45
1 Summary of Research Report University of Wisconsin, Space Science and Engineering Center Scanning High-resolution Interferometer Sounder (S-HIS) Participation in HS3 NASA Grant NNX10AV08G Hank Revercomb, Principal Investigator Joe Taylor, Project Manager Report Author: Joe Taylor 25 Oct 2017

Summary of Research Report University of Wisconsin, Space

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Summary of Research Report University of Wisconsin, Space

1

SummaryofResearchReport

UniversityofWisconsin,SpaceScienceandEngineeringCenterScanningHigh-resolutionInterferometerSounder(S-HIS)ParticipationinHS3

NASAGrantNNX10AV08G

HankRevercomb,PrincipalInvestigatorJoeTaylor,ProjectManager

ReportAuthor:JoeTaylor

25Oct2017

Page 2: Summary of Research Report University of Wisconsin, Space

2

HS3SummaryofResearchReportUniversityofWisconsin,SpaceScienceandEngineeringCenter

HankRevercomb,PIIntroductionThis is thesummaryofresearchreport forNASAGrantNNX10AV08Gto theUniversityofWisconsin (UW) Space Science and Engineering Center (SSEC) for the Scanning High-resolutionInterferometerSounder(S-HIS) instrumentandteamparticipationintheNASAEV-1Hurricane and Severe Storms Sentinel (HS3)projectwith the goal of enhancing ourunderstanding of the processes that underlie hurricane intensity change in the AtlanticOceanbasin.Primaryactivitiesinclude:

(1) SupportofS-HISforNASAGlobalHawkflightsconductedduringtheHS3campaign(range,transit,andscience)andsubsequentdataanalyses;

(2) Laboratory verification of S-HIS reference blackbody temperature calibration andpre-campaignandpost-campaigntestingofS-HISperformance;

(3) Developmentandoptimizationofarchitectureandsoftwaretoimplementreal-time,near real-time, and long-term data handling, processing, and display for longdurationGlobalHawkflights;

(4) Further development and implementation of improved temperature,water vapor,andcloudretrievalcapabilities;and

(5) SupportHS3ScienceTeamteleconferencesandtheScienceTeamMeetings.Thisreportconsistsofabriefsummaryofeachoftheseactivities.

1 Support S-HIS for HS3 range, transit, and science flights and subsequent dataanalyses

TheUWS-HISteamsupportedinstrumentintegrationontoNASAGlobalHawkAV-6,aswellasrange,transitandscienceflightoperations. Flightswereconductedfrom2011through2014.1.1 2011TestFlightsIn 2011, the UW S-HIS team supported flight operations of the NASA AV-6 Global Hawkfrom the NASA Dryden flight facility in Southern California. Two long test flights wereconductedwithan instrumentcomplementthat includedthehyperspectral infraredS-HISsensor,themicrowaveHAMSRsensor,anddropsondesfromtheAVAPSsystem.Twoflightswere successfully conducted; a Pacific flight on 2011-09-09 which made a North/Southtransitionalonglongitude155WnearHawaiiandaflighton2011-09-14fromDrydentotheGulf of Mexico for a dropsonde comparison with the NOAA G-4 aircraft. The S-HISinstrumentsuccessfullycollectedhighqualitydatafromtake-offtolandingforbothflights,howevertheengineeringdatafromtheflightindicatedthattheinstrumentelectronicsandcalibrationblackbodywereoperatingatorneartheupperrangeofacceptable limits.Thisproblemwasidentifiedasdueto inadequatecoolingintheZone25instrumentbayoftheGlobalHawk.SubsequentlythisproblemhasbeensuccessfullyresolvedbyroutingairfromoutsideoftheaircraftthroughacontainedsysteminZone25. RefertoSection1.2forthedetailsoftherequiredinstrumentandaircraftmodificationsthatwerecompletedtoresolvethisissue.

Page 3: Summary of Research Report University of Wisconsin, Space

3

Figure1throughFigure6summarizetheanalysesoftheS-HISdataproductsforthe2011-09-09 Pacific flight (presented at the May 2012 science team meeting). These figuresillustratetheverticalresolvingcapabilityofthehyperspectralIRretrievalsfromtheaircraftdown to opaque cloud top. The performance in these test flights meets all the HS3requirementsforasuccessfulmission.

Figure1:Verticalcross-sectionofGDASNWPmodel(upper)andSHISretrieval(lower)of

atmosphericairtemperaturealonglongitude155Won2011-09-09nearHawaii.ThepolarjetmaximumisclearlydefinedintheS-HISretrievalsoftemperature.

Page 4: Summary of Research Report University of Wisconsin, Space

4

Figure2:Verticalcross-sectionofGDASNWPmodel(upper)andSHISretrieval(lower)ofatmosphericwatervaporrelativehumidityalonglongitude155Won2011-09-09inthe

PacificpassingnearHawaii.TheS-HISmoisturelayersillustratethehigherverticalresolutionofthehyperspectralIRobservations.

Figure3:GlobalHawkflighttrackfor2011-09-09alonglongitude155W.Thefocusregion

indicatedmarksthetransitionfromsub-tropicaltotropicalairmasses.

Page 5: Summary of Research Report University of Wisconsin, Space

5

Figure4:Thetransitionbetweenthesubtropicalandtropicalairmasseswithinthefocus

regionisillustratedbyobservedbrightnesstemperatures.Thebrightnesstemperatureimageiscreatedusingnarrowspectralchannelsinthecenterofthe6.5micronwatervaporband

andclearlyshowsatransitionfromdry(warm)tomoist(cold).

Page 6: Summary of Research Report University of Wisconsin, Space

6

Figure5:S-HISretrievalsoftemperatureandwatervaporacrossthetransitionfromsub-

tropicaltotropicalairmasseson09Sept2011inthePacificOceansouthofHawaii.Thewatervaporrelativehumiditycrosssectionindicatesanabruptchangeintheheightofthemoistdepthoftheatmosphere.Thesolidblacklinesarecontourscreatedfromthedropsonde

profileslaunchedattimesshownbytheverticaldashedlines.

Figure6:ComparisonoftheS-HISretrieval(red)toacoincidentAVAPSdropsondefromtheGlobalHawkinthemoistregionindicatedinthepreviousfigure.Goodagreementisfoundbelow400mbbutthesondeisclearlytoodryaboveabout300mb.Alsoshown(blue)isa

tropicalclimatologyprofile.

