19
Molecular Cell, Volume 56 Supplemental Information Structural Model of a CRISPR RNA-Silencing Complex Reveals the RNA-Target Cleavage Activity in Cmr4 Christian Benda, Judith Ebert, Richard A. Scheltema, Herbert B. Schiller, Marc Baumgärtner, Fabien Bonneau, Matthias Mann, and Elena Conti

Supplementary text and figures Cmr-MolCell2014 proof Cell, Volume 56 Supplemental Information Structural Model of a CRISPR RNA-Silencing Complex Reveals the RNA-Target Cleavage Activity

Embed Size (px)

Citation preview

Molecular Cell, Volume 56

Supplemental Information

Structural Model of a CRISPR RNA-Silencing Complex Reveals the RNA-Target Cleavage Activity

in Cmr4

Christian Benda, Judith Ebert, Richard A. Scheltema, Herbert B. Schiller, Marc Baumgärtner, Fabien

Bonneau, Matthias Mann, and Elena Conti

  1  

SUPPLEMENTAL  FIGURES  

 

 

 

Figure   S1   (related   to   Table   1).   Activity   of   the   Cmr6ΔN   protein   used   for   structural  

analysis  

A)  RNA-­‐target  cleavage  activity  of  Cmr  complexes  reconstituted  with  either  Cmr6  full  length  

(f.l.)  or  Cmr6ΔN.  The  absence  (lane  1)  or  presence  (lane  2)  of  the  N-­‐terminal  100  residues  of  

Cmr6  have  no  effect  on  target  cleavage.    

B)  On  the  right  are  selected  particles  showing  a  Cmr  complex  reconstituted  with  Cmr6ΔN;  

taken  from  raw  images  of  negative-­‐stain  EM.  On  the  left   is  a  10%  Coomassie-­‐stained  gel  of  

the   Cmr   complex   used   for   the   negative-­‐stain   EM   analysis.   The   Cmr   complex   was  

reconstituted   by   incubating   the   individually   purified   proteins   (Cmr1,   Cmr2,   Cmr3,   Cmr4,  

Cmr5,  Cmr6∆N  with  and  without  crRNA  (Purimex)  in  a  2:1:2:4:4:2:2  molar  ratio)  for  30  min  

at  37  °C.  

BA

Cmr2

Cmr6ΔN

Cmr3Cmr1

Cmr4

Cmr5

Cmr4

main product

target

  2  

 

Figure  S2  (related  to  Figure  1).  The  active  site  of  the  Cmr2  HD  domain  is  similar  to  the  nuclease  domain  of  Cas3  

Superposition   of   the   HD   nuclease   domain   of   Pf   Cmr2   with   the   HD   domain   of   Tt   Cas3  

(Mulepati  and  Bailey,  2011).  Active-­‐site  residues  are  highlighted.  

 

K18

H25

H13D14H69D70

D50D205

H207H24Pf Cmr2HD

Tt Cas3HD

S209

NiCas3

MnA

MnB

  3    

B

D

C

A

H34B

R33B

E151A

D233A

E205A

T204A

S203A

I111I102

F151

F100

L104

F90L87

W99

L85

L17

α3AαAIIA

α6B

α1B

F67A

K71A

W149B

Y27BF153B V155B

A66A

A70A

L20

Y24 V27

T110

H15

Y114

E

Cmr6

Cmr1

Cmr4

Cmr5A

Cmr5Blid

45°

α1B

β4B

β3B

β1B

βFB

Q43C

T243C

R245C

A79C

K46C

D86C

K276B

V274B

T273B

E272B

F278B

A

B

C

β1β2 β4β3

α1

α2

insertion 4

insertion 1

insertion 2

insertion 3

C-terminalN

  4  

Figure   S3   (related   to   Figure   2).   Characteristic   structural   features   of   the   Cas7-­‐like  

proteins  of  the  P.  furiosus  Cmr  complex  

A)   Left,   topology   diagram   of   the   RRM-­‐domain   of   the   Cas7   protein   family   as   in   Figure   2  

(Helices  are  represented  as  circles  and  β-­‐strands  as  arrows,  and  labeled  numerically).  Right,  

a  table  listing  the  detailed  secondary  structure  elements  as  referred  to  in  the  main  text.    

B)   Left,   zoom   in   of   hydrophobic   interactions   in   the   lid   domain   of   Pf   Cmr1.   Right,   overall  

surface   charge   distribution   of   Pf   Cmr1   showing   the   strongly   positively   charged,   central  

nucleotide  binding  cleft.  

C)   Zoom   in   of   selected   interactions   between   two   Pf   Cmr4   subunits   (in   red   cartoon   and  

electrostatic  surface  representation)  in  the  filaments  of  the  crystal  lattice  (center).  Left,  the  

glycine-­‐rich   loop   on   top   of   the   central   RRM   (part   of   the   lid   domain)   is   engaged   in  

interactions   with   the   bottom   part   of   the   subsequent   molecule   mainly   via   two   charged  

interactions   (E272B  with   R245C   and   K276B  with  D86C),   but   also   hydrophobic   interactions  

(F278B,   T243B,   V274B).   Right,   conserved   charged   interactions   between   R33B   and   H34B,  

binding  to  a  negative  surface  patch  on  the  previous  Cmr4  molecule  (chain  A).  

D)  Zoom  in  of  the  interactions  between  two  different  Pf  Cmr5  molecules  (in  dark  and  light  

pink  colors)  in  the  filaments  of  the  crystal  lattice.  

E)  Superposition  of  the  lid  domains  of  Cmr4  (in  red)  and  Cmr6  (in  orange).  

 

  5    

18977498|Therm|Pyrococcus_furiosus_DSM_3638/1-29515678353|Metha|Methanothermobacter_thermautotrophicus/1-28321229457|Metha|Methanosarcina_mazei_Go1/1-308219850664|Chlor|Chloroflexus_aggregans_DSM_9485/1-31615612893|Bacil|Bacillus_halodurans_C-125/1-30015644536|Therm|Thermotoga_maritima_MSB8/1-288209966739|Alpha|Rhodospirillum_centenum_SW/1-295108762640|delta|Myxococcus_xanthus_DK_1622/1-31794985067|Deino|Deinococcus_geothermalis_DSM_11300/1-26246255189|Deino|Thermus_thermophilus_HB27/1-285153940638|Clost|Clostridium_botulinum_F_str-_Langeland/1-285297619079|Metha|Methanococcus_voltae_A3/1-28715605885|Aquif|Aquifex_aeolicus_VF5/1-297124027590|Therm|Hyperthermus_butylicus_DSM_5456/1-330284997237|Therm|Sulfolobus_islandicus_L-D-8-5/1-257

18977498|Therm|Pyrococcus_furiosus_DSM_3638/1-29515678353|Metha|Methanothermobacter_thermautotrophicus/1-28321229457|Metha|Methanosarcina_mazei_Go1/1-308219850664|Chlor|Chloroflexus_aggregans_DSM_9485/1-31615612893|Bacil|Bacillus_halodurans_C-125/1-30015644536|Therm|Thermotoga_maritima_MSB8/1-288209966739|Alpha|Rhodospirillum_centenum_SW/1-295108762640|delta|Myxococcus_xanthus_DK_1622/1-31794985067|Deino|Deinococcus_geothermalis_DSM_11300/1-26246255189|Deino|Thermus_thermophilus_HB27/1-285153940638|Clost|Clostridium_botulinum_F_str-_Langeland/1-285297619079|Metha|Methanococcus_voltae_A3/1-28715605885|Aquif|Aquifex_aeolicus_VF5/1-297124027590|Therm|Hyperthermus_butylicus_DSM_5456/1-330284997237|Therm|Sulfolobus_islandicus_L-D-8-5/1-257

18977498|Therm|Pyrococcus_furiosus_DSM_3638/1-29515678353|Metha|Methanothermobacter_thermautotrophicus/1-28321229457|Metha|Methanosarcina_mazei_Go1/1-308219850664|Chlor|Chloroflexus_aggregans_DSM_9485/1-31615612893|Bacil|Bacillus_halodurans_C-125/1-30015644536|Therm|Thermotoga_maritima_MSB8/1-288209966739|Alpha|Rhodospirillum_centenum_SW/1-295108762640|delta|Myxococcus_xanthus_DK_1622/1-31794985067|Deino|Deinococcus_geothermalis_DSM_11300/1-26246255189|Deino|Thermus_thermophilus_HB27/1-285153940638|Clost|Clostridium_botulinum_F_str-_Langeland/1-285297619079|Metha|Methanococcus_voltae_A3/1-28715605885|Aquif|Aquifex_aeolicus_VF5/1-297124027590|Therm|Hyperthermus_butylicus_DSM_5456/1-330284997237|Therm|Sulfolobus_islandicus_L-D-8-5/1-257

18977498|Therm|Pyrococcus_furiosus_DSM_3638/1-29515678353|Metha|Methanothermobacter_thermautotrophicus/1-28321229457|Metha|Methanosarcina_mazei_Go1/1-308219850664|Chlor|Chloroflexus_aggregans_DSM_9485/1-31615612893|Bacil|Bacillus_halodurans_C-125/1-30015644536|Therm|Thermotoga_maritima_MSB8/1-288209966739|Alpha|Rhodospirillum_centenum_SW/1-295108762640|delta|Myxococcus_xanthus_DK_1622/1-31794985067|Deino|Deinococcus_geothermalis_DSM_11300/1-26246255189|Deino|Thermus_thermophilus_HB27/1-285153940638|Clost|Clostridium_botulinum_F_str-_Langeland/1-285297619079|Metha|Methanococcus_voltae_A3/1-28715605885|Aquif|Aquifex_aeolicus_VF5/1-297124027590|Therm|Hyperthermus_butylicus_DSM_5456/1-330284997237|Therm|Sulfolobus_islandicus_L-D-8-5/1-257

