,mm

    144.00 200.00 1396.26 200.00 632.38 632.38 317.95

    200.0

    0

    Column Strip

    C. Edge Midspan

    Asreqd As Sreqd S,mm Asreqd As Sreqd S,mm

    133.33 200.00 2094.39 200.00 421.58 421.58 476.92

    200.0

    0

    Long Direction

    Middle Strip

    Continuous Edge Midspan

    Asreqd As Sreqd S,mm Asreqd As Sreqd S,mm

    1891.68 1891.68 106.29 100.00 592.14 592.14 339.55

    200.0

    0

    Column Strip

    C. Edge Midspan

    Asreqd As Sreqd S,mm Asreqd As Sreqd S,mm

    1261.12 1261.12 159.43 150.00 394.76 394.76 509.32

    200.0

    0

  • 8/22/2019 Structural Design and Analysis

    29/52

    Appendices 82

    DESIGN OF TWO-WAY SLAB

    Thursday, April 11, 2013 6:03:23 PM

    Data:

    Material

    Strength:

    fc' = 25 MPa fy = 275 MPa

    Slab Loads:

    Service Live Load: Service Dead Load:

    SLL = 4.8 KPa DLL = 5.3 KPa

    Slab

    Details:

    Clear Short Span: Clear Long Span:

    La = 2.75 m Lb = 3.50 m

    Select Case by pressing the BUTTON at the

    right

    Solution: Case : 7

    1. Effective Height

    h = Panel Perimeter = 2*2.75+2*3.5

    180 180

    = 0.069 m say 0.100 m

    2. Ultimate Load

    Consider a meter strip:

    Wslab = 23.56 * b *h = 23.56 * 1.0 * 0.1

    = 2.356 KN / mWdl = SDL * 1.0 m = 5.3 * 1.0 m

    = 5.3 KN / m

    Wll = SLL * 1.0 m = 4.8 * 1.0 m

    = 4.8 KN / m

    Wudl = 1.4*(Wslab + Wdl) = 1.4(2.356+5.3)

    = 10.718 KN / m

    Wull = 1.7 * Wll = 1.7 * 4.8

    = 8.16 KN / m

    Wu = Wull + Wudl = 4.8 + 10.718

    = 18.878 KN / m

    3. Calculate Moments Using Coefficients

    m = La / Lb = 2.75 / 3.5

    = 0.79 43 44

    m Ca.neg Ca.dl Ca.ll Cb.neg Cb.dl Cb.ll

    0.7900 0.0408 0.0462 0.0520 #### 0.0216 0.0224

    Values are interpolated from the moment coefficient table.

    See Table from the corresponding sheets.

  • 8/22/2019 Structural Design and Analysis

    30/52

    Appendices 83

    Short Span:

    I. Middle Strip

    a. Continuous Edge

    Ma.neg = Ca * Wu * La^2 =

    0.0408 * 18.878 * 2.75

    ^2

    = 5.825 KN-m

    b.1 Midspan (Due to Dead Load)

    Ma.posdl = Ca * Wudl * La^2 =

    0.0462 * 10.718 * 2.75

    ^2

    = 3.745 KN-m

    b.2 Midspan(Due to Live Load)

    Ma.posll = Ca * Wull * La^2 = 0.052 * 8.16 * 2.75 ^2

    = 3.209 KN-m

    Ma.pos = Ma.posdl + Ma.posll = 3.745 + 3.209

    = 6.954 KN-m

    II. Column Strip

    Long Span:

    I. Middle Strip

    a. Continuous Edge

    Mb.neg = Ca * Wu * Lb^2 = 0.0088 * 18.878 * 3.5 ^2

    = 2.035 KN-m

    b.1 Midspan (Due to Dead Load)

    Mb.posdl = Ca * Wudl * Lb^2 = 0.0216 * 10.718 * 3.5 ^2

    = 2.836 KN-m

    b.2 Midspan(Due to Live Load)