Page 7: Summary of Research Report University of Wisconsin, Space

7

1.2 OptimizationofS-HISinterfacetoGlobalHawkzone25thermalenvironment Foroperationonhighaltitudeairborneplatforms(WB-57,ER-2,Proteus)S-HISistypicallymountedinanunpressurizedwingpodandisexposedtotheoutsideambientpressureandtemperatureenvironment.ItwasoriginallyplannedthatsuchapodwouldbeaddedtotheGlobalHawkfortheS-HISaccommodationduringtheHS3mission,butduetoaerodynamicandfundingconsiderationsthewing-podadditionswerenotcompleted.Asaresult,theS-HISwasaccommodated intheGlobalHawkZone25payloadbayforall flights. The2011test flights showed temperatures in this locationwerewarmer than desired for S-HIS ataltitude,andclosetotheoperationallimitforsomekeyS-HISsubsystems.Toalleviatethisissue for subsequent flights, the S-HIS team worked with NASA Dryden Flight ResearchCenter(DFRC)engineerstoprovideamethodtopassivelycoolthesesubsystemsataltitudewhile leavingtheZone25ambient temperatureunchangedforother instrumentationandaircraft equipment. A 3” diameter rigid tube that housedmultiple heat exchangers wasmounteddirectlytotheS-HISinstrument.Therigidtubewasplumbedviaflexibletubingtoinlet andoutletportson theGlobalHawk, allowingoutsideair to flow freely through thetube. Five flexible heat straps were used to thermally couple key areas on the S-HISinstrument to theheatexchangerswithin the3”rigid tube. Thisprovideda thermalpathfor thekeyS-HIScomponents inneedofadditionalcooling to thecoldair flowwithin thetube,while leaving the temperature of Zone 25 unchanged as desired byDFRC. The keyareas on the S-HIS in need of cooling below the Zone 25 ambient temperature are theambient blackbody (ABB), the Stirling cooler expander and compressor (within theinterferometer enclosure), the electronics enclosure, and the data storage computerenclosure.EachoftheuniquethermalstrapsweredesignedbyandfabricatedatUW-SSEC.Table1showskeyinformationforeachstrapandtheanticipatedflighttemperaturesthatwere predicted to result from the implementation of the new thermal scheme. Theexpectedperformanceisbasedonanambientinstrumentenvironmentof-11°C(basedonexperiencefromthe2011flights),andaneffectivecoolingairtubetemperatureof-50°C.

Table1:KeyThermalStrapInformationwithPredictedPerformance

Table2showsacomparisonofrelevantmeasuredtemperaturesforthe2011flightsandthe2012flightswithimplementationofthenewthermalscheme. Figure 7 and Figure 8 illustrate the heat straps and their connection to the 3” tubewithinternalheatexchangers.TheleftendofthetubeisconnectedtoanewforwardinletportoftheGlobalHawk(Zone25),andtherightendtoanewoutletport.

ER#2%Source%Temp%(C)

ER#2%Enclosure%Temp%(C)

GH%Source%Temp%(C)

GH%Enclosure%Temp%(C)

Power%Input%(W)

Strap%Length%(in)

Number%of%strap%wires

Strap%wire%gage

Wire%Area%(kcmil)

Strap%Thermal%R%(K/W)

Strap%Conducted%Power%(W)

Predicted%GH%Source%Temp%

(C)

Predicted%GH%Enclosure%Temp%

(C)

ABB #48 #8.8 #8 0 2.5 3 6 26.3 4.2 0.5 #47 %##

Compressor #22 %## 12 %## 11.5 5 5 4 41.7 3.2 17 #1 %##

Expander #15 %## 15 %## 5.8 7.1 5 6 26.3 7.1 6.9 4 %##

Electronics 0 #16 23 12 52 1.94 5 6 26.3 1.9 26 12 1

Computer 21 12 37 27 52 17.5 6 4 41.7 9.2 6.6 33 23

*Note%predicted%temps%are%based%on%GH%pod%temp%of%#11%C%and%cooling%tube%air%temp%of%#50%C

Page 8: Summary of Research Report University of Wisconsin, Space

8

Table2:Comparisonofrelevantmeasuredtemperaturesforthe2011flightsandthe2012flightswithimplementationofthenewthermalscheme(@~18kmaltitude,takeoff+12hrs).

NotethatZone25temperatureisapproximatelyunchanged,asdesiredbyDFRC.Location 2011 Temperature

Original Thermal Scheme [K]

2012 Temperature New Thermal Scheme

[K]

Zone 25 Temperature 260K 258K

Ambient Blackbody 262K 242K

Cooler Compressor 285K 270K

Cooler Expander 287K 273K

Electronics (Science Processor)

300K 285K

Interferometer Electronics (SEK31, trim heaters with setpoint at 295K)

315K 295K

Data Storage Computer (PCI)

320K 310K

Figure7:Thenewflexibleheatstrapsthatareconnectedtoheatexchangerswithintherigidtube.OutsideairtravelsthroughthetubeandhelpsreducekeytemperaturesintheS-HIS.

Theend-viewsatlowerleftandrightshowtheheatexchangersmountedinsidetheflowtube.

Page 9: Summary of Research Report University of Wisconsin, Space

9

Figure8:TheS-HISintegratedtotheGlobalHawkwiththeheatstraps(4of5arevisible)in

placeandconnectedtotherigidsegmentoftheoutsideairflowtube. 1.3 2012Range,Transit,andScienceFlightsIn2012,theUWS-HISteamsupportedS-HISandHS3missionoperationsoftheNASAAV-6Global Hawk from the NASA Dryden flight facility in Southern California and the NASAWallopsFlightFacilityinVirginia.One range flight was completed on 2012-08-28 with the AV-6 HS3 payload (S-HIShyperspectral infrared sounder, AVAPS dropsonde system, and the Cloud Physics Lidar).The S-HIS instrument successfully collectedhighquality data from take-off to landing forthe range test flight and theoptimizationof the S-HISZone25 thermal environmentwasverified.The DFRC to WFF transit flight and Leslie over-flight was completed 2012-09-06, withreturn transit from WFF to DFRC on 2012-10-12. The S-HIS instrument successfullycollectedhighqualitydataforthefulldurationofbothtransitflights.AV-6scienceflightswereconductedfromtheNASAWallopsFlightFacilityon2012-09-11,2012-09-14,2012-09-19,2012-09-22,2012-09-26,and2012-10-06.

• 2012-09-11:TropicalStormNadineflight#1• 2012-09-14:TropicalStormNadineflight#2• 2012-09-19:TropicalStormNadineflight#3• 2012-09-22:TropicalStormNadineflight#4

Page 10: Summary of Research Report University of Wisconsin, Space

10

• 2012-09-26:TropicalStormNadineflight#5• 2012-10-06:SNPP/Aquaunder-flight

TheS-HISinstrumentsuccessfullycollectedhighqualitydatafromtakeofftolandingforallscienceflights.RepresentativeexamplesofS-HISretrievalproductsfromthe2012missionareprovidedinFigure9throughFigure11.

Figure9:SampleRHProfilefromOptimalEstimationwithUWPhysRetcomparedto

Dropsonde;07Sept2012,04:25

Page 11: Summary of Research Report University of Wisconsin, Space

11

Figure10:RelativeHumiditycross-section;DualRegression(DR)retrieval,2012-09-15.The

blackdotsindicateretrievedcloudtops.

Figure11:RelativeHumiditycross-section;OptimalEstimationUWPHYSRETretrieval,2012-

09-15.1.4 2013Range,Transit,andScienceFlightsIn2013,theUWS-HISteamsupportedS-HISandHS3missionoperationsoftheNASAAV-6Global Hawk from the NASA Dryden flight facility in Southern California and the NASAWallopsFlightFacilityinVirginia.

Page 12: Summary of Research Report University of Wisconsin, Space

12

One range flight was conducted from NASA Dryden on 2013-08-01 with the AV-6 HS3payload (S-HIS hyperspectral infrared sounder, AVAPS dropsonde system, and the CloudPhysicsLidar).TheS-HISinstrumentsuccessfullycollectedhighqualitydatafromtake-offtolandingfortherangetestflight.TheDFRCtoWFFtransitflightwascompleted2013-08-06,withreturntransitfromWFFtoDFRCon2012-09-26.TheS-HISinstrumentsuccessfullycollectedhighqualitydataforthefulldurationofbothtransitflights.AV-6scienceflightswereconductedon2013-08-20,2013-08-24,2013-08-29,2013-09-04,2013-09-07,2013-09-16,and2013-09-19.

