26
Structural Materials for Advanced Nuclear Systems 2016.05.02 Man Wang Current Status of Structural Materials: 2nd Topic

Structural Materials for Advanced Nuclear Systems · 2018. 4. 6. · Structural Materials for Advanced Nuclear Systems 2016.05.02 ManWang Current Status of Structural Materials: 2nd

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Structural Materials for Advanced Nuclear Systems · 2018. 4. 6. · Structural Materials for Advanced Nuclear Systems 2016.05.02 ManWang Current Status of Structural Materials: 2nd

Structural Materials for Advanced Nuclear Systems

2016.05.02

Man Wang

Current Status of Structural Materials: 2nd Topic

Page 2: Structural Materials for Advanced Nuclear Systems · 2018. 4. 6. · Structural Materials for Advanced Nuclear Systems 2016.05.02 ManWang Current Status of Structural Materials: 2nd

Outline

1. Introduction of Fission Energy

2. Evolution of Advanced Nuclear Systems

3. Requirements for Materials

4. Candidate Structural Materials

2

Page 3: Structural Materials for Advanced Nuclear Systems · 2018. 4. 6. · Structural Materials for Advanced Nuclear Systems 2016.05.02 ManWang Current Status of Structural Materials: 2nd

31. Nuclear Fission Energy

Fast Neutron 1- 20 MeV

Thermal Neutron 0.025 eV

slowing by moderator

Sustainable fission chain reaction

Page 4: Structural Materials for Advanced Nuclear Systems · 2018. 4. 6. · Structural Materials for Advanced Nuclear Systems 2016.05.02 ManWang Current Status of Structural Materials: 2nd

4Nuclear Fission Reactor

fuel coolant moderator control rod

ceramic;metallic;

dispersion;liquid;

water;sodium;

gas;liquid metal;

water;graphite;

Boron;Ag-In-Cd;

Page 5: Structural Materials for Advanced Nuclear Systems · 2018. 4. 6. · Structural Materials for Advanced Nuclear Systems 2016.05.02 ManWang Current Status of Structural Materials: 2nd

1. Introduction of Fission Energy

2. Evolution of Advanced Nuclear Systems3. Requirements for Materials

4. Candidate Structural Materials

5

Page 6: Structural Materials for Advanced Nuclear Systems · 2018. 4. 6. · Structural Materials for Advanced Nuclear Systems 2016.05.02 ManWang Current Status of Structural Materials: 2nd

62. Evolution of Nuclear Fission Power

Generation Ⅳ International Form, 2002Improvement of Efficiency & Economics & Safety

Page 7: Structural Materials for Advanced Nuclear Systems · 2018. 4. 6. · Structural Materials for Advanced Nuclear Systems 2016.05.02 ManWang Current Status of Structural Materials: 2nd

7Six Candidate Reactors – Gen Ⅳ

type coolant Tin / Tout (℃) Max. does/dpa

Supercritical water cooled reactor – SCWR

supercritical water 290 / 600 ~30

Very high temperature reactor - VHTR

helium 600 / 1000 <20

Gas fast reactor - GFRhelium,

supercritical CO2450 / 850 80

Sodium fast reactor- SFR sodium 370 / 550 200

Lead fast reactor - LFR Pb, Pb-Bi 600 / 800 150

Molten salt reactor - MSR molten salt 700 / 1000 200

Page 8: Structural Materials for Advanced Nuclear Systems · 2018. 4. 6. · Structural Materials for Advanced Nuclear Systems 2016.05.02 ManWang Current Status of Structural Materials: 2nd

1. Introduction of Fission Energy

2. Evolution of Advanced Nuclear Systems

3. Requirements for Materials4. Candidate Structural Materials

8

Page 9: Structural Materials for Advanced Nuclear Systems · 2018. 4. 6. · Structural Materials for Advanced Nuclear Systems 2016.05.02 ManWang Current Status of Structural Materials: 2nd

93. Serving Condition

High temp. & Radiation & Stress

①②

Page 10: Structural Materials for Advanced Nuclear Systems · 2018. 4. 6. · Structural Materials for Advanced Nuclear Systems 2016.05.02 ManWang Current Status of Structural Materials: 2nd

10Material Limiting Phenomenon for Gen Ⅳ

1. High-temp. high does system: SFR, LFR, MSR strength, creep and creep-fatigue behavior void swelling and phase instability due to high level does

2. Very high-temp. gas cooled system: VHTR, GFR coolant (He) containing impurity: CO, CO2, CH4, H2O corrosion & oxidation

3. Supercritical water cooled system: SCWR supercritical water – 374℃/ 22 MPa stress corrosion cracking (SCC) irradiation assisted stress corrosion cracking (IASCC)

Materials!