    Mb.posll = Ca * Wull * Lb^2 = 0.0224 * 8.16 * 3.5 ^2

    = 2.239 KN-m

    Mb.pos = Ma.posdl + Ma.posll = 2.836 + 2.239

    = 5.075 KN-m

    4. Design of Reinforcements

    Diameter of Bars:

    db = 16 mm

    Pmax =

    0.75*0.85*fc'*B1*60

    0 = 0.75*0.85*25*0.85*600fy (600 + fy) 275 (600 + 275)

    = 0.03378

    Asmin = 0.002*bh = 0.002 * 1000 * 0.1

    = 200.00 sqm

    Smax = 2 * h or 450 mm = 2 * 100

    = 200.00 mm

    ds = h - cc - db / 2 = 100 - 20 - 16 / 2

  • 8/22/2019 Structural Design and Analysis

    31/52

    Appendices 84

    = 72 mm

    dl =

    h - cc - db - db /

    2 = 100 - 20 - 16 - 16 / 2

    = 56 mm

    Short Span:

    I. Middle Strip

    a. Continuous Edge

    Ma.neg = 0.90 * P * b * h ^ 2 * fy (1 - 0.59 * P * fy / fc')

    5.825e6 = 0.90 * P * 1000 * 72 ^ 2 * 275 (1 - 0.59 * P * 275 / 25)

    P = 0.00468 OK = 0.00468 (use)

    P = 0.00468 OK! P > Pmin

    As = P* b * h = 0.004682 * 1000 * 72

    = 337.104 sqm OK! As > Asmin 337.104 sqm

    Sreqd =250 * PI * db^2 /As = 250*3.14159*16^2/337.104

    = 596.439 mm Sreqd > Smax. Use Smax

    S = 200 mm (suggested spacing)

    b. Midspan

    Ma.pos = 0.90 * P * b * h ^ 2 * fy (1 - 0.59 * P * fy / fc')

    6.954e6 = 0.90 * P * 1000 * 72 ^ 2 * 275 (1 - 0.59 * P * 275 / 25)

    P = 0.00563 OK = 0.00563 (use)

    P = 0.00563 OK! P > Pmin

    As = P* b * h = 0.005625 * 1000 * 72

    = 405 sqm OK! As > Asmin 405 sqm

    Sreqd =

    250 * PI * db^2 /

    As = 250*3.14159*^2/405

    = 496.449 mm Sreqd > Smax. Use Smax

    S = 200 mm (suggested spacing)

    II. Column Strip

    a. Continuous Edge

    Asreqd = 2 / 3 (Asms) = 2 / 3 (337.104)

    = 224.736 sqm = (use) 224.736 sqm

    Sreqd = 3 / 2 (Sms) = 3 / 2 (596.439)

    = 894.659 mm Sreqd > Smax. Use Smax

    S = 200 mm (suggested spacing)

    b. Midspan

    Asreqd = 2 / 3 (Asms) = 2 / 3 (405)

  • 8/22/2019 Structural Design and Analysis

    32/52

    Appendices 85

    = 270 sqm = (use) 270 sqm

    Sreqd = 3 / 2 (Sms) = 3 / 2 (496.449)

    = 744.674 mm Sreqd > Smax. Use Smax

    S = 200 mm (suggested spacing)

    Long Span:

    I. Middle Strip

    a. Continuous Edge

    Mb.neg = 0.90 * P * b * h ^ 2 * fy (1 - 0.59 * P * fy / fc')

    2.035e6 = 0.90 * P * 1000 * 56 ^ 2 * 275 (1 - 0.59 * P * 275 / 25)

    P = 0.00267 OK = 0.00267 (use)

    P = 0.00267 OK! P > Pmin

    As = P* b * h = 0.002668 * 1000 * 56

    = 149.408 sqm Use Asmin 200 sqm

    Sreqd =

    250 * PI * db^2 /

    As = 250*3.14159*16^2/200

    = 1345.72 mm Sreqd > Smax. Use Smax

    S = 200 mm (suggested spacing)

    b. Midspan

    Mb.pos = 0.90 * P * b * h ^ 2 * fy (1 - 0.59 * P * fy / fc')

