Structures in Earthquake Regions

  • Upload
    faried

  • View
    215

  • Download
    0

Embed Size (px)

Citation preview

  • 7/31/2019 Structures in Earthquake Regions

    1/51

    Page1of51

    1. SeismicCodesandRelevantDataLayerforHazardandRiskAssessment1.1DescriptionofNationalCodeDevelopment

    Indonesiahasdevelopedtheearthquakecodesince27yearsago.Ithadaimtoimprovetheregulationoftheearthquakeresistanceforbuildingwhichwasinterpretedinthestandard

    code(DesignMethodofEarthquakeResistanceforBuildings).Thiscodewasproposedby

    Beca Carer Hollings, Ferner Ltd and Indonesians expert engineers. The result of this

    investigationwaspublished inIndonesianEarthquakeStudiesvolume1until7at1979.

    Based on this investigation, the hazard map was published for period 500 years. In the

    hazard map, the earth quake zone map of Indonesia is divided into 6 zones and it is

    classifiedby2(two)subsoilconditionstype,stiffsoilandsoftsoil.

    Nowadays, there are many technologies and research to investigate the occurrences of

    earthquakemuchmoredetails.Theimprovinganddevelopingofthisresearchispublished

    intheBuildingCodethatmustbe fulfilled inordertogeneralizethedesignscalculationandgiveasafetyfactorforbuildingsandusers.Indonesiaisaoneofdangerouslocationsin

    theworldasithasalotofearthquakeoccurrences;hencetheIndonesiagovernmentmakes

    aregulationandreferenceforengineerstodesignabuildingand infrastructurebyusinga

    code which is called Design Method of Earth quake Resistance for Buildings Indonesia

    Standard National 172602. This standard is intended as a replacement of Indonesian

    NationalStandard(SNI0317261989).

    IndonesiagovernmenthasstartedanewcodeafterTsunamidisasterwhichwasoccurred5

    yearsago.Wewereawarethatthecurrentcodeisnotrelevantanymoretobeimplemented

    fordesigningofbuilding.Manybuildingsandinfrastructuresweredestroyedbyearthquake

    and tsunami due to lack of quality and wrong construction method. This code is beingaccomplished by government which consider higher safety factor including construction

    methodforhousingandhighbuilding.Thisisnecessarytogiveknowledgeforengineersand

    architectstobuildabuildingaswellasnewcode.

    1.2Recentcodesituation

    1.2.1ElaborationofNationalSeismicZoningMaps

    Currently,IndonesiahasthreeearthquakehazardmapsissuedbyDepartmentofPublic

    Works.Thefirstmap isPeakGroundAcceleration(PGA)mapatbedrockfor500years

    returnperiodintheStandardforEarthquakeResiliencePlanningStructureBuilding(SNI

    0317262002).Thishazardmap isused fordesigninggeneralbuildings.Thesecond is

    thehazardmaps fordesigningwaterworks (dam).ThismapwasdevelopedbyTheoF.

    NajoanandpublishedbyResearchcentreforWaterworksDepartmentofPublicWorks.

    ThethirdmapisusedfordesigningbridgeandroadconstructionpublishedbyResearch

  • 7/31/2019 Structures in Earthquake Regions

    2/51

    Page2of51

    CentreforRoadsandBridgeworks.ThismapisreferredtothemapdevelopedbyTheo

    F.Najoanwithareturnperiodof50and100years.

    The map for PGAat bedrock in the SNI 0317262002 (Figure 1e) was developing by

    averagingvalues from four seismichazardmapsdevelopedby fourdifferent research

    groupsinIndonesia(Figure1ato1d).Thisseismichazardmapwasdevelopedusingtotal

    probability theorem (Cornel,1968)andbyapplying area sourcesmodel (2dimension

    model).This2dimension(2D)modelhassomelimitationsinmodelingthefaultsource

    geometries. Moreover, several great earthquake occurrences in Indonesia in the last

    two years inquire revision of seismic hazard parameters in SNI 0317262002. These

    earthquake events must be considered in determining seismic hazard parameters

    especiallymaximumcredibleearthquakemagnitude(MCE).

  • 7/31/2019 Structures in Earthquake Regions

    3/51

    Page3of51

    Figure1. IndonesiaHazardMapfromfourresearchesandasinSNI0317262002.

    1.2.2 SpecificationofCodeProvisions

    1.2.2.1.GeneralRequirement.

    Thisstandarddefinestheeffectofdesignearthquakethatmustbeexaminedin

    thebuildingstructuredesignandvariouspartsandcomponentsingeneral.Due

    totheeffectofdesignearthquake,overallbuildingstructuremuststayerected,

    albeit innearcollapsingcondition.Thedesignearthquake isdefinedtohavea

    reoccurrenceperiodof500years,soitsprobabilityinthe50yearsbuildinglife

    spanis10%.

    Thedesignrequirementsofearthquakeresistantbuildingstructuresdefinedin

    thisstandarddonotapplyforthefollowingbuildings:

    Buildingwithuncommonstructuresystemorbuildingsstillrequiringproving

    oftheirworthiness.

    Buildingsusingbaseisolationsystemtoabsorbearthquakeeffectonthe

    upperstructure.

    CivilEngineeringStructuressuchasbridges,irrigationbuilding,wallsandpiersofharbor,offshoreoilstructure,andothernonbuildings.

    Onestoreyhouseandothernontechnicalbuildings.

    Thisstandardhasaproposethatthebuildingstructurewhichitsearthquake

    resistanceisdesignedconformingtothisstandardcanfunction:

    Topreventhumancasualtiesbythecollapseofbuildingbecauseofastrong

    earthquake

  • 7/31/2019 Structures in Earthquake Regions

    4/51

    Page4of51

    Toreducebuildingdamageduetolighttomediumearthquake,sothe

    buildingisrepairable.

    Topreventtenantdiscomfortforbuildingtenantsduringlighttomedium

    earthquakes.

    Tomaintainatalltimevitalservicesofbuildingfunction.

    1.2.2.2.ImportanceFactor

    For various building categories, depending on the probability of building

    structurecollapsing forthe lifeandexpectedageofthebuilding,theeffectof

    design earthquake on it must be multiplied with a significance factor I

    (ImportanceFactor).

    BuildingCategory SignificanceFactorI1 I2 I(I1xI2)

    Generalbuilding,suchasforresidential,tradeandoffice 1.0 1.0 1.0

    Monumentandmonumentalbuildings 1.0 1.6 1.6Post earthquake important buildings such as hospital,

    cleanwater installation,powerplant,emergency rescue

    center,radioandtelevisionfacilities.

    1.4 1.0 1.4

    Buildings for storing dangerous goods such as gas, oil

    products,acid,toxicmaterials1.6 1.0 1.6

    Chimneys,toweredtanks 1.5 1.0 1.5

    Table1.Importancefactor

    I1 = the significant factor to adjust the reoccurrence period of the earthquake related to

    probabilityadjustmentoftheearthquakeoccurrenceforthelifeofthebuilding.

    I2 = Significant factor to adjust earthquake reoccurrence period related to the building age

    adjustment.

    1.2.2.3.Regularandirregularbuilding

    Abuildingstructureisdefinedasaregularbuildingunderthefollowingterms:

    Heightofthebuildingstructuremeasured from lateralclamping levelmay

    notbemorethan10storiesor40m.

