1
RESEARCH POSTER PRESENTATION DESIGN © 2015 www.PosterPresentations.com ATLAS phase II upgrade CHESS1 transistors performance Two types of transistors in CHESS1 chip : regular and circular Good agreement between simulation and measurements before irradiation for both. Isolated amplifier in HVCMOS sensor A low noise built-in amplifier into the HV-CHESS1 chip Modified from original design by Ivan Peric Many configurable biases, such as: Bias in source follower(InSF) Feedback current (IFB) ….. Strip sensor design using HVCMOS A. Affolder 0 , K.Arndt 1 , R. Bates 2 , A. Blue 2 , D. BortoleLo 1 , C. BuLar 2 , P. Caragiulo 3 , D. Das 4 , J. Dopke 4 , A. Dragone 3 , F. Ehrler 5 , V. Fadeyev 6 , Z Galloway 6 , H. Grabas 6 , I. M. Gregor 7 , P. Grenier 3 A. Grillo 6 , L. B. A. Hommels 8 , T. Huffman 1 , J. John 1 , K. Kanisauskas 1,2 , C. Kenney 3 , J. Kramberger 9 , Z. Liang 6 , I. Mandic 9 , D. Maneuski 2 , S. McMahon 1,4 , M. Mikuz 9,10 , D. Muenstermann 11 , R. Nickerson 1 , I. Peric 5 , P. Phillips 1,4 , R. PlackeL 1 , F. Rubbo 3 , J. Segal 3 , A. Seiden 6 , I. Shipsey 1 , W. Song 14 , M. Stanitzki 7 , D. Su 3 , C. Tamma 3 , R. TurcheLa 4 , L. Vigani1, J. Volk 6 , R. Wang 12 , M. Warren 13 , F. Wilson 4 , S. Worm 4 , Q. Xiu 14 , J. Zhang 12 , H. Zhu 14 12 Argonne Na/onal Laboratory, 8 Cambridge University, 7 Deutsches ElektronenSynchrotron, 14 Ins/tute of High Energy Physics, Beijing, 9 Jožef Stefan Ins/tute, Ljubljana, Slovenia, 5 Karlsruhe Ins/tute of Technology, 1 University of Oxford, 4 Rutherford Appleton Laboratory, Didcot, United Kingdom, 3 SLAC Na/onal Accelerator Laboratory, 2 SUPA School of Physics and Astronomy, University of Glasgow, Glasgow, United Kingdom, 11 Universite de Geneve, 6 University of California Santa Cruz, Santa Cruz Ins/tute for Par/cle Physics (SCIPP), Santa Cruz, CA, United States of America, 13 University College, London, 0 University of Liverpool, 10 University of Ljubljana, Slovenia. Study of builtin amplifier performance on HVCMOS sensor for ATLAS phaseII strip tracker upgrade Zhijun Liang (University of California Santa Cruz, Santa Cruz Ins/tute for Par/cle Physics ) On behalf of strip CMOS collaboraNon IntroducNon to HVCMOS CMOS sensor is part of the investigation for the ATLAS strip detector upgrade. Alternative to baseline strip sensor solution (n+-strip in p-type substrate planar sensor) Advantage of CMOS sensor: High segmenta/on and precision: pitch can be reduced to below 50μm longitudinal posi/on readout from a strip low material budget : Can be thinned down to 50μm Monolithic: Front-end electronics and sensor can be built in the same chip Has potential to reduce the cost Has poten/al to have radia/on hard electronics due to small feature size Drawback: Low MIP signal : 1000~2000 e- (10 times lower than baseline planar sensor) Need low noise built-in amplifier to improve signal-to-noise ratio High LuminosityLHC (HLLHC) is foreseen to be completed in 2026. Aim to increase the integrated luminosity to about ten /mes the original LHC design. Will improve the precision of the Higgs proper/es measurement Enhance the sensi/vity for new physics searches. ATLAS tracker is expected to have much higher occupancy (200 collisions per beam crossing) Need a new detector to survive in such high fluences and occupancy New detector should have high granularity and radiation hardness HLLHC Current LHC 20mm X 25mm full size sensor is designed for ATLAS strip upgrade 40μm pitch X 800 μm length (pixel size) Analog frontend and comparators on the sensors. Digital encoding in periphery for low hit rate application in strip detector. Maximum 8 hits per 128 strips Maximum 1 hit per strip Test chips have been fabricated for R & D of strip detector One chip (HVCHESS1, fabricated in a AMS 0.35 μm highvoltage CMOS process) comprises Several pixel matrices with different geometry Isolated transistors (regular and circulate geometry) Standalone amplifier and builtin amplifier in pixel arrays HVCHESS1 test chip Isolated amplifier Nming performance AcNve pixel array performance in alpha source test AcNve pixel array performance in laser scan Isolated amplifier gain Ac/ve pixel = passive pixel + builtin amplifier Use red laser (640nm) for charge injec/on Red region is the Nwell. (45 X 100 μm per Nwell) Can see all 8 Nwell inside one pixel (45 X 800 μm ) Metal layer between each Nwell. More metal is on the boLom Nwell due to Builtin amplifier Americium241 (Am241) alpha source : 5.5~5.6 MeV Self trigger , Threshold at 100mV (20 /mes of noise level) , trigger rate is about 3Hz. Sharper peak at higher V_bias due to higher driq electron contribu/on. Linear (regular) NMOS Circular NMOS Zoom in Typical signal pulse in alpha source test Signal amplitude distribu/on Data VS simula/on Before irradia/on Radia/on hardness Study Circular one is expected and measured to have a beLer radia/on hardness Therefore, only circular ones are used in builtin amplifier Isolated amplifier in CHESS1 is characterized using external pulser Response curve Signaltonoise ra/o Noise level vs dose (HVstrip1) Observe higher gain aqer 3Mrad gamma irradia/on Before irradia/on : gain is 1000 mV/fC at 1500 e input charge. Aqer 3Mrad Gamma irradia/on :gain is 1900 mV/fC at 1500 e input charge. Amplifier noise was studied as a func/on of dose. There is a peak at 5Mrad gamma irradia/on Signaltonoise ra/o for MIP signal (>=1500 e) would have been above 50 if one could neglect the influence of nwell capacitance. MIP signal Signal rise /me is about 20~50ns, depending on the amplifier configura/on Timewalk and jiLer studies indicate a single LHC bunch crossing resolu/on (25 ns) The signal pulse width (dead /me for one pixel) is about a few hundred ns. Time(s) Timing JiLer Signal pulse width 8 Nwell in one of CMOS pixel V GS (V) V GS (V) I D I D Amplifier output with different input charge HSTD10, Xian, China Summary HV/HRCMOS technologies are a very aLrac/ve form of monolithic sensors. ATLAS commenced R&D efforts to evaluate them for tracking. Some test chips have been fabricated using these technologies. The performance of builtin electronics (circular transistors and isolated amplifier) and ac/vity pixel shows reasonable S/N, /ming proper/es, and radia/on tolerance. The goal for next year : complete studies of gamma irradiated chips (10/30/100 Mrad) Study the ac/ve pixel response with beta source. to design, fabricate and test the largearea devices. Acknowledgements We thank Mar/n Hoeferkamp, and Sally Seidel for performing gamma irradia/ons. The work at SCIPP was supported by Department of Energy, grant DEFG0213ER41983. Time walk Threshold=0.1V