    5.075e6 =0.90 * P * 1000 * 56 ^ 2 * 275 (1 - 0.59 * P * 275 / 25)

    P = 0.00684 OK = 0.00684 (use)

    P = 0.00684 OK! P > Pmin

    As = P* b * h sqm = 0.006842 * 1000 * 56

    = 383.152 sqm OK! As > Asmin 383.152 sqm

    Sreqd =

    250 * PI * db^2 /

    As = 250*3.14159*^2/383.152

    = 524.758 mm Sreqd > Smax. Use Smax

    S = 200 mm (suggested spacing)

    II. Column Stripa. Continuous Edge

    Asreqd = 2 / 3 (Asms) = 2 / 3 (200)

    = 133.333 sqm = (use) 200 sqm

    Sreqd = 3 / 2 (Sms) = 3 / 2 (1345.724)

    = 2018.59 mm Sreqd > Smax. Use Smax

    S = 200 mm (suggested spacing)

  • 8/22/2019 Structural Design and Analysis

    33/52

    Appendices 86

    b. Midspan

    Asreqd = 2 / 3 (Asms) = 2 / 3 (383.152)

    = 255.435 sqm = (use) 255.435 sqm

    Sreqd = 3 / 2 (Sms) = 3 / 2 (524.758)

    = 787.137 mm Sreqd > Smax. Use Smax

    S = 200 mm (suggested spacing)

    Summary:

    I. Moment Coefficients

    Ca.neg Ca.dl Ca.ll Cb.neg Cb.dl Cb.ll

    0.0408 0.0462 0.052 0.0088 0.0216 0.0224

    II. Computed Moments

    Short Direction Long Direction

    Ma.neg

    Ma.posd

    l Ma.posll Ma.pos Mb.neg

    Mb.posd

    l

    Mb.posl

    l

    Mb.po

    s

    5.825 3.745 3.209 6.954 2.035 2.836 2.239 5.075

    III. Reinforcement and Spacing

    Short Direction

    Middle Strip

    Continuous Edge Midspan

    Asreqd As Sreqd S,mm Asreqd As Sreqd S,mm

    337.10 337.10 596.44 200.00 405.00 405.00 496.45

    200.0

    0

    Column Strip

    C. Edge Midspan

    Asreqd As Sreqd S,mm Asreqd As Sreqd S,mm

    224.74 224.74 894.66 200.00 270.00 270.00 744.67

    200.0

    0

    Long Direction

    Middle Strip

    Continuous Edge Midspan

    Asreqd As Sreqd S,mm Asreqd As Sreqd S,mm

    149.41 200.00 1345.72 200.00 383.15 383.15 524.76

    200.0

    0

    Column Strip

    C. Edge Midspan

    Asreqd As Sreqd S,mm Asreqd As Sreqd S,mm

    133.33 200.00 2018.59 200.00 255.43 255.43 787.14

    200.0

    0

  • 8/22/2019 Structural Design and Analysis

    34/52

    Appendices 87

    RC Column Section Design

    Design Criteria

    Design Code = ACI-318-95, Design Method = USD

    Concrete Stress Block = ACI-Whitney Rectangular

    Design Procedure

    The program performs the calculations in accordance with the

    ACI-318-95 Code for Structural Concrete

    Procedure for Cross-section Design

    1. Compute the resultant applied moment as Muxy = Sqr(Mux^2 +

    Muy^2).

    2. Select a trial reinforcement ratio, starting with minimum

    ratio of 1%, and distributing rebars along the perimeter.

    3. Compute the maximum axial capacity in compression, Pno and

    tension Pnt, and check against applied loads.