111111111111111

8090961008182798970778576789576

M K A Y L V G L Y T L T P T H P G S G T E - L G V V DQ P I Q R E R H T G F P V I WGQ S L K G V L R S Y L K L V - - - - - - - - - - - - - - - - E K V D E E K I N K I F G P P T - - - - - - E K A - H E Q A GL E P E K V Y A R A L D P V H I G A G G Y R L G R A D N T I V R E P S T D I P K I P G T S I A G V T R E F Y T A Y L A E N E F G D K S A E E K R - K - R A E E K A K S I F G D - - - - - - - - - - - - E N K K GY T Q Q R Y L F M A L D P V H I G T GQ S Q L G R V D N T I V R E P G T N I P K I P G T S L M G A A R H Y A S M K Y G K L E A A GQ H K T L K G K N - H E K C P I I Y T F G T Y T - - E T E - - - - - G GQ Q GY Q R Q R Y L L M T I D P V H I G T G G Y R L G R V D N S I V R E P G T R V P K I P G T S L H G A A R S Y A AQ L Y E T P E A A GQ S Q D K V E - N - P DQ N P V C Y T F G Y I K - - K T G N G N N V T A Y S GN S S Q L F F V H C L S P V H I G T G E G - V G L I DM P I M R E R V T K WP L I P G S T T K G V H R D Y F V Q - - - - - - - - - - - - - - - - - Q R D K E S W I R T A F G A G K - - - - - G E A D A E G N A GM E G R V F L L Y A E T Q V H A G T G F E - I G V V D L P I Q R E R T T K F P I I H G - - I K G A L R A Y F R S L I - - - - - - - - - - - - - K E D K I D E K K I E E I F G S E P - - - - - - K S D K G T V P GG A R A S L F I H A L T G L H P G S G T A - L G V V D L P V Q R E R H T NWP L I P A S S I K G V L R A AM K R - - - - - - - - - - - - - - - - - K H N D D GQ L WA V F G P D - - - - - - - T D N A A E H A GM E S R P Y L L H A L S P L H V G T GQ S - V G V I D L P L A R L K A T G I P F V P G S S L K G V L R E L R R P R - - - - - - - - - - - - - - E E T G D A R G L H D A V F G P R R A K A G P E G D E P G D Y A GA N A E L L MWQ A L T P V H S G T GQ S S A G V I D L P I A R E G A T G F P M L P G S S I K G V L R Q G R E D - - - - - - - - - - - - - - - - - - - - - - E E A K R L F G S L - - - - - - - - - - - - D A A GS H V A L L F L H A L S P L H A G T GQ G - I G A I D L P I A R E K A T G I P Y L P G S S L K G V L R D R A S A - - - - - - - - - - - - - - - - - - - WD R D T L F A V F G P D - - - - - - - T E N A S E H A GK D K E T I Y I K A I S P I H A G S GQ S - L T S V DM P I Q R E S H S N I P K I E G S S L K G S V K H N V Y H K L - - - - - - - - - R V N K D N K K E E H K L F E K M F G S E D - - - - - - G N - - - D C A SK T G K I I G F K A I S P V H V G S G S D - L G V V DQ P I Q R E R H T S Y P K I E A S S L K G A I R Q K F V E K - - - - - - - - - - - - - - - - - - V E K N C L D A I F G P E S - - - - - - G N - - - E H S SE Y GQ L L T L Y A V T P I H I G S GQ S - I S F I D L P I Q R E R H T G F P I L R S N G I K G A L R S V A E R V W - - - - - - - - - - - - - - - - - K D K A K V E T V F G P E D - - - - - - D A S - - K F A GL A G F L V L G Y A V T P L H P G V G R A - P G A V D L P V Q R D - P M G Y P M V Y A S S V K G A L K A E C A K Q A G D K C F D D R G R I K C N D K D E D C A L C C C L F G H E - - - - - - - P E A A E A A S SP K A Y L I L A Y A V T P V H V GMG R A - P G V V D L P F Q R D - S I G Y P I V Y G S S F K G V L K S S L MD - - - - - - - - - - - - - - - - - - - K N S N L A K C V F G A E - - - - - - - P E E A N K Y MG

819197

1018283809071788677799677

163162167175176162167183153161167171172186143

L I S V G D A K I L F F P V R S L K G V Y A Y V T S P L V L N R F K R D L E L A G V K N F Q T E I P E - - - - - - - - - - - - - L T D T A I A S E - - E I - - - - - T V D N K V I L E E F A I L I Q K D - D K GV L R F Y D GQ I L F F P V S S V R G T V - W I T T E Q L F N Y WC V K D E K I S Y E D - - - - - - - - - - - - - - - - - - - - - - - - - - - E N K V Y A I R G - - E L N G R L N L GW L L F E V N S E K - - KK I S I S D AQ I L L F P V N S I A G P L - WV S T K E I L E T A G F S I Q D T - - - - - - V E I F - - - - - - - - - - - - - - - - - - - - - D E N V F T S MN - - W E K D T L N L GW L S L K A I T G L - - -V V N I F D A H V L L F P V Y S M T G P V - WV T T L G R L C E A G F T V K H N G A A L A T E P Q T - - - - - - - - - - - - - - - - - - - - - G T A L L T WD - - - - R K D V L N L GW L M V N V A G K A - - -S I V M S D A R I L A F P V A S Y Y G T F A Y V T C P M V I K R L E R DMG A A N V S Y F S N L I E K V E GW E K K L - - - S T N E D K A L I G H R C E V T D - - - E N N E K I Y L D E F E L S V V I D - - - GS L S F S E A R I L L F P V R N P D R L F V WV T C P L V L I K F A K S V G D N D V V K E L E E A N I - - - - - - - - - - - - - - - - - - D Y G K A V S F - - - - - Y G S G E V F L E E V K L E P F V G - E L PA L A L T D A R I L A F P V R S L K G V F AW I T C P T V L A R F C R D R A L V G E Q P L P A V P T V T T G K V R C P - - - - - - K V G P E Q E S P L L - - - - - - I D N T A L I L E E F D F D Y E G D - - - -A L V V G D A R L L A L P V R S F V G T F A L V T S P M L L A L A R R D L G G L S G K E G AWP K V E P L A Q R G A - - - - - - - R V A S L R D S A V V Y G A G - - T S E A C V Y L E D L D L Q V A S K - D D AR L T F T D A R L L C L P V R S Y R G T F A Y V T C P L V L S R L R R D L A A L G H P L A L P E V P E V K E N - - - - - - - - - - - T A Q V A G D T L - - - - - - - M H G GQ V L L E D L D L Q A E E T - - - AA V Q V G D A K L L L L P V R S L Y G V F A L A T S P Y L L E R F R R E A L M A G L Q P P G V P G L R D P T - - Q - - - - - - - - - V L L A P G S R L L - - - - - - G D G E K V Y L E D L D L K AQ G E - - - EA I S I T D A K L L L F P M R S A I D I Y K L I T C P Y V L K R WK E E T NQ S F E D S I L E N I E D - - - - - - - - - - - - - G H C V I NQ N S - - P L - - - - - L S N D K V M L E E Y I F E A R K E - D L -C I A F T D A R L L F F P V K S A K G T F A L I T C P K V L K R F Y E D L D Y L T K I C D K K D N K L L E E I K Y L K N L T T S N K E I I I N N D - - N L - - - - - K I K D K V I L E E Y V F K E K S N - D K -C V S I T D A R I L F Y P V R S V R G V F AW I T S P I V L R R F Q E D L R S I G K E I N I K V L K N G K E V P S N - - L N L E E N E A I L F S D - - G L - - - - - I K D G K L F L E E F A F N P I L N - A P EV L S V L D L V P L F F P V P S L S H G Y L Y I T T P Y L A R R A Y S V M E A I G T S G E Y N K L M K L L E N I A - - - - - - - - K Q E L G E G E A A G C - - - - - V D D R K V Y V G T D E L N V K K K L G N CR F I V T E L I P V F Y P I A S L D - G Y V Y I S T D Y L I K K A E D I L S V V K S N T I Y T R N N - - - - - - - - - - - - - - - - - - - - - - - - - - N - - - - - G E E V N I L L G K L K S S Y T V - - - - -