    Shape of the building is rectangular without protrusion, if there is an

    protrusion,thelengthoftheprotrusiondoesnotexceed25%ofthelargest

    sizeofthebuildingstructureinthedirectionoftheprotrusion.

    Thebuilding structuremapdoesnot showany cornernotch, if there isa

    notch, the length of the side of the notch does not exceed 15% of thelargestsizeofthebuildingstructureinthenotchsidedirection.

    The building structure system is formed by the lateral load bearer

    subsystemswhichdirection isperpendicular toeachotherandparallel to

    orthogonalmainaxisofoverallbuildingstructuremap.

    Thebuildingstructuresystemdoesnotshowa leapofthefrontplane, ifa

    leapofthefrontplane,sizeofthestructuremapofthebuildingprotruding

    ateachdirectionisnolessthan75%ofthelargestsizeofstructuremapof

  • 7/31/2019 Structures in Earthquake Regions

    5/51

    1.2.2.

    thelo

    2store

    .Ductilityof

    Building st

    buildingstr

    condition

    yieldingy

    Build

    perfo

    Full El

    Partial

    Full Du

    Ta

    Figure2.D

    erbuilding

    ystallisnot

    thebuilding

    ructure duct

    uctureduet

    fnearcollap

    occurs,whic

    ingstructurermanceLeve

    stic

    Elastic

    ctile

    le 2. Ductilit

    ctilitycurve

    art.Inthisc

    ecessarilyc

    structurean

    ility factor (

    otheeffect

    sing(m)and

    is:

    1.0

    l

    1,0 1

    1,52,02,53,03,54,04,55,0

    23445678

    5,3 8

    for each pe

    ase,roofho

    nsideredto

    nominalea

    ) is a ratio

    fthedesign

    buildingstr

    m

    y

    =

    f2

    ,6 1

    ,4,2,0,8,6,4,2,0

    1.091.171.261.351.441.511.611.70

    ,5 1.75

    rformance le

    sestructure

    causefrontp

    rthquakeloa

    of maximum

    earthquake

    cturedeflec

    m

    f

    1.6

    1.71.92.02.22.32.42.62.7

    2.8

    vel

    R =

    Page

    whichisles

    laneleap.

    ing

    deflection t

    henreachi

    ionwhenth

    e m

    y y

    V

    V

    =

    1

    y

    n

    Vf

    V=

    2

    m

    y

    Vf

    V

    =

    1 2.f f= =

    1. e

    n

    Vf

    V =

    of51

    than

    o the

    gthe

    efirst

    m

    n

  • 7/31/2019 Structures in Earthquake Regions

    6/51

    Page6of51

    Where:

    Ve=Maximumloadingduetoeffectofdesignearthquakeabsorbablebyafully

    elasticbuildingstructureintheconditionofnearcollapsing.

    Vm=Maximumloadingduetoeffectofdesignearthquakeabsorbablebyafully

    ductilebuildingstructureintheconditionofnearcollapsing.

    Vy=Theloadingthatcausesthefirstyieldinginthebuildingstructure.Vn=Thenominalearthquakeloadingduetoeffectofdesignearthquakewhich

    mustbeexaminedinbuildingstructuredesign.

    f1=theloadandmaterialextrastrengthfactorincludedIthebuildingstructure,

    f1=1.6

    f2=Thestructureextrastrengthfactor

    R=Theearthquakereductionfactor1.2.2.5.CapacityDesign

    Theearthquakecode,whichiscalledSNI172602,explainsthefailure

    mechanismwhichisstillinthesafezoneduetoearthquakeload.This

    mechanismiscalledSideSway

    Mechanism(picture2)wheretheplastichinge

    onlyoccursontheedgeofbeamsandcolumns.Toreachthismechanism,the

    strongcolumnweakbeammustbefulfilledthecapacitydesign.Thisconcept

    explainsthatthecolumnsmusthavenominalflexurecapacitywhichislarger

    thanbeams.Sideswaymechanismisexpectedinthedesigntopreventthe

    collapsemechanismatthecolumnwhereitiscalledasSoftStoreyMechanism

    (Picture3).

    figure3.SideSwayMechanism

    figure4.SoftstoreyMechanism

  • 7/31/2019 Structures in Earthquake Regions

    7/51

    Page7of51

    IntheStrongcolumnweakbeamconcept,thecapacitydesignneedsamultiplier

    to enlarge the column capacity against beam, which is called Overstrength

    factor(OF).Thisconceptcouldbeinterpretedinequilibriumasbelow:

    c gM OFx M

    Where:

    Mc=Amountofcolumnmomentsinthejointbeamcolumn

    Mg=Amountofbeammomentsinthejointbeamcolumn

    OF=OverstrengthFactorvalue(6/5)

    1.2.2.6.Typeofsoilandpropagationofearthquakewave

    Soiltypesaredeterminedashardsoil,mediumsoilandsoftsoil.Forthe

    uppermostlayeratamaximumthicknessof30m,therequirementinthetable

    issatisfied:

    SoilType Averageshearwavepropagationspeed AverageStandardPenetrationTestResult

    N

    AverageNonFlowingshearstrengthSu

    (kPa)

    HardSoil Vs 350 N 50 Su 100

    MediumSoil 175 Vs 350 15 N

  • 7/31/2019 Structures in Earthquake Regions

    8/51

    Page8of51

    Consideringtheshortnaturalfrequencyperiodof0 T 0.2second,thereisan

    uncertainty,bothinsoilmovementcharacteristicoritsstructureductilitylevel,

    theearthquakeresponsefactorCisdeterminedbytheequationbelow:

    ForT Tc;C=Am

    ForT>Tc;C=Ar/T

    Where:Ar=Am.Tc

    Zone HardSoil

    Tc=0.5sec

    MediumSoil

    Tc=0.6sec

    SoftSoil

    Tc=1.0sec

    Am Ar Am Ar Am Ar

    1 0.10 0.05 0.13 0.08 0.20 0.20

    2 0.30 0.15 0.38 0.23 0.50 0.50

    3 0.45 0.23 0.55 0.33 0.75 0.75

    4 0.60 0.30 0.70 0.42 0.85 0.85

    5 0.70 0.35 0.83 0.50 0.90 0.90

    6 0.83 0.42 0.90 0.54 0.95 0.95

    Table5.Accelerationvalueforeachsoiltype

  • 7/31/2019 Structures in Earthquake Regions

    9/51

    Page9of51

    Figure5.ResponseSpectraGraphforeachzone

    1.2.3 BasicEquationforPredictingtheEquivalentHorizontalForces

    1.2.3.1.Limitationoffundamentalnaturalfrequencyperiod

    Fundamentalperiod isbasicallyabletobedeterminedbyusingequationfrom

    UBC97:

    T=0.0853H3/4(forsteelframe)

    T=0.0731H3/4(forconcreteframe)

    T=0.0488H3/4(forothersframe)

    WhereHistotalheightofbuilding

    Topreventausageofoverflexiblebuildingstructure,thefundamentalnatural

    frequencyperiodT1ofthebuildingstructuremustbelimited,dependingonthe

    coefficient fortheSeismiczonewherebuildingislocatedanditsstoreytotalnisaccordingtotheequation.

    T1

  • 7/31/2019 Structures in Earthquake Regions

    10/51

    Page10of51

    Accordingtothetableabove,itcanbeclearlyseenthatthecriticalzone(6)is

    expectedtohavelowerperiodratherthanotherzones.

