26
Introduction A Minimal Renormalisable Inflationary Supersymmetric Standard Model Scalar potential and its extrema F-term inflation and (p)reheating Higgs thermal inflation and gravitinos Summary Supersymmetric Higgs Thermal Inflation and the μ-term Mark Hindmarsh 1, 2 Tim Jones 3 1 Department of Physics & Astronomy University of Sussex 2 Helsinki Institute of Physics Helsinki University 3 Dept. of Mathematical Sciences University of Liverpool COSMO 2012 Basbøll, MH, Jones (2011); MH, Jones (2012); MH, Jones (in prep.) Mark Hindmarsh SUSY Higgs Thermal Inflation & μ

Supersymmetric Higgs Thermal Inflation and the -term

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Supersymmetric Higgs Thermal Inflation and the -term

IntroductionA Minimal Renormalisable Inflationary Supersymmetric Standard Model

Scalar potential and its extremaF-term inflation and (p)reheating

Higgs thermal inflation and gravitinosSummary

Supersymmetric Higgs Thermal Inflation andthe µ-term

Mark Hindmarsh1,2 Tim Jones3

1Department of Physics & AstronomyUniversity of Sussex

2Helsinki Institute of PhysicsHelsinki University

3Dept. of Mathematical SciencesUniversity of Liverpool

COSMO 2012Basbøll, MH, Jones (2011); MH, Jones (2012); MH, Jones (in prep.)

Mark Hindmarsh SUSY Higgs Thermal Inflation & µ

Page 2: Supersymmetric Higgs Thermal Inflation and the -term

IntroductionA Minimal Renormalisable Inflationary Supersymmetric Standard Model

Scalar potential and its extremaF-term inflation and (p)reheating

Higgs thermal inflation and gravitinosSummary

Outline

Introduction

A Minimal Renormalisable Inflationary Supersymmetric Standard Model

Scalar potential and its extrema

F-term inflation and (p)reheating

Higgs thermal inflation and gravitinos

Mark Hindmarsh SUSY Higgs Thermal Inflation & µ

Page 3: Supersymmetric Higgs Thermal Inflation and the -term

IntroductionA Minimal Renormalisable Inflationary Supersymmetric Standard Model

Scalar potential and its extremaF-term inflation and (p)reheating

Higgs thermal inflation and gravitinosSummary

Inflation and the Standard Model

The Standard Model (+ massive ν) now looks complete

Higgs mH =

126.0 ± 0.4 (stat) ± 0.4 (sys) ATLAS125.3 ± 0.4 (stat) ± 0.5 (sys) CMS

Neutrinos∆m2

21 = (7.50 ± 0.20)× 10−5 eV2 sin2(2θ12) = 0.857 ± 0.024∆m2

32 = (2.32+0.20−0.08)× 10−3 eV2 sin2(2θ23) > 0.95

sin2(2θ13) = 0.098 ± 0.013

The very early universe: inflation (WMAP7)Ps(k0) = (2.43± 0.11) × 10−9, ns = 0.963± 0.012 (68%CL),

Reheating: energy Inflaton(s)→ Standard Model (“Big Bang”) How is Inflation sector coupled to SM?

SM ← ? → Inflation

Mark Hindmarsh SUSY Higgs Thermal Inflation & µ

Page 4: Supersymmetric Higgs Thermal Inflation and the -term

IntroductionA Minimal Renormalisable Inflationary Supersymmetric Standard Model

Scalar potential and its extremaF-term inflation and (p)reheating

Higgs thermal inflation and gravitinosSummary

Supersymmetry

xMSSM

Reduces tuning forMew ≪ mP

DM candidates χ0, G

CP, baryo-, leptogenesis.