• 2013-08-20:FormerTropicalStormErin,SaharanAirLayer• 2013-08-24:SaharanAirLayer• 2013-08-29:Pre-Gabrielle,SaharanAirLayer• 2013-09-04:TropicalStormGabrielle• 2013-09-07:TropicalStormGabrielle• 2013-09-16:TropicalStormHumberto• 2013-09-19:Pouch37,Invest95

TheS-HISinstrumentsuccessfullycollectedhighqualitydatafromtakeofftolandingforallscienceflights,withtheexceptionofaninstrumentpowercyclerequiredduringthe2013-09-04flight.ThepowercycleresultedinalossofS-HISdataforapproximately40minutes,andtheon-dutyMissionScientistwasconsultedsuchthatthetimingofthepowercycledidnotimpactcriticalsciencedata.Representative examples of S-HIS retrieval and brightness temperature products for the2013flightsareprovidedinFigure12throughFigure15.

Figure12:ComparisonofCPLandS-HIScloudtopheightreal-timeproducts(2014-09-04)

deliveredviaNASAMTS.

Page 13: Summary of Research Report University of Wisconsin, Space

13

Figure13:Corresponding30minuteDRretrievalRHsummaryplot(2014-09-04)displayed

inMTS.

Figure14:AnewdatadisplayshowingtimeseriesofrealtimeS-HISbrightnesstemperatureswastested.895-905cm-1(blue)and690-700cm-1(red)channelsareshownabove(2013-09-

16).

Page 14: Summary of Research Report University of Wisconsin, Space

14

Figure15:RelativelygoodagreementbetweenSHIStemperatureandmoisturestructure(left)withthedropsondeprofiles(right).ThiscomparisonisintheSEcorneroftheflight

wheretheSALwasencountered(2013-09-16).1.5 2014Range,Transit,andScienceFlightsIn2014,theUWS-HISteamsupportedS-HISandHS3missionoperationsoftheNASAAV-6Global Hawk from the NASA Dryden flight facility in Southern California and the NASAWallopsFlightFacilityinVirginia.One range flight was conducted from NASA Dryden on 2014-08-06 with the AV-6 HS3payload (S-HIS hyperspectral infrared sounder, AVAPS dropsonde system, and the CloudPhysicsLidar).TheS-HISinstrumentsuccessfullycollectedhighqualitydatafromtake-offtolandingfortherangetestflight.TheDFRCtoWFFtransitflightwascompleted2014-08-26,withreturntransitfromWFFtoDFRC on 2014-09-30. Both flightswere combined science and transit flights. The S-HISinstrument successfully collected high quality data from takeoff to landing for all scienceflightsand transit flights,with theexceptionofplanned instrumentpowercycles45–60minutes prior to science waypoint 1 during the 2014-08-28, 2014-09-05, 2014-09-11,2014-09-14, 2014-09-16, and 2014-09-22 flights. The power cycle was implemented toaddressconcernswithS-HISStirlingCoolerbehavior,andresultedinnolossofsciencedata.

• 2014-08-26:Combinedtransit/scienceflight• 2014-08-28:HurricaneCristobal• 2014-09-02:TropicalStormDolly

Page 15: Summary of Research Report University of Wisconsin, Space

15

• 2014-09-05:Invest90,Pouch27• 2014-09-11:TropicalStormEdouard• 2014-09-14:HurricaneEdouard• 2014-09-16:HurricaneEdouard• 2014-09-18:TropicalStormEdouard• 2014-09-22:MDRflight#1(SAL)• 2014-09-28:MDRflight#2(Pouch41,Pouch42,SAL)• 2014-09-30:NOAAG-IVintercomparisonovertheGulfofMexico

Representative examples of S-HIS retrieval and brightness temperature products for the2014flightsareprovidedinFigure16throughFigure20.

Figure16:S-HIS895-900cm-1BrightnessTemperatureimageoverlaidonGOESIRinMTS

showingmultipleoverpassesoftheeyeofHurricaneEdouard(2014-09-16).

Page 16: Summary of Research Report University of Wisconsin, Space

16

Figure17:S-HISrelativehumidityprofileretrievalduringthethirdeyetransect

ofHurricaneEdouard(2014-09-16).

Figure18:10minutehistoryofS-HISretrievedCTPduringthesecondeyetransectof

HurricaneEdouard(2014-09-16).

Page 17: Summary of Research Report University of Wisconsin, Space

17

Figure19:S-HIS895-900cm-1BrightnessTemperatureimageinMTSshowingmultiple

overpassesoftheeyeofHurricaneEdouard(2014-09-14).

Page 18: Summary of Research Report University of Wisconsin, Space

18

Figure20:S-HISandAVAPSskew-Tcomparisonplotfor2244UTC(2014-09-28).This

soundingwasnotedinthe#HS3roomtobeaclassicENATLSALsoundingwithadryslotfrom~955-550mbar,and20-30%RHat600-900mbar.

Page 19: Summary of Research Report University of Wisconsin, Space

19

Figure21:S-HISfootprints,coloredbyBT(895–900cm-1),andDualRegressionretrieved

nadirtemperatureprofileoverlaidonVIIRStruecolorimagery(VIIRSimagesproducedusingpolar2grid)duringanoverpassofHurricaneEdouardon2014-09-16.TheeyeofHurricane

Edouardisevident.

Figure22:Close-upviewofFigure21neartheeyeofEdouard(2014-09-16).

Page 20: Summary of Research Report University of Wisconsin, Space

20

Figure23:DualregressionretrievedRHcurtainduringanoverpassoftheeyeofHurricane

Edouardon2014-09-16.Quick-lookdeliveredpost-flightviaS-HISwebpage.

Page 21: Summary of Research Report University of Wisconsin, Space

21

Figure24:DualregressionretrievedTemperaturecurtainduringanoverpassoftheeyeofHurricaneEdouardon2014-09-16.Quick-lookdeliveredpost-flightviaS-HISwebpage.

1.6 DataProductsQuick-look product images, comparison plots, SDR and EDR data products, and MatlabreadersforthedataproductswereproducedanddeliveredviatheSSECftpserverduringeachmission year. Newusers are required to registerwith an email address for contactinformation such that a distribution list can be easily maintained for productannouncementsandupdates.TheS-HISteamcoordinatedwiththeGHRCDAACtoensuretheS-HISdataproductswerecompliantwith file format standards. After final reprocessing of the complete S-HISHS3datasetwas completed, the final dataproduct and associated readers anddocumentationweresubmittedtotheNASAGHRCDAAC.

2 Pre-campaignandpost-campaigntestingofS-HISperformanceTherearefourmajorphasesofS-HISradiometriccalibration:

(1) Pre-IntegrationatSubsystemLevel(2) Pre-DeploymentCalibrationVerification(3) Post-DeploymentCalibrationVerification (4) InstrumentCalibrationDuringFlightUsingOn-BoardCalibrationBlackbodies

Page 22: Summary of Research Report University of Wisconsin, Space

22

Steponeistypicallycompletedontheorderofevery5yearsandwascompletedin2012.Steps 2 and 3 are completed pre- and post-mission, respectively, andwere completed in2011, 2012, 2013, and 2014 for the annual HS3missions. Step 4 describes the in-flightcalibrationscheme.2.1 Pre-IntegrationatSubsystemLevelTheS-HISthermistorreadoutelectronicsarecalibratedusingaseriesof6fixedresistancestandards,thatareeachcalibratedtoanaccuracyofbetterthan5mK(3-sigma)equivalenttemperature, using a Fluke 8508A DMM. The S-HIS On-Board Calibration Blackbodythermistorsarecalibratedat10temperaturesovertherangefrom-60°Cto60°C. ThesetestsaredoneinacontrolledisothermalenvironmentusingaNISTtraceabletemperatureprobethatiscalibratedatHartScientifictoanaccuracyof5mK(3-sigma).Followingthesetests,theOn-BoardCalibrationBlackbodiesandReadoutElectronicsareintegratedtotheS-HISInstrument.Results from the blackbody calibration conducted in the spring of 2012 are shown in Figure 9 compared with the results from the last major blackbody calibration (2001).

