26
W. Udo Schröder, 2009 Nuclear Beta Decay 1 Super Kamiokande (Japan) neutrino detector 50,000 t H 2 O) Cerenkov counter, 11,200 PMTs

Super Kamiokande (Japan) neutrino detector W. Udo Schröder ...Super Kamiokande (Japan) neutrino detector 50,000 t H 2. Electron/Beta Spectrometry W. Udo Schröder, 2009 y

  • Upload
    others

  • View
    9

  • Download
    0

Embed Size (px)

Citation preview

  • W. Udo Schröder, 2009

    Nuc

    lear

    Bet

    a D

    ecay

    1

    Super Kamiokande (Japan) neutrino detector 50,000 t H2O) Cerenkov counter, 11,200 PMTs

  • Electron/Beta Spectrometry

    W. Udo Schröder, 2009

    Nuc

    lear

    Bet

    a D

    ecay

    2

    Iron-free “Orange” spectrometer with axially sym-metric toroidal magnetic field inside current loops

    Setup used in nuclear reaction studies (counters for coincident particles & g-rays) Different energies correspond to different locations on focal detector

    B

    60 Helmholtz coils every 60 arranged in a circle. Current: ~1000 A

    2 2e

    e e e e e e e

    e

    e e e

    Circular e orbit radius in B field

    p e B

    E p m dE p m dp

    mdN dN

    dE p dp

    a g

    b

    Active

    sample

    Ma

    gn

    et

    Radioactive Ra sample in a magnetic field b = e-.

    Observed later in decay of neutrons and excited nuclei (internal conversion) or nuclear transmutation (b decay).

    Chadwick (1914): Some nuclides emit e- with continuous energy spectra “b rays”

    Energy spectrum constructed

    from momentum spectrum

  • Electron and Beta Spectroscopy

    W. Udo Schröder, 2009

    Nuc

    lear

    Bet

    a D

    ecay

    3

    e

    dN

    dE

    eE

    max

    eE Q

    Nuclei can deexcite via photon, (e+, e-) , or atomic-electron emission (internal conversion)

    gs

    Z,I

    1gs

    Z ±1,(I,I )

    0Q e eject

    Nuclei transmute in b decay

    Fixed differences Q and |DI| carried by more than one decay product additional “neutrinos” ,

    I

    1 1gs

    I ,I

    e

    ejecte e

    E*

    Conversion electron line spectrum for decay of 203Tl state E*=280-keV

    Electron binding energies in 203Tl

    Ee=E*-EB < 280keV

    g

    b spectrum is continuous up

    to Ee ≈ Q

  • The Neutrino Hypothesis

    W. Udo Schröder, 2009

    Nuc

    lear

    Bet

    a D

    ecay

    4

    Dilemma: continuous e- spectrum would violate energy/momentum balance in 2-body process. Wolfgang Pauli (1930) postulates unobserved, neutral particle (“neutron” later =“neutrino” (Fermi))

  • Evidence for Neutrino

    W. Udo Schröder, 2009

    Nuc

    lear

    Bet

    a D

    ecay

    5

    gs

    Z,I

    1gs

    Z ±1,(I,I )

    0Q e eject

    •Fixed decay energy (Q value Dmc2)

    but continuous e- spectrum • e- has spin Ie=1/2

    but |Ifinal-Iin|= 0, 1 typically

    • Electron capture produces recoil momentum • Direct evidence by neutrino-induced reaction

    e-

    com

    ep

    Np

    Np

    Recoil Experiment

    Recoil Detector

    Auger e- Detector

    37Ar gas cell

    TOF distance

    37 37Ar e Cl

    ii observed

    p 0

    i Ni observed

    p p

  • Fermi’s Neutrino Hypothesis

    W. Udo Schröder, 2009

    Nuc

    lear

    Bet

    a D

    ecay

    6

    Enrico Fermi (1934): Adapt Dirac’s elm field theory to weak interactions. Weak (beta-decay-type) interaction is similar to elm interaction between currents. Range of weak interaction is rWI ≈ zero (relm )

    Electromagnetic Current-Current Interactions

    Fermi’s theory accepted as working hypothesis for weak interactions. Neutrino properties predicted: spin=1/2, zero charge, zero mass. Directly observed: 1956(Science)/1959(PR) by Fred Reines & Clyde Cowan