Study(of(builtEin(amplifier(performance(on(HVECMOS(sensor ...€¦ · tutorials, go online to PosterPresentations.com and click on HELP DESK. When you are ready to print your poster,

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Study(of(builtEin(amplifier(performance(on(HVECMOS(sensor ...€¦ · tutorials, go online to PosterPresentations.com and click on HELP DESK. When you are ready to print your poster,

(—THIS SIDEBAR DOES NOT PRINT—) DES IGN GUIDE

This PowerPoint 2007 template produces an A0 presentation poster. You can use it to create your research poster and save valuable time placing titles, subtitles, text, and graphics. We provide a series of online tutorials that will guide you through the poster design process and answer your poster production questions. To view our template tutorials, go online to PosterPresentations.com and click on HELP DESK. When you are ready to print your poster, go online to PosterPresentations.com Need assistance? Call us at 1.510.649.3001

QUICK START

Zoom in and out As you work on your poster zoom in and out to the level that is more comfortable to you. Go to VIEW > ZOOM.

Title, Authors, and Affiliations

Start designing your poster by adding the title, the names of the authors, and the affiliated institutions. You can type or paste text into the provided boxes. The template will automatically adjust the size of your text to fit the title box. You can manually override this feature and change the size of your text. TIP: The font size of your title should be bigger than your name(s) and institution name(s).