Figure25:Blackbodycalibrationresultscomparedwithresultsfromthelastmajor

calibrationof2004,showinsignificantchangeinthekeytemperaturerangesused–lessthan25mKchangefortheABB,andlessthan5mKfortheHBB.

The change in ABB calibration over the range it is used in S-HIS Current Range-0 and Range-2 is less than 25 mK, an excellent result. The large difference at 0 °C (Range-2) is most likely due to extrapolation error from the 2004 calibration where the lowest temperature used in the Range-2 calibration was at 21 °C. The change in HBB calibration over the range it is used in S-HIS Current Range-2 is less than 5 mK, an excellent result. The large difference at 0 °C is most likely due to extrapolation error from the 2004 calibration where the lowest temperature used in the Range-2 calibration was at 21 °C. It isnoteworthythatthedurationbetweentests(2004and2012)inthiscaseexceedsthepreferred 5-year interval between tests, but the results confirm insignificant change inblackbodythermometryinthis8-yearperiod.The overall blackbody temperature uncertainty budget is 53.3 mK (3-sigma), comparedwiththerequirementof100mK. Thisuncertaintybudgetreflectsthecurrentstateoftheart for the S-HIS blackbody temperature calibration and captures the best methods,

Page 23: Summary of Research Report University of Wisconsin, Space

23

procedures,andtechniquesdevelopedatUW-SSECforblackbodycalibration.DetailsoftheblackbodytemperatureuncertaintybudgetareprovidedinTable3.Table3:Blackbody Temperature Uncertainty Budget.

2.2 Pre-DeploymentCalibrationVerificationPrior to each field campaign end-to-end calibration verification is performed using avariabletemperatureblackbodyinthezenithviewandan ice-bathblackbodyinthenadirview. Theradiancesmeasuredby theS-HIS instrumentarecompared to thosecalculatedfor theverificationblackbodies,usingthemeasuredcavity temperature,knowledgeof theemissivity,andmeasurementsofthebackgroundtemperature.The variable temperatureblackbodyused for S-HIS calibrationvalidationhas its heritagerooted in the Atmospheric Emitted Radiance Interferometer (AERI) instrument. TheseblackbodieshavehadtheiremissivitymeasuredatNISTusingthreemethods:theCompletehemispherical infrared laser-based reflectometer (CHILR); theThermal infrared transferradiometer (TXR);and theAdvanced InfraredRadiometryand ImagingFacility(AIRI).Theice-bathblackbody isgeometrically similar to theAERIBlackbody, and is coatedwith thesamepaint.TheS-HISinstrumenthasundergoneaside-by-sideradianceintercomparisontestwiththeNIST TXR, using an AERI blackbody as a transfer standard. The mean difference at 10microns between these instruments was 38mK - well less than the propagated 3-sigmauncertainties.As noted, the S-HIS pre-mission end-to-end calibration verification was conductedimmediately prior to each annual HS3 field deployment (2011 through 2014). The testconfigurationforpre-andpost-deploymentend-to-endcalibrationverificationisshowninFigure26.

Resistance Uncertainty [mK]0(33sigma)

Calibration*Resistor*Measurement*Uncertainty*(∆T*equiv) 0.5 Measured*with*UWASSEC,*Fluke*8508A

SAHIS*Readout*Electronics*Measured*Error*(∆T*equiv) 10.0 Includes*longAterm*stability*A*values*represent*readings*in*the*"asAreceived"*condition*(8*years*since*last*cal)

SAHIS*Readout*Electronics*Temperture*Error*(∆T*equiv) 5.0 2*x*(that*measured*with*board*from*24*to*36°C*in*lab),*to*account*for*mear*vacuum

Self*Heat*Correction*uncertainty*(∆T*equiv) 3.3 30%*of*the*correction

Subtotal0(RSS) 11.7

Thermistor

Temperature*Calibration*Probe*uncertainty 5.0Custom*made*Thermometrics*SPA60*Probe,*read*with*Hart*2563*Thermistor*Module.**Probe*with*electronics*calibrated*endAtoAend*at*Hart.*Checked*at*TPW*at*SSEC*and*found*to*be*within*2*±*2*mK

Gradient*between*temp*probe*and*cavity*thermistors*uncertainty 10.0inludes*gradients*within*the*cavity*and*calibration*plug;*as*well*as*includes*probe*stem*error*/*wire*lead*heat*leaks*thermistor*wire*heat*leaks

Calbiration*Fit*Equation*Residuals 2.0 4Aterm*SteinhartAHart*fitting*equation

LongAterm*stability 10.0Over*the*last*8*years,*the*HBB*changed*less*than*5*mK,*except*where*we*know*there*was*an*exprapolation*error*from*last*time*at*20C.**The*ABB*is*within*25*mK*of*last*time;*but*this*is*within*the*old*probe*tolerance*of*30*mK

Subtotal0(RSS) 15.1

Cavity0Assembly,0In3Use,0Integrated0to0Instrument

Cavity*to*thermistor*gradient*uncertainty 25.0

Thermistor*lead*heat*leak*temperature*bias*uncertainty 25.0 Needs*refiement

Paint*gradient*uncertainty 18.0 Full*expeted*gradient*(needs*refinement)

MonteACarlo*Ray*Trace*model*uncertainty*in*determining*Teff 30.0

Subtotal0(RSS) 49.7

Total0(RSS) 53.3

Page 24: Summary of Research Report University of Wisconsin, Space

24

Afterinstrumentandsourceset-upandstabilizationarecompletedandverified,30minutedatasets are collected at three external blackbody temperatures (Ambient, 318K, 333K).Theexternalblackbodytemperatureisallowedtostabilizebeforeeachdatacollection,andIce Bath Blackbody data is collected for the duration of the test (approximately 135minutes).Forallpre-deploymentend-to-endcalibrationverification tests, theambient,318K,333K,and ice-bath blackbody data showed agreement within the established calibration andvalidationuncertainty(3-sigma).ResultsareshowninFigure27throughFigure34.Whileall results arewithin the established uncertainties, themid-wave band result for the ice-bathblackbodyisnotideal. Thisbehaviorisconsistentwithhistoricalresultsforice-bathblackbody tests conducted in the laboratory environment. The nonlinearity correctionparameters for the long-waveandmid-wavebandareoptimized for flightconditions,andthemid-waveresult is likelydue tonon-optimalnonlinearitycorrection in the laboratorythermalenvironment.

Figure26:S-HISradiometriccalibrationverificationconfiguration.

Page 25: Summary of Research Report University of Wisconsin, Space

25

Figure27:2011Pre-deploymentradiometriccalibrationverificationbrightnesstemperature

residuals(measured–predicteddifference,withcombineduncertainty).The4panelsrepresentdifferentexternalblackbodytemperatures,toptobottom:332.95K,317.87K,

297.12K(ambient),and273.12K(icebathblackbody).Atmosphericabsorptionandemissionarenotincludedinthepredictedbrightnesstemperatures(nolinebylineradiativetransfer

modelutilized).Alluncertaintiesare3-sigma.

Page 26: Summary of Research Report University of Wisconsin, Space

26

Figure28:2012Pre-deploymentradiometriccalibrationverificationbrightnesstemperature

residuals(measured–predicteddifference,withcombineduncertainty).The4panelsrepresentdifferentexternalblackbodytemperatures,toptobottom:333.04K,317.95K,

297.12K(ambient),and273.12K(icebathblackbody).Atmosphericabsorptionandemissionarenotincludedinthepredictedbrightnesstemperatures(nolinebylineradiativetransfer

modelutilized).Alluncertaintiesare3-sigma.