  • Direct Evidence for Neutrino

    W. Udo Schröder, 2009

    Nuc

    lear

    Bet

    a D

    ecay

    7

    g

    g

    g

    109 110

    e

    * 110

    th

    Inverse beta decay

    e e annihilation

    e e 2 511keV

    Delayed n capture rays

    n Cd Cd

    n

    Cd

    e

    x

    p

    Savannah River reactor experiment (fission fragments decay

    900 hrs with reactor on 250 hrs reactor off

    prompt e+-delayed capture g coincidences

    Reines Cowan Target tanks H2O

    LSc (Cd) tanks

    Experiment: s = 7·10-19b

  • Elementary Modes of b Decay

    W. Udo Schröder, 2009

    Nuc

    lear

    Bet

    a D

    ecay

    8

    Bethge, Kernphysik

    b b EC b to K-hole

    Nuclear b decay and electron capture

    Fermi’s zero-range (point-like) weak interaction, coupling constant GF

    e e

    Different lepton families : electron, muon, tau

    neutrinos : , , ,

    All neutrinos have small masses and (only upper limits known)

    In energetics of decay, account for electrons. Mass tables apply to neutral atoms. Example: EC “recycles” e-

    b + decay of p produces ion

  • W. Udo Schröder, 2009

    Nuc

    lear

    Bet

    a D

    ecay

    9

    Beta Decays of Odd-A and Even-A Nuclei

    2

    2

    min 2 3

    ,

    4:

    2 2 4

    s n p e

    A

    s C

    m A Z A A Z A Z

    a m m m c Am m Z

    a a A

    a b g

    b

    g

    D

    Expand around ZA: Mass parabola bottom of valley

    2( ) ( ) Am Z A Z Za b D

    11.2

    0

    11.2

    MeV o oA

    MeV A odd

    MeV e eA

    D

    mc

    2

    ZA Z

    odd-A isobars D = 0

    b

    b

    b

    b

  • W. Udo Schröder, 2009

    Nuc

    lear

    Bet

    a D

    ecay

    10

    Energetics of b Decay

    , 1, | , 1, |

    ( , ) ( 1, ) ( , ) ( 1, )

    , 1, |

    ( , ) ( 1

    2

    , )

    e

    e

    e

    e

    Z A Z A e Z A Z A e

    m Z A m Z A m Z A m Z A

    Z A e Z A

    m Z A m

    m

    Z

    EC

    A

    b

    b

    1 extra e+ 1 extra e-

    Beta decay and EC (K)-capture

    11 116 5: 6 6 eExample C e Be e e Qb

    b

    Mass balance:

    11 2 11 2 2 2

    11 2 11 2 2

    ( ) ( )

    ( ) ( ) 2

    e e

    e

    m C c m Be c m c m c Q

    Q m C c m Be c m c

    bb

    b

    Decay Q-value smaller by 2mec2 for b+ decay than for b-

    Qb>0 exotherm

    5 1

  • Fermi Theory of b Decay

    W. Udo Schröder, 2009

    Nuc

    lear

    Bet

    a D

    ecay

    11

    p

    core

    n

    core

    EC

    i f

    Simple example: single nucleon orbiting core of paired nucleons captures atomic 1s electron.

    c c p p n nf ri r

    c c c c

    c

    c

    c c c c

    2

    3

    3 n n

    np

    3 p p

    p n n p

    operators , , anal

    Isospin wave functions ,

    Iso

    ˆ

    sp og to spin operat

    ˆ

    orsˆ ˆ ˆ

    1 2 1 2ˆ

    n

    ˆ

    i

    initial, final s.p. nuclear states

    2

    if WI f

    2 ˆP f H i E Fermi’s Golden Rule Perturbation theory for i f

    d d d WI F p e n p nĤ G r r r r r rˆ

    Weak Interaction Hamiltonian (point-like) GF: coupling constant, : Isospin raising operator d : delta distribution

    ̂

    ME of weak interaction H

    Density of final states per unit

    energy

    e- e

  • Weak Transition Matrix Elements

    W. Udo Schröder, 2009

    Nuc

    lear

    Bet

    a D

    ecay

    12

    3 *

    fi WI f i

    i e p core

    f n co e

    F

    r

    ˆH : f H i d r r r

    r r r r

    r r r

    G ˆ

    r

    2

    2 2 3 *

    fi F f i

    Nucl

    222 22 3 *

    F e core core n p

    Nucl

    H G d r r r

    G (0) (0) d r

    ˆ

    ˆr r

    =1 =1, per def

    2

    pr

    2

    er

    5 fm 104 fm

    r

    2

    nr

    2

    r

    5 fm 104 fm

    r

    Lepton wave functions vary weakly over nuclear volume

    2 2

    e, e,r 0

  • Fermi Transition ME

    W. Udo Schröder, 2009

    Nuc

    lear

    Bet

    a D

    ecay

    13

    2 2 22

    fi F eH G (0) (0)

    Hydrogen-like e- wave function

    B2Zr3

    2 a 4

    e B31sB

    Z(0) 2 e Bohr Radius a 5 10 fm

    a

    Plane-wave e wave function

    i k r

    22 i k r

    1(r ) e

    V

    1 1(0) e

    V V

    32 2

    fi F 3

    B

    2 Z 1H G

    Va

    Fermi transitions (“super-allowed”): No change in I,

    For Pif need to evaluate density (Ef) of final states: neutron-neutrino relative phase space

