56
Chapter 3 Structure and Stereochemistry of Alkanes Organic Chemistry, 6 th Edition L. G. Wade, Jr. Jo Blackburn Richland College, Dallas, TX Dallas County Community College District 2006, Prentice Hall

Structure and stereochemistry of alkanes

Embed Size (px)

DESCRIPTION

Presentation of third chapter of organic chemistry: structure and stereochemistry of alkanes

Citation preview

Page 1: Structure and stereochemistry of alkanes

Chapter 3Structure and Stereochemistry

of Alkanes

Organic Chemistry, 6th EditionL. G. Wade, Jr.

Jo BlackburnRichland College, Dallas, TX

Dallas County Community College District2006,Prentice Hall

Page 2: Structure and stereochemistry of alkanes

Chapter 3 2

Classification Review

Page 3: Structure and stereochemistry of alkanes

Chapter 3 3

Alkane Formulas• All C-C single bonds

• Saturated with hydrogens

• Ratio: CnH2n+2

• Alkane homologs: CH3(CH2)nCH3

• Same ratio for branched alkanes

=>

C

H

C

H

H

H C H

H

HC H

H

H

Isobutane, C4H10

C

H

C

H

H

H C C

H

HH H

H

H

Butane, C4H10

Page 4: Structure and stereochemistry of alkanes

Chapter 3 4

Common Names

• Isobutane, “isomer of butane”• Isopentane, isohexane, etc., methyl

branch on next-to-last carbon in chain.• Neopentane, most highly branched• Five possible isomers of hexane,

18 isomers of octane and 75 for decane! =>

Page 5: Structure and stereochemistry of alkanes

Chapter 3 5

Alkane Examples

=>

Page 6: Structure and stereochemistry of alkanes

Chapter 3 6

IUPAC Names• Find the longest continuous carbon chain.• Number the carbons, starting closest to

the first branch.• Name the groups attached to the chain,

using the carbon number as the locator.• Alphabetize substituents.• Use di-, tri-, etc., for multiples of same

substituent.

Page 7: Structure and stereochemistry of alkanes

Chapter 3 7

Longest Chain• The number of carbons in the longest

chain determines the base name: ethane, hexane. (Listed in Table 3.2, page 82.)

• If there are two possible chains with the same number of carbons, use the chain with the most substituents.

C

CH3

CH2

CH3

CH CH2 CH2 CH3

CH CH2 CH3

H3C

H3C

=>

Page 8: Structure and stereochemistry of alkanes

Chapter 3 8

Number the Carbons

• Start at the end closest to the first attached group.

• If two substituents are equidistant, look for the next closest group.

1

2

3 4 5

6 7CHH3C

CH3

CH

CH2CH3

CH2 CH2 CH

CH3

CH3

=>

Page 9: Structure and stereochemistry of alkanes

Chapter 3 9

Name Alkyl Groups

• CH3-, methyl

• CH3CH2-, ethyl

• CH3CH2CH2-, n-propyl

• CH3CH2CH2CH2-, n-butylCH3 CH CH2 CH3

sec-butyl

CH3 CH

CH3

CH2

isobutyl

CH3 CH CH3

isopropyl

CH3C

CH3

CH3

tert-butyl

=>

Page 10: Structure and stereochemistry of alkanes

Chapter 3 10

Propyl Groups

C

H

H

H

C

H

H

C

H

H

H

n-propyl

C

H

H

H

C

H

C

H

H

H

isopropyl

H

A primary carbon A secondary carbon

=>

Page 11: Structure and stereochemistry of alkanes

Chapter 3 11

Butyl Groups

C

H

H

H

C

H

C

H

H

C

H

H

H

C

H

H

H

C

H

C

H

HH

C

H

H

n-butyl sec-butyl

H

H

A primary carbon A secondary carbon

=>

Page 12: Structure and stereochemistry of alkanes

Chapter 3 12

Isobutyl Groups

CH

H

H

C

CH H

C

HH

H H

CH

H

H

C

CH H

C H

HH

H

H

H

A primary carbon A tertiary carbon

=>

isobutyl tert-butyl

Page 13: Structure and stereochemistry of alkanes

Chapter 3 13

Alphabetize

• Alphabetize substituents by name.

• Ignore di-, tri-, etc. for alphabetizing.

CHH3C

CH3

CH

CH2CH3

CH2 CH2 CH

CH3

CH3

3-ethyl-2,6-dimethylheptane =>

Page 14: Structure and stereochemistry of alkanes

Chapter 3 14

Complex Substituents• If the branch has a branch, number the

carbons from the point of attachment.

• Name the branch off the branch using a locator number.

• Parentheses are used around the complex branch name.

12

31-methyl-3-(1,2-dimethylpropyl)cyclohexane =>

Page 15: Structure and stereochemistry of alkanes

Chapter 3 15

Physical Properties

• Solubility: hydrophobic

• Density: less than 1 g/mL

• Boiling points increase with increasing carbons (little less for branched chains).