BUT

Still has tuning No experimental evidence

Supersymmetric inflation(F-terma, D-termb)

Renormalisable field theory Naturally flat potential Corrections under control

BUT

ns = 1− 1Ne

=⇒ ns & 0.98 High Trh → gravitino

problemc

Massive cosmic stringsd

aCopeland et al (1994)bBinetruy, Dvali (1996)cWeinberg (1982)dBattye, Garbrecht, Moss (2006)

Mark Hindmarsh SUSY Higgs Thermal Inflation & µ

Page 5: Supersymmetric Higgs Thermal Inflation and the -term

IntroductionA Minimal Renormalisable Inflationary Supersymmetric Standard Model

Scalar potential and its extremaF-term inflation and (p)reheating

Higgs thermal inflation and gravitinosSummary

A Minimal Renormalisable Inflationary Supersymmetric Standard Model

Incorporates MSSM (with neutrinos, but no more) Incorporates F-term supersymmetric inflation MSSM + 3 fields + U(1)′ symmetry Dynamical explanation of µ-term and RH neutrino masses Second period of Higgs-driven “thermal” inflation Trh ∼ 109 GeV Reduced amount of F-term inflation: ns ≃ 0.975 Neutralino DM (from gravitino decays or freeze-out) Leptogenesis from RH neutrino decays (if MN1 . 109 GeV) Baryogenesis (if electroweak phase transition is 1st order) Cosmic strings, Gµcs ≃ 10−7, consistent with CMB

Mark Hindmarsh SUSY Higgs Thermal Inflation & µ

Page 6: Supersymmetric Higgs Thermal Inflation and the -term

IntroductionA Minimal Renormalisable Inflationary Supersymmetric Standard Model

Scalar potential and its extremaF-term inflation and (p)reheating

Higgs thermal inflation and gravitinosSummary

Fields and symmetries

(ν)MSSM sector: two-parameter family of anomaly free U(1)′

Q U D L E N H1 H2

Y ′−

13 qL −qE −

23 qL qE +

43 qL qL qE −2qL − qE −qE − qL qE + qL

R 1 1 1 1 1 1 0 0

Y : (qL, qE) = (−1, 2). B − L: (qL, qE ) = (−1, 1)

Inflation sector:

Φ Φ S

Y ′ 4qL + 2qE −4qL − 2qE 0

R 0 0 2

Mark Hindmarsh SUSY Higgs Thermal Inflation & µ

Page 7: Supersymmetric Higgs Thermal Inflation and the -term

IntroductionA Minimal Renormalisable Inflationary Supersymmetric Standard Model

Scalar potential and its extremaF-term inflation and (p)reheating

Higgs thermal inflation and gravitinosSummary

Coupling the MSSM to F-term inflation

Superpotential: W = WA + WX + WI

Consisting of: Pure MSSM part: WA = H2QYUU + H1QYDD + H1LYEE + H2LYNN Coupling part: WX = 1

2λ2NNΦ− λ3SH1H2. Pure F-term inflation part: WI = λ1ΦΦS − M2S

µ-term from 〈s〉 RH neutrino masses from 〈φ〉 All other renormalisable terms forbidden by symmetries All B-violating operators forbidden by U(1)′ and R

Mark Hindmarsh SUSY Higgs Thermal Inflation & µ

Page 8: Supersymmetric Higgs Thermal Inflation and the -term

IntroductionA Minimal Renormalisable Inflationary Supersymmetric Standard Model

Scalar potential and its extremaF-term inflation and (p)reheating

Higgs thermal inflation and gravitinosSummary

Related models

Y ′ = B − L 1. Neutrino masses from 〈φ〉, but µ-term notspecified. No Higgs thermal inflation.

U(1)′ → SU(2)R2. Higgs thermal inflation not noticed.

FD inflation3. 〈s〉 gives both µ and (TeV-scale) N masses. Alchemical inflation4. Singlet couples to Higgs and inflaton.

1Buchmüller, Domcke, Schmitz, Vertongen (2010-2012)2Dvali, Lazarides, Shafi (1997)3Garbrecht, Pallis, Pilftsis (2006)4Nakayama, Takahashi (2012)

Mark Hindmarsh SUSY Higgs Thermal Inflation & µ

Page 9: Supersymmetric Higgs Thermal Inflation and the -term

IntroductionA Minimal Renormalisable Inflationary Supersymmetric Standard Model

Scalar potential and its extremaF-term inflation and (p)reheating

Higgs thermal inflation and gravitinosSummary

The scalar potential.