    Normalization volume, drops out in final calculations

  • Neutrino Phase Space

    W. Udo Schröder, 2009

    Nuc

    lear

    Bet

    a D

    ecay

    14

    3

    2

    F 3 f

    B

    if

    2 Z2GP E

    1

    Va

    =# final (n, ) states at energy Ef EC: Ef ≈ E neglect nuclear recoil energy

    p

    pD

    Uncertainty Relation

    3

    24

    2 2 3

    2

    2 3 3

    4

    2

    x y z

    dVp dp

    f

    p p p x y z h

    d n p dp dV h p E c

    dn EV E

    dE c

    D D D D D D

    22

    if gs2 3

    3 32 2

    F F3 3

    B

    3 2 4 3

    B

    E2P V E :

    2 c

    2 Z 1 2 ZG G

    Va ac

    Use experimental data for 7Be EC decay to determine GF

    GF ≈ 100 eV fm3. More exact average over many data sets:

    GF ≈ 88 eV fm3

  • Branching in EC b Decay

    W. Udo Schröder, 2009

    Nuc

    lear

    Bet

    a D

    ecay

    15

    2

    if max2 4 3

    2

    ma

    3

    ma

    2

    x

    F 3

    B

    x

    P2 Z

    Ga

    E E E Qc

    E E

    7Be

    7Li

    0.86 MeV

    0.48 MeV

    0.0 MeV

    3

    2

    3

    2

    1

    2

    I

    EC 88%

    EC 12%

    phase space depends on Q = Emax rate increases with Emax

    2

    ex

    2

    gs

    2

    ex

    gs

    0.478 MeV Q 0.478MeV

    Q

    0.3820.20

    0.861

    ex

    gs exp

    0.115

    Experimental value correct magnitude but disagrees

    Reason: n ≠ p because of nuclear spin change 3-/2 1-/2

    “forbidden” transition

  • 2 e

    if fi f f f max e

    f

    d n n2P H E E E E E E

    dE

    Shape of the b± Spectrum

    W. Udo Schröder, 2009

    Nuc

    lear

    Bet

    a D

    ecay

    16

    Beta decay other than EC 3-body final state Neglect nuclear recoil energy.

    1, 1,

    1, 1

    e

    e

    N Z eN Z

    N Z e

    2 2

    2

    max

    2 2

    max

    3 3 2 3

    4 44 1

    ( ,, 1

    1

    )

    e

    i

    e

    f

    e

    e

    e p E c

    plane wave problemati

    dn p dn pVV E E V

    dp d

    s for e H V

    Fixed E dp dE c

    ph h

    c for e Coul

    c h

    omb

    22 2

    4 6 3

    222

    max4 6 3max

    1

    4

    4

    e e e

    e e eee f

    Vdn dn p dp p dp

    c

    dn Vdn p E E E

    dE cdp dp

    22

    22max3 7 32

    F fie e

    e

    e

    momentum

    spectr

    G Hp

    dN

    dE E

    p mc u

  • Shape of b± Spectrum/Coulomb Correction

    W. Udo Schröder, 2009

    Nuc

    lear

    Bet

    a D

    ecay

    17

    22 2max max

    22 2 4

    22 2

    2 22 22 22 2 4

    max max3 7 5 3 7 5

    ( . )

    2 2

    e e e

    ee e

    e

    ee e

    F fi F fie e

    E W p c m c E W Q neglect nucl recoil

    p cdWp c W

    dN

    m cdp

    p c m c

    G H G Hp W W W W W m c W

    cWW

    cd

    Relativistic momentum-energy relation

    e

    e

    dN

    dp

    b+

    b-

    Z=0

    epBarrier effect

    Should use Coulomb e (r) ≠ plane wave. Electron cloud acts as barrier for e+. Non-relativistic numerical correction factor (Fermi function)

    b

    22

    2

    2, : 0 0

    1 exp 2

    : 2

    freee e e

    e

    e Zf

    F

    or

    Z p

    22

    22max3 7 3

    (2

    , )F fie e ee

    e

    G HdNp E E

    dp cF Z p

  • Kurie/Fermi Plot

    W. Udo Schröder, 2009

    Nuc

    lear

    Bet

    a D

    ecay

    18

    Validity of Kurie Plot •|Hfi| ≠ f(Ee) • DI = 0 (allowed transitions) • mc

    2≈ 0 eV For DI ≠ 0 additional correction factors Kurie plots for forbidden transitions

    22

    22max3 7 3

    (2

    , )F fie e ee

    e

    G HdNp E E

    dp cF Z p

    2 max

    22

    3 7 3

    ( , )