Adding Logos / Seals Most often, logos are added on each side of the title. You can insert a logo by dragging and dropping it from your desktop, copy and paste or by going to INSERT > PICTURES. Logos taken from web sites are likely to be low quality when printed. Zoom it at 100% to see what the logo will look like on the final poster and make any necessary adjustments. TIP: See if your school’s logo is available on our free poster templates page.

Photographs / Graphics You can add images by dragging and dropping from your desktop, copy and paste, or by going to INSERT > PICTURES. Resize images proportionally by holding down the SHIFT key and dragging one of the corner handles. For a professional-looking poster, do not distort your images by enlarging them disproportionally.

Image Quality Check Zoom in and look at your images at 100% magnification. If they look good they will print well.

ORIGINAL   DISTORTED  

Corner  handles  

Good

 prin

/ng  qu

ality

 

Bad  prin/n

g  qu

ality

 

QUICK START (cont. )

How to change the template color theme You can easily change the color theme of your poster by going to the DESIGN menu, click on COLORS, and choose the color theme of your choice. You can also create your own color theme. You can also manually change the color of your background by going to VIEW > SLIDE MASTER. After you finish working on the master be sure to go to VIEW > NORMAL to continue working on your poster.

How to add Text The template comes with a number of pre-formatted placeholders for headers and text blocks. You can add more blocks by copying and pasting the existing ones or by adding a text box from the HOME menu.

Text size

Adjust the size of your text based on how much content you have to present. The default template text offers a good starting point. Follow the conference requirements.

How to add Tables

To add a table from scratch go to the INSERT menu and click on TABLE. A drop-down box will help you select rows and columns.

You can also copy and a paste a table from Word or another PowerPoint document. A pasted table may need to be re-formatted by RIGHT-CLICK > FORMAT SHAPE, TEXT BOX, Margins.

Graphs / Charts You can simply copy and paste charts and graphs from Excel or Word. Some reformatting may be required depending on how the original document has been created.

How to change the column configuration RIGHT-CLICK on the poster background and select LAYOUT to see the column options available for this template. The poster columns can also be customized on the Master. VIEW > MASTER.

How to remove the info bars

If you are working in PowerPoint for Windows and have finished your poster, save as PDF and the bars will not be included. You can also delete them by going to VIEW > MASTER. On the Mac adjust the Page-Setup to match the Page-Setup in PowerPoint before you create a PDF. You can also delete them from the Slide Master.

Save your work Save your template as a PowerPoint document. For printing, save as PowerPoint or “Print-quality” PDF.

Print your poster When you are ready to have your poster printed go online to PosterPresentations.com and click on the “Order Your Poster” button. Choose the poster type the best suits your needs and submit your order. If you submit a PowerPoint document you will be receiving a PDF proof for your approval prior to printing. If your order is placed and paid for before noon, Pacific, Monday through Friday, your order will ship out that same day. Next day, Second day, Third day, and Free Ground services are offered. Go to PosterPresentations.com for more information.

Student discounts are available on our Facebook page. Go to PosterPresentations.com and click on the FB icon.

©  2015  PosterPresenta/ons.com  2117  Fourth  Street  ,  Unit  C  Berkeley  CA  94710  [email protected]  RESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

ATLAS  phase  II  upgrade    

CHESS1  transistors  performance  q Two types of transistors in CHESS1 chip : regular and circular q Good agreement between simulation and measurements before irradiation for both.

Isolated  amplifier  in  HV-­‐CMOS  sensor  Ø A low noise built-in amplifier into the HV-CHESS1 chip q Modified from original design by Ivan Peric q Many configurable biases, such as: u Bias in source follower(InSF) u Feedback current (IFB) …..