    4. Locate the neutral axis angle and its depth to satisfy

    applied load Pu and the resultant moment Muxy. This is done by

    trial and error procedure. The internal stress resultants for

    each angle and depth of neutral axis angle are computed (see

    procedure below) and then compared with applied loads. This

    process is repeated until close agreement is found.

    5. If capacity in step 3 or 4 is found to be not enough, then

    reinforcement is increased until maximum allowable ratio (8%) is

    reached.

    6. Cross-section is declared as inadequate if it requires more

    than maximum allowable steel ratio

    Procedure for Computing Stress-Resultants

    1. The stress resultants are computed by using the first

    principles approach.

    2. Strain in concrete and steel is determined depending upon the

    direction and depth of neutral axis.

  • 8/22/2019 Structural Design and Analysis

    35/52

    Appendices 88

    3. Concrete force is computed by integrating the stress field

    (rectangular or parabolic stress curve) over the cross-section

    using the Green's Theorem.

    4. Steel stress is computed by summation of force in each bar,

    corresponding to stress at that location.

    5. The computed stress resultants are reduced by appropriate

    capacity reduction factors for the Ultimate Strength Design (or

    Working Strength Design) method.

    RC Column Section

    Column C-1: 425 x 425 columns

    Column Cross-section

    Material

    Rebar fy = 275.0 N/mm^2

    Concrete fc' = 25.0 N/mm^2

    Clear Cover = 75 mm

    Calculations

    Computing Moment Capacity:

    Applied Axial Load, Pu = 1,598.0 kN

    Applied Moment, Mux = 352.0 kN-m

    Applied Moment, Muy = 181.0 kN-m

  • 8/22/2019 Structural Design and Analysis

    36/52

    Appendices 89

    Resultant Moment, Muxy = 395.8 kN-m

    Resultant Moment Angle = 27 Deg.

    Detailed Capacity Calculations:

    Neutral axis angle = 32 Deg.

    Neutral axis depth = 285 mm

    Capacity reduction factor = 0.73

    Stress in Rebars:

    Bar No, Size, Cord-X , Cord-Y, Area , Stress

    1, d 32, -175, -175, 813, -275.0

    2, d 32, 175, 175, 813, 253.8

    3, d 32, 175, -175, 813, -130.8

    4, d 32, -175, 175, 813, 75.5

    5, d 32, -175, -87, 813, -273.3

    6, d 32, -175, 0, 813, -213.5

    7, d 32, -175, 87, 813, -58.4

    8, d 32, -87, 175, 813, 173.7

    9, d 32, 0, 175, 813, 231.8

    10, d 32, 87, 175, 813, 253.8

    11, d 32, 175, 87, 813, 246.9

    12, d 32, 175, 0, 813, 158.2

    13, d 32, 175, -87, 813, 18.4

    14, d 32, 87, -175, 813, -229.0

    15, d 32, 0, -175, 813, -269.6

  • 8/22/2019 Structural Design and Analysis

    37/52

    Appendices 90

    16, d 32, -87, -175, 813, -275.0

    Result Summary:

    Axial Compression, Pno = 3,997.9 kN

    Axial Tension, Pnt = -3,219.5 kN

    Moment Capacity, Mnx = 413.2 kN-m

    Moment Capacity, Mny = 123.7 kN-m

    Resultant Capacity, Mnxy = 431.4 kN-m

    Resultant Angle = 16 Deg.

    Concrete volume = 0.18 m^3

    Main Steel weight = 100.96 Kg/m

    Steel weight/ volume = 558.95 Kgm^3

    Transverse Bars: Ties, d 10 @ 288 mm

    RC Column Section

    Column C-2: 250 x 250 columns

    Column Cross-section

    Material

    Rebar fy = 275.0 N/mm^2

  • 8/22/2019 Structural Design and Analysis

    38/52

    Appendices 91

    Concrete fc' = 25.0 N/mm^2

    Clear Cover = 38 mm

    Calculations

    Computing Moment Capacity:

    Applied Axial Load, Pu = 225.0 kN

    Applied Moment, Mux = 100.0 kN-m

    Applied Moment, Muy = 20.0 kN-m

    Resultant Moment, Muxy = 102.0 kN-m

    Resultant Moment Angle = 11 Deg.