Melting points increase with increasing carbons (less for odd- number of carbons).

Page 16: Structure and stereochemistry of alkanes

Chapter 3 16

Boiling Points of AlkanesBranched alkanes have less surface area contact,so weaker intermolecular forces.

=>

Page 17: Structure and stereochemistry of alkanes

Chapter 3 17

Melting Points of AlkanesBranched alkanes pack more efficiently intoa crystalline structure, so have higher m.p.

=>

Page 18: Structure and stereochemistry of alkanes

Chapter 3 18

Branched Alkanes

• Lower b.p. with increased branching

• Higher m.p. with increased branching

• Examples:H

CH3CH

CH3

CH2 CH2 CH3

bp 60°Cmp -154°C

CH3CH

CH3

CHCH3

CH3 bp 58°Cmp -135°C

=>

bp 50°Cmp -98°C

CH3 C

C 3

CH3

CH2 CH3

Page 19: Structure and stereochemistry of alkanes

Chapter 3 19

Major Uses of Alkanes

• C1-C2: gases (natural gas)

• C3-C4: liquified petroleum (LPG)

• C5-C8: gasoline

• C9-C16: diesel, kerosene, jet fuel

• C17-up: lubricating oils, heating oil

• Origin: petroleum refining =>

Page 20: Structure and stereochemistry of alkanes

Chapter 3 20

Reactions of Alkanes

• CombustionCH3CH2CH2CH3 + O2 CO2 + H2O

heat8 10132

long-chain alkanes catalyst

shorter-chain alkanes

CH4 + Cl2 CH3Cl + CH2Cl2 CHCl3 CCl4+ +heat or light

=>

• Cracking and hydrocracking (industrial)

• Halogenation

Page 21: Structure and stereochemistry of alkanes

Chapter 3 21

Conformers of Alkanes

• Structures resulting from the free rotation of a C-C single bond

• May differ in energy. The lowest-energy conformer is most prevalent.

• Molecules constantly rotate through all the possible conformations. =>

Page 22: Structure and stereochemistry of alkanes

Chapter 3 22

Ethane Conformers

• Staggered conformer has lowest energy.

• Dihedral angle = 60 degrees

H

H

HH

H H

Newmanprojection

sawhorse

=>

model

Page 23: Structure and stereochemistry of alkanes

Chapter 3 23

Ethane Conformers (2)• Eclipsed conformer has highest energy

• Dihedral angle = 0 degrees

=>

Page 24: Structure and stereochemistry of alkanes

Chapter 3 24

Conformational Analysis• Torsional strain: resistance to rotation.

• For ethane, only 12.6 kJ/mol

=>

Page 25: Structure and stereochemistry of alkanes

Chapter 3 25

Propane ConformersNote slight increase in torsional strain

due to the more bulky methyl group.

=>

Page 26: Structure and stereochemistry of alkanes

Chapter 3 26

Butane Conformers C2-C3

• Highest energy has methyl groups eclipsed.

• Steric hindrance

• Dihedral angle = 0 degrees

=>totally eclipsed

Page 27: Structure and stereochemistry of alkanes

Chapter 3 27

Butane Conformers (2)

• Lowest energy has methyl groups anti.

• Dihedral angle = 180 degrees

=>

anti

Page 28: Structure and stereochemistry of alkanes

Chapter 3 28

Butane Conformers (3)• Methyl groups eclipsed with hydrogens• Higher energy than staggered

conformer• Dihedral angle = 120 degrees

=>eclipsed

Page 29: Structure and stereochemistry of alkanes

Chapter 3 29

Butane Conformers (4)

• Gauche, staggered conformer

• Methyls closer than in anti conformer

• Dihedral angle = 60 degrees

=>gauche

Page 30: Structure and stereochemistry of alkanes

Chapter 3 30

Conformational Analysis

=>

Page 31: Structure and stereochemistry of alkanes

Chapter 3 31

Higher Alkanes

• Anti conformation is lowest in energy.

• “Straight chain” actually is zigzag.

CH3CH2CH2CH2CH3

CH C

CC

CH H H H

H H

H H

HH H =>

Page 32: Structure and stereochemistry of alkanes

Chapter 3 32

Cycloalkanes

• Rings of carbon atoms (-CH2- groups)

• Formula: CnH2n

• Nonpolar, insoluble in water

• Compact shape• Melting and boiling points similar to

branched alkanes with same number of carbons =>

Page 33: Structure and stereochemistry of alkanes

Chapter 3 33

Naming Cycloalkanes

• Cycloalkane usually base compound• Number carbons in ring if >1 substituent.• First in alphabet gets lowest number.• May be cycloalkyl attachment to chain.