    Fundamentalnaturalfrequencyperiodofaregularbuildingstructureineach

    mainaxisdirectioncanbedeterminedusingRayleighformulaasfollows:

    Where:

    Wi =Thefloorweightoftheithincludingcorrespondingliveload

    Fi =Equivalentstaticnominalearthquakeloads

    di =Thehorizontaldeflectionoftheithfloor

    g =Gravitationalacceleration(9.8m/sec2)

    1.2.3.2.Eccentricityofcenterofgravityagainsttherotationcenterofstoreyfloor

    Thecenterofgravityofstoreyfloorofabuildingstructureistheresultantpoint

    of dead load, including corresponding live load working at that floor. On the

    building structure design, the center of gravity is the resultant point of

    equivalentstaticloadordynamicearthquakeforce.

    Storeylevelrotationcenterofabuildingstructureisapointatthestoreyfloor

    which ifahorizontal load isworkingon it, thestorey floorwillnotrotate,but

    only translates,while theother levelsnotexperiencinghorizontal loadwillall

    rotateandtranslate.

    Betweenthecenterofgravityandthecenterofrotation,adesignedeccentricity

    edmustbeexamined. If the largesthorizontal sizeof thebuilding structurea

    storeyfloor,measuredperpendiculartoearthquakeloadingdirection,isstated

    asb,thedesignedeccentricityedmustbedeterminedasfollows:

    For00.3b

    Ed=1.33e+0.1b or ed=1.17e0.1b

    1.2.3.3 Equivalentstaticnominalearthquakeload

    Aregularbuildingstructurecanbedesignedagainstnominalearthquakeloading

    due to effect of design earthquake in the direction of each main axis of the

    structuremap,informofequivalentstaticnominalearthquakeload.

    TheequivalentstaticnominalbasicshearloadVoccurringatthebaselevelcan

    becalculatedaccordingtotheequation:

    2

    1

    1

    1

    6,3

    n

    i i

    i

    n

    i i

    i

    W dT

    g F d

    =

    =

    =

  • 7/31/2019 Structures in Earthquake Regions

    11/51

    Page11of51

    1

    1

    C IV W

    R=

    Where: C1 =Theearthquakeresponsefactor

    I =Importancefactor

    W1 =ThetotalweightR =earthquakereductionfactor

    NominalbasicshearloadVmustbedistributedalongtheheightofthebuilding

    structuretobeequivalentstaticnominalearthquakeloadsFiworkingatthe

    centerofgravityattheithlevelaccordingtoequation:

    1

    i ii n

    i i

    i

    W zF

    W z=

    =

    Where:

    Wi =Thefloorweightoftheithincludingcorrespondingliveload

    Zi =Thefloorheightoftheithfloormeasuredfromlateralclampinglevel.

    Iftheratiobetweentheheightofthebuildingstructureanditsmapsizeinthe

    earthquake loading direction equals or exceeding 3, then 0.1 V must be

    considered as a horizontal loads centralized at the center of gravity of the

    uppermostlevel,whiletheremaining0.9Vmustbedistributedalongtheheight

    ofthebuildingstructuretobeequivalentstaticnominalearthquakeload.

    1.2.3.4.ServiceLimitPerformance

    Service limit performance of a building structure is defined by the interlevel

    deflection due the effect of design earthquake which limit the occurrence of

    steelyieldandexcessive concrete cracking.To satisfy this requirement, inter

    level deflection calculated from the building structure deflection may not

    exceed0.03/Rofheightoftherespectivelevelor30mm.

    1.2.3.5UltimateLimitPerformance

    Theultimate limitperformanceof thebuilding structure isdeterminedby the

    deflectionandmaximum interleveldeflectionofthebuildingstructuredueto

    effectofdesignearthquakewhen thebuilding structure isnearcollapsing.To

    limittheoccurrencepossibilityofbuildingstructure collapsingwhichcancause

    human casualties and to prevent dangerous collisions between buildings or

    between earthquake load parts separated by separation space (dilatation

    clearance).

    Forregularbuildingstructure

    =0.7R

    Forirregularbuildingstructure

  • 7/31/2019 Structures in Earthquake Regions

    12/51

    Page12of51

    0.7

    _

    R

    scale Factor =

    WhereRisearthquakereductionfactorofthebuildingstructure.

    Tosatisfythebuildingstructureultimatelimitperformancerequirements,inall

    conditions, the interlevel deflection calculated from the building structure

    deflectionmaynotexceed0.02oftherespectivestoreyheight.

    1.2.3.6ResponseSpectrumAnalysisbySRSS

    Thisapproachpermitsthemultiplemodesofresponseofabuildingtobetaken

    intoaccount(inthefrequencydomain).Thisisrequiredinmanybuildingcodes

    for all except for very simple or very complex structures. The response of a

    structurecanbedefinedasacombinationofmanyspecialshapes(modes)that

    inavibratingstringcorrespondtothe"harmonics".

    Combinationmethodsincludethefollowing:

    absolute peakvaluesareaddedtogether

    squarerootofthesumofthesquares(SRSS)

    completequadraticcombination(CQC) amethodthatisanimprovement

    onSRSSforcloselyspacedmodes

    Inthisreport,IwillcomparetheEquivalentstaticresultwithSRSSresult.

    TheequilibriumofSRSSmethodis:

    1.3ElaborationofFurtherInformation

    1.3.1GeneralInformation

    Indonesia,located inSoutheastAsia,isanationconsitingofover13,000islands(some

    publications citemore than17,000 islands).Only6000of these islandsare inhabited.

    TheislandsspreadbetweentheIndianandPacificoceans,linkingthecontinentofAsia

    and Australia. The main islands are Sumatera (473,606 sq.km), Kalimantan (539,460

    sq.km),Sulawesi(189,216sq.km),IrianJaya(421,981sq.km),andJava(132,187sq.km).Indonesia shares the islandsofKalimantanwithMalaysian,and IrianwithPapuaNewGuinea.

    Indonesia is recognized as archipelagos country which has more than ten thousand

    islands.60%ofpopulationisconcentratingintheJavaIslandandtherestaredistributed

    inSumatra,Kalimantan,SulawesiandIrianIsland.

    ( )2

    1

    N

    i ij j

    j

    MPF =

    = 1

    2

    1

    N

    k kj

    kj N

    k kj

    k

    m

    MPF

    m

    =

    =

    =

    1

    i ii N

    k k

    k

    mF V

    m

    =

    =

  • 7/31/2019 Structures in Earthquake Regions

    13/51

  • 7/31/2019 Structures in Earthquake Regions

    14/51

  • 7/31/2019 Structures in Earthquake Regions

    15/51

    3. Sl

    1.

    b

    Slabis16

    Column

    cm

    Figur

    9.Layoutofbuildingstru

    2. Beam

    cture

    Page1 of51

  • 7/31/2019 Structures in Earthquake Regions

    16/51

    Page16of51

    2.1.2.MaterialProperties

    Intheetabssoftware,wecouldapplythematerialpropertiessuchasbelow:

    Figure10.Materialproperties

    Accordingtopictureabove,

    concretedensityis2500kg/m3

    concreteCompressionStrengthis2800000kg/m2

    Reinforcementyieldstressis42000000kg/m2

    2.1.3LoadCases

    Thereareseveralloadcaseswhichareappliedintoaccount.TheseloadcasesareDead

    Load(DL),LiveLoad(LL)andEarthquakeLoad(E).