    Detailed Capacity Calculations:

    Neutral axis angle = 15 Deg.

    Neutral axis depth = 123 mm

    Capacity reduction factor = 0.78

    Stress in Rebars:

    Bar No, Size, Cord-X , Cord-Y, Area , Stress

    1, d 32, -87, -87, 813, -275.0

    2, d 32, -87, 87, 813, 126.0

    3, d 32, 87, 87, 813, 253.8

    4, d 32, 87, -87, 813, -275.0

    5, d 32, -87, 0, 813, -243.7

    6, d 32, 0, 87, 813, 219.9

    7, d 32, 87, 0, 813, -34.7

    8, d 32, 0, -87, 813, -275.0

  • 8/22/2019 Structural Design and Analysis

    39/52

    Appendices 92

    Result Summary:

    Axial Compression, Pno = 1,668.0 kN

    Axial Tension, Pnt = -1,609.7 kN

    Moment Capacity, Mnx = 112.2 kN-m

    Moment Capacity, Mny = 15.7 kN-m

    Resultant Capacity, Mnxy = 113.3 kN-m

    Resultant Angle = 7 Deg.

    Concrete volume = 0.06 m^3

    Main Steel weight = 50.48 Kg/m

    Steel weight/ volume = 807.68 Kgm^3

    Transverse Bars: Ties, d 10 @ 250 mm

    RC Beam Section Design

    Design Criteria

    Design Code = ACI-318-95, Design Method = USD

    Concrete Stress Block = ACI-Whitney Rectangular

    Design Procedure

    The program performs the calculations in accordance with the

    ACI-318-95 Building Code for Structural Concrete

    Procedure for Computing Stress-Resultants

    1. The stress resultants are computed by using the first

    principles approach.

    2. Strain in concrete and steel is determined depending upon the

    direction and depth of neutral axis.

  • 8/22/2019 Structural Design and Analysis

    40/52

    Appendices 93

    3. Concrete force is computed by integrating the stress field

    (rectangular or parabolic stress curve) over the cross-section

    using the Green's Theorem.

    4. Steel stress is computed by summation of force in each bar,

    corresponding to stress at that location.

    5. The computed stress resultants are reduced by appropriate

    capacity reduction factors for the Ultimate Strength Design (or

    Working Strength Design) method.

    RC Beam Section

    Beam B-1: 450 x 680 beams

    Beam Cross-section

    Material

    Rebar fy = 415.0 N/mm^2

    Rebar fys = 275.0 N/mm^2

    Concrete fc' = 25.0 N/mm^2

    Clear Cover = 38 mm

    Calculations

    Flexural Capacity:

    Usable capacity, Mnx = 2,190.5 kN-m

    At neutral axis depth = 301 mm

  • 8/22/2019 Structural Design and Analysis

    41/52

    Appendices 94

    Shear Capacity:

    Effective web width, bw = 450 mm

    Concrete shear capacity, Vc = 208.0 kN (Eq 11-3)

    Shear stirrup steel, Av/S = 4

    Shear provided by stirrups, Vs = 600.1 kN

    Total usable shear capacity, Vn = 808.1 kN

    Torsional Capacity:

    Area of concrete section, Acp = 306,000 mm^2

    Perimeter of concrete section, Pcp = 2,260 mm

    Allowable Torsion for concrete, Tc = 14.3 kN-m

    Torsion stirrup steel, Av/S = 0

    Total torsion capacity, Tn= 14.3 kN-m

    Required longitudinal steel for torsion, Al = 0 mm^2

    Final Results

    Top Bars = 8-d 32

    Bottom Bars = 16-d 32

    Skin Bars =

    Stirrup Bars for Shear = 4L d 10@80 mm

    Stirrup Bars for Torsion =

    Longitudinal Bars for Torsion =

    Stirrup Bars for Shear + Torsion = 4L d 10@80 mm

  • 8/22/2019 Structural Design and Analysis

    42/52

    Appendices 95

    RC Beam Section

    Beam B-2: 250 x 340 beams

    Beam Cross-section

    Material

    Rebar fy = 275.0 N/mm^2

    Rebar fys = 275.0 N/mm^2

    Concrete fc' = 25.0 N/mm^2

    Clear Cover = 38 mm

    Calculations

    Flexural Capacity:

