44
S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang, a Lu Wang, a Jinsai Shang, a Xing Li, a Haoyuan Wang, a Jie Gui a and Aiwen Lei* a,b a College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China Fax: (+) 86-27-68754067 E-mail: [email protected] b State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, 730000, Lanzhou, P. R. China Table of Contents 1. General Considerations ..................................................................... S2 2. Detailed results of Screening............................................................. S3 3. Isotope Effect Experiments ............................................................... S5 4. Experiments Monitor by in-situ IR .................................................. S9 5. Analytical Data of Benzothiazoles .................................................. S17 Reference............................................................................................... S22 NMR Spectra of Products ................................................................... S23 Electronic Supplementary Material (ESI) for Chemical Communications This journal is © The Royal Society of Chemistry 2011

Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S1

Supporting Information

Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation

Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a Haoyuan Wang,a Jie Guia and Aiwen Lei*a,b

aCollege of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China

Fax: (+) 86-27-68754067 E-mail: [email protected] b State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical

Physics, Chinese Academy of Sciences, 730000, Lanzhou, P. R. China

Table of Contents

1. General Considerations ..................................................................... S2 

2. Detailed results of Screening ............................................................. S3 

3. Isotope Effect Experiments ............................................................... S5 

4. Experiments Monitor by in-situ IR .................................................. S9 

5. Analytical Data of Benzothiazoles .................................................. S17 

Reference ............................................................................................... S22 

NMR Spectra of Products ................................................................... S23 

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 2: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S2

1. General Considerations

All manipulations were carried out using standard Schlenk techniques. All glassware was oven

dried at 120 oC for more than 1 hour prior to use. Dimethyl sulfoxide (DMSO) was dried and

distilled from calcium hydride. Anhydrous dioxane was purchased from Sigma-Aldrich (99.9+%

in a SureSeal TM bottle). Anhydrous N,N-dimethylformamide (DMF) was purchased from

Sigma-Aldrich (99.5% in a SureSealTM bottle). Toluene was dried and distilled from

sodium/benzophenone immediately prior to use under argon atmosphere. Tetrahydrofuran (THF)

was dried and distilled from sodium/benzophenone immediately prior to use under nitrogen

atmosphere. Unless otherwise stated, analytical grade solvents and commercially available

reagents were used as received. Thin layer chromatography (TLC) employed glass 0.25 mm silica

gel plates. Flash chromatography columns were packed with 200-300 mesh silica gel in petroleum

ether (bp. 30-60 oC). Gradient flash chromatography was conducted eluting with a continuous

gradient from petroleum ether to the indicated solvent, which are listed below as volume/volume

ratios.

All new compounds were characterized by 1H NMR, 13C NMR and HRMS. The known

compounds were characterized by 1H NMR and 13C NMR. The 1H and 13C NMR spectra were

recorded on a Varian Mercury 300 MHz NMR spectrometer or a Varian Mercury 600 MHz NMR

spectrometer. The chemical shifts (δ) were given in part per million relative to internal

tetramethylsilane (TMS, 0 ppm for 1H) and CDCl3 (77.16 ppm for 13C) or [D6]DMSO (39.52 ppm

for 13C). High resolution mass spectra (HRMS) were measured with a Waters Micromass GCT

instrument and accurate masses were reported for the molecular ion (M+). HPLC yields were

recorded with a Dionex P680A LPG-4 high performance liquid chromatography instrument with a

UV detector. For the in situ IR kinetic experiments, the reaction spectra were recorded using a

React IR iC10 from Mettler-Toledo AutoChem fitted with a diamond-tipped probe.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 3: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S3

2. Detailed results of Screening

Table S1: Oxidant Effect.[a]

[a] Reaction conditions: 1a (0.5 mmol), oxidant (0.5 mmol) and FeCl3 (0.05 mmol) in 2 mL of

DMSO at 80 oC for 4 h. Yields were determined by HPLC with internal standard.

Table S2: Solvent Effect.[a]

Entry

1

2

3

4

DMSO

DMF

Toluene

Solvent

Dioxane

38

100

24

17

5b DMSO 100

NH

S FeCl3 10 mol %Na2S2O8

Solvent, 80oC

1a

10

63

1

0

68

N

S

2a

NH

O

3a

+

Cl

Cl

Cl

Conversion1a[%]

Yield[%]2a 3a

26

29

10

11

28

[a] Reaction conditions: 1a (0.5 mmol), Na2S2O8 (0.5 mmol) and FeCl3 (0.05 mmol) in 2 mL dry

solvent at 80 oC for 4 h. Yields were determined by HPLC with internal standard. [b] DMSO

without distillation.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 4: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S4

Table S3: Catalyst Effect.[a]

NH

S

Entry

1

2

3

4

5

6

7

8

PdCl2(PPh3)2

NiCl2(PPh3)2

MnCl2.3H2O

CoCl2

no

FeCl3

Metal 10 mol %Na2S2O8

DMSO, 80 oC

1a

Oxidant

CuCl2

100

100

100

100

100

100

100

100

N

S

2a

NH

O

3a

15

1

13

15

68

16

7

21

+

Cl

Cl

Cl

Conversion1a[%]