Page 11: Structural Materials for Advanced Nuclear Systems · 2018. 4. 6. · Structural Materials for Advanced Nuclear Systems 2016.05.02 ManWang Current Status of Structural Materials: 2nd

11Requirements for Materials

Resistance of irradiation embrittlement and swelling Good high temp. strength and creep resistance Corrosion & Oxidation resistance Low susceptibility to SCC Compatibility with coolant at high temp.

Page 12: Structural Materials for Advanced Nuclear Systems · 2018. 4. 6. · Structural Materials for Advanced Nuclear Systems 2016.05.02 ManWang Current Status of Structural Materials: 2nd

1. Introduction of Fission Energy

2. Evolution of Advanced Nuclear Systems

3. Requirements for Materials

4. Candidate Structural Materials

12

Page 13: Structural Materials for Advanced Nuclear Systems · 2018. 4. 6. · Structural Materials for Advanced Nuclear Systems 2016.05.02 ManWang Current Status of Structural Materials: 2nd

13Candidate Materials for Gen Ⅳ

type CladdingStructural Materials

In-core Out-of-core

SFR F/M, F/M ODS F/M, 316 SS ferritics, austenitics

LFR High-Si F/M, ODS, ceramics, refractory alloyHigh-Si austenitics,

ceramics, refractory alloy

MSR Not applicableCeramics, refractory

metals, graphite, Ni alloyHigh-Mo, Ni-based alloy

VHTR SiC or ZrC coating,graphite Graphite, SiC, ZrC Ni-base superalloys, F/M

GFR ceramicRefractory metals,

ceramics, ODSNi-base superalloys, F/M

SCWR F/M, ODS, Nickel alloy F/M, low alloy steel

Page 14: Structural Materials for Advanced Nuclear Systems · 2018. 4. 6. · Structural Materials for Advanced Nuclear Systems 2016.05.02 ManWang Current Status of Structural Materials: 2nd

144.1 Ferrite / Martensitic Steel (9-12Cr)

austenitization → quenching → tempering at 760℃ferrite + martensite (F/M)

Advantages Better corrosion & oxidation

resistance Excellent reduced-activation Good swelling resistance

Disadvantages Low strength at high temp. Irradiation embrittlement

Page 15: Structural Materials for Advanced Nuclear Systems · 2018. 4. 6. · Structural Materials for Advanced Nuclear Systems 2016.05.02 ManWang Current Status of Structural Materials: 2nd

154.2 Austenitic Stainless Steels

304 SS; 316 SS;

Advantages Good creep resistance

at high temp. Reasonable oxidation &

corrosion resistance

Disadvantages Severe void swelling Low thermal conductivity

Page 16: Structural Materials for Advanced Nuclear Systems · 2018. 4. 6. · Structural Materials for Advanced Nuclear Systems 2016.05.02 ManWang Current Status of Structural Materials: 2nd

164.3 Ni-based Alloy

Advantages Traditional application at high temperature Good creep resistance

Disadvantages Irradiation brittlement Void swelling Phase instability due to irradiation

Page 17: Structural Materials for Advanced Nuclear Systems · 2018. 4. 6. · Structural Materials for Advanced Nuclear Systems 2016.05.02 ManWang Current Status of Structural Materials: 2nd

174.4 Refractory Alloy

Advantages Good strength at high temperature Swelling resistance up to high burn ups

Disadvantages Poor oxidation resistance Fabrication difficulty Embrittlement at low temperature

Nb, Mo, Ta, etc.