    2

    ee e e

    e

    F fi

    Linear

    dNF Z p p

    Kur

    E Edp

    G Hfactor

    c

    ie Plot

    64Cu b+ and b- Decays

    Owen et al. PR 76, 1726 (1949)

    Kurie plot gives extrapolation to Emax of electron spectrum

  • Neutrino Mass Effect

    W. Udo Schröder, 2009

    Nuc

    lear

    Bet

    a D

    ecay

    19

    Correct decay energy for mc2:

    2 2 2 2 2 4max max max

    2 2 4max

    22 1 222 2 4 2 4

    max max3 7 4

    ,

    1 1

    2

    fie Fe

    e

    E W E m c p c W m c

    dp W

    dE c c W m c

    HdN GF W m c W W W W m c

    dp c

    2

    e

    e e

    dN

    Fp dp

    Ee (keV)

    Kurie Plot 3H b - Decay

    m ≠ 0 deviations of Kurie plot

    from linearity at end point. No direct evidence for mc

    2≠ 0 Indirect evidence (neutrino oscillations) mc

    2 > 0.1 eV

  • Total b± Decay Rate

    W. Udo Schröder, 2009

    Nuc

    lear

    Bet

    a D

    ecay

    20

    e

    e

    e ee

    e

    e e

    e

    max

    3 7

    e0 5 4 2 2

    e F e e

    2

    2fi 2emax

    0

    e

    1 21

    p2 W: : :

    m c G m c m c

    HdN1 for F 1,

    dN n2d

    d t

    m 0d

    Seek method to systematize data: Unit conversion

    e

    2

    fi

    max

    0 1 2

    H n2f Z,

    t

    Universal numerical function, independent of spectrum Tables

    e

    2

    2 2 3 *

    fi F f i

    Nucl

    max 0

    Nuclear str

    Phas

    ucture info

    e spac f

    rmation

    H G d r

    e : Z,

    ˆ

    ,

    r r

    b b

    b(Z )

    max maxf (Z ,E ) a(Z) E

    a(Z) exp 5.553 7.3418exp Z 213.86

    b(Z) 4.148exp

    Paramete

    Z 51.6

    Z

    rization (Machner ,2005)

    0 for ,Z 0 for

    e

    e e e e e e e max

    22

    max max

    1

    f (Z, ) d

    Coulomb Corre

    F(Z, )

    c o

    1

    ti n :

  • b± Decay ft-Values

    W. Udo Schröder, 2009

    Nuc

    lear

    Bet

    a D

    ecay

    21

    e

    0max 1 2 2

    fi

    0

    2

    fi

    n2ft : f Z , t

    H

    B n2 2787 70 s

    H B ft

    2

    fi

    Bft :

    H

    1 2t1s 6·1014 y

    Large ft: slow transitions, small|Hfi|2

    Experimental task: Emax, and t1/2 combination nuclear matrix element

    Meyerhof, 1967

    super

    allow

    ed

    allow

    ed

    1st fo

    rbid

    den

    Frequency of ft Values

    Super allowed b transitions: Large matrix elements, small ft observed only for light nuclei (“mirror nuclei”) and DI=0,±1

    b 17 177 8

    F O log ft 3.38

    16

    8O

    16

    8O

    p n

  • W. Udo Schröder, 2009

    Nuc

    lear

    Bet

    a D

    ecay

    22

  • W. Udo Schröder, 2009

    Nuc

    lear

    Bet

    a D

    ecay

    23

    3H Kurie Plot Solid line corresponds to mc

    2=100 keV

    22

    22max3 7 3

    (2

    , )F fie e ee

    e

    G HdNp E E

    dp cF Z p

    2 max

    22

    3 7 3

    ( , )

    2

    ee e e

    e

    F fi

    Linear

    dNF Z p p

    Kur

    E Edp

    G Hfactor

    c

    ie Plot

  • Allowed and Forbidden b Decays

    W. Udo Schröder, 2009

    Nuc

    lear

    Bet

    a D

    ecay

    24

    Ee (keV)

    36Cl Kurie Plot allowed decay

    36Cl Kurie Plot 1st forbidden decay

  • Double b Decay

    W. Udo Schröder, 2009

    Nuc

    lear

    Bet

    a D

    ecay

    25

  • Parity Violation in b Decay

    W. Udo Schröder, 2009

    Nuc

    lear

    Bet

    a D

    ecay

    26

    t (min)

    Count

    Rate

    /Count

    Rate

    warm

    Count

    Rate

    /Count

    Rate

    warm

    e g

    g Anisotropy a equatorial counter b polar counter

    b Anisotropy

    g Anisotropy average of both counters, both field polarities

    2 0

    2

    W W

    W

    e

    Light Guide

    Pumping Inlet

    Anthracite Scintillator

    Ce/Mg Nitrate Container

    Equatorial NaI Counter

    Polar NaI

    Counter

    Sample