19
Study on SiC Components to Improve the Neutron Economy in HTGR Piyatida TRINURUK and Assoc.Prof.Dr. Toru OBARA Department of Nuclear Engineering Research Laboratory for Nuclear Reactors Tokyo Institute of Technology, Japan

Study on SiC Components to Improve the Neutron Economy ...tobara/research/kouonngasuro/AESJ...Study on SiC Components to Improve the Neutron Economy in HTGR Piyatida TRINURUK and Assoc.Prof.Dr

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

  • Study on SiC Components to

    Improve the Neutron Economy in HTGR

    Piyatida TRINURUK and Assoc.Prof.Dr. Toru OBARA

    Department of Nuclear Engineering

    Research Laboratory for Nuclear Reactors

    Tokyo Institute of Technology, Japan

  • Contents

    Introduction

    Objectives of this study

    Computer code and Parametric survey

    Results and discussions

    Conclusions

  • HTGR : High Temperature Gas-cooled Reactor

    A graphite-moderator and helium gas-cooled reactor.

    HTTR (High Temperature Test Reactor): Prismatic

    block type HTGR.

    Japan Atomic Energy Research Institute (JAERI) in

    1996.

    Thermal output 30 MW.

    Fuel blocks, control rod blocks, reflector blocks and

    irradiation blocks.

    Uranium enrichments: 3.4 - 9.9%wt - U235

    Introduction

    Fuel compact Coated Fuel Particle Fuel block & Fuel rod

  • Convention way to compensate

    the excess reactivity in HTTR

    (Source: N.Fujimoto and et.al., Nuclear design, Nuclear Eng. and design 233 , 2004)

    Pros.

    High output temperature

    Inherent safety reactor

    Cons.

    Once-through fuel cycle.

    High excess reactivity.

    Unavailable in commercial

    technique for fuel reprocessing.

    Introduction

  • Properties of SiC SiC is a compound of silicon and carbon.

    Silicon (Si):

    Higher absorption cross section

    Smaller scattering cross section

    Higher mass number

    Disadvantage of SiC:

    SiC decomposes at lower temperature as compared to IG-110

    graphite.

    SiC corrodes by Palladium (Pd).

    Carbon Si-28

    Source: http://wwwndc.jaea.go.jp

    Poor moderating material compared to graphite

  • Objectives

    To evaluate the use of SiC in various parts of fuel block

    assembly instead of graphite to take the benefit of

    transmutation under the concept of neutron spectrum

    shifting.

    Shifting the neutron spectrum

    Increase the conversion of fertile into fissile material

    More fission product by without increasing the U-235 enrichment

    The neutron economy

    Compensate reactivity and prolong fuel cycle

  • MVP-2.0 : Continuous energy neutron transport Monte Carlo method

    JENDL- 4.0 : Nuclear data library

    Computer code and Parametric survey

    II. Several fuel block assemblies I. One fuel block assembly

    Number of fuel rods / block 33

    Burnable poison No

    Enrichment of fuel 5% wt of U235

    Packing fraction 30%

    History / batch 30,000

    Batch (Skips + tallies) 50+150

    Boundary condition Periodic boundary

    Number of energy groups 176

  • Parametric survey

    Case Conditions Specification

    1. Fuel compact material Graphite SiC

    2. Fuel sleeve material Graphite SiC

    3. Fuel block material Graphite SiC

    4. Combination between SiC block and GP block Based on 3 fuel blocks

    4

    1

    Fuel compact

    3

    Fuel block

    2

    Fuel pin Combination between

    SiC block & GP block

  • Results and Discussions

  • I. Effects of SiC on the neutron spectrum

    Conditions:

    One fuel block assembly.

    33 Fuel pins with 30% of packing fraction.

    Enrichment : Natural Uranium, 5%, 10%, 20%.

    SiC material : fuel compact / fuel sleeve / fuel block.

    No burnable poison.