Yield[%]2a 3a

67

47

66

70

28

81

79

70

CuI

[a] Reaction conditions: 1a (0.5 mmol), Na2S2O8 (0.5 mmol) and catalyst (0.05 mmol) in 2 mL

DMSO 80 oC for 4 h. Yields were determined by HPLC with internal standard.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 5: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S5

3. Isotope Effect Experiments

3.1. Preparation of 1o-D

NH2 a) 5 eq. nBuLi

Br

NLi2

Li

b) 1. 50 eq. D2O NH2

D2. H2O

+Cl

O

7 8

c)1.

3eq

.NE

t 3

NH

ODd) Lawesson's reagent

toluene, 110 oCNH

SD

3o-D1o-D

9

Scheme S1. Preparation of 1o-D. a) added 5 equiv. nBuLi at -78 oC and stirred for 1h, then warmed to rt and stirred for 1h; b) added 50 equiv. D2O at -78 oC, then warmed to rtstirred for 1h, qenched with water; c) added 1.1 equiv. 9 to the mixture of pure 8 and 1.3 equiv. NEt3 at rt; d) 0.55 equiv. Lawesson’s Reagent, refluxed in toluene for 3 h.

Preparation 2-deuterium aniline (8): A Schlenk flask equipped with a stir-bar was purged with

nitrogen. 2-Bromoaniline (5.16 g, 30.0 mmol) and 30 mL of anhydrous THF was added to the

reaction flask via a syringe and then nBuLi (62.5 mL, 150 mmol, 2.4 M) was added to the mixture

at -78 oC. After stirring at -78 oC for 1 h, the mixture was warmed to rt and stirred for 1 h. Then

D2O (1.5 mol) was adding to the reaction mixture at -78 oC, which was warmed to rt and kept at rt

for 1 h. Finally the reaction mixture was quenched with water and extracted with ethyl acetate

(100 mL x 2). The organic layers were combined, dried over Na2SO4 and concentrated under

reduced pressure, and then purified by silica gel chromatograph (ethyl acetate/ petroleum ether =

1 : 40) to obtain the compound 8 0.62 g (yield 22%).

Preparation N-(2-deuterium phenyl)-3,5-dimethylbenzothiozamide (1o-D): To a 50 mL flask

equipped with a stir-bar was added compound 8 (0.4744 g, 5.0 mmol), NEt3 (0.6868 g, 6.5 mmol)

and 10 mL of CH2Cl2. Then 3,5-dimethylbenzoyl chloride (0.9555 g, 5.5 mmol) was added slowly

at rt. 3 h later, the reaction mixture was washed with water and extracted with CH2Cl2 (20 mL x 2).

The organic layers were combined, dried over Na2SO4, and concentrated under reduced pressure to

obtain the crude 3o-D. A Schlenk flask equipped with a stir-bar was charged with 3o-D (0.9012 g,

4.0 mmol) and Lawesson’s reagent (0.8720 g, 2.1 mmol). After that, the reaction flask was purged

with nitrogen. Then 5 mL of anhydrous toluene was added to the reaction tube via a syringe. The

resulting mixture was stirred at 110 oC for 3 h. After cooling to room temperature, the reaction

mixture was directly purified by neutral alumina column chromatography (ethyl acetate/

petroleum ether = 1 : 4) to obtain the 1o-D 0.8024 g (yield 83%). Comparing the 1H NMR spectra

of 1o-D (Figure S2) and 1o (Figure S1), 76% deuterium was contained.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 6: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S6

 

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1 (ppm)

whb-6-094-2-660M

6.03

1.00

1.08

3.99

1.99

-0.000

2.340

2.506

3.386

3.409

7.171

7.256

7.269

7.281

7.423

7.431

7.444

7.808

7.821

NH

S

1o

Figure S1. 1H NMR spectrum of 1o.

NH

SD

1o-D

+NH

S

1o

76% 24%

 

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0f1 (ppm)

whb-6-168-D2O-660M

6.10

1.00

1.09

3.93

1.23

0.000

2.342

2.538

3.848

7.185

7.284

7.296

7.309

7.423

7.439

7.442

7.451

7.463

7.767

7.781

Figure S2. 1H NMR spectrum of 1o-D and 1o.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 7: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S7

3.2. Kinetic Isotope Effect of 1o-D under the standard condition.

A Schlenk tube equipped with a stir-bar was charged with FeCl3 (0.05 mmol), 1o-D (120.9 mg,

0.50 mmol, 76% of deuterium) and Na2S2O8 (124.1 mg, 0.50 mmol). After that, the reaction tube was

purged with nitrogen. Then pyridine (1.0 mmol) and 2 mL of DMSO was added to the reaction tube via

a syringe. Finally, the Schlenk tube was warmed to 80 oC and stirred for 3 hours. Then the reaction

mixture was quenched with water and extracted with ethyl acetate (20 mL x 2). The organic layers were

combined, dried over Na2SO4 and concentrated under reduced pressure, and then purified by silica gel

chromatograph (ethyl acetate/ petroleum ether = 1 : 20) to yield the desired product 2o-D 111.4 mg

(yield 93%). Comparing the 1H NMR spectra of 2o-D (Figure S4) and 2o (Figure S3), we found

the ratio of 2o-D : 2o (only generate from 1o-D) was 57 : 43. So the KIE value was 1.3.