164163168176177163168184154162168172173187144

258241258266268257260277237252251256266277225

I L E S V V - - K A I E Q - A F - - - - - G N E M A E K I K G R I A I I P D D V F R D L V E L S T E I V A R I R I N A E T G T V E T G G L WY E E Y I P S D T L F Y S L I L V T P R A K D N DMA L I K E V L -E D V D L P - - D E I N E - - - - - - - - - - - - - - - W I K R A V I V P E N L F S P I V N D N L E V R T S V R I D P E T G T A V E G A L F T Y E A I P R G T I F G F E I A T E K D E K R K E V - - - - - - - -N V V P P H - - T I K E K - - - - - - - - - - D E WN S I A S R L S I V S P K L F S Q I V N S N L E V R T S V A I K P E T G T A E D K A L F T Y E A I P R T T W L F F D V V Q D D Y K N E F P P T E K Q Y K - DE V T A P N - - V WQ N E - - - - - - - - - - Q R WQ A V A N R I V L V S E S L F S H V V N S N L E V R T S V A I D P G R G A A E E G A L F T Y E A L P R A T F L T T E V V L D D Y R E A F P K D K C GQ G - KT F G E L T - - N S L A K L V F - - - K D D H F S Q E L L A S R L V L V S D E S F Q Y F V T Q C S E I T P R I R L K A E E K V V D D G A L WY E E Y L P T E T L L Y G L I WC E K MDQ V K E S W - - - - - - -R T R E L I - - S K I S N C A P - - - - - V D Y L K K K M E S D V V V V N D V L F S E I V Q AM T E V V P R V R I N R E K K T V E E G G L WY E E Y L P Q D T V M Y F V V R K T Y Y G N K E D S G K D S L M - -- P G L WP - - E V L A Q T V D - - - - - - A A T G D R M R T H L A I L S D D D F G H F V Q H A T E V V A R I G L D A K T K T V K N G A L F Y E E V L P A E T L F H A L V M A E S S R R A E V P M P A A E V - -A L G AWA - - Q G L A G L L P - - - - - - E A E R A L L T K R L V L V D D E T M S F L W E T A T Q V D T R V S MD P E T G T A A K GQ L WT E E S L P A E T L L V G V MG A T G T F N K A P R K L A A D A - -S A R AWA - - E A L A E L S G - - - - - - - - L G D E L R E R F A L L S D D E F G F L A E T A T E V T A H I R L D A E T K T V A G G A L WY E E A L P A A S L L T S F L L R P Q D V T F A - - - - - - - - - -G V A AW E - - R W L A E R T E - - - - - - - - - - A P V L G R L A V V H D D L MG F L L E T A T E V V A R I R L D D E T K T V A K G A L WY E E S L P A E S L L Y A L V R A D R S F R K G K E L R P E G V W -- S I L F N - - G S - - - - - - - - - - - - - - F E N L Q I N K V V I L S D S D F I DM V T M Y T E V I T R N K I N V E T G T AQ G T G L F S E E Y L P A E T V M Y F S V L E S A F Y K G E E E V L K Y F - - -- L K D L N - - N L - - - - - - - - - - - - - - - F E L N D K N L A I V S D D V F K Y F V N Y A T E V I T R T K I D P K T G I V V N G A L F T E E Y L P S E T I M Y T I A L A S N P F K K I E G V L S N E N N -- N V DWD - - F F N T I - I P - - - - - S D E L V G L L R T H L V I V S D N V F R D L V N Y A V E V R T R I R I NQ A T G T V E R G A L F T E E F I P S E S I F Y S L L N I S E P H N K E V F E K A E K V R -E D L S F V - - A K L G G - - - - - - - - - - - L A G D I Q S R M I V V S D A V G P L Y V E K G L I R V T R V R L R L D T K T V A E G G L WT E E Y I P Q G T I F L S G F I A A L P K K N T Y C K H V N G I E S- - - T L A - - N N V K N - - - - - - - - - - - I G S L I K D K V Y V F D N E V G L Q V V E S S L I R V T R N V L D D N T K T S Q - - N L WT E E Y L P Q G T V F I G G I I D A E R T N E L C K D I K N - - - -

259242259267269258261278238253252257267278226

295283308316300288295317262285285287297330257

- - - - - - - - - - - - - - - - - - - - - G K I N G K Y L Q I G G N E T V G K G F V K V T L K E V T N N G G T H A K - -- - - - - - - - - - - - - - - - - - L N A V S P Y L K Y L G I G GM V T R G F G R L E L A A E H S E D E Q V G T D V K PG D N E G D S L G E V WN S P I D V L N A G F H L I E Y L G I G GM V T R G F G R M K K M Y AW E V - - - - - - - - - -T D K N N P L P G D P WN C P L D V V K A G L R M I E W L G V G GMG T R G F G R L A I V G E P L K - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - K R L S K G R V L Q V G G N A T V G R G R V R Y L Y T G G D Y S - - - - - - - -- - - - - - - - - - - - - - - - - E V F E N E V N G E L I N I G G K E T V G K GMMWV H AWR - - - - - - - - - - - -- - - - - - - - - - - - - - - - - L AWV R Q S E L D V V Q I G A D E T I G R G I C R L T WA D G G A R - - - - - - - -- - - - - - - - - - - - - - - - V L D A A F G G E G T V L Q L G G K A T V G R G R C R L L AWMA P D A R G G R - - - -- - - - - - - - - - - - - - - - - - - - - - - - P P S S L Q L G G K G S V G R G L L S V Q V V V R - - - - - - - - - - -- - - - - - - - - - - - - - - G L F R G V L E E G G G V L Q L G G K A T V G R G L C R V R V G R - - - - - - - - - - - -- - - - - - - - - - - - - - - - - - - - - N E N I G G I F Q V G G N E T I G K G I V K V I N H D L L K G V T E - - - - -- - - - - - - - - - - - - - - - V I D I V C N K L P K Y MQ I G G N T T L G K G I V K P L K L - - - - - - - - - - - - -- - - - - - - - - - - - - - - - E E V K D L I N R C K I I Q V G G D E S L G K G F I R L N L C - - - - - - - - - - - - -G V I K D S G D L K N L I T K L A E K L K K T N N V F Y A I I G G K E T V G R G L I K F T I A L P Q GQ Q - - - - - - -- - - - - - - - - - - - - - - V D E E F K K N L D N I S I F L G G K E T I G K G L V R I K V I - - - - - - - - - - - - -

D26H15Alignment of Cmr4 orthologs (type III B)

Alignment of Pf Cmr4 and Csm3 orthologs (type III A)

Y229E227

18977498|Therm|Pyrococcus_furiosus_DSM_3638/1-295125974541|Clost|Clostridium_thermocellum_ATCC_27405/1-252159898996|Chlor|Herpetosiphon_aurantiacus_ATCC_23779/1-24315609958|Actin|Mycobacterium_tuberculosis_H37Rv/1-23057865882|Actin|Staphylococcus/1-21155978332|Deino|Thermus_thermophilus_HB8/1-23630248152|Betap|Nitrosomonas_europaea_ATCC_19718/1-23315679091|Metha|Methanothermobacter_thermautotroph/1-24015644553|Therm|Thermotoga_maritima_MSB8/1-24014590102|Therm|Pyrococcus_horikoshii_OT3/1-284261403338|Metha|Methanocaldococcus_vulcanius_M7/1-283

18977498|Therm|Pyrococcus_furiosus_DSM_3638/1-295125974541|Clost|Clostridium_thermocellum_ATCC_27405/1-252159898996|Chlor|Herpetosiphon_aurantiacus_ATCC_23779/1-24315609958|Actin|Mycobacterium_tuberculosis_H37Rv/1-23057865882|Actin|Staphylococcus/1-21155978332|Deino|Thermus_thermophilus_HB8/1-23630248152|Betap|Nitrosomonas_europaea_ATCC_19718/1-23315679091|Metha|Methanothermobacter_thermautotroph/1-24015644553|Therm|Thermotoga_maritima_MSB8/1-24014590102|Therm|Pyrococcus_horikoshii_OT3/1-284261403338|Metha|Methanocaldococcus_vulcanius_M7/1-283

18977498|Therm|Pyrococcus_furiosus_DSM_3638/1-295125974541|Clost|Clostridium_thermocellum_ATCC_27405/1-252159898996|Chlor|Herpetosiphon_aurantiacus_ATCC_23779/1-24315609958|Actin|Mycobacterium_tuberculosis_H37Rv/1-23057865882|Actin|Staphylococcus/1-21155978332|Deino|Thermus_thermophilus_HB8/1-23630248152|Betap|Nitrosomonas_europaea_ATCC_19718/1-23315679091|Metha|Methanothermobacter_thermautotroph/1-24015644553|Therm|Thermotoga_maritima_MSB8/1-24014590102|Therm|Pyrococcus_horikoshii_OT3/1-284261403338|Metha|Methanocaldococcus_vulcanius_M7/1-283

18977498|Therm|Pyrococcus_furiosus_DSM_3638/1-295125974541|Clost|Clostridium_thermocellum_ATCC_27405/1-252159898996|Chlor|Herpetosiphon_aurantiacus_ATCC_23779/1-24315609958|Actin|Mycobacterium_tuberculosis_H37Rv/1-23057865882|Actin|Staphylococcus/1-21155978332|Deino|Thermus_thermophilus_HB8/1-23630248152|Betap|Nitrosomonas_europaea_ATCC_19718/1-23315679091|Metha|Methanothermobacter_thermautotroph/1-24015644553|Therm|Thermotoga_maritima_MSB8/1-24014590102|Therm|Pyrococcus_horikoshii_OT3/1-284261403338|Metha|Methanocaldococcus_vulcanius_M7/1-283

18977498|Therm|Pyrococcus_furiosus_DSM_3638/1-295125974541|Clost|Clostridium_thermocellum_ATCC_27405/1-252159898996|Chlor|Herpetosiphon_aurantiacus_ATCC_23779/1-24315609958|Actin|Mycobacterium_tuberculosis_H37Rv/1-23057865882|Actin|Staphylococcus/1-21155978332|Deino|Thermus_thermophilus_HB8/1-23630248152|Betap|Nitrosomonas_europaea_ATCC_19718/1-23315679091|Metha|Methanothermobacter_thermautotroph/1-24015644553|Therm|Thermotoga_maritima_MSB8/1-24014590102|Therm|Pyrococcus_horikoshii_OT3/1-284261403338|Metha|Methanocaldococcus_vulcanius_M7/1-283