Strip  sensor  design  using  HV-­‐CMOS  

   A.  Affolder0,  K.Arndt1,  R.  Bates2,  A.  Blue2,  D.  BortoleLo1,  C.  BuLar2,  P.  Caragiulo3,  D.  Das4,  J.  Dopke4,  A.  Dragone3,  F.  Ehrler5,  V.  Fadeyev6,  Z  Galloway6,  H.  Grabas6,  I.  M.  Gregor7,  P.  Grenier3                            

A.  Grillo6,  L.  B.  A.  Hommels8,  T.  Huffman1,  J.  John1,  K.  Kanisauskas1,2,  C.  Kenney3,  J.  Kramberger9,  Z.  Liang6,  I.  Mandic9,  D.  Maneuski2,  S.  McMahon1,4,  M.  Mikuz9,10,  D.  Muenstermann11,                                R.  Nickerson1,  I.  Peric5,  P.  Phillips1,4,  R.  PlackeL1,  F.  Rubbo3,  J.  Segal3,  A.  Seiden6,  I.  Shipsey1,  W.  Song14,  M.  Stanitzki  7,  D.  Su3,  C.  Tamma3,  R.  TurcheLa4,  L.  Vigani1,  J.  Volk6,  R.  Wang12,  

 M.  Warren13,  F.  Wilson4,  S.  Worm4,  Q.  Xiu14,  J.  Zhang12,  H.  Zhu14    12Argonne  Na/onal  Laboratory,  8Cambridge  University,  7  Deutsches  Elektronen-­‐Synchrotron,  14Ins/tute  of  High  Energy  Physics,  Beijing,  9  Jožef  Stefan  Ins/tute,  Ljubljana,  Slovenia,    5  Karlsruhe  Ins/tute  of  Technology,  1University  of  Oxford,  4Rutherford  Appleton  Laboratory,  Didcot,  United  Kingdom,  3  SLAC  Na/onal  Accelerator  Laboratory,  2SUPA  -­‐  School  of  Physics  and  Astronomy,  

University  of  Glasgow,  Glasgow,  United  Kingdom,  11  Universite  de  Geneve,  6  University  of  California  Santa  Cruz,  Santa  Cruz  Ins/tute  for  Par/cle  Physics  (SCIPP),  Santa  Cruz,  CA,  United  States  of  America,  13  University  College,  London,  0University  of  Liverpool,  10  University  of  Ljubljana,  Slovenia.    

Study  of  built-­‐in  amplifier  performance  on  HV-­‐CMOS  sensor  for  ATLAS  phase-­‐II  strip  tracker  upgrade    Zhijun  Liang    

 (University  of  California  Santa  Cruz,  Santa  Cruz  Ins/tute  for  Par/cle  Physics  )    On  behalf  of  strip  CMOS  collaboraNon  

 

IntroducNon  to  HV-­‐CMOS  � CMOS sensor is part of the investigation for the ATLAS strip detector upgrade. ◦ Alternative to baseline strip sensor solution (n+-strip in p-type substrate planar sensor)

� Advantage of CMOS sensor: ◦ High  segmenta/on  and  precision: q  pitch can be reduced to below 50μm q  longitudinal  posi/on  readout  from  a  strip ◦  low material budget : Can be thinned down to 50μm ◦ Monolithic: Front-end electronics and sensor can be built in the same chip ◦ Has potential to reduce the cost ◦ Has  poten/al  to  have  radia/on  hard  electronics  due  to  small  feature  size

� Drawback: ◦  Low MIP signal : 1000~2000 e- (10 times lower than baseline planar sensor) ◦ Need low noise built-in amplifier to improve signal-to-noise ratio

� High  Luminosity-­‐LHC  (HL-­‐LHC)  is  foreseen  to  be  completed  in  2026. ◦ Aim to increase  the  integrated  luminosity  to  about  ten  /mes  the  original  LHC  design.  ◦ Will  improve  the  precision  of  the  Higgs  proper/es  measurement  ◦  Enhance  the  sensi/vity  for  new  physics  searches.    

� ATLAS  tracker  is  expected  to  have  much  higher  occupancy  (200  collisions  per  beam  crossing)  � à Need a new detector to survive in such high fluences and occupancy � New detector should have high granularity and radiation hardness

HL-­‐LHC  Current  LHC  

 � 20mm  X  25mm  full  size  sensor  is  designed  for  ATLAS  strip  upgrade ◦  40μm pitch X 800 μm length (pixel size)◦ Analog frontend and comparators on the sensors. ◦ Digital encoding in periphery for low hit rate application in strip detector. q Maximum 8 hits per 128 stripsq Maximum 1 hit per strip

 � Test  chips  have  been  fabricated  for  R  &  D  of  strip  detector   � One  chip  (HV-­‐CHESS1,  fabricated  in  a  AMS  0.35  μm  high-­‐voltage  CMOS  process)  comprises    ◦  Several  pixel  matrices  with  different  geometry  ◦  Isolated  transistors  (regular  and  circulate  geometry)  ◦  Standalone  amplifier  and  built-­‐in  amplifier  in  pixel  arrays    