    Thedetailofeachloadcaseiscalculatedinthetablebelow:

    Table7.LoadCasescalculation

    kN/m2

    c h b L1 Load

    Load [kN/m3] [m] [m] [m] [kN/m]

    DeadLoadSlab 25 0.16 5 20

    Plastering 1.25 5 6.25

    Partitions 1.25 5 6.25

    Superimposed Load 32.5

    Roof 5.75 5 28.75

    LiveLoad 2 5 10FrameLoad

    Column300mmx300mm 25 0.3 0.3 2.25

    Column400mmx400mm 25 0.4 0.4 4

    Beam300mmx450mm 25 0.45 0.3 3.375

  • 7/31/2019 Structures in Earthquake Regions

    17/51

    Page17of51

    2.1.4EquivalentstaticnominalearthquakeloadCalculation

    Beforecalculatingtheshearforce,wehavetodeterminetheweightateachstorey

    whichiscalculatedastablebelow:

    Table8.Weightdistributionforeachstorey

    Accordingtotheequivalentstaticequilibrium,thebaseshearforeachseismiczoneis

    Table9.Equivalentstaticdistribution

    Weight each Storeyh1 h2 h3 h4 L2

    [m] [m] [m] [m] [m]

    w4 3.2 3 5 24 16 893.85

    w3 3.2 3 5 24 16 1101.45

    w2 3.2 3 5 24 16 1191.05

    w1 3.05 3 5 24 16 1186.25

    4372.6

    Sub Total (KN)n-beam n-columnn-slab

    Wi zi Wi*zi

    [kN] [m] [kN.m]

    4 893.85 12.65 11307.20

    3 1101.45 9.45 10408.70

    2 1191.05 6.25 7444.06

    11186.25 3.05 3618.06

    4372.60 32778.03

    Storey

  • 7/31/2019 Structures in Earthquake Regions

    18/51

    Table10.Shearforceresultforallzones

    0.2 0.08 0.05 0.5 0.23 0.15 0.75 0.33 0.23 0.85 0.42 0.3 0.9

    hard

    Soil

    medium

    Soil

    soft

    Soil

    hard

    Soil

    medium

    Soil

    soft

    Soil

    hard

    Soil

    medium

    Soil

    soft

    Soil

    hard

    Soil

    medium

    Soil

    soft

    Soil

    hard

    Soil

    m

    218.63 87.45 54.66 546.58 251.42 163.97 819.86 360.74 251.42 929.18 459.12 327.95 983.84 5

    4 75.42 30.17 18.85 188.55 86.73 56.56 282.82 124.44 86.73 320.53 158.38 113.13 339.39

    3 69.43 27.77 17.36 173.57 79.84 52.07 260.35 114.55 79.84 295.06 145.80 104.14 312.42

    2 49.65 19.86 12.41 124.13 57.10 37.24 186.20 81.93 57.10 211.02 104.27 74.48 223.43

    1 24.13 9.65 6.03 60.33 27.75 18.10 90.50 39.82 27.75 102.56 50.68 36.20 108.60

    00 0 0 0 0 0 0 0 0 0 0 0 0

    218.63 87.45 54.66 546.58 251.42 163.97 819.86 360.74 251.42 929.18 459.12 327.95 983.84

    zone3 zzone4

    Storey

    Zone

    Cv

    Base Shear

    (kN)

    zone1 zone2

  • 7/31/2019 Structures in Earthquake Regions

    19/51

    Page19of51

    Figure11.baseShearforcedistributionforeachzone

  • 7/31/2019 Structures in Earthquake Regions

    20/51

    Page20of51

    Figure12.BaseShearForceforeachsoiltype

    0

    1

    2

    3

    4

    0.00 100.00 200.00 300.00 400.00

    Storey

    BaseShear(kN)

    HardSoilzone1

    zone2

    zone3

    zone4

    zone5

    zone6

    0

    1

    2

    3

    4

    0.00 50.00 100.00 150.00 200.00

    Storey

    BaseShear(kN)

    MediumSoilzone1

    zone2

    zone3

    zone4

    zone5

    zone6

    0

    1

    2

    3

    4

    0.00 50.00 100.00 150.00 200.00 250.00

    Storey

    BaseShear(kN)

    SoftSoilzone1

    zone2

    zone3

    zone4

    zone5

    zone6

  • 7/31/2019 Structures in Earthquake Regions

    21/51

    Table11.eigenmodeforeachstorey

    1 2 3 4 5 6 7 8 9

    UY UX RZ UY UX RZ UY UX RZ U

    STORY4 -0.0057 0.0058 -0.00085 -0.0045 0.0044 -0.00069 -0.0032 -0.0032 -0.00052 -0.

    STORY3 -0.0046 0.0046 -0.0007 0.0015 -0.0015 0.00015 0.0059 0.006 0.00088 0.0

    STORY2 -0.0026 0.0026 -0.00044 0.0053 -0.0053 0.0008 -0.0021 -0.0021 -0.00021 -0.

    STORY1 -0.0011 0.0011 -0.00019 0.0033 -0.0033 0.00053 -0.0034 -0.0033 -0.00057 0.

    normalization

    1 2 3 4 5 6 7 8 9

    UY UX RZ UY UX RZ UY UX RZ U

    4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1

    3 0.81 0.79 0.82 -0.33 -0.34 -0.22 -1.84 -1.88 -1.69 -4

    2 0.46 0.45 0.52 -1.18 -1.20 -1.16 0.66 0.66 0.40 11

    1 0.19 0.19 0.22 -0.73 -0.75 -0.77 1.06 1.03 1.10 -1

    base 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0

  • 7/31/2019 Structures in Earthquake Regions

    22/51

    Page22of51

  • 7/31/2019 Structures in Earthquake Regions

    23/51

    Page23of51

    Figure13.modeshapeforeachmode

  • 7/31/2019 Structures in Earthquake Regions

    24/51

    Table12.SRSScalculation

    4 893.85 893.85 893.85 893.85 893.85 893.85 893.85 893.85 893.85 893.85 893.85

    3 1101.45 888.89 717.35 873.56 692.83 907.08 747.00 -367.15 122.38 -375.49 128.01 -

    2 1191.05 543.29 247.81 533.92 239.34 616.54 319.15 -1402.79 1652.18 -1434.67 1728.13 -1

    1 1186.25 228.93 44.18 224.98 42.67 265.16 59.27 -869.92 637.94 -889.69 667.27 -2554.95 1903.19 2526.31 1868.69 2682.63 2019.28 -1746.01 3306.35 -1806.01 3417.25 -1

    MPF

    5

    UX

    1 2

    UX

    3

    RZ

    4

    UY

    1.34 1.35 1.33 -0.53 -0.53

    UY

    893.85 893.85 893.85 893.85 893.85 893.85 893.85 893.85 893.85 893.85

    -2030.80 3744.28 -2065.22 3872.29 -1863.99 3154.45 -4405.80 17623.20 -4405.80 17623.20

    781.63 512.94 781.63 512.94 481.00 194.25 13697.08 157516.36 13697.08 157516.36

    1260.39 1339.17 1223.32 1261.55 1300.31 1425.34 -17793.75 266906.25 -18090.31 275877.27 -

    905.07 6490.24 833.58 6540.63 811.17 5667.89 -7608.63 442939.66 -7905.19 451910.68