V (s, φ, φ, h1, h2) = VF + VD + Vsoft + ~∆V1

VF =|λ1φφ − λ3h1h2 −M2|2 +

[

λ21(|φ|2 + |φ|2) + λ2

3(|h1|2 + |h2|2)]

|s|2

VD = 12g′2

(

qΦ(φ∗φ− φ

∗φ) + qH(h

†1h1 − h†

2h2))2

+

18 g2

2

a(h†1σ

ah1 + h†2σ

ah2)2 + 1

8 g21(h

†1h1 − h†

2h2)2

No FI-term - unproblematic embedding in supergravity5

5Komargodski & Siegel (2009)Mark Hindmarsh SUSY Higgs Thermal Inflation & µ

Page 10: Supersymmetric Higgs Thermal Inflation and the -term

IntroductionA Minimal Renormalisable Inflationary Supersymmetric Standard Model

Scalar potential and its extremaF-term inflation and (p)reheating

Higgs thermal inflation and gravitinosSummary

The minimum and its geometry.

VD = 0 when |φ| = |φ|, |h1| = |h2|, h†1h2 = 0.

VF = 0 when s = 0, λ1φφ− λ3h1h2 = M2

Minimum parameters: angles χ ∈ [0, π/2], ϕ ∈ [0, 2π], SU(2):

φ =M√λ1

sinχeiϕ, hT1 =

(

M√λ3

cosχeiϕ, 0)

Angle ϕ is associated with U(1)′′ gauge symmetry generated byY ′′ = Y ′ − (qL + qE )Y

Unbroken symmetries :χ = 0 U(1)em×U(1)′′ h-vacuum

0 < χ < π/2 U(1)em

χ = π/2 SU(2)×U(1)Y φ-vacuum

Mark Hindmarsh SUSY Higgs Thermal Inflation & µ

Page 11: Supersymmetric Higgs Thermal Inflation and the -term

IntroductionA Minimal Renormalisable Inflationary Supersymmetric Standard Model

Scalar potential and its extremaF-term inflation and (p)reheating

Higgs thermal inflation and gravitinosSummary

Inflationary flat direction.

Charged fields vanish: |φ| = |φ| = |h1| = |h2| = 0. Flat direction s with VF = M4

0

0.5

1

1.5

0

0.5

1

1.50

0.5

1

1.5

2

φ/φ0

s/sc

V/M

4

Mark Hindmarsh SUSY Higgs Thermal Inflation & µ

Page 12: Supersymmetric Higgs Thermal Inflation and the -term

IntroductionA Minimal Renormalisable Inflationary Supersymmetric Standard Model

Scalar potential and its extremaF-term inflation and (p)reheating

Higgs thermal inflation and gravitinosSummary

SUSY-breaking

Vsoft = m2φ|φ|2 + m2

φ|φ|2 + m2

h1|h1|2 + m2

h2|h2|2 + m2

s |s|2 +ρM2m 3

2(s + s∗) + (hλ1φφs + hλ3 h1 · h2s + c.c.).

Soft terms are all proportional to m 32, the gravitino mass.

SUSY-breaking lifts vacuum degeneracy, gives µ-term (〈s〉H1H2)

〈s〉 ≃ − hλ1λ2

1−

m 32ρ

λ1(in φ-vacuum).

Mark Hindmarsh SUSY Higgs Thermal Inflation & µ

Page 13: Supersymmetric Higgs Thermal Inflation and the -term

IntroductionA Minimal Renormalisable Inflationary Supersymmetric Standard Model

Scalar potential and its extremaF-term inflation and (p)reheating

Higgs thermal inflation and gravitinosSummary

F-term inflation

0

0.5

1

1.5

0

0.5

1

1.50

0.5

1

1.5

2

φ/φ0

s/sc

V/M

4

Recall s flat direction (all other fields vanishing): SUSY is broken, radiative corrections contribute

V (s) ≃ M4[

1 + α ln 2s2

s2c

]