    Usable capacity, Mnx = 157.1 kN-m

    At neutral axis depth = 173 mm

    Shear Capacity:

    Effective web width, bw = 250 mm

    Concrete shear capacity, Vc = 54.4 kN (Eq 11-3)

    Shear stirrup steel, Av/S = 1.3

    Shear provided by stirrups, Vs = 91.8 kN

  • 8/22/2019 Structural Design and Analysis

    43/52

    Appendices 96

    Total usable shear capacity, Vn = 146.2 kN

    Torsional Capacity:

    Area of concrete section, Acp = 85,000 mm^2

    Perimeter of concrete section, Pcp = 1,180 mm

    Allowable Torsion for concrete, Tc = 2.1 kN-m

    Torsion stirrup steel, Av/S = 0

    Total torsion capacity, Tn= 2.1 kN-m

    Required longitudinal steel for torsion, Al = 0 mm^2

    Final Results

    Top Bars =

    Bottom Bars = 5-d 32

    Skin Bars =

    Stirrup Bars for Shear = 2L d 10@123 mm

    Stirrup Bars for Torsion =

    Longitudinal Bars for Torsion =

    Stirrup Bars for Shear + Torsion = 2L d 10@123 mm

  • 8/22/2019 Structural Design and Analysis

    44/52

    Appendices 97

    RC Beam Section

    Beam B-3: 250 x 360 beams

    Beam Cross-section

    Material

    Rebar fy = 275.0 N/mm^2

    Rebar fys = 275.0 N/mm^2

    Concrete fc' = 25.0 N/mm^2

    Clear Cover = 38 mm

    Calculations

    Flexural Capacity:

    Usable capacity, Mnx = 177.1 kN-m

    At neutral axis depth = 181 mm

    Shear Capacity:

    Effective web width, bw = 250 mm

    Concrete shear capacity, Vc = 58.0 kN (Eq 11-3)

    Shear stirrup steel, Av/S = 0.47

    Shear provided by stirrups, Vs = 35.4 kN

  • 8/22/2019 Structural Design and Analysis

    45/52

    Appendices 98

    Total usable shear capacity, Vn = 93.3 kN

    Torsional Capacity:

    Area of concrete section, Acp = 90,000 mm^2

    Perimeter of concrete section, Pcp = 1,220 mm

    Allowable Torsion for concrete, Tc = 2.3 kN-m

    Torsion stirrup steel, Av/S = 0

    Total torsion capacity, Tn= 2.3 kN-m

    Required longitudinal steel for torsion, Al = 0 mm^2

    Final Results

    Top Bars =

    Bottom Bars = 5-d 32

    Skin Bars =

    Stirrup Bars for Shear = 2L d 10@120 mm

    Stirrup Bars for Torsion =

    Longitudinal Bars for Torsion =

    Stirrup Bars for Shear + Torsion = 2L d 10@120 mm

  • 8/22/2019 Structural Design and Analysis

    46/52

    Appendices 99

    RC Beam Section

    Beam B-4: 250 x 300 beams

    Beam Cross-section

    Material

    Rebar fy = 275.0 N/mm^2

    Rebar fys = 275.0 N/mm^2

    Concrete fc' = 25.0 N/mm^2

    Clear Cover = 38 mm

    Calculations

    Flexural Design:

    Design Moment, Mu = 68.0 kN-m

    Balanced Moment capacity, Mb = 188.1 kN-m

    Concrete section capacity, Mrc = 141.1 kN-m

    Mu < Mrc, Singly reinforced beam required

    Computed steel, Ast = 1,361 mm^2 at Neutral axis depth = 50 mm

    Minimum tension steel, Ast min = 300 mm^2

    Required tension steel, Ast = 1,361 mm^2

  • 8/22/2019 Structural Design and Analysis

    47/52

    Appendices 100

    Required compression steel, Asc = 0 mm^2

    Skin Reinforcement Not Required

    Design for Shear + Torsion:

    Design shear force, Vu = 59.0 kN

    Design torsional moment, Tu = 0.0 kN-m

    Effective web width, bw = 250 mm

    Concrete shear capacity, Vc = 47.2 kN (Eq 11-3)

    Area of concrete section, Acp = 75,000 mm^2

    Perimeter of concrete section, Pcp = 1,100 mm

    Allowable Torsion for concrete, Tc = 1.8 kN-m

    Vs = 13.8 kN (Shear Stirrups Required)

    Computed steel for Shear, Av/S = 0.315

    Maximum stirrup spacing for shear only = 132 mm

    Required stirrups for shear only = 2L d 10@131 mm

    Torsion = 0, No torsion design required

    Final Results

    Top Bars =

    Bottom Bars = 2-d 32

    Skin Bars =

    Stirrup Bars for Shear = 2L d 10@131 mm

    Stirrup Bars for Torsion =

    Longitudinal Bars for Torsion =

    Stirrup Bars for Shear + Torsion = 2L d 10@131 mm

  • 8/22/2019 Structural Design and Analysis

    48/52

    Appendices 101

    DESIGN OF FOUNDATION

    b 0.45 m

    c to c 4 m

    % of Load 0.08

    y 1.5 m

    x 0.5 m

    Unit wt. soil 16 KN/m^3

    qa 100 Kpa

    Dl 999.05 KN

    Ll 417.68 KN

    surcharge 24 Kpa

    Total W. 1530.1 KN

    L 5.45 m

    B 3.7 m

    qu' 185.19 Kpa

    Along Long Direction

    quL 685.2 KN/m

    Xv 1.77

    x 1.78

    determine "d" from Beam shear

    fc' 28

    fy 275

  • 8/22/2019 Structural Design and Analysis

    49/52

    Appendices 102

    0.85

    Vu = (x-d)*(V3)/x

    v = Vu/Bd

    Calculate "d" in Beam shear

    v 0.8996

    d 0.765

    Check "d" against punching

    vpall. 0.33*(fc')^(1/2)

    vpall. 1.7462

    Vp 1593.8

    vp 0.5

    since vp < vpall

    OK

    Flexure

    x 0.35

    Mu 1186.4

    min 1.4/fy

    min 0.0051

    Mu = Mn a -3.2E+10

    Mn = fc'b(d^2)w(1-0.59w) b 5.46E+10

    w 0.0215

    0.0022 16

    20

    < min Use min 22

    25

    As = bd 28

    As = 14407 mm^2 32

    db 32

    N 18

    Spacing

    C.cover 75

  • 8/22/2019 Structural Design and Analysis

    50/52

    Appendices 103

    S 170

    ADOPT 18 -32 mm Spaced 170 On center

    for cantilever

    As 14407 mm^2

    db 32

    N 18

    S 170

    ADOPT 18 -32 mm Spaced 170 On center

    Along short Direction

    Consider 1 column

    b 1.215

    qu 504.63

    x 1.625

    Mu 666.27 KN-m

    Mu = Mn

    Mn = bd^2fy(1-0.59(fy/fc')

    0.0029 a 1.4E+12

    b 2.4E+11

    Asmin OK!

    number of bars,n = 4As/.db^2

    n 8

    spacing = 250(db^2)/As

    S 140 mm o.c.

    TEMPERATURE BARS

    number of bars,n = 4Asmin/.db^2

    n 2

    spacing = 250(db^2)/Asmin

    S 560 mm o.c.