    10

    UY

    -0.02

    UX

    11

    -0.02

    8

    UX

    0.130.14

    RZ

    9

    0.14

    UY

    7

    1 2 3 4 5 6 7 8 9 10

    MPF 1.34 1.35 1.33 -0.53 -0.53 -0.50 0.14 0.13 0.14 -0.02

    4 1.80 1.83 1.76 0.28 0.28 0.25 0.02 0.02 0.02 0.00

    3 1.17 1.15 1.20 0.03 0.03 0.01 0.07 0.06 0.06 0.00

    2 0.37 0.37 0.47 0.39 0.41 0.34 0.01 0.01 0.00 0.04

    1 0.07 0.07 0.09 0.15 0.16 0.15 0.02 0.02 0.02 0.07

    3.42 3.41 3.52 0.85 0.87 0.76 0.12 0.10 0.11 0.11

    1.85 1.85 1.88 0.92 0.93 0.87 0.34 0.31 0.33 0.33

    mi i UY mi i UY mi i RZ

    4 1652.53 1650.68 1677.74

    3 1013.48 1029.80 959.302 405.45 372.12 389.77

    1 394.20 405.47 370.86

    mi i 3465.67 3458.08 3397.66

  • 7/31/2019 Structures in Earthquake Regions

    25/51

  • 7/31/2019 Structures in Earthquake Regions

    26/51

    Figure14.BaseshearForceforzone6

  • 7/31/2019 Structures in Earthquake Regions

    27/51

    Page27of51

    2.1.5AxialForce,ShearForceandBendingMomentDiagram

    AccordingtotheresultfromETABSsoftware,theforcesandmomentdiagramaregivenasfollows:

    a. DeadLoad(DL)

    AxialForce ShearForce

    BendingMoment

    Figure15.LoaddiagramsforDeadLoad

  • 7/31/2019 Structures in Earthquake Regions

    28/51

    Page28of51

    b. LiveLoad(LL)

    AxialForce ShearForce

    BendingMoment

    Figure16.LoaddiagramsforLiveLoad

  • 7/31/2019 Structures in Earthquake Regions

    29/51

    Page29of51

    c. EarthquakeForce

    AxialForce ShearForce

    BendingMoment

    Figure17.LoaddiagramsforEarthquakeLoad

  • 7/31/2019 Structures in Earthquake Regions

    30/51

    Page30of51

    3.BehaviorofBuildingTypesDuringRecentEarthquake3.1RecentEarthquakes

    In this recent century, Indonesia has been impacted by a lot of Earthquakes every year.

    MostofbigislandsandcitiesinIndonesiahaveearthquakeoccurrenceswhichcausesmall

    and big damage. There are many historical earth quake including magnitudes and

    intensitieswhichwererecordedbygeologists.

    Date Location Magnitude Fatalities Description117970210 Sumatra 8.4>300

    TherewasTsunamithatwasparticularlysevere

    nearPadang

    218331125 Sumatra 8.89.2 'numerous'

    alargetsunamithatfloodedthesouthwestern

    coastoftheislandTherearenoreliablerecordsof

    thelossoflife

    318610216 Sumatra 8.5

    'several

    thousand'

    adevastatingtsunamiwhichledtoseveral

    thousandfatalities.Theearthquakewasfeltasfar

    awayastheMalaypeninsulaandtheeasternpart

    ofJava419170120 Bali 1,500

    519380201 BandaSea 8.5

    itwastheninthlargestearthquakeinthe20th

    centuryItgeneratedTsunamisofupto1.5metres,

    butnohumanlivesappeartohavebeenlost.

    619760625 Papua 7.1 5,000

    719921212 FloresRegion 7.8 2,500

    820000604 SouthernSumatra 7.9 103

    920021010 WesternNewGuinea 7.6 8

    1020021102 NorthernSumatra 7.4 3

    1120030526 Halmahera 7 1

    1220040128 Seram 6.7

    1320040205 WesternNewGuinea 7 37

    1420040207 WesternNewGuinea 7.3

    1520040725 SouthernSumatra 7.3

    1620041111 KepulauanAlor 7.5 34

    1720041126 Papua 7.1 32

    1820041226 SumatraAndamanIslands 9.3 283,106

    inundatingcoastalcommunitieswithwavesupto

    30meters(100feet)high

    1920050101

    OfftheWestCoastof

    NorthernSumatra 6.7

    2020050219 Sulawesi 6.5

    2120050226 Simeulue 6.8

    2220050302 BandaSea 7.1

    approximately500kmfromEastTimoronMarch2,

    2005.ResidentsofDarwin,Australiafelttheimpact

    quitestrongly,despitetheepicenterbeinglocated

    approximately140kmaway

  • 7/31/2019 Structures in Earthquake Regions

    31/51

    Page31of51

    2320050328 NorthernSumatra 8.6 1,313 mostlyontheislandofNias

    2420050410

    KepulauanMentawai

    Region 6.7

    2520050514 NiasRegion 6.7

    2620050519 NiasRegion 6.9

    2720050705 NiasRegion 6.7

    2820051119 Simeulue 6.5

    2920060127 BandaSea 7.6 Thelocationwas200kmsouthofAmbonIsland

    3020060314 Seram 6.7 4

    3120060516 NiasRegion 6.8

    3220060526 Java 6.3 5,749

    36,299peoplewereinjured,135,000houses

    damaged,andanestimated1.5millionleft

    homeless

    3320060717 Java 7.7 730

    itshypocentreatadepthof48.6kmbelowthe

    seabed

    3420060723 Sulawesi 6.1 itshypocenteratadepthof86.2km

    3520061218 NorthSumatra 5.8 7

    3620070121 MoluccaSea 7.5 4

    3720070306 Sumatra 6.4,6.3 68

    hitnearthenorthernendofLakeSingkarakin

    Sumatra,Indonesia,Over60fatalitiesand460

    seriousinjurieshavebeenreported

    3820070809 Java 7.5[2]

    Thequakewaslocated70miles(110km)east

    northeastofJakarta,atadepthof175miles

    (282km).[3]

    3920070912 Sumatra 8.5,7.9,7.1 23

    ItcausedbuildingstoswayinJakarta,andsome

    buildingswerereportedtohavecollapsedinthe

    cityofBengkulu

    4020080220 Simeulue 7.4 3

    4120080225

    KepulauanMentawai

    Region 7.0,6.4,6.6

    4220081116 Sulawesi 7.5,5.6 4 Fourpeoplewerekilledinthequakeand59injured

    4320090104 WestPapua 7.6 4

    tenbuildingshadbeentotallydestroyed,including

    severalhotelsandthehouseofagovernment

    official

    4420090816 Siberut,MentawaiIslands 6.7

    Theepicentreofthequakewaslocated43

    kilometres(29miles)southeastofSiberutIslandoff

    westernSumatra

    4520090902 Java 7 15killingatleast79people,injuringover1,250,anddisplacingover210,000

    4620090930 Sumatra 7.6 1,117

    around135,000houseswereseverelydamaged,

    65,000housesweremoderatelydamagedand

    79,000houseswereslightlydamaged

    4720100519 Sumatra 7.2 Unreported

    Itwasoneofasequenceoflargeearthquakes

    alongtheSundamegathrustin2000s

  • 7/31/2019 Structures in Earthquake Regions

    32/51

    Page32of51

    Table14.MaximumearthquakeinIndonesia

    Figure18.MaximumEarthquakedistributionmapinIndonesia

    3.2Damagecaseson26December2004

    TherearesomedamagecasesaffectedbyearthquakeinIndonesia.Itisdependentonbuildingstocksandvulnerabilityclasses.Inthisreport,Iwilldescribesomeearthquakecaseswhichoccur

    severalyearsago.