, when sc ≪ s

α = λ2

16π2 , λ =√

λ21 + 2λ2

3, s2c = M2/λ

OK to neglect linear soft term if ρ≪ λ3

16π2sc

m 32

OK to neglect c|s|4/m2P in Kähler if c ≪ 105α

Mark Hindmarsh SUSY Higgs Thermal Inflation & µ

Page 14: Supersymmetric Higgs Thermal Inflation and the -term

IntroductionA Minimal Renormalisable Inflationary Supersymmetric Standard Model

Scalar potential and its extremaF-term inflation and (p)reheating

Higgs thermal inflation and gravitinosSummary

End of inflation and (p)reheating

M2φ,φ

= λ1(|s|2 − λ1M2), M2h1,h2

= λ3(|s|2 − λ3M2)

λ1 < λ3: inflation ends at s2

c1 = M2/λ1 Transition to φ-vacuum (〈|φ|2〉 = M2/λ1) U(1)” symmetry broken: cosmic strings formed

λ3 < λ1: inflation ends at s2

c3 = M2/λ3 Transition to h-vacuum (〈|h1,2|

2〉 = M2/λ3) U(1)′′ symmetry preserved: no strings formed (yet)

Reheating time: M−1. Much smaller than expansion time H−1. Thermal potential keeps universe in false h-vacuum

Mark Hindmarsh SUSY Higgs Thermal Inflation & µ

Page 15: Supersymmetric Higgs Thermal Inflation and the -term

IntroductionA Minimal Renormalisable Inflationary Supersymmetric Standard Model

Scalar potential and its extremaF-term inflation and (p)reheating

Higgs thermal inflation and gravitinosSummary

Predictions from F-term inflation

Predictions: Ps(k) ≃ 4Nk3

(

scmp

)4, ns ≃

(

1− 1Nk

)

. 6

WMAP7 (neglecting cosmic string contribution):Ps(k0) = (2.43± 0.11) × 10−9, ns = 0.963± 0.012 (68% CL),

Normalisation: scmp≃ 2.9× 10−3

(

27Nk0

)14, Nk0 = 27+13

−7 .

2σ discrepancy with Hot Big Bang: Nk0 ≃ 55 + ln(Trh/1015 GeV) Solution: Nθ ≃ 17 e-foldings of thermal inflation Reduces high scale inflation Nk0 ≃ 40: hence ns ≃ 0.975

6Nk is number of e-foldings of inflation after aH = kMark Hindmarsh SUSY Higgs Thermal Inflation & µ

Page 16: Supersymmetric Higgs Thermal Inflation and the -term

IntroductionA Minimal Renormalisable Inflationary Supersymmetric Standard Model

Scalar potential and its extremaF-term inflation and (p)reheating

Higgs thermal inflation and gravitinosSummary

Thermal inflation from the MSSM Higgs

Write difference in vacuum energies asVh − Vφ ≡ ∆V ≃ v2

+m2sb

v+ is U(1)′ symmetry-breaking scale O(1016) GeV msb is supersymmetry-breaking scale O(1) TeV

Inflation re-starts when ρ(T ) ≃ ∆V or Ti ≃ 109( msb

1 TeV

)

12 GeV.

Inflation ends in thermal phase transition at Te ∼ msb7

U(1)′′ symmetry broken, cosmic strings form

7Lyth & Stewart (1996)Mark Hindmarsh SUSY Higgs Thermal Inflation & µ

Page 17: Supersymmetric Higgs Thermal Inflation and the -term

IntroductionA Minimal Renormalisable Inflationary Supersymmetric Standard Model

Scalar potential and its extremaF-term inflation and (p)reheating

Higgs thermal inflation and gravitinosSummary

(P)reheating after thermal inflation

Inflaton is modulus field χ

Near χ = 0 mostly φ, φ Near χ = π/2 mostly h1, h2

Efficient reheat (Higgs) Reheat temperature

Trh2 =(

30geffπ

2 ∆V)

14 ≃ Ti

Hence

Trh2 ≃ 109( msb

1 TeV

)

12 GeV.

OK for leptogenesis (just)a

aBuchmüller, Di Bari, Plümacher(2004)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

χ/(π/2)