CH2CH3

CH2CH3

CH3 =>

Page 34: Structure and stereochemistry of alkanes

Chapter 3 34

Cis-Trans Isomerism

• Cis: like groups on same side of ring

• Trans: like groups on opposite sides of ring =>

Page 35: Structure and stereochemistry of alkanes

Chapter 3 35

Cycloalkane Stability

• 5- and 6-membered rings most stable

• Bond angle closest to 109.5• Angle (Baeyer) strain

• Measured by heats of combustion per -CH2 - =>

Page 36: Structure and stereochemistry of alkanes

Chapter 3 36

Heats of Combustion/CH2 Alkane + O2 CO2 + H2O

Long-chain

658.6 kJ 658.6

697.1 686.1664.0 663.6 kJ/mol

=>

662.4

Page 37: Structure and stereochemistry of alkanes

Chapter 3 37

Cyclopropane• Large ring strain due to angle compression

• Very reactive, weak bonds

=>

Page 38: Structure and stereochemistry of alkanes

Chapter 3 38

Cyclopropane (2)

Torsional strain because of eclipsed hydrogens

=>

Page 39: Structure and stereochemistry of alkanes

Chapter 3 39

Cyclobutane• Angle strain due to compression

• Torsional strain partially relieved by ring-puckering

=>

Page 40: Structure and stereochemistry of alkanes

Chapter 3 40

Utilizando los datos de la tabla dada a continuación. Demuestre cuantitativamente que la tensión total en ciclobutano es aproximadamente 26.4 kcal/mol. Describa los factores que contribuyen a esta tensión en ciclobutano. • cicloalcano Ho

comb (kcal/mol)

Tensión Total (kcal/mol)

ciclopropano 499.8 27.6

ciclobutano 655.9 26.4

ciclopentano 793.5 6.5

ciclohexano 944.5 0

cicloheptano 1108.3 6.3

ciclooctano 1268.9 9.6

Page 41: Structure and stereochemistry of alkanes

Chapter 3 41

Cyclopentane• If planar, angles would be 108, but all

hydrogens would be eclipsed.

• Puckered conformer reduces torsional strain.

=>

Page 42: Structure and stereochemistry of alkanes

Chapter 3 42

Cyclohexane

• Combustion data shows it’s unstrained.• Angles would be 120, if planar.• The chair conformer has 109.5 bond

angles and all hydrogens are staggered.• No angle strain and no torsional strain.

=>

Page 43: Structure and stereochemistry of alkanes

Chapter 3 43

Chair Conformer

=>

Page 44: Structure and stereochemistry of alkanes

Chapter 3 44

Boat Conformer

=>

Page 45: Structure and stereochemistry of alkanes

Chapter 3 45

Conformational Energy

=>

Page 46: Structure and stereochemistry of alkanes

Chapter 3 46

Axial and Equatorial Positions

=>

Page 47: Structure and stereochemistry of alkanes

Chapter 3 47

Monosubstituted Cyclohexanes

=>

Page 48: Structure and stereochemistry of alkanes

Chapter 3 48

1,3-Diaxial Interactions

=>

Page 49: Structure and stereochemistry of alkanes

Chapter 3 49

Disubstituted Cyclohexanes

=>

Page 50: Structure and stereochemistry of alkanes

Chapter 3 50

Cis-Trans Isomers

Bonds that are cis, alternate axial-equatorial around the ring.

=>

CH3

CH3

One axial, one equatorial

Page 51: Structure and stereochemistry of alkanes

Chapter 3 51

Bulky Groups• Groups like t-butyl cause a large energy

difference between the axial and equatorial conformer.

• Most stable conformer puts t-butyl equatorial regardless of other substituents.

=>

Page 52: Structure and stereochemistry of alkanes

Chapter 3 52

• 3) Considere el siguiente ciclohexano sustituído:

• a) Dibuje la conformación silla correspondiente.

• (b) Haga la representación Newman correspondiente. (Recuerde especificar la perspectiva que representa)

• c) Dibuje ambas sillas (interconversión de los

confórmeros). Señale la que considere más estable.

• d) Utilizando los valores de la tabla de Go de sustituyentes, calcule el Go para el proceso de interconversión.

• e) Calcule el por ciento de cada confórmero

Sust Go kcal/mol

CH3 1.74

OCH3 0.75

CH(CH3)2 2.61

CH(CH3

)2

H3

C

OCH3

Page 53: Structure and stereochemistry of alkanes

Chapter 3 53

Bicyclic Alkanes• Fused rings share two adjacent carbons.• Bridged rings share two nonadjacent C’s.

bicyclo[3.1.0]hexane =>

bicyclo[2.2.1]heptane

Page 54: Structure and stereochemistry of alkanes

Chapter 3 54

Cis- and Trans-Decalin

• Fused cyclohexane chair conformers• Bridgehead H’s cis, structure more flexible• Bridgehead H’s trans, no ring flip possible.

H

H

cis-decalin

H

H

=>

trans-decalin

Page 55: Structure and stereochemistry of alkanes

Chapter 3 55

Bicyclo[4.4.0]decane

=>

Page 56: Structure and stereochemistry of alkanes

Chapter 3 56

End of Chapter 3