Page 27: Summary of Research Report University of Wisconsin, Space

27

Figure29:2013Pre-deploymentradiometriccalibrationverificationbrightnesstemperature

residuals(measured–predicteddifference,withcombineduncertainty).The4panelsrepresentdifferentexternalblackbodytemperatures,toptobottom:333.07K,317.98K,

297.93K(ambient),and273.12K(icebathblackbody).Atmosphericabsorptionandemissionarenotincludedinthepredictedbrightnesstemperatures(nolinebylineradiativetransfer

modelutilized).Alluncertaintiesare3-sigma.

Page 28: Summary of Research Report University of Wisconsin, Space

28

Figure30:2014Pre-deploymentradiometriccalibrationverificationbrightnesstemperature

residuals(measured–predicteddifference,withcombineduncertainty).The4panelsrepresentdifferentexternalblackbodytemperatures,toptobottom:333.08K,317.95K,

292.20K(ambient),and273.12K(icebathblackbody).Atmosphericabsorptionandemissionarenotincludedinthepredictedbrightnesstemperatures(nolinebylineradiativetransfer

modelutilized).Alluncertaintiesare3-sigma.2.3 Post-DeploymentCalibrationVerificationFollowing each field campaign, the pre-deployment end-to-end calibration verificationprocedure is repeated. Details of the test and analyses are provided in the precedingsection.Forallpost-deploymentend-to-endcalibrationverificationtests,theambient,318K,333K,and ice-bath blackbody data showed agreement within the established calibration andvalidationuncertainty(3-sigma).ResultsareshowninFigure31throughFigure34.Again,it is important tonote thatwhile the results arewithin the establisheduncertainties, the

600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600−0.5−0.4−0.3−0.2−0.1

00.10.20.30.40.5

BT D

iff (K

)

S−HIS Calibration Verification, Nominal Processing; Date: 20140702, Text = 333.08 K (Blackman Harris Apodized)

Obs − PredCombined Unc

600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600−0.5−0.4−0.3−0.2−0.1

00.10.20.30.40.5

BT D

iff (K

)

S−HIS Calibration Verification, Nominal Processing; Date: 20140702, Text = 317.95 K (Blackman Harris Apodized)

Obs − PredCombined Unc

600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600−0.5−0.4−0.3−0.2−0.1

00.10.20.30.40.5

BT D

iff (K

)

S−HIS Calibration Verification, Nominal Processing; Date: 20140702, Text = 292.20 K (Blackman Harris Apodized)

Obs − PredCombined Unc

600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600−0.5−0.4−0.3−0.2−0.1

00.10.20.30.40.5

wavenumber (cm−1)

BT D

iff (K

)

S−HIS Calibration Verification, Nominal Processing; Date: 20140702, Text = 273.12 K (Blackman Harris Apodized)

Obs − PredCombined Unc

Page 29: Summary of Research Report University of Wisconsin, Space

29

mid-waveband result for the ice-bathblackbody isnot ideal. Thisbehavior is consistentwithhistoricalresultsforice-bathblackbodytestsconductedinthelaboratoryenvironment.The nonlinearity correction parameters for the long-wave and mid-wave band areoptimized for flight conditions, and the mid-wave result is likely due to non-optimalnonlinearitycorrectioninthelaboratorythermalenvironment.

Figure31:2011post-deploymentradiometriccalibrationverificationbrightness

temperatureresiduals(measured–predicteddifference,withcombineduncertainty).The4panelsrepresentdifferentexternalblackbodytemperatures,toptobottom:333.04K,

317.96K,296.54K(ambient),and273.12K(icebathblackbody).Atmosphericabsorptionandemissionarenotincludedinthepredictedbrightnesstemperatures(nolinebylineradiative

transfermodelutilized).Alluncertaintiesare3-sigma.

Page 30: Summary of Research Report University of Wisconsin, Space

30

Figure32:2012post-deploymentradiometriccalibrationverificationbrightness

temperatureresiduals(measured–predicteddifference,withcombineduncertainty).The4panelsrepresentdifferentexternalblackbodytemperatures,toptobottom:333.05K,

317.96K,294.68K(ambient),and273.12K(icebathblackbody).Atmosphericabsorptionandemissionarenotincludedinthepredictedbrightnesstemperatures(nolinebylineradiative

transfermodelutilized).Alluncertaintiesare3-sigma.

Page 31: Summary of Research Report University of Wisconsin, Space

31

Figure33:2013post-deploymentradiometriccalibrationverificationbrightness

temperatureresiduals(measured–predicteddifference,withcombineduncertainty).The4panelsrepresentdifferentexternalblackbodytemperatures,toptobottom:333.06K,

317.96K,294.46K(ambient),and273.12K(icebathblackbody).Atmosphericabsorptionandemissionarenotincludedinthepredictedbrightnesstemperatures(nolinebylineradiative

transfermodelutilized).Alluncertaintiesare3-sigma.

Page 32: Summary of Research Report University of Wisconsin, Space

32

Figure34:2014post-deploymentradiometriccalibrationverificationbrightness

temperatureresiduals(measured–predicteddifference,withcombineduncertainty).The4panelsrepresentdifferentexternalblackbodytemperatures,toptobottom:333.09K,

317.96K,292.25K(ambient),and273.12K(icebathblackbody).Atmosphericabsorptionandemissionarenotincludedinthepredictedbrightnesstemperatures(nolinebylineradiative

transfermodelutilized).Alluncertaintiesare3-sigma.

2.4 InstrumentCalibrationDuringFlightUsingOn-BoardCalibrationBlackbodiesDuringflight, theS-HISEarthsceneradiancemeasurementsarecalibratedseveraltimesaminute using its two On-Board Calibration Blackbodies (Ambient Blackbody, ABB; HotBlackbody,HBB).TheAmbientBlackbodyrunsatthepodambienttemperature(between-25and-55°C,dependingonthelocalambientenvironment);andtheHotBlackbodyrunsat27°C.

600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600−0.5−0.4−0.3−0.2−0.1

00.10.20.30.40.5

BT D

iff (K

)

S−HIS Calibration Verification, Nominal Processing; Date: 20141113, Text = 333.09 K (Blackman Harris Apodized)

Obs − PredCombined Unc

600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600−0.5−0.4−0.3−0.2−0.1

00.10.20.30.40.5

BT D

iff (K

)

S−HIS Calibration Verification, Nominal Processing; Date: 20141113, Text = 317.96 K (Blackman Harris Apodized)

Obs − PredCombined Unc

600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600−0.5−0.4−0.3−0.2−0.1

00.10.20.30.40.5

BT D

iff (K

)

S−HIS Calibration Verification, Nominal Processing; Date: 20141113, Text = 292.25 K (Blackman Harris Apodized)

Obs − PredCombined Unc

600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600−0.5−0.4−0.3−0.2−0.1

00.10.20.30.40.5

wavenumber (cm−1)

BT D

iff (K

)

S−HIS Calibration Verification, Nominal Processing; Date: 20141113, Text = 273.12 K (Blackman Harris Apodized)

Obs − PredCombined Unc

Page 33: Summary of Research Report University of Wisconsin, Space

33

3 Ongoing development and optimization of architecture and software toimplement real-time, near real-time, and long term data handling, processing,anddisplayforlongdurationGlobalHawkflights.

Figure35:S-HISHS3dataprocessingpaths.