∆ V

/∆ V

max

Mark Hindmarsh SUSY Higgs Thermal Inflation & µ

Page 18: Supersymmetric Higgs Thermal Inflation and the -term

IntroductionA Minimal Renormalisable Inflationary Supersymmetric Standard Model

Scalar potential and its extremaF-term inflation and (p)reheating

Higgs thermal inflation and gravitinosSummary

(Re)generation of gravitinos

e-foldings of thermal inflation: Nθ ≃ 12 ln

(

v+msb

)

≃ 17− ln( msb

1 TeV

)

Gravitinos from high-scale inflation diluted

Gravitinos regenerated by reheating to Trh2 ≃ 109( msb

1 TeV

)

12 GeV

Gravitinos are either LSP, or decay into LSP

ΩLSPh2 ≃ 6× 10−3ωGmLSP

100 GeV

( msb1 TeV

)

12 8

ωG: O(1) theoretical uncertainty factor9

8see e.g. Kawasaki et al (2008)9Bolz, Brandenberger, Buchmüller (2001); Pradler, Steffen (2006); Rychkov,

Strumia (2007)Mark Hindmarsh SUSY Higgs Thermal Inflation & µ

Page 19: Supersymmetric Higgs Thermal Inflation and the -term

IntroductionA Minimal Renormalisable Inflationary Supersymmetric Standard Model

Scalar potential and its extremaF-term inflation and (p)reheating

Higgs thermal inflation and gravitinosSummary

Gravitino constraints (AMSB)

ΩLSPh2 ≃ 6× 10−3ωGmLSP

100 GeV

( msb1 TeV

)

12 ≃ 0.11

Hindmarsh, Jones (2012) AMSB empirical formula: mLSP ≃ 3.3× 10−3m 3

2

m2sb ≃ m2

32

(

g′2

16π2

)2Q[

q2φ − q2

H

(

λ1λ3

)]

Correct µ-parameter (EW vacuum ): q2φg′2 ≃ λ3

λ1

Hence m 32≃ 300

(

1ω2

G

qφ√Q

λ3λ1

)13

TeV

Allowed range: 130ω− 2

3

GTeV . m 3

2. 210ω

− 23

GTeV

Higgs mass 125 GeV with m 32= 140 TeV

Mark Hindmarsh SUSY Higgs Thermal Inflation & µ

Page 20: Supersymmetric Higgs Thermal Inflation and the -term

IntroductionA Minimal Renormalisable Inflationary Supersymmetric Standard Model

Scalar potential and its extremaF-term inflation and (p)reheating

Higgs thermal inflation and gravitinosSummary

Gravitino constraints (GMSB & mSUGRA)

GMSB: Requires λ3/λ1 ≪ 1 for TeV-scale superparticles e.g. for m 3

2∼ 1 TeV, Mgaugino ∼ 10 TeV, λ3/λ1 ∼ 10−3

GUT-scale messenger mass - disfavoured by NLSP decays10

mSUGRA: Non-thermal gravitino decays produce negligible LSP density Trh ≃ 109 GeV means m 3

2& (few) TeV to avoid BBN constraints

10Gherghetta, Giudice, Riotto (1998)Mark Hindmarsh SUSY Higgs Thermal Inflation & µ

Page 21: Supersymmetric Higgs Thermal Inflation and the -term

IntroductionA Minimal Renormalisable Inflationary Supersymmetric Standard Model

Scalar potential and its extremaF-term inflation and (p)reheating

Higgs thermal inflation and gravitinosSummary

Cosmic string constraints

Cosmic strings are formed at the end of thermal inflation Mass per unit length µcs ∝ v2

+, v+ ≃ 1016 GeV CMB limit11 Gµcs < 0.42× 10−6 (95%CL) Ordinary Abelian Higgs strings:

Gµcs ≃ 3B(β)× 10−6, with β = λ1/q2φg′2

B(β) . 0.1 means λ1/q2φg′2 . 10−10

Small λ1 (very flat potential) means ns → 1, tuned Kählerpotential12. Also important linear soft term.