    The2004 IndianOceanearthquakewasanunderseamegathrustearthquakethatoccurredat

    00:58:53 UTC on December 26, 2004, with an epicenter off the west coast of Sumatra,

    Indonesia. The quake itself is known by the scientific community as the SumatraAndaman

    earthquake.

    Theearthquakewascausedbysubductionandtriggeredaseriesofdevastatingtsunamisalong

    the coasts of most landmasses bordering the Indian Ocean, killing over 230,000 people in

    fourteencountries,andinundatingcoastalcommunitieswithwavesupto30metershigh.Itwasone of the deadliest natural disasters in recorded history. Indonesia was the hardest hit,

    followedbySriLanka,India,andThailand.

    USGSrecordedthiseventwherewecouldfinditintheUSGSwebsiteasfollowingbelow:

    Magnitude 9.1

    DateTime Sunday,December26,2004at00:58:53(UTC)Sunday,December26,2004at7:58:53AMTimeofEarthquakeinotherTimeZones

    Location 3.316N,95.854E

    Depth 30km(18.6miles)setbylocationprogram

    Region OFFTHEWESTCOASTOFNORTHERNSUMATRA

    Distances 250km(155miles)SSEofBandaAceh,Sumatra,Indonesia300km(185miles)WofMedan,Sumatra,Indonesia1260km(780miles)SSWofBANGKOK,Thailand1590km(990miles)NWofJAKARTA,Java,Indonesia

    LocationUncertainty horizontal+/ 5.6km(3.5miles);depthfixedbylocationprogram

    Parameters Nst=276,Nph=276,Dmin=654.9km,Rmss=1.04sec,Gp=29,

  • 7/31/2019 Structures in Earthquake Regions

    33/51

    Page33of51

    Table15.Earthquakeon26December2004

    Numerous aftershocks were reported off the Andaman Islands, the Nicobar Islands and the

    region of the original epicenter in the hours and days that followed. The largest aftershock,

    whichoriginatedoffthecoastoftheSumatranislandofNias,registeredamagnitudeof8.7.

    Theearthquake thatgenerated thegreat IndianOcean tsunamiof2004 isestimated tohave

    released theenergyof23,000Hiroshimatypeatomicbombs,accordingtotheU.S.Geological

    Survey(USGS).

    Theearthquakewas the resultof the slidingof theportionof theEarth'scrustknownas the

    India plate under the section called the Burma plate. The process has been going on for

    millennia, one plate pushing against the other until something has to give. The result on

    December26wasa rupture theUSGSestimateswasmore than600miles (1,000kilometers)

    long, displacing the seafloor above the rupture by perhaps 10 yards (about 10 meters)

    horizontallyandseveralyardsvertically.Thatdoesn'tsoundlikemuch,butthetrillionsoftonsof

    rock thatweremovedalonghundredsofmilescaused theplanet toshudderwith the largest

    magnitudeearthquakein40years.

    Therearetwotypesofdamagecasesoverbuildingsandinfrastructuresduetoearthquakeand

    tsunamion26December2004,whichis:

    a. Structural(Engineered)buildings.

    b. Nonstructural(nonengineered)buildings.

    c. RoadAccess

    d. Port

    e. Powersupply

    f. Telecommunication

    g. WaterSupply

    h. Industrial

    3.2.1 Structural(Engineered)buildings.

    The causesof typicaldamage of reinforced concrete engineeredbuildings during the

    SumatraearthquakeinBandaAcehweremostlyduetoverticalirregularities incertain

    RC buildings creating abrupt changes in stiffness and strength that may concentrate

    forcesinanundesirableway.Alsopoorqualityofconcreteanddetailingcontributedto

    thecollapseofthoseengineeredbuildings.

  • 7/31/2019 Structures in Earthquake Regions

    34/51

    Page34of51

    Figure19.ThemostobviousdamageoccurredtoKualaTripahotel,a5storyRCbuilding.

    Itsufferedafirstsoftstorycollapse.Thesecondandthirdfloorwasseverelydamaged

    because of the impact but the building as a whole did not collapse. The collapse was

    causedbypoordetailing.

    Figure20. Anothervisiblecollapsewasa three story supermarket, thePantePirak.The

    collapsewasduetopoorqualityofconstruction.

    Figure21.Anotherbuilding thatpartiallycollapsedwas theofficeof thedepartmentof

    finance. One of the wings suffered a pancake type of collapse. From the damaged

    columnsitcanbeseenthatthedetailingwaspoor.

    3.2.2 Nonstructural(nonengineered)buildings

    ThemajorityofthebuildingsthatcollapsedinBandaAcehcity,andvillagesinLhokNga,

    KruengRaya,andMeulabohcity,arenonengineeredbuildingsconsistingoftwotypes.

    The first type isaoneor two storiesbuildingsmadeofburntbrickconfinedmasonry

    using sand and Portland cement mortar. The roof mostly consists of galvanized iron

    sheets.AllthosebuildingsusedRCpracticalcolumnsandbeamsasconfinement.Thesecondtypeistimberconstructionconsistingofatimberframeandalsotimberplanks

    wallsandusuallyusegalvanizedironsheetsasroof.

    Almostnoneofthepeopleshousing,onetotwostorymasonrybuildingscollapsedby

    theshaking,eventhoughsomehadcracksinthewalls.Thedestructionwascausedbythetsunamiforces.

  • 7/31/2019 Structures in Earthquake Regions

    35/51

    Page35of51

    Mostofthebuildings inthecoastalareasconsistofnonengineeredtimberstructures

    andconfinedmasonrystructures.Theratioofthosetwotypesofstructuresisestimated

    tobe30%to70%.

    Figure22.burntbrickconfinedmasonry

    Figure23.timberconstruction

    3.2.3 RoadAccess

    Someroads inBandaAcehwerescouredbytsunamibut themajoritywasstill intact.

    Most of the main roads in zone 1 were covered by huge amount of tsunami debris.

    SeveralpartsoftheroadfromBandaAcehtoMeulabohwerewashedawaybytsunami.

    Figure24.SomeoftheDamageofRoads

    andBridgesfromBandaAcehtoMeulaboh

    Figure25.UlhueLhebeach

  • 7/31/2019 Structures in Earthquake Regions

    36/51

    Page36of51

    Figure26.LhokngaBeach Figure27.UlhueLhebeach

    3.2.4 Bridges

    InBandaAceh,severalbridgesweredestroyed,theoneatJlIskandarMudaandtheone

    leadingtoLhokNga.TheLhokNgaBridgehasamainspanof20mandsecondaryspanof10mmadeofgalvanizedsteel frames.Bothweredumped intotheriver.Alongthe

    road from Banda Aceh to Meulaboh (distance approx 270 km), several bridges were

    washedawaybytsunami.

    Figure28.TheLhokNgaBridge

    3.2.5 Ports

    Generally,jettiesandwharfofports inBandaAcehand inKreungRayaaswellas the

    jettyofthecementfactoryLhokNgawereslightlydamagedbutcouldstillfunction.Part

    oftheplatformofthejettyinMeulabohwaswashedawaybytsunami,butthesupports

    werestillintact.ThemainbuildingoftheUlhueLheharborinBandaAcehwasdamagedandonlytheframeremained.