11111111111

8079686868686867668171

M K A Y L V - G L Y T L T P T H P G S G - - - T E L G V V DQ P I Q R E R H T G F P V I WGQ S L K G V L R S Y L K L V E K V D E E K I N K I F G P P T E K A H E Q A G- R Y V V R G I I V A E T P I H I G A G N E S MN P V E P D N S V I K D K - D G K P Y I P G S S L K G A L R S W L E S F L R G G G N E I T G G N A P C - L C - - V N E P- R I F V N F E I H A L T G L H I G G A A G T L A I G N V D N P V I R N P F N S E P Y V P G S S L R G K M R S Q L E K L Y G L AQ N T S I - - - - - - - - - - - - - - -- K I E I T G T L T V L T G L Q I G A G D G F S A I G A V D K P V V R D P L S R L P M I P G T S L K G K V R T L L S R Q Y G A D T E T F Y - - - - - - - - - - - - - - -- K I K I S G T I E V V T G L H I G G G G E S S M I G A I D S P V V R D L Q T K L P I I P G S S I K G K M R N L L A K H F G L K M K Q E S - - - - - - - - - - - - - - -- V I R I R S V L L A K T G L R I GM S R DQMA I G D L D N P V V R N P L T D E P Y I P G S S L K G K L R Y L L E W S L G G D Y I L K A - - - - - - - - - - - - - - -- I H K I T G T L I L K S G L H I G A G D S E M R I G G T D S P V V K D P L T DQ P Y I P G S S L K G K I R S L L E WR H G L V V A T G G - - - - - - - - - - - - - - -- N Y I I T G E I L C R T G L H I G V S K D S I E I G G S D N P I I R D P V T R L P Y I P G S S I K G K M R S L L E L E L D R V S N G G - - - - - - - - - - - - - - - -- K Y I I K G K I I L E T G L R I G GQ E L G V N I G G I D N P V I R N P L T G E P Y I P G S S V K G K M R S L M E R L L N L D I S G - - - - - - - - - - - - - - - - -- K I I I S G E I E A V T G L H I G S Q R E V S E I G G I D N P V I K D P H T G L P Y I P G S S L K G R L R S L F E I Y V N T R L D E L K S K Y S S L S N Y - - S K G S- K I I F K G K I K V N T G L H I G S Q R D V S E I G G I D N P V V K D P I T Q L P Y I P G S S L K G K L R S L L E I A E N T K K P K E E Q G I - - - - - - - - - - - -

8180696969696968678272

1461371119898114117111104139126

L I S V G D A K I - L F F P V R S L K G - - - - - V Y A Y V T S P L V L N R F K R D L E L A G V K N F Q T E - - - - - - - - - - - - I P E L T D T A I A S E E I T V D NC L G - - D N P E N K E W L K E I K K K Y K N N K D A D R L V A E E I Y R K L C P V C K V F G S Q H F A - - - - - - - - - - - - - - - - - - - - - - - - S K V T I N D S- - - - - - - - - - - - - - - - - - - - - - G R D V S I H S A K T Q A E Y D N S P V L H I F G I P A S D F - - - - - - - - - - - - - - - - - - - L T E P I R L I V R D A- - - - - - - - - - - - - R K - - - - - - - - - - - - - - - - - - - P N E D H A H I R R L F G D T E - - - - - - - - - - - - - - - - - - - - - - E Y M T G R L V F R D T- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - H NQ D D E R V L R L F G S S E K G - - - - - - - - - - - - - - - - - - - - N I Q R A R L Q I S D A- - - - - - - - - - - - - - - - - - - - K - E R Q V Y A - - - - - - S P D P K D P V A R I F G L A P E N D E R S - - - - - - - - - - - L A V A R E R G P T R L L V R D A- - - - - - - - - - - - - - - - - - - - - - A P Y S F K H L AQ D E N N S A G R D V I K L F G G A P D K - A E - - - - - - - - - - - - DQ L V K N I G P T R L A F WD C- - - - - - - - - - - - - - - - - - - - - - - - - - - - - P C - - - - K C G K C E I C R V F G S A A D S S S S S - - - - - - - G P T R T D S S S S S G P T R I I V R D A- - - - - - - - - - - - - - - - - - - - - - - N K V R R H E C - - - - E E R E C K V C R V F G S T S K E - - - - - - - - - - - - - - - - - - - G N N I P S R L L V R D AC R D V G K E N C G K F F N K - - - - - K - L N N V W I H V C S T Y E M A R N C P V C R L Y G S S G K E - - - - - - - - - - - - - - - - - - - - S N F P S R L I V R D A- - - - - - - G D E K F F N R K I I R G S - K E P I W I H V C E N Y K D A K E C P V C R L F G S G G - N - - - - - - - - - - - - - - - - - - - - S N F P A R V V V R D A

1471381129999

115118112105140127

230172154138139158160154147179166

K V I L E E F A I L I Q K D D K G I L E S V V K A I E Q A F G N E M A E K I K G R I A I I P D D V F R D L V E L S T E I V A R I R I N A E T G T V E T G G L WY E E Y IK - L K S - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E R A Y I E K R D G V A I D R D T G T S A K N K K Y D F E Q VA - L S E Q - - - - - - - T R A A F R - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - D A R T D L P Y T E V K W E A A I D R V T S A - A T - - P R Q Q E R VK - L T N K - - - - - - - D D L - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E A R G A K T L T E V K F E N A I N R V T A K - A N - - L R Q M E R VF - F S E K - - - - - - - T K E H F - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - A Q N D I A Y T E T K F E N T I N R L T A V - A N - - P R Q I E R VY - L T E D - - - - - - - A K E A L E R - - - - - - - - - - - - - - - - - - - - - - - - - - - - - T S A R G G L Y T E I K Q E V F I P R L G G N - A N - - P R T T E R VP - L N G D - - - - - - - WK K E A A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - D S R H L L T T E V K S E N S I N R I A G T A E H - - P R F I E R VF - P T D E - - - - - - - T V E E WK - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E S S E V V E G A E L K Y E N N L N R I T S M - A N - - P R NQ E R VF - L T E D - - - - - - - S K T K L L - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - S M E T D L P Y T E WK T E N A L D R V T C K - A D - - P R S F E R IF - L T E E - - - - - - - WK K K W - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E N G E A I T E A K I E V G I D R V T S Q - A N - - P R T T E R VH - L T D Y - - - - - - - WK E K W - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - E T G E E L T E I K H E N T L D R I T S A - A S - - P R K I E R I

231173155139140159161155148180167

295238218216204223222217212244231

P S D T L F Y S L I L V T P R A - - - - - - - - - - - - - - - - - K D N DMA L I K E V L G K I N G K Y L Q I G G N E T V G K G F V K V T L K E V T N N G G T H A K - -A A G T E F D F HM T A D N L D - - - - - - - - - - - - - - - E E N E K - - - I L K I I V K M L E S G D F V V G G K R S V G L G R I R L Y N T K I Y K I D E K S L E N YP A G A I F D G A L T F T L Y N - - - - - - - - - - - - - - DQ D T K L - - - F N T V I R G L E L V E E D Y L G GQ G A R G S GQ V A F K N I M I R F Q Q - - - H E K PI P G S E F A F S L V Y E V S F G T P G E E Q K A S L P S S D E I I E D - - - F N A I A R G L K L L E L D Y L G G S G T R G Y GQ V K F S N L K A R A A V - - - G A L DT R G S E F D F V F I Y N V D E - - - - - - - - - - - - - E S Q V E D D - - - F E N I E K A I H L L E N D Y L G G G G T R G N G R I Q F K D T N I E T V V - - - G E Y DP A G A R F R V E M T Y R V L D - - - - - - - - - - - - - D L D E E Y F - - - G K Y L L R A L E L L E L D G L G G H I S R G Y GQ V Y F L H P E R L T E D - - - Q E GWI A G A R F D F T L T L K V L E G - - - - - - - - - - - - - - D - - D L - - - L N T V L L G L R L L E L D S L G G S G S R G Y G K I K F A E L K L D G T D - - - L M E QP R G S K F G F E I I V S E Y D G - - - - - - - - - - - - - - - D S D N - - - L R I V L E G L R L L E D S Y L G G S G T R G Y G K I E F K N I K I R E R P - - - V E Y YP A G A E F E F E I I Y T A E N - - - - - - - - - - - - - E K H I K E D - - - L E N I A T A L E L L E D D Y L G G N G S R G Y G K V K F S I E K V I F K S - - - A D Y YV A G T R F D F E I I Y T I E D - - - - - - - - - - - - - L K E WK D D - - - L R N L L T S M L L L E D S Y L G G S G S R G Y G K V R F H V K G L E L R P - - - L E Y YP P G V E F N F E I I Y T I E D - - - - - - - - - - - - - E N DWK E D - - - V K N L L S T M K M L E D S Y L G G C G S R G Y G K V E F I F E E C K F R S - - - L N Y Y

239219217205224223218213245232

252243230211236233240240284283

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -L F N - - - - - - - - G L S - - - - - - E E M R - - WQ Y V - - - - - - - - - - - - - - - - - - - - - - - - - - -V L E - - - - - - - - K G E I G - - S L A E L R A L W - - - - - - - - - - - - - - - - - - - - A A Q G Y A A K - -G S - - - - - - L L E K L N - - - - - - - - - - - - - - - - - - H E L A A V - - - - - - - - - - - - - - - - - - -S T N - L K - - - - - I K - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - P L K E R L - - - - K V E E V V L - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -F H A - - - I T P F NQ T A - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -R G E - A G E S T M G D F E - - - - S L A D I N T T A E - - - - - - - - - - - - - - - - - - - - - - - - - - - - -K G E - G T - - P V E K E V K G - - G V E G F K K - - - - - - - - A I P E I V K G - - - - - - - - - - - - - - - -R T G - D E G K I V K K T E Y E - - R V E D L L K - - - - - - - - N F E T I T S E F D R R V G G I E G - - - - - -F G K - D Y E K P I E I K E - - - - N V E N T I N E F Y N I F N K E L E E I I K S I S Q N N G G D N G Y K N N K T

D26H15

  6  

Figure   S4   (related   to   Figure   4).   Evolutionary   conservation   of   Cmr4,   the   backbone  

protein  of  the  Cmr  complex.  

