4
1. 盛 盛 。。If I want to check the availability of construction of a fill. What kind of strength coefficient should use. Show the change with time of the safety factor when you build an embankment. 盛盛盛盛盛盛 盛盛盛盛盛盛盛盛 ()、、 UU 盛盛盛盛盛盛The most dangerous period is when you finished the construction (Short stability problem). As result, thinking since a safety point of view, we should not think in the density during the construction, and use the UU strength. 2.盛盛盛盛盛 一。。。。There is a method when you apply separated loads, instead of apply only one load. What is the name of that method? What strength coefficient use. Explain that reason. 盛盛盛盛盛 盛盛盛 、。 1 盛盛盛盛盛盛盛盛盛盛盛盛盛UU 盛盛盛盛盛盛、2盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛 CU 盛盛盛盛盛盛Multi-stage construction ; Build an embankment and then construct; due to consolidation, the strength is increased, and build in a safe way. Embankment first stage is a short-term stability problem, using the strength UU, since the two-stage embankment using CU strength considering the increase in strength due to consolidation. 3.盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛 盛盛盛盛盛盛盛盛 盛 盛盛盛盛盛盛盛盛 盛 盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛 ①、 ②、 ③。 There are some methods to build an stable embankment. Operating of load Management of drain Improvement of soil quality 盛盛盛盛盛盛盛 Operating of load -盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛 A multi-stage construction: use the strength increase due to consolidation. -盛盛盛盛 盛盛盛 BPS 盛盛盛盛盛盛盛盛盛盛 Use BPS or lightweight mortar on embankments. -盛 盛 :。Fill presser: Control the load to avoid the embankment collapse. 盛盛盛盛盛盛盛 Management of drain -盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛 Sand drain method: promoting the consolidation by drainage -盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛盛 Sand compaction method : accelerating consolidation + support the ground in sand pile 盛盛盛盛盛盛 Improvement of soil quality -盛 盛 :。Substitution method: Change the quality of the ground.

Suelos Preguntas

Embed Size (px)

Citation preview

Page 1: Suelos Preguntas

1. 盛土を盛り立てる際に施工の可否を調べたい。その際にどのような強度定数を用いるのか盛土を構築する際の安全率の経時変化を示して説明せよ。If I want to check the

availability of construction of a fill. What kind of strength coefficient should use. Show the change with time of the safety factor when you build an embankment.

盛土構築においては建設終了時が最も危険(短期安定問題)なことから、設計では安全側を考えて、施工中に生じる圧密を考慮しないUU強度を用いる。The most dangerous period is when you finished the construction (Short stability problem). As result, thinking since a safety point of view, we should not think in the density during the construction, and use the UU strength.

2. 盛土を一度に盛り立てられない場合には荷重を分けて順次盛り立てる方法がある。その施工法を何というか。その際に設計に用いる強度定数は何か。その理由についても述べよ。There is a method when you apply separated loads, instead of apply only one load. What is the name of that method? What strength coefficient use. Explain that reason.

多段階施工;この方法は盛土をして築造することにより、圧密による強度増加を用いれ安全に構築する方法である。第 1段盛土は短期安定問題なので、UU強度を用いる、2段盛土以降は圧密による強度増加を考慮したCU強度を用いる。Multi-stage construction; Build an embankment and then construct; due to consolidation, the strength is increased, and build in a safe way. Embankment first stage is a short-term stability problem, using the strength UU, since the two-stage embankment using CU strength considering the increase in strength due to consolidation.

3. 盛土を安定に構築するためにいくつかの施工法がある。①荷重条件の操作、②排水条件の管理、③土性の改良の視点から考えられる対策方法を述べなさい。There are some methods to build an stable embankment. ①Operating of load ②Management of drain ③Improvement of soil quality

①荷重条件の操作Operating of load

-多段階施工:圧密による強度増加を利用。A multi-stage construction: use the strength increase due to consolidation.

-軽量盛土:盛土にBPSや軽量モルタルを利用。Use BPS or lightweight mortar on embankments.

-押さえ盛土:盛土が崩壊しないように荷重を管理。Fill presser: Control the load to avoid the embankment collapse.

②排水条件の管理Management of drain

-サンドドレーン工法:排水により圧密を促進 Sand drain method: promoting the consolidation by drainage

Page 2: Suelos Preguntas

-サンドコンパクションバイル工法:砂杭で地盤を支持+圧密促進 Sand compaction method : accelerating consolidation + support the ground in sand pile

  ③土性の改良 Improvement of soil quality

-置換工法:地盤を良質土に置き換える。Substitution method: Change the quality of the ground.

-地盤固化技術:薬液を用いて地盤を固化。Ground solidification technology: solidifying the ground using chemical substances.

4. 観側的設計法について、その設計の考え方と特徴を述べよ。Describe the characteristics and way of thinking of observation design methods.