S-HISoffers three levelsofdataproducts, rawdata records (RDR), scientificdata records(SDR),andenvironmentaldatarecords(EDR).Rawdatarecordsareprovideddirectlyfromthe instrument and include housekeeping temperatures and measurements, blackbodytemperatures, and raw observed interferograms. Through radiometric calibration usingreferenceblackbodyspectra,RDRsareusedtocreatecalibratedabsoluteradiancespectraSDRsthatcaninturnberepresentedasbrightnesstemperaturespectra.Throughasecond,longer, softwareprocessing step, SDRs areused to createEDRatmosphericprofiles. TheSDRandEDRdataareoperationallyproducedanddistributed.There are three S-HIS HS3 data processing paths: (1) Offline batch post processing, (2)near-lineprocessing(30minutelatency),and(3)real-timeprocessing(~45secondlatency).These data processing paths are illustrated in Figure 35 and are summarized in thefollowingsub-sections.3.1 Post-processingofRadianceCalibrationandAtmosphericRetrievalFollowingeachflighttheUWteamdownloadsthecompleterawdatasetcollectedonboardthe S-HIS instrument and subsequently uploads the dataset to the SSEC at University ofWisconsin-Madison for post-processing. This post-processing consists of a sequence ofbatch scripts, which execute custom calibration software for the conversion ofinterferogramstoradiances.AGHflightof24hourscanbeprocessed inabout4hoursofwall clock time on a dedicated computer at the UW-SSEC. The processing of raw data toradiancesisfullytestedandautomated.Oncetheradiancesareavailable,theUWteamhascustomsoftwarefortheretrievaloftemperatureandwatervaporprofilesandcloudheights.Two independent retrieval algorithms have been developed, a Dual Regression (DR)

Page 34: Summary of Research Report University of Wisconsin, Space

34

algorithmthatisastatisticaleigenvectorregressionmethod,andprovidesretrievalsunderclearandcloudyconditions;andUWPhysRetthatisaclearskyalgorithm.Theretrievalsfortemperature, water vapor retrieval, and clouds are comparedwith collocated dropsonde(AVAPS)andlidar(CPL)data.TheDRretrievalalgorithmisfullyautomated.3.2 Real-timeandNear-lineRadianceCalibrationandAtmosphericRetrievalThe S-HIS instrument data downlink methodology has evolved over time with thetechnology available and new aircraft platforms. Initially, S-HIS data was primarilyretrieved from internal storageon the instrumentafter landingandprocessedpost-flight.In some cases, a small amount of datawas provided via status packets or state of health(SOH) packets. These packets hold a minimal amount of information to verify that theinstrumentisoperatingasexpectedandcan’tbeusedforhighlevelscientificanalysis.Forlab or “fly-along” DC-8 airborne lab use, when direct connections to the instrument arepossible and not bandwidth limited, a scientist uses a direct TCP network connection tosubscribetodatainreal-time.TheHS3missionontheGlobalHawkmarksthefirsttimethatreal-timeS-HISsciencedataisdownlinked,processed,andmadeavailabletoscientistsonthegroundwithin1minuteofobservation. The ability to view real-time S-HIS observations allows scientists to quicklyanalyze the storm formation, and allows real-time mission planning, inclement flightweatheravoidanceaswellastrackingtheinstrumentstateofhealth.FortheHS3mission,anewmethodwas developed named DRSH (Datagram Raw Scanning-HIS). A datagram orUDPconnectionisanunordered,connectionlessprotocolforsendingdata.Thismeansthatthesoftwaremusthandlethepotentialforoutoforderandevenmissingdata,andalsothatdataconnectionsareunidirectionalanduse lessbandwidththanaRSHTCPconnection.AconnectionlessprotocollikeUDPisimportantwhenoperatingontheGlobalHawkbecauseof the possibility of satellite communication outages for extendedperiods of time, and topermitsecurityguaranteestotheaircraftbyoperatingasanegress-onlydatarelay.S-HIS data goes through a series of connections to push data from the Global Hawk toprocessing machines on the ground. Starting as a DRSH packet sequence from theinstrument,thedatagoesthroughtheaircraftnetworkandissentoveraKUbandsatelliteconnectiontoroutingcomputersontheground.TheroutingcomputersareconfiguredbyNASA’s IT team to forward S-HIS’s DRSH packets from the aircraft payload network to aprocessing computer in the Payload Mobile Operations Facility (PMOF) at the WallopsFlightFacility(WFF)andaserverattheUW-SSEC.ThepathtotheSSECismadelongerbyarequireddetour toDrydenFlightResearchCenter.Once thesemachines receive thedata,softwarevalidatespacketsandreassemblestheRSHdatastream,handlinganymissingoroutoforderpiecesofinformation.Thedataisthenprocessed,andradiancesandretrievedtemperature and water vapor products are made available via GUI software and webservicesusedbytheGlobalHawkMissionToolSuite.ThestateofhealthoftheS-HISinstrumentismonitoredinreal-timeinthePMOFatNASAWFFusinggraphicaldisplays.OncedatapacketsreachtheprocessingmachineinthePMOF,rawdata recordprocessing isperformedand thendisplayed inagraphicaluser interfaceknownas theS-HISDashboard.TheDashboardprovides time seriesof temperatures andspectra for the last 200measurements (approximately 100 seconds). It also displays thevalues of various instrument housekeeping sensors, and whether they are within theiracceptableoperatingranges. Furtherdisplaysareavailable forStatusandState-of-Health

Page 35: Summary of Research Report University of Wisconsin, Space

35

(SOH)packets(deliveredviaIridium),foruseinthecaseofaKucommunicationoutageorifthefulldatagram(DSRH)dataisotherwisenotavailable.Furthermore, collaborating scientists can view the real-time downlinked S-HIS dataproducts throughtheNASAMissionToolsSuitewebsiteor theSSECS-HISwebsiteduringflight,fromanywhereintheworld.DataandimagesareprovidedtobothoftheseservicesviaaserverattheUW-SSEC.For each SDR record that is produced, the brightness temperature data is added toWebMapService(WMS) layers,representedasGeoTIFF imagefragmentswithmetadata.WMSlayers canbeviewed inNASAMissionToolsorGoogleEarth to see geo-located real-timemeasurements made by S-HIS. Additionally, various quick-look images of the calibratedbrightness temperatures and retrieved atmospheric profiles are produced at regularintervalsinnearreal-time.Thequick-looksaremadeavailableontheSSECS-HISwebsiteasgeo-locatedPNGimagesandasdynamicKMLmarkersthatcanbeviewedinMissionToolsorGoogleEarth.KMLmarkersareclickableiconsonamapthatopenaseparatewindowforviewingthequick-lookimages.The algorithms used in the real-time calibrated radiance and Dual Regression retrievalprocessing are fast enough to produce values within seconds of reception. Near-lineprocessing utilizes the full batch processing including quality control; applied to KUdownlinkeddataseparatedinto30-minutedatasegments.

Figure36:ExampleofS-HISReal-timeDualRegressionretrievalproducts.

Page 36: Summary of Research Report University of Wisconsin, Space

36

Figure37:ExampleS-HISWMSlayerinNASAMTS(S-HIS900cm-1BrightnessTemperature).

Figure38:Examplereal-timetemperatureprofileretrievaldeliveredviaS-HISwebsite.

Page 37: Summary of Research Report University of Wisconsin, Space

37

Figure39:Examplereal-timerelativehumidityprofileretrievaldeliveredviaS-HISwebsite.

Figure40:ExampleSkewTprofiledeliveredinreal-timeviakmlmarkersinNASAMTS.