HV-­‐CHESS1  test  chip  

Isolated  amplifier  Nming  performance      

AcNve  pixel  array  performance  in  alpha  source  test    

AcNve  pixel  array  performance  in  laser  scan  

Isolated  amplifier  gain  

q Ac/ve  pixel  =  passive  pixel  +  built-­‐in  amplifier    q Use  red  laser  (640nm)  for  charge  injec/on    q Red  region  is  the  N-­‐well.  (45  X  100  μm  per  N-­‐well)  q Can  see  all  8  N-­‐well  inside  one  pixel    (45  X  800  μm  )  q Metal  layer  between  each  N-­‐well.  q More  metal  is  on  the  boLom  N-­‐well  due  to  Built-­‐in  amplifier    

•  Americium-­‐241  (Am-­‐241)  alpha  source  :  5.5~5.6  MeV  •  Self  trigger  ,  Threshold  at  100mV  (20  /mes  of  noise  level)  ,  trigger  rate  is  about    3Hz.    •  Sharper  peak  at  higher  V_bias  due  to  higher  driq  electron  contribu/on.    

Linear  (regular)  NMOS    

Circular  NMOS    

Zoom  in    

Typical  signal  pulse  in  alpha  source  test    Signal  amplitude  distribu/on        

Data  VS  simula/on  Before  irradia/on      

Radia/on  hardness  Study    

q Circular  one  is  expected  and  measured  to  have  a  beLer  radia/on  hardness  q Therefore,  only  circular  ones  are  used  in  built-­‐in  amplifier    

Isolated  amplifier  in  CHESS1    is  characterized    using  external  pulser    

Response  curve   Signal-­‐to-­‐noise  ra/o     Noise  level  vs  dose  (HVstrip1)    

•  Observe  higher  gain  aqer  3Mrad  gamma  irradia/on    Ø  Before  irradia/on  :  gain  is  1000  mV/fC  at  1500  e-­‐  input  charge.    Ø  Aqer  3Mrad  Gamma  irradia/on  :gain  is  1900  mV/fC  at  1500  e-­‐  input  charge.  •  Amplifier  noise  was  studied  as  a  func/on  of  dose.  There  is  a  peak  at  5Mrad  gamma  irradia/on    •  Signal-­‐to-­‐noise  ra/o  for  MIP  signal  (>=1500  e-­‐)  would  have  been  above  50                if  one  could  neglect  the  influence  of  n-­‐well  capacitance.  

MIP  signal    

•  Signal  rise  /me  is  about  20~50ns,  depending  on  the  amplifier  configura/on  •  Timewalk  and  jiLer  studies  indicate  a  single  LHC  bunch  crossing  resolu/on  (25  ns)  •   The  signal  pulse  width  (dead  /me  for  one  pixel)  is  about  a  few  hundred    ns.      

Time(s)  

Timing  JiLer     Signal  pulse  width    

8  N-­‐well  in  one  of  CMOS  pixel    

VGS  (V)     VGS  (V)    

ID  ID  

Amplifier  output  with  different  input  charge  

HSTD-­‐10,  Xian,  China  

Summary    Ø HV/HR-­‐CMOS  technologies  are  a  very  aLrac/ve  form  of  monolithic  sensors.  Ø ATLAS  commenced  R&D  efforts  to  evaluate  them  for  tracking.  Ø Some  test  chips  have  been  fabricated  using  these  technologies.    Ø The  performance  of    built-­‐in  electronics  (circular  transistors  and  isolated  amplifier)    and  ac/vity  pixel  shows  reasonable  S/N,  /ming  proper/es,  and  radia/on  tolerance.  Ø The  goal  for  next  year  :  q  complete  studies  of  gamma  irradiated  chips  (10/30/100  Mrad)  q  Study  the  ac/ve  pixel  response  with  beta  source.  q  to  design,  fabricate  and  test  the  large-­‐area  devices.       Acknowledgements  Ø We  thank  Mar/n  Hoeferkamp,  and  Sally  Seidel  for  performing  gamma  irradia/ons.  Ø   The  work  at  SCIPP  was  supported  by  Department  of  Energy,  grant  DEFG02-­‐13ER41983.  

Time  walk      

Threshold=0.1V