Page 18: Structural Materials for Advanced Nuclear Systems · 2018. 4. 6. · Structural Materials for Advanced Nuclear Systems 2016.05.02 ManWang Current Status of Structural Materials: 2nd

184.5 Oxide Dispersion Strengthening Alloy nano-sized dispersoids with high number density

→ strong pinning on dislocation movement→ excellent high temp. strength and creep resistance

interface between dispersoids and matrix→ sinks for defects→ improvement of irradiation resistance

Page 19: Structural Materials for Advanced Nuclear Systems · 2018. 4. 6. · Structural Materials for Advanced Nuclear Systems 2016.05.02 ManWang Current Status of Structural Materials: 2nd

19Fabrication

Pure metal element Powders

Yttrium Oxide

Yttrium Oxide

Pre-alloyed Gas Atomized Powders

OR

Y-Ti-O Y2O3

Page 20: Structural Materials for Advanced Nuclear Systems · 2018. 4. 6. · Structural Materials for Advanced Nuclear Systems 2016.05.02 ManWang Current Status of Structural Materials: 2nd

20Classification of ODS alloys

type character remark

Ferritic ODS

MA956 22Cr Commercial; USA

MA957 14Cr Commercial; USA

PM2000 18Cr Commercial; Germany

14YWT 14Cr research

12YWT 12Cr research

F/M ODS9Cr-ODS

ODS Eurofer 979Cr

research;Japan, China, Europe

Austenitic ODS

304-ODSbased on austenitic

steelresearch;

China, Korean316-ODS

310-ODS

Page 21: Structural Materials for Advanced Nuclear Systems · 2018. 4. 6. · Structural Materials for Advanced Nuclear Systems 2016.05.02 ManWang Current Status of Structural Materials: 2nd

21Investigation of DispersoidsMA 956: Y-Al-O

MA 957: Y-Ti-O

Page 22: Structural Materials for Advanced Nuclear Systems · 2018. 4. 6. · Structural Materials for Advanced Nuclear Systems 2016.05.02 ManWang Current Status of Structural Materials: 2nd

22Mechanical Properties of ODS Alloy

Tensile test Creep Properties

Page 23: Structural Materials for Advanced Nuclear Systems · 2018. 4. 6. · Structural Materials for Advanced Nuclear Systems 2016.05.02 ManWang Current Status of Structural Materials: 2nd

23Irradiation Resistance of ODS Alloy

round cavities with small size

316-ODS

PNC 316

large faceted cavities

Page 24: Structural Materials for Advanced Nuclear Systems · 2018. 4. 6. · Structural Materials for Advanced Nuclear Systems 2016.05.02 ManWang Current Status of Structural Materials: 2nd

24Irradiation Resistance of ODS Alloy

Irradiation resistance can be improved by ODS!

Page 25: Structural Materials for Advanced Nuclear Systems · 2018. 4. 6. · Structural Materials for Advanced Nuclear Systems 2016.05.02 ManWang Current Status of Structural Materials: 2nd

25Reference[1] T. Abram, S. Ion, Energy Policy 36(12) (2008) 4323-4330.[2] J. Li, W. Zheng, S. Penttilä, et al., J. Nucl. Mater. 454(1-3) (2014) 7-11.[3] S.J. Zinkle, G.S. Was, Acta Mater. 61(3) (2013) 735-758.[4] K.L. Murty, I. Charit, J. Nucl. Mater. 383(1-2) (2008) 189-195.[5] D.A. McClintock, D.T. Hoelzer, M.A. Sokolov, et al., J. Nucl. Mater. 386-

388 (2009) 307-311.[6] D.A. McClintock, M.A. Sokolov, D.T. Hoelzer, et al, J. Nucl. Mater. 392(2)

(2009) 353-359.[7] H. Oka, M. Watanabe, H. Kinoshita, et al., J. Nucl. Mater. 417(1-3)

(2011) 279-282.[8] S. Ukai, M. Fujiwara, J. Nucl. Mater. 307 (2002) 749-757.[9] S. Ukai, S. Mizuta, M. Fujiwara, et al., J. Nucl. Sci. Technol. 39(7) (2002)

778-788.

Page 26: Structural Materials for Advanced Nuclear Systems · 2018. 4. 6. · Structural Materials for Advanced Nuclear Systems 2016.05.02 ManWang Current Status of Structural Materials: 2nd

26

Thanks for your kind attention!