  • 0.0E+00

    1.0E-03

    2.0E-03

    3.0E-03

    4.0E-03

    5.0E-03

    1.0E-04 1.0E-01 1.0E+02 1.0E+05

    Neu

    tro

    m s

    pe

    ctr

    um

    (n

    /s/c

    m3

    /Le

    tha

    rgy/s

    ou

    rc)

    Energy (eV)

    SiC fuel block

    Nat. U

    SiC sleeve

    Ref. case

    SiC fuel compact

    0.0E+00

    1.0E-04

    2.0E-04

    3.0E-04

    4.0E-04

    5.0E-04

    6.0E-04

    7.0E-04

    8.0E-04

    1.0E-04 1.0E-01 1.0E+02 1.0E+05

    Neu

    tro

    m s

    pe

    ctr

    um

    (n

    /s/c

    m3

    /Le

    tha

    rgy/s

    ou

    rc)

    Energy (eV)

    SiC fuel block

    En.10%

    SiC sleeve

    Ref. case

    SiC fuel compact

    0.0E+00

    1.0E-04

    2.0E-04

    3.0E-04

    4.0E-04

    5.0E-04

    6.0E-04

    7.0E-04

    8.0E-04

    1.0E-04 1.0E-01 1.0E+02 1.0E+05

    Neu

    tro

    m s

    pe

    ctr

    um

    (n

    /s/c

    m3

    /Le

    tha

    rgy/s

    ou

    rc)

    Energy (eV)

    SiC fuel block

    En.20%

    0.0E+00

    2.0E-04

    4.0E-04

    6.0E-04

    8.0E-04

    1.0E-03

    1.2E-03

    1.4E-03

    1.6E-03

    1.0E-04 1.0E-01 1.0E+02 1.0E+05

    Neu

    tro

    m s

    pe

    ctr

    um

    (n

    /s/c

    m3

    /Le

    tha

    rgy/s

    ou

    rc)

    Energy (eV)