The  upper  panel  shows  the  sequence  alignment  of  Cmr4  orthologs  from  Pyrococcus  furiosus  

(Pf),   Thermotoga   maritima   (Tm),   Thermus   thermophilus   (Tt)   and   other   organisms   as  

indicated.  The  lysine  residues  identified  in  the  crosslinking  and  mass  spectrometry  analysis  

in  Figure  4  are  near  patches  of  conserved  residues.  Conserved  residues  are  in  colored  boxes.  

The  position  of  the  nucleolytically  active  D26  is  indicated,  as  well  as  other  residues  that  were  

tested  in  the  mutational  screen  in  Figure  5.  The  lower  panel  shows  the  sequence  alignment  

of  Pf  Cmr4  with  indicated  Csm3  orthologs,  the  putative  backbone  Cas7-­‐protein  from  type  III-­‐

A   systems.   The   catalytically   active   residue  D26  of  Pf   Cmr4   is   also   conserved   among   these  

proteins.  

   

  7  

 

 

 

Figure  S5  (related  to  Figure  5).  Reconstitution  of  a  catalytically  inactive  Cmr  complex  

Left,  size-­‐exclusion  chromatography  profile  of  a  Pf  Cmr  complex  containing  the  catalytically  

inactive  Cmr4  D26A  mutant.  A  Coomassie-­‐stained  15%  SDS-­‐PAGE  gel  of  the  peak  fractions  is  

shown  on  the  right.  

 

   

14

18

35

25

45

66 Cmr2-Δvariant

Cmr3

load

MW

mar

ker

Cmr4-D26A

Cmr5

Cmr1Cmr6-ΔN

fractions on gel

ml

mAU

  8  

Table  S1  (related  to  Figure  3).  Crosslink  mass  spectrometry  raw  data  

A  table  with  crosslink  mass  spectrometry  raw  data  generated   in   this  study  and  containing  

the  following  information:  

Linker   The   short   name,   as  defined   in   the   application  AndromedaConfig,   of   the  used  CID   cleavable   crosslink   chemical.   All   the   fragmentation   rules   and   how   they   relate   to   each  other   for   this   linker   are   also   defined   in   this   application.   For   example,   the   CID   labile  crosslinker  DSSO  fragments  asymmetrically  into  an  alkene  and  sulfenic  acid  (which  can  also  lose   a   water   to   become   a   thiol).   After   cleavage,   these   products   remain   attached   to   the  peptides  and  are  treated  as  variable  modifications  during  the  peptide  identification  stage.  

MaxQuant  automatically  extracts   the  precursor  (where   the  peptide  crosslink   is  still   intact)  and  associates  that  to  the  fragments  by  use  of  precise  mass  relationships  and  elution  profile  correlations   (during   data   acquisition   the   complete   elution   profile   is   recorded   for   the  crosslinked  peptide  pair  and  the  individual  peptides  after  cleaving  the  crosslinker).  

Raw  files   The   semi-­‐colon   separated   list   of   mass   spectrometry   files   from   which   the  particular   crosslink   was   extracted.   In   case   of   pre-­‐fractionation,   it   can   occur   that   the  crosslinked   peptides   are   found   in   two   or   more   different   fractions   if   the   resolution   of  separation  was  not  sufficient.    

Fractions   The   semi-­‐colon   separated   list   of   fraction   numbers   in   which   the   particular  crosslink  was  detected.  

Fraction  intensities   The  semi-­‐colon  separated   list  of  detected  pre-­‐cursor   intensities  in  each  fraction  (i.e.  the  intensity  of  the  crosslinked  peptides).  

Sequences     The   two   peptide   amino   acid   sequences   separated   by   a   dash   of   the  detected  crosslink  pair.  In  case  of  a  looplink  or  a  monolink  only  1  sequence  is  displayed.  

Modified  sequences   The  two  peptide  amino  acid  sequences  with  the  part  of  the  linker  annotated  between  parantheses  separated  by  a  dash  of  the  detected  crosslink  pair.  In  case  of  a  looplink  or  a  monolink  only  1  sequence  is  reported.  

Gene  names     The  gene  names  of  the  proteins  from  which  the  peptides  were  derived  separated  by  a  dash  when  the  names  are  available  (for  more  exotic  organisms  than  Human,  E.  coli  and  Yeast  MaxQuant  does  not  maintain  a  translation  table).  In  the  case  of  interlink  the  protein   name   is   reported   twice.   In   the   case   of   a   looplink   or   a   monolink   only   1   name   is  reported.  

Link  type   Defines  the  type  of  the  detected  crosslink:  ‘InterProtein’  is  a  crosslink  between  two  different  proteins;  ’IntraProtein’  is  a  crosslink  within  a  protein;  ‘LoopLink’  is  a  crosslink  within  a  single  peptide;  ‘Mono’  is  a  quenched  crosslinker  attached  to  a  peptide.  

Mass     The  detected  monoisotopic  mass  of  the  crosslinked  peptide  pair.  

Intensity   The  detected  intensity  of  the  crosslinked  peptide  pair.  

Min  score   The   minimum   Andromeda   peptide   identification   score   of   the   two   separate  identifications.  The  minimum  is  reported  as  a  conservative  estimate.  

Max  PEP   The   maximum   Andromeda   Posterior   Error   Probability   (PEP)   of   the   two  separate  identifications.  The  maximum  is  reported  as  a  conservative  estimate.  

  9  

Min  correlation   The  minimum  elution  profile  correlation  between  the  elution  profile  of  the  crosslinked  peptide  pair  and  the  individual  peptides  after  cleaving  the  crosslinker.  The  minimum  is  reported  as  a  conservative  estimate.  

Crosslink  frequency   The   frequency   in   percent   (between   0   and   1)   at   which   the  crosslink  between  the  two  peptides  actually  formed.  This  is  calculated  by  dividing  the  sum  of  the   individual  peptide   intensities  by   the   intensities  of   the  monolinked  version  of   the  same  peptides.  

Uniprot  [A|B]   The  uniprot  identifier  of  the  protein  associated  to  the  identified  peptide.  

Protein  name  [A|B]     The  name  of  the  protein  associated  to  the  identified  peptide  (for  more   exotic   organisms   than   Human,   E.   coli   and   Yeast   MaxQuant   does   not   maintain   a  translation  table).  

Gene  name  [A|B]   The  gene  name  of   the  protein  associated   to   the   identified  peptide  (for  more   exotic   organisms   than   Human,   E.   coli   and   Yeast   MaxQuant   does   not   maintain   a  translation  table).  

Positions  [A|B]   The   semi-­‐colon   separated   list   of   positions  of   the   amino   acid(s)  where  the  crosslink  was  formed  within  the  protein  associated  to  the  identified  peptide.    In  case  of  multiple  crosslinks  on  the  same  peptides  multiple  positions  will  be  reported.  

Score  [A|B]     The  Andromeda  peptide  identification  score  for  the  identified  peptide.  

PEP  [A|B]   The   Andromeda   peptide   identification   Posterior   Error   Probability   (PEP)   for  the  identified  peptide.  

Correlation  [A|B]     The   correlation   of   the   elution   profile   of   this   individual   peptide  after  crosslink  cleavage  to  that  of  the  crosslinked  peptide  pair.  

Miscleavages  [A|B]     The  number  of  missed  cleavages  based  on  the  cleavage  rules  for  the  used  proteases  for  the  identified  peptide.  

Mass  [A|B]     The  detected  mono  isotopic  mass  for  the  identified  peptide.  

Intensity  [A|B]   The  detected  intensity  for  the  identified  peptide.  

MS/MS  scannumbers  [A|B]   The   scan   numbers   for   the   ms/ms   scans   leading   to   the  identification  of  this  peptide.  

MS/MS  precursor  numbers  [A|B]   The   MaxQuant   internal   precursor   number   of   the  elution  profile  of  this  peptide.  

Reverse   Marked   with   TRUE   when   one   of   the   identified   peptides   was   marked   as   a  reverse  hit  in  the  decoy  search  strategy  employed  during  the  peptide  identification  process.  FALSE  otherwise.  

Contaminant   Marked  with  TRUE  when  one  of  the  identified  peptides  was  associated  to  a  protein  marked  as  a  common  contaminant.  

Number  detections     The   number   of   individual   MS/MS   detections   leading   to   the  identification  of  the  crosslinked  peptide  pair.  

   

  10  

SUPPLEMENTAL  EXPERIMENTAL  PROCEDURES  

 

Purification  of  Pf  Cmr  proteins  and  reconstitution  of  Cmr  complexes  

Pf   Cmr1   was   cloned   in   a   pET-­‐derived   Kanamycin-­‐resistant   vector   with   a   non-­‐cleavable  

C-­‐terminal  6His-­‐tag  and  expressed   in  BL21-­‐Gold   (DE3)  pLysS  cells   (Stratagene)   in  Terrific  

Broth  (TB)  medium  at  37  °C  for  3  hours,  induced  with  30µM  IPTG.  Cells  were  resuspended  in  

lysis  buffer  (20  mM  Tris/HCl  pH  7.5,  1  M  NaCl,  10  mM  imidazole,  5  mM  2-­‐mercaptoethanol,  

10%   glycerol,   0.1%   Triton   X100),   with   the   addition   of   Complete   EDTA-­‐free   Protease  

Inhibitor  Cocktail  Tablets  (Roche)  and  DNase  I,  lysed  by  sonification  and  subjected  to  cobalt  

affinity  purification.  The  eluate  was  then  treated  with  500U  DNAse  for  30  min  at  37  °C  and  

dialyzed  into  20  mM  Tris/HCl  pH  7.5,  200  mM  NaCl,  2  mM  DTT,  10%  glycerol.  The  protein  

was   further  purified  by   ion   exchange   chromatography   (Heparin,  GE  Healthcare)   at   pH  7.5  

and  size  exclusion  chromatography  (Superdex  75,  GE  Healthcare)  in  20  mM  Tris/HCl  pH  7.5,  

500  mM  NaCl,  2  mM  DTT,  10%  glycerol.  