Page 38: Summary of Research Report University of Wisconsin, Space

38

For the2014HS3 season, beginningwith the2014-09-12 flight, SHIS/AVAPS comparisonskew-T plots were added to MTS. Initially, an average of S-HIS retrievals from datacollectedduringthesondedropwasusedinthecomparison,withasimpleoutlierrejectionappliedtotheS-HISretrievals(Figure41).Bythe2014-09-22flightarefinedfieldofviewaveragingandselectionalgorithmwasdevelopedandappliedtotheS-HISretrievalsusedinthe AVAPS comparison plots. This resulted in improved temperature and dewpointagreementbetweenthetwoinstruments.Twocomparisonplotsfromthe2014-09-22flightare provided in Figure 42 and Figure 43. These profileswere taken east of a convectivecomplexduringtheeastwardtrack,withthelaterS-HISretrievalaverage(Figure43)morefullycapturingthemid-leveldryslot.

Figure41:S-HIS/AVAPScomparisonskew-TplotdeliveredviaMTS(2014-09-12flight,

initialimplementation).

Page 39: Summary of Research Report University of Wisconsin, Space

39

Figure42:ExampleS-HIS/AVAPScomparisonskew-TplotdeliveredviaMTSforthe2014-09-22flight.TheS-HISretrievalaveragedoesnotresolvethemid-leveldryslotforthis

sounding.

Figure43:ExampleS-HIS/AVAPScomparisonskew-TplotdeliveredviaMTSforthe2014-

09-22flight.TheS-HISretrievalaveragemorefullycapturesthemid-leveldryslotinthiscase.

Page 40: Summary of Research Report University of Wisconsin, Space

40

4 Optimization and implementation of improved temperature, water vapor, andcloudretrievalcapabilities

4.1 S-HISDualRegressionRetrievalDevelopmentandoptimizationoftheS-HISDualRegressionRetrievalalgorithmcontinuedthroughout the HS3 mission. All HS3 datasets (2011, 2012, 2013, 2014) have beenreprocessedusingtheupdatedalgorithmforthefinalsubmissiontotheHS3datarepository.The largestDualRegressionRetrievaladvancementcompletedduring the final flightyear(2014) was the implementation of a statistical bias correction. The Dual Regressionretrieval method uses a statistical training data set, and imperfect skill due to lack ofverticalresolutioninradiances,leadstostatisticalbias.ThestatisticalbiascanbeidentifiedandcorrectedforbycalculatingmodelradiancesfromtheforecastprofileandperformingtheDual Regression retrieval on the simulated radiances. The resulting retrieval error inthesimulatedretrievalisthestatisticalbias.Toprovideatmosphericretrievalsunderall-skyconditions,the“DualRegression”retrievalalgorithmhasbeenadaptedfortheS-HISontheGlobalHawk.ThisretrievalapproachhasbeenusedpreviouslyforotherhighspectralresolutionIRsatellitesensorsincludingAIRS,IASI, and CrIS, and provides retrievals of temperature and water vapor profiles, variouscloudparameters,columnozoneandcarbondioxide,andsurfacepressureandtemperature(Smith et al. 2012). This workwas performed primarily by Dr. ElisabethWeisz and Dr.WilliamSmith,withcoordinationprovidedbyDr.DavidTobin.The S-HIS DR retrieved temperature and water vapor results were compared withcollocatedAVAPSprofiles. Atwo-minutemeanofS-HISDRtemperatureandwatervaporprofiles were plotted on a skew-T diagram for each AVAPS dropsonde during the HS3campaign.Anexamplefromthe2013seasonisprovidedinFigure44.Daily-mean, four-panel images representing S-HIS DR retrievals relative to AVAPSdropsondes were also created for each HS3 flight. Data were compiled with respect torelative humidity (RH) and water mass mixing ratio (H2OMMR). Data were also filteredbasedonDRretrievedcloudtoppressurelimitedto700mb.Anexamplefour-panelimageisprovidedinFigure45;AradiativeclosurestudytofurthercharacterizeandconfirmtheobservedAVAPSdrybiaswascompleted.Onceagain,datawerecompiledwithrespecttorelativehumidity(RH)andwatermassmixing ratio (H2OMMR), andwere filtered based on DR retrieved cloud toppressurelimitedto700mb.TheAVAPSanddual-regressionretrievedprofileswereusedtocompute upwelling radiance at the Global Hawk altitude and compared to the S-HISmeasured radiances. An example of this comparison was presented at the 2015 HS3ScienceTeamMeeting(Figure46).ThestrongnegativebiasforAVAPSbetween1200and2000cm-1isindicativeofanuppertroposphericwatervapordeficiency(drybias). TheS-HISmeasuredradiances(convertedtoequivalentbrightnesstemperature)areexpectedtobe accurate to approximately 0.25K or better for this wavenumber region and scenebrightnesstemperature.

Page 41: Summary of Research Report University of Wisconsin, Space

41

Figure44:SampleDRProfilecomparisontoDropsonde&GDAS;24August2013.Thisexampleshowsagoodretrievalquality,despiteupperlevelthincirrusandlowerlevel

aerosollayers.Theleftpanelshowsaskew-Tdiagramthatincludesthedropsonde(black),S-HISDRmeanretrieval(green)andGDASmodel(magenta)profiles;wheredashed-lines

representdewpointtemperatureandsolidlinesindicatetemperature.ThetoprightimageshowstheCPLdepolarizationforatwo-minutewindowcenteredonthedropsondetime,usedtoillustratethenadircloudconditionsforthegivendropsonde.Ageolocationsanitycheckisprovidedinthelowerright.ThisimageshowstheS-HISsurfaceprojectedpoints(circles;greensuggestsnocloudwhileredspecifiesapositivecloudretrieval)andthedropsonde

positionduringitsdescent(blackx).

Figure45:Adaily-mean,four-panelimagerepresentingS-HISDRretrievalsrelativetoAVAPSdropsondesiscreatedforeachHS3missionsortie.Thedrybiasofthedropsondeabove400mbisaconsistentfeature.Dataarecompiledwithrespecttorelativehumidity(RH)andwatermassmixingratio(H2OMMR).DataarealsofilteredbasedonDRretrievedcloudtop

pressurelimitedto700mb.Thefirstpanelshowsthemeandailytemperatureprofileforeachdropsonde(black)andcorrespondingtwo-minutemeanS-HISDRretrieval(green);panel2showsthedifferencefrommean(TDR–TAVAPS)anditsstandarddeviation;panel3showsthesameaspanel1,butforrelativehumidity(notethesignificantdrybiasinthedropsonde

−100 −50 0 50

5060708090

100

200

300

400

500600700800900

1000

Pres

sure

(mb)

Temperature (C)

−2 −1 0 1 2

5060708090

100

200

300

400

500600700800900

1000

∆Temperature (C)

Pres

sure

(mb)

Mean Analysis for 24 Clouds Below 700mb on 24−Aug−2013

0.001 0.1 1 40

5060708090

100

200

300

400

500600700800900

1000

Pres

sure

(mb)

q (g/kg)−100 0 100 200

5060708090

100

200

300

400

500600700800900

1000

Pres

sure

(mb)

∆q (%)

DRSonde

DRDR, STD

Page 42: Summary of Research Report University of Wisconsin, Space

42

above400mb);andpanel4showsthedifferencefrommeanforRH,alongwithitsstandarddeviation(RHDR–RHAVAPS).