  • 7/31/2019 Structures in Earthquake Regions

    37/51

    Page37of51

    Figure29.LhokNgaCementFactoryJetty

    3.2.6 Powersupply

    MainPowergeneratingplantinBandaAcehwasnotaffectedbytheshakingortsunami.

    However,manydistributionpolesandwiresindevastatedareascollapsed.

    Figure30.

    MainPowergeneratingplantinBandaAceh

    3.2.7 Telecommunication

    Somemobilephoneantennastowersweredismantledbythetsunamianddraggedup

    to 2 km from its foundations. Many telephone junction boxes were practically

    destroyed.

    Figure31.mobilephoneantennastowers

  • 7/31/2019 Structures in Earthquake Regions

    38/51

    Page38of51

    3.2.8 Watersupply

    WaterTreatmentplant inBandaAcehwasnotaffectedbyneithertheshakingnorthe

    tsunami,however,thepipingsystemsweredestroyedbyscouringofthetsunami.

    Figure32.WaterTreatmentplantinBandaAceh

    3.2.9 Industrial

    Figure33.CementFactory,LhokNga

    Figure34.PertaminaOilDepot,KruengRaya

  • 7/31/2019 Structures in Earthquake Regions

    39/51

    Page39of51

    3.3BuildingCodeBeforeandAftertheEarthquake

    ThelateststandardcodeusedforearthquakeisSNI17262002whereitwaspublishedbaseon

    somereferences,whichis:

    1. SNI0317261989,EarthquakeResistanceDesignMethodforHousesandBuildings.

    ItwaspublishedbytheOfficeoftheStateMinisterofCivilWorks,TheDirectorateofthe

    TechnologyEducationandtheDirectorateGeneralofCiptaKaryain1997.

    2. National Earthquake Hazards Reduction Program (NEHERP). This was proposed for

    SeismicRegulation forNewBuildingsandOtherStructures in1997,andFEMA302 in

    1998.

    3. Uniform Building Code (UBC) 1997, Volume 2, for Structural Engineering Design

    Provisions,InternationalConferenceofBuildingOfficials,April1997.

    In2010,IndonesianGovernmenthasintroducedarevisedcodewhichwasdevelopedbyateam

    ofIndonesianscientistsinrecognitionoftheseriousearthquakeriskIndonesiaisproneto.It

    estimatesthechancesofgroundshakingcausedbyearthquakesacrossIndonesiaandrevises

    nationalbuildingstandardstoensurethatbuildingsandinfrastructureareresilienttoearthquakesinordertoreducethenumberoffatalities.

    Thenewhazardmapincorporatesthelessonslearntfromrecentdeadlyearthquakesin

    IndonesiasuchasthoseinSumatraandJava.Ithasbeendevelopedusingbetterinformation

    andmoreadvancedmethodologiesthanpreviousearthquakehazardmaps.Itaimstosupport

    buildingstandards,tobeusedtoeducatepeopleabouttheearthquakerisksthattheyface,and

    tohelpthemtobetterprotectthemselvesandtheirfamiliesfromfutureearthquakes.

    Thiscodeisbeingdevelopedbyexpertteams.Itwillbeaccomplishedsoonasanewhazardmap

    whichconsidersallearthquakeoccurrences.

    4.ElaborationsoftheTypicalNationalBuildingTypesanditsVulnerabilityClasses4.1TypicalBuildingTypes

    Indonesiahasalotofbuildingtypeswhicharestillexistineverylocationevenitisallocatedin

    thecriticalearthquakezone.Thesebuildingtypesareassociatedinsomecategories,whichare:

    1) Masonrya. Adobes

    b. Temples

    c. UnreinforcedwithRCFloors

    d. ReinforcedorConfined2) ReinforcedConcrete

    a. FramewithModerateLevelofEarthquakeResistantDesign

    b. WallswithModerateLevelofEarthquakeResistantDesign

    3) Steela. SteelStructuresb. LGSstructures

    4) Wood

  • 7/31/2019 Structures in Earthquake Regions

    40/51

    Page40of51

    a. TimberStructures

    b. BambooStructures

    4.2MacroseismicIntensityScale

    Thebuildingtypesabovearecomparablewithmacroseismicintensityscalewhichisgenerated

    byEMS(EuropeanMacroseismicScale)98andtheworldhousingencyclopediafromEERI

    (EarthquakeEngineeringResearchInstitute).

    ThisisatableforvulnerabilityclassfromEMS:

    Figure35.EMS(EuropeanMacroseismicScale)98

  • 7/31/2019 Structures in Earthquake Regions

    41/51

    Page41of51

    4.3VulnerabilityClass

    4.3.1Masonry

    Mostofbuildings/housingsinIndonesiaareconstructedbymasonry.Therearesome

    pictureswhichdescribetypicalmasonrybuildinginIndonesia.

    Adobe StonebuildinginBali

    Unreinforcedbuilding Reinforcedbuilding

    Figure36.VulnerabilityClass formasonry

    IfitiscomparedwithworldhousingencyclopediafromEERI,theSeismicVulnerabilityofUnreinforced

    MasonryBuildingis:

  • 7/31/2019 Structures in Earthquake Regions

    42/51

    Page42of51

    Structural and Architectural Features

    Structural/Architectural

    FeatureStatement

    Most appropriatetype

    TRUE FALSE N/A

    Lateral load path

    The structure contains a complete load path for seismic force

    effects from any horizontal direction that serves to transfer inertialforces from the building to the foundation.

    BuildingConfiguration

    The building is regular with regards to both the plan and theelevation.

    Roof constructionThe roof diaphragm is considered to be rigid and it is expectedthat the roof structure will maintain its integrity, i.e. shape andform, during an earthquake of intensity expected in this area.

    Floor constructionThe floor diaphragm(s) are considered to be rigid and it isexpected that the floor structure(s) will maintain its integrity duringan earthquake of intensity expected in this area.

    Foundationperformance

    There is no evidence of excessive foundation movement (e.g.settlement) that would affect the integrity or performance of thestructure in an earthquake.

    Wall and framestructures-redundancy

    The number of lines of walls or frames in each principal directionis greater than or equal to 2.

    Wall proportions

    Height-to-thickness ratio of the shear walls at each floor level is:

    Less than 25 (concrete walls);Less than 30 (reinforced masonry walls);

    Less than 13 (unreinforced masonry walls);

    Foundation-wallconnection

    Vertical load-bearing elements (columns, walls) are attached to thefoundations; concrete columns and walls are doweled into thefoundation.

    Wall-roofconnections

    Exterior walls are anchored for out-of-plane seismic effects at eachdiaphragm level with metal anchors or straps

    Wall openings

    The total width of door and window openings in a wall is:

    For brick masonry construction in cement mortar : less than of the distance between the adjacent cross walls;For adobe masonry, stone masonry and brick masonry in mudmortar: less than 1/3 of the distance between the adjacent crosswalls;For precast concrete wall structures: less than 3/4 of the lengthof a perimeter wall.

    Quality of buildingmaterials

    Quality of building materials is considered to be adequate per therequirements of national codes and standards (an estimate).

    Quality ofworkmanship

    Quality of workmanship (based on visual inspection of few typicalbuildings) is considered to be good (per local constructionstandards).