    SiC fuel block

    Ref. case

    SiC fuel compact

    SiC sleeve

    En.5%

    I. Effects of SiC on the neutron spectrum

  • 0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    1.20

    1.40

    1.60

    0 5,000 10,000 15,000 20,000 25,000 30,000

    Infi

    nit

    e m

    ult

    ipli

    ca

    tio

    n f

    ac

    tor

    MWD/Ton

    SiC fuel block

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    1.20

    1.40

    1.60

    0 5,000 10,000 15,000 20,000 25,000 30,000

    Infi

    nit

    e m

    ult

    ipli

    ca

    tio

    n f

    ac

    tor

    MWD/Ton

    En.10% 0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    1.20

    1.40

    1.60

    0 5,000 10,000 15,000 20,000 25,000 30,000

    Infi

    nit

    e m

    ult

    ipli

    ca

    tio

    n f

    ac

    tor

    MWD/Ton

    En.20%

    0.00

    0.20

    0.40

    0.60

    0.80

    1.00

    1.20

    1.40

    1.60

    0 5,000 10,000 15,000 20,000 25,000 30,000

    Infi

    nit

    e m

    ult

    ipli

    ca

    tio

    n f

    ac

    tor

    MWD/Ton

    II. Effects of SiC on the reactivity

    Nat. U En.5%

  • 0.0E+00

    2.0E-04

    4.0E-04

    6.0E-04

    8.0E-04

    1.0E-03

    1.2E-03

    1.4E-03

    0 10,000 20,000 30,000

    Nu

    cli

    de

    de

    nsit

    y

    MWD/Ton

    U235

    2.14E-02

    2.15E-02

    2.16E-02

    2.17E-02

    2.18E-02

    2.19E-02

    2.20E-02

    2.21E-02

    0 10,000 20,000 30,000

    Nu

    cli

    de

    de

    nsit

    y

    MWD/Ton

    U238

    2.20E-02

    2.22E-02

    2.24E-02

    2.26E-02

    2.28E-02

    2.30E-02

    2.32E-02

    0 10,000 20,000 30,000

    Nu

    cli

    de

    de

    nsit

    y

    MWD/Ton

    U238

    0.0E+00

    2.0E-05

    4.0E-05

    6.0E-05

    8.0E-05

    1.0E-04

    1.2E-04

    1.4E-04

    1.6E-04

    1.8E-04

    0 10,000 20,000 30,000

    Nu

    cli

    de

    de

    nsit

    y

    MWD/Ton

    U235

    0.00E+00

    5.00E-05

    1.00E-04

    1.50E-04

    2.00E-04

    2.50E-04

    0 10,000 20,000 30,000

    Nu

    cli

    de

    de

    nsit

    y

    MWD/Ton

    Pu239

    0.00E+00

    1.00E-05

    2.00E-05

    3.00E-05

    4.00E-05

    5.00E-05

    6.00E-05

    7.00E-05

    8.00E-05

    0 10,000 20,000 30,000

    Nu

    cli

    de

    de

    nsit

    y

    MWD/Ton

    Pu241

    0.00E+00

    5.00E-05

    1.00E-04

    1.50E-04

    2.00E-04

    2.50E-04

    0 10,000 20,000 30,000

    Nu

    cli

    de

    de

    nsit

    y

    MWD/Ton

    Pu239

    0.00E+00

    5.00E-06

    1.00E-05

    1.50E-05

    2.00E-05

    2.50E-05

    3.00E-05

    3.50E-05

    4.00E-05

    4.50E-05

    0 10,000 20,000 30,000

    Nu

    cli

    de

    de

    nsit

    y

    MWD/Ton

    Pu241

    Enrichment : Natural Uranium

    Enrichment : 5%

    III. Effects on the change of nuclide density

  • 2.0E-03

    2.5E-03

    3.0E-03

    3.5E-03

    4.0E-03

    4.5E-03

    5.0E-03

    0 10,000 20,000 30,000

    Nu

    cli

    de

    de

    nsit

    y

    MWD/Ton

    1.82E-02

    1.83E-02

    1.83E-02

    1.84E-02

    1.84E-02

    1.85E-02

    1.85E-02

    1.86E-02

    1.86E-02

    0 10,000 20,000 30,000

    Nu

    cli

    de

    de

    nsit

    y

    MWD/Ton

    U238

    0.00E+00

    5.00E-05

    1.00E-04

    1.50E-04

    2.00E-04

    2.50E-04

    0 10,000 20,000 30,000

    Nu

    cli

    de

    de

    nsit

    y

    MWD/Ton

    Pu239

    0.00E+00

    2.00E-06

    4.00E-06

    6.00E-06

    8.00E-06

    1.00E-05

    1.20E-05

    0 10,000 20,000 30,000

    Nu

    cli

    de

    de

    nsit

    y

    MWD/Ton

    Pu241

    Enrichment : 20% (HEU)

    U235

    III. Effects on the change of nuclide density

  • Using SiC in HTTR instead of graphite can make the

    spectrum harden.

    The benefit of transmutation by the shift of neutron

    spectrum is more effective for LEU because SiC can slow

    down the depletion of fissile nuclide as U-235 and increase

    the utilization of fertile nuclide U-238.

    The magnitude of the spectrum shifting depends on the

    ratio of graphite which is replaced with SiC.

    64.30% 14.22%

    17.85%

    3.63%

    Fuel block

    Fuel compact

    Fuel Sleeve

    Coating layer

    The percent of graphite volume of

    each component in a fuel block

    Effects of SiC in each component

  • IV. Combination of SiC blocks & graphite blocks

    Condition:

    5 % enriched uranium

    3 fuel blocks

    All graphite blocks

    GP : SiC blocks = 2 : 1

    GP : SiC blocks = 1 : 2

    All SiC blocks

    0.30

    0.40

    0.50

    0.60

    0.70

    0.80

    0.90

    1.00

    1.10

    1.20

    1.30

    1.40

    1.50

    0 10,000 20,000 30,000 40,000 50,000 60,000 70,000

    Infi

    nit

    e m

    ult

    iplic

    ati

    on

    fa

    cto

    r

    MWD/Ton

    Increase the ratio of SiC blocks in the core can compensate

    the excess reactivity and flatten the reactivity.

    SiC block results into the reactor operated under the

    criticality.

  • V. Improvement of reactivity in SiC block

    Increase the fuel enrichment in SiC block can success to

    improve the reactivity and make the reactor operate at the

    criticality.

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    1.2

    1.4

    1.6

    0 10,000 20,000 30,000 40,000 50,000 60,000

    Infi

    nit

    e m

    ult

    ipli

    ca

    tio

    n f

    ac

    tor

    MWD/Ton

  • Conclusions

    SiC has a potential to make the neutron spectrum harden

    and increase the fissile material by the transmutation.

    The magnitude of spectrum shifting depends on the ratio

    of SiC replacement : more SiC, more effective to harden

    spectrum.

    LEU and HEU under the harden spectrum can perform as

    burnable poison to compensate the excess reactivity, but

    it will lead the reactor operated under the critical.

    The optimization between the ratio of SiC replacement

    and the fuel enrichment is need to pay attention in order

    to achieve the neutron economy.

  • Thank you

    for your kind attention