Pf   Cmr2   was   cloned   in   a   pET-­‐derived   Ampicillin-­‐resistant   vector   with   a   TEV-­‐cleavable  

N-­‐terminal  6His-­‐tag  and  expressed   in  BL21-­‐Gold  (DE3)  pLysS  cells   (Stratagene)   in  Terrific  

Broth  (TB)  medium  at  18  °C  overnight,  induced  with  0.5  mM  IPTG.  Cells  were  resuspended  

in   lysis   buffer   (20   mM   Tris/HCl   pH   7.5,   500   mM   NaCl,   10   mM   imidazole,   5   mM  

2-­‐mercaptoethanol,   10%   glycerol)   with   the   addition   of   Complete   EDTA-­‐free   Protease  

Inhibitor  Cocktail  Tablets  (Roche)  and  DNase  I,  lysed  by  sonificaion  and  subjected  to  cobalt  

affinity  purification.  The  tag  was  cleaved  overnight  in  dialysis  buffer  (20  mM  Tris/HCl  pH  7.5,  

200  mM  NaCl,  10  mM  imidazole,  5  mM  2-­‐mercaptoethanol,  10%  glycerol)  with  TEV  protease  

followed  by  removal  of   the  uncleaved  protein  and  TEV  by  another  cobalt  affinity  step.  The  

cleaved   protein   was   then   further   purified   by   ion   exchange   chromatography   (Heparin,   GE  

Healthcare)  at  pH  7.5  and  a  size  exclusion  chromatography  (Superdex  200,  GE  Healthcare)  in  

20  mM  Tris/HCl  pH  7.5,  200  mM  NaCl,  2  mM  DTT,  10%  glycerol.  

Pf   Cmr3   was   cloned   in   a   pET-­‐derived   Kanamycin-­‐resistant   vector   with   a   non-­‐cleavable  

C-­‐terminal  6His-­‐tag  and  expressed   in  BL21-­‐Gold   (DE3)  pLysS  cells   (Stratagene)   in  Terrific  

Broth  (TB)  medium  at  18  °C  overnight,  induced  with  30µM  IPTG.  Cells  were  resuspended  in  

lysis  buffer  (20  mM  Tris/HCl  pH  7.5,  1  M  NaCl,  10  mM  imidazole,  5  mM  2-­‐mercaptoethanol,  

10%  glycerol,  0.1%  Triton  X100)  and  DNase  I,  lysed  by  sonification  and  subjected  to  cobalt  

affinity   purification.   The   protein  was   then   dialyzed   into   20  mM  Tris/HCl   pH  7.5,   200  mM  

  11  

NaCl,   2  mM   DTT,   10%   glycerol   100  mM   L-­‐arginine   and   further   purified   by   ion   exchange  

chromatography   (Heparin,   GE   Healthcare)   at   pH   7.5   and   size   exclusion   chromatography  

(Superdex  200,  GE  Healthcare)   in  20  mM  Tris/HCl  pH  7.5,  200  mM  NaCl,  2  mM  DTT,  10%  

glycerol.  

Pf   Cmr4   was   cloned   in   a   pET-­‐derived   Ampicillin-­‐resistant   vector   with   a   TEV-­‐cleavable  

N-­‐terminal  6His-­‐tag  and  expressed   in  BL21-­‐Gold  (DE3)  pLysS  cells   (Stratagene)   in  Terrific  

Broth  (TB)  medium  at  18  °C  overnight,  induced  with  0.5  mM  IPTG.  Cells  were  resuspended  

in   lysis   buffer   (20   mM   Tris/HCl   pH   7.5,   500   mM   NaCl,   10   mM   imidazole,   5   mM  

2-­‐mercaptoethanol,   10%   glycerol,   DNase   I),   lysed   by   sonification   and   subjected   to   cobalt  

affinity  purification.  The  tag  was  cleaved  overnight  in  dialysis  buffer  (20  mM  Tris/HCl  pH  7.5,  

200  mM  NaCl,  10  mM  imidazole,  5  mM  2-­‐mercaptoethanol,  10%  glycerol)  with  TEV  protease  

followed   by   removal   of   the   uncleaved   protein   and   the   protease   by   a   cobalt   affinity   step.  

Finally,  a  size  exclusion  chromatography  (Superdex  75,  GE  Healthcare)   in  20  mM  Tris/HCl  

pH  7.5,  150  mM  NaCl,  2  mM  DTT,  10%  glycerol  yielded  a  monomeric  protein.    

Pf   Cmr5  was   cloned,   expressed  and  purified   like  Cmr4,   except   that   the   size  exclusion   step  

was  carried  out  in  a  buffer  with  200  mM  NaCl.  

Pf  Cmr6  and  Cmr6∆N  (101-­‐end)  were  cloned   in  a  pET-­‐derived  Kanamycin-­‐resistant  vector  

with   a   non-­‐cleavable   C-­‐terminal   6His-­‐tag   and   expressed   in   BL21-­‐Gold   (DE3)   pLysS   cells  

(Stratagene)   in  Terrific  Broth  (TB)  medium  at  18  °C  overnight,   induced  with  0.5  mM  IPTG.  

Cells   were   resuspended   in   lysis   buffer   (20   mM   Tris/HCl   pH   7.5,   500   mM   NaCl,   10   mM  

imidazole,   5   mM   2-­‐mercaptoethanol,   10%   glycerol),   1   mM   PMSF   and   DNase   I,   lysed   by  

sonification  and  subjected  to  cobalt  affinity  purification.  The  protein  was  then  dialyzed  into  

20  mM  Tris/HCl  pH  7.5,  150  mM  NaCl,  2  mM  DTT,  10%  glycerol  and  further  purified  by  ion  

exchange   chromatography   (Heparin,   GE   Healthcare)   at   pH   7.5   and   a   size   exclusion  

chromatography   (Superdex  200,  GE  Healthcare)   in  20  mM  Tris/HCl  pH  7.5,  150  mM  NaCl,  

2  mM  DTT,  10%  glycerol.  

The   Cmr2-­‐3-­‐4-­‐5-­‐6ΔN   complex   for   the   CXMS   experiment   was   reconstituted   from   purified  

components   in  a  step-­‐wise  manner.  First,  Cmr2  and  Cmr3  were  combined  in  a  1:1.5  molar  

ratio  for  10  min  at  37  °C,  followed  by  the  addition  of  Cmr4  and  Cmr5  in  a  1.5x  molar  excess  

and   incubation   for   30  min   at   37   °C.   To   separate   the   full   complex   from   subcomplexes,   an  

intermediate  size  exclusion  chromatography  (Superose  6,  GE  Healthcare)  in  20  mM  Tris/HCl  

pH  7.5,  200  mM  NaCl,  2  mM  DTT,  10%  glycerol  was  performed.  Finally,  Cmr6∆N  was  added  

  12  

in  a  2x  molar  excess  to  the  fractions  containing  Cmr2,  Cmr3,  Cmr4,  Cmr5  and  incubated  for  

30   min   at   37   °C,   followed   by   another   size   exclusion   chromatography   (Superose6,   GE  

Healthcare)  in  the  conditions  above.    

 

Reconstitution  of  a  Cmr  complex  containing  Cmr4-­‐D26A  

Large  scale  reconstitution  and  purification  of  a  Cmr  complex  containing  Cmr1,  2,  3,  5,  6  and  

Cmr4-­‐D26A  mutant  was  basically  done  as  described  above.  After  reconstitution,  the  complex  

was  purified  on  a  custom  made  Superose  6  (GE  Healthcare)  column  (column  volume  48  ml)  

in  running  buffer  (20  mM  Tris/HCl  pH  7.5,  200  mM  NaCl,  1mM  TCEP).  Peak  fractions  were  

analyzed  on  an  SDS  gel.  

 

Crystallization  and  structure  determination  

All   diffraction   data   were   collected   at   the   Swiss   Light   Source   (SLS)   synchrotron   facility   at  

beam   lines   PXII   and   PXIII.   The   data  were   processed  with   XDS   (Kabsch,   2010).   All   crystal  

structures   were   solved   using   AutoSol   from   the   PHENIX   suite   (Adams   et   al.,   2010).   The  

atomic   models   were   built   with   Coot   (Emsley   et   al.,   2010)   and   refined   using   either   the  

PHENIX   suite   (Adams   et   al.,   2010)   or   the   CCP4   suite   (Winn   et   al.,   2011).   Validation   was  

performed  with  Molprobity  (Davis  et  al.,  2007).  Figures  were  made  using  either  PyMOL  (The  

PyMOL  Molecular  Graphics  System,  Version  1.2  Schrödinger,  LLC.)  or  Chimera  (Pettersen  et  

al.,  2004).  

Pf   Cmr1   crystallized   at   10   mg/ml   from   an   optimized   crystallization   buffer   (100   mM  

bicine/Trizma   base   pH   6.0,   10%   PEG   8000,   20%   ethylene   glycol,   20  mM   each   of   sodium  

DL-­‐alanine,  sodium  L-­‐gutamate,  gylcine,  DL-­‐lysine  HCl,  DL-­‐serine  (Gorrec,  2009)  and  either  

3%  DMSO  or  3%  D-­‐sorbitol)  after  5-­‐10  days.    Crystals  were   flash-­‐frozen   in   liquid  nitrogen  

after   soaking   them   for   20   min   in   a   cryo-­‐protectant   solution   based   on   the   crystallization  

buffer  but  with  15%  PEG  8000  and  20%  ethylene  glycol.  The  best  crystals  diffracted  to  2.7  Å.  