工事を施工する際、地盤における土の挙動を調査し、設計、施工することは重要です。土の挙動を理想化、単純化し、その条件をもとに力学試験を行い、精度の検証を行う。精度が良ければ、単純化するときの条件をかえて、試験の精度を高めていく。このようにして理論を決め、土質挙動の精度が良くなったら、設計・施工を行う。この際、工事の施工中に観測を行い、設計を行い、設計を繰り返して更新していくことで、精度を高めていくことを観測的設計法という。In the construction, it is important to investigate the behavior of the soil, then design, and finally construct. Think in the ideal form, to simplify. Realize an experiment under those conditions to verify the accuracy. If the accuracy is good, the can change the conditions, and the raise even more the accuracy. After this, we can design and construct. In this case, we make observations during the construction, then design. Design will be updated repeatedly, to improve the observation accuracy.

応力の変化量

固有方程式 Proper equation:σ^3- I1σ^2+ I2σ- I3= (σ-σ1)(σ-σ2)(σ-σ3)=0

不変量 Invariant:

I1=σxx+σyy+σzz=σ1+σ2+σ3=3p

I2=σ1σ2+σ2σ3+σ3σ1

I3=σ1σ2σ3

I1, I2,I3は座標のとり方に対して不変であり、不変量と呼ばれる。不変量は応力計測面の変化に対して不変なので、中心位置と半径でモールの応力円を表現できる。The coordenates I1, I2,I3 are invariant. Invariant is a no changes in surface stress measurements, it can be express in the Mohr's stress circle with the center position and radius.

モール・クーロンの破壊規準 Failure criterion of Mohr- Coulomb

飽和土に対し、三軸圧縮試験を実施し、モールの破壊規準と同様にモールの応力円を描くと図のように包絡線が直線となる。この直線をモール・クーロンの破壊包絡線と呼び、クーロンの破壊規準で得られた直線と同じ意味を持つ。このように、モールの応力円の包絡線から、

Page 3: Suelos Preguntas

クーロンの破壊規準と同様の直線を引いて破壊規準を定めたものを、2つの破壊規準をあわせてモール・クーロンの破壊規準と呼ぶ。For saturated soil, we realize the triaxial compression test. The failure criterion of Mohr and the Mohr circle are draw at the same time. A line tangential to the Mohr circles can be drawn, and is called the

Mohr-Coulomb failure envelope. The point of tangency of the envelope to the Mohr circle at failure gives a clue to the determination of the inclination of the failure plane.

Tao=c+sigma tanfi

τ=c+σtanφ

地盤の支持力と斜面安定における安善率の考え方の差異

D支持力 Supporting force D

F=支持力/荷重  進行性被壊、強度の不確定、2次元などの様々な要因を考慮している。F= supporting force / load. Progressive failure, indeterminate intensity, two-dimensions and others factors.

斜面安定の安全率:強度低減法。Safety factor of slope stability: Strength reduction method

強度を係数 α低減したときに斜面が崩壊するときの値を安全率(Fs=α)として定義。設計安全率 Fs=1.1~1.2支持力と斜面安定では安全率の値が 3が異なるため、どちらが安全が判断できない。When the strength coefficient α is reduced, and the slope fail, that value is the security factor. The security factor of design is 1.1 to 1.2. The supporting force and the stable slope value vary around 3, so we cannot judge which is safer.

土圧と地盤変位との関係 Relationship between the soil pressure and ground displacement.

土圧の章の冒頭で,図 2 のように壁の下端をヒンジとしたモデルを用いて土圧の説明がなされている。壁が下端を中心に回転すると,裏込め土の歪みは ε =δ l =θ tanω になり,壁全体にわたり一定となる。壁面土圧は裏込め土の歪 ε,つまり,壁の変位 δに応じて変化する。変位が 0 の状態の土圧が静止土圧,壁が前方へ回転し地盤が破壊する直前の土圧が主働土圧,壁が後方へ回転し地盤が破壊する直前の土圧が受働土圧という訳である。Description of earth pressure have been made by using a model of the wall and the bottom hinge. Wall is rotated around the lower end, the distortion of the backfill soil is ε = δ l = θ

Page 4: Suelos Preguntas

tanω, is constant over the entire wall. The wall earth pressure will vary depending on the displacement δ of the wall. The at rest pressure develops when the wall experiences no lateral movement. This typically occurs when the wall is restrained from movement such as along a basement wall. The active pressure develops when the wall is free to move outward such as a typical retaining wall and the soil mass stretches sufficiently to mobilize its shear strength. On the other hand, if the wall moves into the soil, then the soil mass is compressed, which also mobilizes its shear strength and the passive pressure develops.

クーロン土圧理論における土圧の計算方法(考え方)

クーロンは下記の仮定に基づいて,主働・受働土圧の算定式を誘導している。Base in the next hypotesis , Mohr calculate the active and passive soil pressure.

① 土塊とすべり面との間の抵抗力は,粘着力と摩擦力の和として表される。Resistance between the slip surface and the soil mass is expressed as the sum of the adhesive force and frictional force.

② 極限土圧には主働土圧と受働土圧が存在する。Active soil pressure and passive soil pressure exists in the soil pressure extremity.

③ 考えられるあらゆるすべり面の中で,擁壁を押す力が最も大きく(小さく)与えられるすべ面が主働(受働)すべり面であり,その時に与えられる土圧が主働(受働)土圧である。In every possible slip plane, if the force that push the retaining wall is the biggest (small), all surface force are active (passive) surfaces. In this case, is given the active soil(passive) pressure.