    MaintenanceBuildings of this type are generally well maintained and there areno visible signs of deterioration of building elements (concrete,steel, timber)

    Other

    Table16.Structural and Architectural Features

  • 7/31/2019 Structures in Earthquake Regions

    43/51

    Page43of51

    Seismic Features

    StructuralElement

    Seismic DeficiencyEarthquake

    ResilientFeatures

    Earthquake DamagePatterns

    Wall 1. Clay-brick with very low compressive

    strength 2. The quality of clay-brick variesdepends on the local clay-soil material 3. Theclay-brick material is very brittle and doesn'thave any ductility.

    Shear crack, flexure crack

    or combination of both inclay brick walls.

    Frame(columns,beams)Roof andfloors

    Timber truss system for roofing without anyspecial connection with the clay brick walls.

    The roof sliding off fromthe clay brick walls.

    Table17.Seismic Features

    Overall Seismic Vulnerability Rating

    Vulnerability high medium-high

    medium medium-low

    low very low

    very poor poor moderate good very good excellent

    VulnerabilityClass

    A B C D E F

    Table18.Overall Seismic Vulnerability Rating

    4.3.2 ReinforcedConcrete

    FramewithModerateLevelofEarthquake

    ResistantDesignWallwithModerateLevelofEarthquakeResistant

    Design

    Figure37.VulnerabilityClassforReinforcedConcrete

  • 7/31/2019 Structures in Earthquake Regions

    44/51

    Page44of51

    4.3.3 SteelStructure

    SteelStructure LGS(LightGaugeSteel)structure

    Figure38.VulnerabilityClassforSteel

    4.3.4TimberBuilding

    Timberstructure BambooStructure

    Figure39.VulnerabilityClassforTimber

  • 7/31/2019 Structures in Earthquake Regions

    45/51

    4.4 DamageGrades

    AccordingtoEMS98,therearesomedamagegradeswhichareusedtoinvestigatethecertaincondition

    occurrences.

    Figure40.DamageGradesaccordingtoEMS98

  • 7/31/2019 Structures in Earthquake Regions

    46/51

    Page46of51

    4.4.1Masonry

    Afterearthquakeoccurrence,somebuildingsweredevastatedanddestroyedbyearthquake

    oversomemasonrybuildingsandhistoricalbuildings.Thesearesomedocumentationwhich

    explainssomedamagecasesinthemasonrybuildingtypes.

    AdobeDamageGrade

    1 2 3 4 5

    UnreinforcedbuildingDamageGrade

    1 2 3 4 5

    Stonebuilding(temple)

    DamageGrade

    1 2 3 4 5

    Reinforcedbuilding

    DamageGrade

    1 2 3 4 5

    Figure41.Damagegradesformasonry

  • 7/31/2019 Structures in Earthquake Regions

    47/51

    Page47of51

    4.4.2 ReinforcedConcrete

    FramewithModerateLevelofEarthquakeResistantDesign

    DamageGrade

    1 2 3 4 5

    Figure41.DamagegradesforReinforcedConcrete

    4.4.3 Steel

    SteelStructure

    DamageGrade

    1 2 3 4 5

    LGSStructure

    DamageGrade

    1 2 3 4 5

    Figure42.DamagegradesforSteel

  • 7/31/2019 Structures in Earthquake Regions

    48/51

    Page48of51

    4.4.4 Timber

    Timberhouse

    DamageGrade

    1 2 3 4 5

    Bamboohouse

    DamageGrade

    1 2 3 4 5

    Figure43.DamagegradesforTimber

    4.5AfterEarthquake

    4.5.1Masonry

    Some International Organizationsand countriesdonated somemoney to help reconstruction

    and retrofitprogram in IndonesiaafterEarthquakedisaster.Theyjustconsiderconstructinga

    reinforcedbuildingforhousesasitisusableforlongtimeandthematerialshavetobeprovided

    bylocalareatomakeitmucheasiertobuild.Thetypeofbuildinghastobeeasyimprovedifthe

    housesownerneedstoexpandthesizeofhouse.Thesearesomedocumentationofbuildings

    whichwerereconstructedafterearthquakeandtsunamidisaster.

    Figure44.ReinforcedConcreteforhousesfromGermanyGovernment

  • 7/31/2019 Structures in Earthquake Regions

    49/51

    Page49of51

    4.5.2 ReinforcedConcrete

    Figure45.FramewithModerateLevelofEarthquakeResistantDesign

    4.5.3 Steel

    Figure46.LGSstructureforhouses

    4.5.4 Timber

    Figure47.BuildingStockisstillexistduetobracing Figure48.Timberhouses

  • 7/31/2019 Structures in Earthquake Regions

    50/51

    Page50of51

    5.ConclusionsAccordingtodescriptionsabove,wecouldconcludesomerecommendations,whichare:

    1) NewEarthquakeandTsunamiCodearebeingdevelopedbyexpertteamwhoisresponsibleto

    concludeitaccordancewithoccurrenceofthesecatastrophes.

    2) ShearforcesdistributionfromSRSShasinclinationtobesoftstoreyat2ndfloor.Itisdifferent

    fromShearforcesdistributionfromequivalentstaticinclination.

    3) Modeshapes foreachdirectionare relativelysimilaras theshapeofbuilding is rectangular

    andpositionofelementsissymmetric.

    4) Baseon figure11, shear forcedistribution forhard is relativelyhighercompare tomedium

    andsoftsoilatzone3,4,5and6.

    5) Baseon figure12, itcanbeclearlyseen thatshear forcedistribution forhard,mediumand

    softsoilatzone3,4,5and6havethesame inclination,whereaszone1and2 isrelatively

    differentinclinationcomparetootherzones.

    6) Vulnerability class is important to be developed in each country where it has a lot ofearthquakeoccurrences.

    7) Bracingelementsarereallyimportanttobeconstructedinsimple(traditional)housewhichis

    usedtoresistearthquakeload.

    8) Routine maintenance for steel building should be done to investigate the construction

    elementfromcrackorcollapseduetoearthquakeoccurrences.Thisisimportantasthesteel

    elementsarecoveredbyconcretewhichisnotvisuallyseen.

    9) ForbuildingwhichisneartoTsunamiregion,weshoulddesignitbyconsideringminimumtwo

    storeybuildingwherethepeoplecouldescapefromlowtsunami.Atleast,thehighofthefirst

    storeyishigherthanmaximumfloodlevel.

    10)LGS (LightGaugeSteel)elementsareusedasmain frameofbuildingas longas the typeofbuildingissimplestructureandithasrigidfoundation.

    11)Qualityandquantityofshearreinforcementshouldbe improvedforresidentialbuildingand

    highrisebuilding.

    12)Additionalbeamandcolumnareneededtoinstallneartotheopeningsectiontoenlargethe

    buildingcapacity.

    13)For ancient building (temple) should be conducted a retrofit treatment to increase the

    buildingcapacityforlongperiod.

  • 7/31/2019 Structures in Earthquake Regions

    51/51

    6.References1. IndonesiaNationalStandardforearthquake17262002.

    2. WorldhousingencyclopediafromEERI(EarthquakeEngineeringResearchInstitute),theSeismic

    VulnerabilityofUnreinforcedMasonryBuilding.

    3. MacroseismicintensityscalebyEMS(EuropeanMacroseismicScale)98.4. UniformBuildingCode(UBC)1997

    5. ComputersandStructures,Inc,Berkeley,California,USA,ETABSv.9.0.9softwaremanual,

    November2005.

    6. SumateraEarthquake26December2004,TeddyBoen.