For   experimental   phasing,   crystals   were   soaked   in   the   same   cryo-­‐solution   supplemented  

with  20  mM  AuCl3  for  3  hours,  back-­‐soaked  in  cryo-­‐solution  without  the  heavy  metal  for  10  

minutes  and  flash-­‐frozen.  The  structure  of  Cmr1  was  solved  by  SAD  phasing,  using  PHENIX  

AutoSol   and  AutoBuild   (Terwilliger   et   al.,   2008).   The   final  model   includes   residues   1-­‐336  

(with   the   exception   of   a   partially   disordered   loop   between   residues   202   -­‐   210).   The  

  13  

structure  of  Pf  Cmr1  superposes  with  a  root  mean  square  deviation  (rmsd)  of  1.1  Å  over  all  

Cα atoms  with  the  structure  of  Archeoglobus  fulgidus  (Af)  Cmr1  that  was  reported  recently  

(Sun  et  al.,  2014).  

Crystals   of   full-­‐length   Pf   Cmr2   were   obtained   from   a   crystallization   buffer   containing  

100  mM   bicine/Trizma   base   pH   8.5,   10%   PEG   8000,   20%   ethylene   glycol,   20   mM  

1,6-­‐hexanediol,  20  mM  1-­‐butanol,  20  mM  (RS)-­‐1,2-­‐propanediol,  20  mM  2-­‐propanol,  20  mM  

1,4-­‐butanediol   and   20  mM   1,3-­‐propanediol   (Gorrec,   2009)   and   1.5-­‐2  %   dextrane.   Seleno-­‐

methionine  (SeMet)  incorporated  Cmr2  crystallized  in  a  similar  condition.  Prior  to  freezing,  

crystals  were   dehydrated   in  mother   liquor   containing   20%  PEG   8000   and   25  %   ethylene  

glycol  for  24  to  48  hours;  supplemented  with  MnCl2  in  case  of  Mn-­‐bound  Cmr2.  Dehydrated  

crystals  were  flash-­‐frozen  directly  from  this  condition.  The  best  crystals  diffracted  to  around  

3  Å   (native)   or  3.5  Å   (SeMet).   The   structure  was   solved  by   SAD  phasing  using   anomalous  

data   collected   on   a   SeMet   crystal.   An   initial   model   was   built   with   the   help   of   Buccaneer  

(Cowtan,  2008)  and  completed  and  refined  until  model  statistics  converged.  This  model  was  

then  used  to  phase  all  other  data,  collected  on  native  and  derivative  crystals.  

Pf   Cmr4   was   crystallized   from   a  mother   liquor   containing   (1)   30%   Jeffamine  M-­‐600   and  

100  mM  HEPES   pH   7.0,   (2)   200  mM  magnesium   formate,   25%  PEG   3350,   or   (3)   100  mM  

bicine/Trizma  base  pH  8.5,  10%  PEG  4000,  20%  glycerol,  30  mM  sodium   fluoride,  30  mM  

sodium   iodide,   30   mM   sodium   bromide.   Native   crystals   from   (1)   were   soaked   in   a  

crystallization   buffer   containing   40%   Jeffamine  M-­‐600   and   flash-­‐frozen   in   liquid   nitrogen.  

For   phasing,   crystals   from   (2)   were   soaked   in   mother   liquor   supplemented   with   15%  

ethylene  glycol  and  1  mM  AuCl3  for  1  hour,  back-­‐soaked  in  the  same  solution  without  AuCl3  

and   flash-­‐frozen.   Four   initial   gold   sites  were   found  with  AutoSol   (Terwilliger   et   al.,   2009)  

using   data   up   to   6.5   Å.   The   experimental   map   obtained   was   used   to   place   poly-­‐alanine  

helices   into   tube-­‐like   electron  density.  This   initial   coarse  model  was   fed  back   into   an  MR-­‐

SAD  run  at  full  resolution  and  the  model  was  completed  by  iterative  cycles  of  building  (Coot)  

and  refinement  (phenix.refine,  (Afonine  et  al.,  2012)).    

Cmr6ΔN   and   SeMet-­‐incorporated   Cmr6ΔN   were   both   crystallized   from   a   mother   liquor  

containing  2.4  M  sodium  malonate.  Prior  to  flash  freezing,  all  crystals  were  soaked  in  3.5  M  

sodium   malonate   for   dehydration   and   cryo-­‐protection.   The   structure   was   phased   using  

PHENIX   AutoSol   and   a   partial   model   was   generated   with   Autobuild.   Completion   and  

  14  

refinement  of  the  model  was  performed  with  Coot  and  phenix.refine.  

Fitting  of  a  pseudo-­‐atomic  model  

The  crystal  structures  were   fit   in   the  EM  density  using   the  “fit   in  map”   feature   in  Chimera  

(Pettersen  et  al.,  2004).  No  flexible  fitting  was  applied.  First,  Cmr2-­‐Cmr3  was  fit  into  the  foot  

region  of  the  map,  as  previously  shown  by  (Spilman  et  al.,  2013).  Next,  a  hexameric  filament  

of   Cmr4   was   fit   into   to   major   ridge   of   the   segmented   map   as   a   rigid   body.   The   correct  

orientation   of   the   hexamer   (subunits   A-­‐F)   was   validated   via   distance   restraints   from   the  

CXMS  data.  The  two  units  close  to  the  tip  of  the  map  (E  and  F)  were  then  used  to  superpose  

and  place  Cmr6ΔN  (on  E)  and  Cmr1  (on  F).  A  trimer  of  Crm5  was  fit  into  the  small  ridge  and  

again,   the   orientation  was   validated   via   CXMS.   Finally,   all   structures  were   sequentially   fit  

with  the  sequential   fit  command  in  Chimera,  using  15  Å  resolution  simulated  maps  for  the  

individual   structures.   In   cases   where   crystal   structures   had   missing   loop   regions   due   to  

flexibility,  Modeller  (Sali  and  Blundell,  1993)  was  used  to  complete  the  models  for  the  final  

distance  restraints  analysis.  

 

Chemical  crosslinking  mass  spectrometry  

A  total  of  170  µg  of  the  reconstituted  Cmr  complex  (2.3  µg/µl)  in  500  mM  NaCl,  20  mM  Hepes  pH  7.6,  

2  mM  DTT  and  10%  glycerol  was  incubated  with  2  mM  DSSO  crosslinker  (Kao  et  al.,  2011)  for  1  hour  

at  room  temperature.  The  crosslink  reaction  was  stopped  by  addition  of  100  mM  Tris/HCl  pH  8.  The  

crosslinked   protein   complexes   were   cleaned   up   by   precipitation   using   acetone   and   digested  

in-­‐solution   using   trypsin   and   LysC.   The   resulting   peptide  mixture  was   desalted   on   a   C18   reversed  

phase  cartridge  and  separated  into  six  fractions  using  size  exclusion  chromatography  on  a  Superdex  

Peptide  3.2/300  column  (GE  Healthcare  Bio-­‐Sciences  AB)  and  a  Äkta-­‐micro  system  (GE  Healthcare),  

as  described  (Leitner  et  al.,  2012)  

All  data  were  acquired  with  a  Q  Exactive  benchtop  quadrupole-­‐Orbitrap  mass  spectrometer  (Thermo  

Scientific).   Online   liquid   chromatography   was   performed   with   a   Thermo   easy   ultra-­‐LC   (Thermo  

Scientific)  coupled  to  a  50  cm  analytical  column  with  an   inner  diameter  of  75  μm  and  packed  with  

1.9  μm  reprosil  C18  reversed  beads  (Dr.  Maisch).  The  gradient  was  programmed  as  follows:    

2%  –  ‘fraction  percentage’  over  5  minutes;  ‘fraction  percentage’  –  50%  over  90  minutes;  50%  –  60%  

over  5  minutes;  60%  –  95%  over  5  minutes;  95%  –  95%  over  5  minutes;  95%  –  5%  over  5  minutes;  

5%  –  5%  over  10  minutes.  Given  that  size  exclusion  at  the  peptide  level  is  not  completely  orthogonal  

with   the   employed   reversed   phase   chromatography,   the   ‘fraction   percentage’   was   empirically  

  15  

determined  to  achieve  the  greatest  spread  of  peptides  over  the  available  retention  time  range:  30%  

for  fraction  1,  20%  for  fraction  2,  15%  for  fraction  3,  10%  for  fractions  4  and  5,  and  5%  for  fraction  6.  

For  each  fraction  a  volume  corresponding  roughly  to  2  µg  of  peptides  was  loaded.  A  custom  shotgun  

mass  spectrometry  acquisition  method  was  implemented,  where  in  each  cycle  a  normal  survey  scan,  

termed   FULL,   is   followed   by   a   survey   scan,   termed   CXD,   with   low   in-­‐source   collisional   energy   of  

35  eV   (SID)   to   specifically   break   the   linker   and   keep   the   peptides   intact.   This   process   is   targeted  

towards  breaking   the   linker,  where   a  part   of   it   remains  on   the  peptides   as   a  modification.   In   each  

cycle   the   acquisition   software   samples   the   10  most   abundant,   not   yet   sequenced   isotope   patterns  

from  the  second  scan  for  fragmentation  with  the  same  SID  energy  followed  by  HCD  fragmentation  at  

NCE  of  27  (a  process  termed  pseudo-­‐ms3).  