Here, cosmic strings have a Higgs condensate: β ∝ m2

sb/v2+ ∼ 10−2613 gives B ≃ 0.04

Gµcs ≃ 10−7, no constraint on inflaton couplings λ1, λ3 CMB limit satisfied

11Urrestilla et al (2011), Abelian Higgs strings. See also Dunkley et al (ACT, 2010)12Battye, Garbrecht, Moss (2006)13Barreiro et al (1996)

Mark Hindmarsh SUSY Higgs Thermal Inflation & µ

Page 22: Supersymmetric Higgs Thermal Inflation and the -term

IntroductionA Minimal Renormalisable Inflationary Supersymmetric Standard Model

Scalar potential and its extremaF-term inflation and (p)reheating

Higgs thermal inflation and gravitinosSummary

Summary

A minimal inflationary supersymmetric standard model Mechanisms for Higgs µ-term and RH neutrino masses Two phases of inflation: (a) F-term at 1015 GeV and (b) Higgs

thermal at 109 GeV DM from thermally produced gravitinos (AMSB) Cosmic string Gµcs ≃ 10−7 satisfies CMB constraints Reduced e-foldings of F-term inflation: ns ≃ 0.975 Temperature high enough for leptogenesis

Outlook Leptogenesis in detail? Other string constraints (gravitational waves, cosmic rays)?

Mark Hindmarsh SUSY Higgs Thermal Inflation & µ

Page 23: Supersymmetric Higgs Thermal Inflation and the -term

Appendix

Higg thermal inflation potential

V (χ) ≃ −M2

2

(

hλ1 sin2 χ+ hλ3 cos2 χ)2

λ1 sin2 χ+ λ3 cos2 χ+M2

(

m2φ

λ1sin2 χ+

m2h

λ3cos2 χ

)

,

(1)where hλ1 =

hλ1λ1

, hλ3 =hλ3λ3

, m2φ = m2

φ + m2φ

and m2h = m2

h1+ m2

h2.

v2+ = 4M2/λ1

m2sb ≃

m232

(

g′2

16π2

)2Q[

q2φ − q2

H

(

λ1λ3

)]

, (AMSB),

Λ2sλ1λ3

(

g′2

16π2

)2 [

q2H

(

λ1λ3

)

− q2φ

]

(GMSB),

12 (m

20 − A2/4)

[

λ1λ3− 1]

(mSUGRA).

Mark Hindmarsh SUSY Higgs Thermal Inflation & µ

Page 24: Supersymmetric Higgs Thermal Inflation and the -term

Appendix

GMSB gravitino constraint

SU(2) gaugino mass M2, messenger index Nmi

(

m 32

1 TeV

)2

≃ 50√

Nmi

λ3λ1

1ω2

G

(

M210 TeV

)−1

Mark Hindmarsh SUSY Higgs Thermal Inflation & µ

Page 25: Supersymmetric Higgs Thermal Inflation and the -term

Appendix

Vacuum degeneracy and the µ-term

Define: vφ = 〈|φ|〉/√

2, v1 = 〈|h1|〉/√

2, vs = 〈|s|〉/√

2

µ-term: vs ≃ − hλ1√2λ2

1

−m 3

√2λ1

(Neglect ρ term from now)

φ-vacuum energy: Vφ = M2

λ1

(

m2φ + m2

φ− h2

λ1

2λ21

)

h-vacuum energy: Vh = M2

λ3

(

m2h1+ m2

h2− h2

λ3

2λ23

)

Must have Vh > Vφ for minimum at electroweak vacuum Constraint on SUSY-breaking scenarios

Mark Hindmarsh SUSY Higgs Thermal Inflation & µ

Page 26: Supersymmetric Higgs Thermal Inflation and the -term

Appendix

Constraints in 3 common SUSY-breaking scenarios

Anomaly-mediated Supersymmetry-breaking (AMSB) Assume Q = Tr(Y ′2) ≫ 1

λ1

(

qHqΦ

)2. λ3.

Gauge-mediated Supersymmetry-breaking (GMSB) Assume Q = Tr(Y ′2) ≫ 1

λ1

(

qHqΦ

)2& λ3.

Minimal Supergravity (mSUGRA) Universal scalar soft mass m0, universal trilinear coupling A [2m2

0 − A2/2 > 0 and λ1 > λ3 ] or [2m20 − A2/2 < 0 and λ1 < λ3]

Mark Hindmarsh SUSY Higgs Thermal Inflation & µ