Figure46:Radianceclosurestudyresultsfor24August2013flight.TheAVAPSanddual

regressionprofileswereusedtocomputeupwellingradianceattheGlobalHawkaltitudeandcomparedtotheS-HISmeasuredradiance.Resultsareindicatedinbrightnesstemperatureunits.ThestrongnegativebiasforAVAPSbetween1200and2000cm-1isindicativeofan

uppertroposphericwatervapordeficiency(drybias).NadirS-HISDRretrievedcloudtoppressureandopticaldeptharecomparedtocollocatedCloudPhysicsLidar(CPL)measurementsforallflights,onbothanindividualflight,annual,andfull-missionbasis.Anexampleofthecomparisonforthe2013-08-28flightisshowninFigure47. ThetoppanelshowstheCPLlog-extinctionasafunctionoftimefortheentireflight.TheDRcloudtoppressurewasoverlaidupontheCPLimagewithablackdotforeachcollocatedDR cloud top thatwas retrieved. The bottom left image shows the collocatedflight track for thegiven sortie,whereblack indicateshigh cloudandwhite indicates lowcloud(orclearsky).TheadjacentimageisadensityscatterplotshowingthecollocatedDRcloudtopheightsrelativetoCPL.Dataarefilteredtoexcludenon-uniformscenes(i.e.,CPLZSTD < 2 km). The bottom right-most image provides a summary classification of allcollocatedS-HISDRandCPLmeasurementsfortheflight,andtheneighboringpaneltotheleft shows a histogram of the collocated S-HIS DR – CPL cloud top height differences,applyingthesamenon-uniformscenefilterusedforthedensityscatterplot.

600 800 1000 1200 1400 1600 1800 2000 2200 2400180

200

220

240

260

280

300

Wavenumber [cm−1]

Brig

htne

ss T

empe

ratu

re [K

]

Daily Mean Brightness Temperature on 20130824

SHISDRAVAPS

600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600−10

−5

0

5

10

Wavenumber [cm−1]

∆BT

[K]

Brightness Temperature Difference

Page 43: Summary of Research Report University of Wisconsin, Space

43

Figure47:ExamplecomparisonofS-HISDRretrievedcloudtoppressureandopticaldepth

andcollocatedCloudPhysicsLidar(CPL)measurements.An example of an annual statistical comparison of S-HISDR retrieved cloud toppressureand optical depth and collocated CPL measurements for the 2013 mission is shown inFigure48. The analysiswas extended todetermine the effects of cloudoptical depth forcaseswheretheS-HISDRdidnotdiscernthepresenceofcloud. Datawasfurtherbrokendown tocloudsabove (orbelow)5km.MeancollocatedCPLdatawereused forbothODandcloudtopheightinthisanalysis.

Page 44: Summary of Research Report University of Wisconsin, Space

44

Figure48:StatisticalcomparisonofS-HISDRretrievedcloudtoppressureandopticaldepth

andcollocatedCPLmeasurementsfor2013mission.Smith,WilliamL.Sr.;Weisz,Elisabeth;Kireev,StanislavV.;Zhou,DanielK.;Li,ZhenglongandBorbas,EvaE.Dual-regressionretrievalalgorithm for real-timeprocessingof satelliteultraspectralradiances.JournalofAppliedMeteorologyandClimatology,Volume51,Issue8,2012,1455–1476.Reprint#6809.4.2 UWPHYSRETPhysicalRetrievalAlgorithmA research algorithmdeveloped at theUniversity ofWisconsin for usewith satellite datahas been implemented for processing S-HIS data during theHS3mission. Thismethod isbased on the Rodgers (2000) methodology of maximum a posteriori probability (MAP)estimation,alsoknowncolloquiallyasOptimalEstimation.ThesoftwarepackagedevelopedattheUW-SSECiscalledUWPHYSRET.TheinitialimplementationofthisalgorithmusedtheLBLRTM line-by-line model from AER, Inc. as the forward operator. The UWPHSRETmethodologywasusedtoproducetheS-HISnadircross-sectionspresentedattheMay2012scienceteammeeting.ThismethodallowsUWexpertstocarefullyevaluatethediagnosticpropertiesoftheretrievalforselectedcasestudies.Thismethodalsoprovidesuncertaintyestimatesalongwiththeestimateofprofiletemperatureandwatervaporvalues.DuringHS3mission,thisretrievalschemewasmodifiedtorunmuchfasterbyusingtheOSSforwardmodelthatwastunedbyAERtoaccuratelyagreewithLBLRTM.Itisnowpracticalto explore a larger set of case studies. UWPHYSRET also provides uncertainty estimatesalongwiththeestimateofprofiletemperatureandwatervaporvalues.

Page 45: Summary of Research Report University of Wisconsin, Space

45

5 SupportofScienceTeamThe S-HIS team supported all Science Team telecons and Science Team Meetings (2010, 2012, 2013, 2014, and 2015). The following posters and talks were presented by members of the S-HIS team at the Science Team Meetings: • 2010:OverviewoftheS-HISInstrument.HankRevercombetal(presentation);• 2012: S-HIS Status and Performance on the Global Hawk Demonstration Flights. Joe

Tayloretal(presentation);• 2012: S-HIS Retrieval Results; Comparisons to GDAS, IR Satellite, HAMSR, and

Dropsondes.BobKnutesonetal(presentation);• 2013:SummaryofS-HISStatusandResults.HankRevercombetal(presentation);• 2013:S-HISReal-timeProcessingandDataTransport.DavidHoeseetal(poster);• 2013:S-HISRadiometricCalibrationandPerformance.JoeTayloretal(poster);• 2014:SummaryofS-HISstatus,Real-timeDataCollectionandProcessing.DanDeSlover

etal(presentation)• 2014: S-HIS Dual Regression Analysis for the 2012 and 2013 Campaigns Relative to

AVAPSandCPLmeasurements.DanDeSloveretal(poster).• 2014: Scanning High-resolution Interferometer Sounder (S-HIS) Radiometric

CalibrationandPerformanceSummary(HS32013).JoeTayloretal(poster).

6 UWHS3SummaryofAccomplishmentsTheUniversityofWisconsinSpaceScienceandEngineeringCenterteaminsupportoftheS-HIS instrument successfully provided real-time, and quality controlled final radiance andretrievalproductsfortheNASAHS3mission.Finalproductshavebeenmadeavailablefordistributionandhavebeenarchived to theHS3data repositoryat theNASAGHRCDAAC.Majoraccomplishmentsinclude:• Improvements to the Global Hawk Zone 25 thermal environment to enhance S-HIS

calibration accuracy and reduce operational risks fromhigh electronics temperatureswereimplementedandverified.

• Successful operation of the S-HIS on long duration Global Hawk flights has beendemonstrated,withgreaterthan99%up-timefromtakeofftolanding,

• Accurate radiance spectra from all science flights have been processed andtemperature/watervaporprofileproductsshowreasonableagreementwithdropsonde,CPL,andHAMSRmicrowaveresults,

• S-HIScalibrationreferenceaccuracyhasbeenverified,• S-HIS data handing and processing for real-time and near real-time processing was

developedandwereoperationalforallscienceflights,withproductsdisplayedinNASAMTSandviawebpagequick-looks,

• Improved retrieval capabilities have been implemented, including a physical retrievalforclearsky(UWPhysRet)andaDualRegressioncapabilityforclearandcloudyskies,

• Quick-look product images, comparison plots, and final data products were madeavailableduringeachreportingperiod.FinalproductsandMatlabreadersforthedataproductsweredeliveredvia theSSEC ftpserver. Alldatasetswere reprocessedusingthe2015dataprocessingalgorithms,andre-distributedandarchivedtotheHS3projectdatarepository

• Activeparticipationintheannualscienceteammeetingsandinteamtelecons.