Data  was  analyzed  with  a  modified  MaxQuant  version  1.3.9.21  (Cox  and  Mann,  2008),  to  make  use  of  

the  additional  data  coming  from  the  CXD  scan  mode  (Scheltema  RA,  Schiller  HB,  and  Mann  M  et  al;  

publication   in   preparation).   Briefly,   isotope   patterns   from   the   two   survey   scans   are   detected  

separately.   An   additional   component   has   been   added   to   the   standard   MaxQuant   workflow   that  

analyzes   retention   time   correlation   of   isotope   patterns   and   mass-­‐relates   the   detected   isotope  

patterns   from   the   FULL   scans   (crosslinked   peptides   still   linked)   to   isotope   patterns   from   the   CXD  

scans   (crosslinked   peptides   separated).   As   a   last   step,   the  HCD   fragmentation   scans   are   identified  

and   the   modified   lysines   are   localized.   If   the   correct   mass   relationship   of   2   identified   peptides  

modified   with   a   crosslinker   remnant   to   their   crosslinked   precursor   (mass   A   +   mass   B   +  

fragmentation   loss   =  mass   AxB)   is   found,   a   crosslink   is   reported.   For   the   crosslinks   the   software  

automatically   distinguishes   the   crosslinks   into   intra-­‐protein   and   inter-­‐protein   link   (crosslink   is  

within   a   single   protein   or   between   two   different   proteins,   respectively,   defined   by   two   separately  

identified  and  linked  peptides),  loop-­‐link  (crosslink  of  2  lysines  within  a  single  tryptic  peptide),  and  

mono-­‐link  (a  quenched  linker  on  a  single  peptide,  providing  no  spatial  information).  

 

Nuclease  assays  

Target  RNA  cleavage  assays  were  performed   in  20  µl   reactions   containing  100  mM  Hepes  

pH  7.5,  500  mM  KCl,  1  mM  ATP,  1  mM  MgCl2  and  10  mM  DTT.  Proteins  were  added  to  a  final  

concentration  of  1  µM  (except  for  Cmr4  and  5  which  were  added  at  3  µM),  guide  7.01  RNA  

(45   nucleotides,   from   biomers.net)   was   added   to   100   nM   final   and   reactions   were   pre-­‐

incubated   for  10  minutes  at  55   ˚C  before  adding  5'   32P-­‐labeled   target  7.01  RNA  (γ-­‐32P-­‐ATP  

from   Perkin-­‐Elmer,   RNA   from   biomers.net).   The   mixtures   were   incubated   for   2   hours   at  

55  ˚C  before  quenching  with  180  µl  stop  buffer  containing  100  mM  Tris-­‐HCl  pH  7.5,  150  mM  

NaCl,  300  mM  sodium  acetate  pH  5.2,  10  mM  EDTA,  1%  SDS  and  30  µg/ml  glycogen  carrier  

  16  

(Roche).  After  phenol/chloroform/isoamyl  alcohol  (25:24:1,  v/v,  Invitrogen)  extraction  and  

ethanol  precipitation,  the  RNA  pellets  were  resuspended  in  loading  dye  consisting  of  7  mM  

EDTA,   0.07%   (w/v)   bromophenol   blue,   0.07%   (w/v)   xylene   cyanole   FF   and   10  mM   cold  

target  7.01  DNA  (Sigma-­‐Aldrich)  acting  as  a  trap  for  the  guide  RNA.  Samples  were  boiled  at  

95  ˚C  for  5  minutes  before  being  separated  on  a  20%  polyacrylamide  gel  containing  8  M  urea.  

Gels   were   exposed   to   image   plates   that   were   scanned   with   a   Typhoon   FLA   7000  

phosphorimager  (GE  Healthcare).  

 

   

  17  

SUPPLEMENTAL  REFERENCES  

Adams,  P.D.,  Afonine,  P.V.,  Bunkóczi,  G.,  Chen,  V.B.,  Davis,  I.W.,  Echols,  N.,  Headd,  J.J.,  Hung,  L.-­‐W.,   Kapral,   G.J.,   Grosse-­‐Kunstleve,   R.W.,   et   al.   (2010).   PHENIX:   a   comprehensive   Python-­‐based  system  for  macromolecular  structure  solution.  Acta  Crystallogr  D  Biol  Crystallogr  66,  213–221.  

Afonine,  P.V.,  Grosse-­‐Kunstleve,  R.W.,  Echols,  N.,  Headd,  J.J.,  Moriarty,  N.W.,  Mustyakimov,  M.,  Terwilliger,  T.C.,  Urzhumtsev,  A.,   Zwart,   P.H.,   and  Adams,  P.D.   (2012).  Towards   automated  crystallographic  structure  refinement  with  phenix.refine.  Acta  Crystallogr  D  Biol  Crystallogr  68,  352–367.  

Cowtan,  K.  (2008).  Fitting  molecular  fragments  into  electron  density.  Acta  Crystallogr  D  Biol  Crystallogr  64,  83–89.  

Cox,   J.,   and   Mann,   M.   (2008).   MaxQuant   enables   high   peptide   identification   rates,  individualized  p.p.b.-­‐range  mass  accuracies  and  proteome-­‐wide  protein  quantification.  Nat.  Biotechnol.  26,  1367–1372.  

Davis,  I.W.,  Leaver-­‐Fay,  A.,  Chen,  V.B.,  Block,  J.N.,  Kapral,  G.J.,  Wang,  X.,  Murray,  L.W.,  Arendall,  W.B.,  Snoeyink,  J.,  Richardson,  J.S.,  et  al.  (2007).  MolProbity:  all-­‐atom  contacts  and  structure  validation  for  proteins  and  nucleic  acids.  Nucleic  Acids  Res  35,  W375–W383.  

Emsley,   P.,   Lohkamp,   B.,   Scott,  W.G.,   and   Cowtan,   K.   (2010).   Features   and   development   of  Coot.  Acta  Crystallogr  D  Biol  Crystallogr  66,  486–501.  

Gorrec,   F.   (2009).   The   MORPHEUS   protein   crystallization   screen.   J   Appl   Crystallogr   42,  1035–1042.  

Kao,  A.,  Chiu,  C.-­‐L.,  Vellucci,  D.,  Yang,  Y.,  Patel,  V.R.,  Guan,  S.,  Randall,  A.,  Baldi,  P.,  Rychnovsky,  S.D.,   and   Huang,   L.   (2011).   Development   of   a   novel   cross-­‐linking   strategy   for   fast   and  accurate   identification  of   cross-­‐linked  peptides  of  protein   complexes.  Mol.   Cell  Proteomics  10,  M110.002212.  

Kabsch,  W.  (2010).  XDS.  Acta  Crystallogr  D  Biol  Crystallogr  66,  125–132.  

Leitner,   A.,   Reischl,   R.,   Walzthoeni,   T.,   Herzog,   F.,   Bohn,   S.,   Förster,   F.,   and   Aebersold,   R.  (2012).  Expanding  the  chemical  cross-­‐linking  toolbox  by  the  use  of  multiple  proteases  and  enrichment  by  size  exclusion  chromatography.  Mol.  Cell  Proteomics  11,  M111.014126.  

Mulepati,  S.,  and  Bailey,  S.  (2011).  Structural  and  Biochemical  Analysis  of  Nuclease  Domain  of  Clustered  Regularly  Interspaced  Short  Palindromic  Repeat  (CRISPR)-­‐associated  Protein  3  (Cas3).  J  Biol  Chem  286,  31896–31903.  

Pettersen,  E.F.,  Goddard,  T.D.,  Huang,  C.C.,  Couch,  G.S.,  Greenblatt,  D.M.,  Meng,  E.C.,  and  Ferrin,  T.E.   (2004).  UCSF  Chimera-­‐-­‐a   visualization   system   for   exploratory   research  and  analysis.   J  Comput  Chem  25,  1605–1612.  

Sali,  A.,   and  Blundell,  T.L.   (1993).  Comparative  protein  modelling  by   satisfaction  of   spatial  restraints.  J  Mol  Biol  234,  779–815.  

Spilman,  M.,  Cocozaki,  A.,  Hale,  C.,  Shao,  Y.,  Ramia,  N.,  Terns,  R.,  Terns,  M.,  Li,  H.,  and  Stagg,  S.  (2013).   Structure   of   an   RNA   Silencing   Complex   of   the   CRISPR-­‐Cas   Immune   System.  

  18  

Molecular  Cell  52,  146–152.  

Sun,   J.,   Jeon,   J.H.,   Shin,   M.,   Shin,   H.C.,   Oh,   B.H.,   and   Kim,   J.S.   (2014).   Crystal   structure   and  CRISPR   RNA-­‐binding   site   of   the   Cmr1   subunit   of   the   Cmr   interference   complex.   Acta  Crystallogr  D  Biol  Crystallogr  70,  535–543.  

Terwilliger,  T.C.,  Adams,  P.D.,  Read,  R.J.,  McCoy,  A.J.,  Moriarty,  N.W.,  Grosse-­‐Kunstleve,  R.W.,  Afonine,   P.V.,   Zwart,   P.H.,   and   Hung,   L.-­‐W.   (2009).   Decision-­‐making   in   structure   solution  using  Bayesian  estimates  of  map  quality:  the  PHENIX  AutoSol  wizard.  Acta  Crystallogr  D  Biol  Crystallogr  65,  582–601.  

Terwilliger,  T.C.,  Grosse-­‐Kunstleve,  R.W.,  Afonine,  P.V.,  Moriarty,  N.W.,  Zwart,  P.H.,  Hung,  L.-­‐W.,   Read,   R.J.,   and  Adams,   P.D.   (2008).   Iterative  model   building,   structure   refinement   and  density  modification  with  the  PHENIX  AutoBuild  wizard.  Acta  Crystallogr  D  Biol  Crystallogr  64,  61–69.  

Winn,   M.D.,   Ballard,   C.C.,   Cowtan,   K.D.,   Dodson,   E.J.,   Emsley,   P.,   Evans,   P.R.,   Keegan,   R.M.,  Krissinel,  E.B.,  Leslie,  A.G.W.,  McCoy,  A.,  et  al.  (2011).  Overview  of  the  CCP4  suite  and  current  developments.  Acta  Crystallogr  D  Biol  Crystallogr  67,  235–242.