H

S

N

2o

 

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.0f1 (ppm)

whb-6-106-5-600M

6.65

1.00

1.12

1.12

1.89

1.02

1.02

-0.001

0.069

1.570

2.416

7.139

7.262

7.373

7.386

7.398

7.479

7.492

7.505

7.717

7.902

7.915

8.065

8.078

Figure S3. 1H NMR spectrum of 2o.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 8: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S8

N

S

2o-D

D

H

S

N+

2o

57%43%

 

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1 (ppm)

whb-6-169-1-600M

6.55

1.00

1.07

1.07

1.92

0.99

0.58

-0.000

1.672

2.406

7.125

7.253

7.361

7.373

7.386

7.470

7.471

7.476

7.483

7.495

7.710

7.887

7.901

8.062

8.075

Figure S4. 1H NMR spectrum of 2o and 2o-D.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 9: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S9

4. Experiments Monitor by in-situ IR

4.1. Stoichiometric reactions monitor by in-situ IR.

General Procedure for Stoichiometric reactions of Fe-Catalyzed Oxidative C-H

Functionalization / C-S Bond Formation with 4-chloro-N-phenylbenzothioamide (1a) (1.0

mmol scale) monitored by in-situ IR: A three-necked tube equipped with a stir-bar was fixed on

the in situ IR and purged with nitrogen gas. At 40 oC, 5 mL of DMSO was added to the reaction

tube via a syringe, and then pyridine, 4-chloro-N-phenylbenzothioamide (1a), FeCl3 were added to

the tube in differrent sequences. 2h later, the reaction was then cooled to room temperature and the

yield was determined by HPLC.

Stoichiometric reactions with Na2S2O8 (1.0 mmol), pyriding (20 mmol,), FeCl3 (1.0 mmol)

and 1a (1.0 mmol) added in sequence: kinetic profiles of the stoichiometric reaction were shown

in Figure S6 and Figure S7.

As shown in Figure S6, observing the peak 1269 cm-1 (assigned as the oxidant Na2S2O8 by

comparing with authentic sample in DMSO, which was showed in Figure S5), we could known

that dissolving of Na2S2O8 in DMSO required ca. 5 minutes, no change was observed when

pyridine and FeCl3 were added. However, it was interesting to note that the peak was rapidly

decreased only as soon as the substrate 1a was introduced. Figure S7 further revealed the

interaction between the oxidant, Fe-catalyst and substrate 1a more clearly. The profiles of

ConcIRT vs time shown in the figure S7 represented the relative concentrations vs time for

individual species. It was clear that no reaction occurred when Na2S2O8, pyridine and FeCl3 were

mixed together. However, as soon as 1a was added, Na2S2O8 and 1a were consumed rapidly, and

the desired product 2a was formed correspondingly. We also examined others stoichoimetric

reactions by varying the addition sequences of these species (Figure S8 and Figure S9), and

concluded that the C-H activation and C-S bond formation only occurred when Na2S2O8,

FeCl3 and 1a were mixed together.

2000 1800 1600 1400 1200 1000 800

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Co

ncI

RT

Wavenumber (cm-1)

1269 cm-1

Figure S5. The IR spectrum of the Na2S2O8 mornitored by in situ IR.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 10: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S10

1300 1250 1200 1150 1100

0.05

0.10

0.15

0.20

0.25

0.30

0.35

490418

370273

19885

1a

Na2S2O8

PyridineFeCl3

Wavenumber (cm-1)

t (min)

Ab

sorb

ance

Figure S6. The 3D-kinetic profiles of the stoichiometric reaction in the sequence of Na2S2O8 (1.0 mmol), pyridine

(20 mmol,), FeCl3 (1.0 mmol) and 1a (1.0 mmol) was monitored by in situ IR

0 20 40 60 80 1000.00

0.15

0.30

0.45

0.60

Na2S2O8

Pyridine

FeCl3

1a

2a

Co

ncI

RT

t (min) Figure S7. The 2D-kinetic profiles of the stoichiometric reaction in the adding sequence of Na2S2O8 (1.0 mmol),

pyridine (20 mmol,), FeCl3 (1.0 mmol) and 1a (1.0 mmol) was mornitored by in situ IR.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 11: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S11

0 10 20 30 40 50 60-0.10.00.10.20.30.40.50.60.70.80.91.01.11.21.3

Co

ncI

RT

t (min)

FeCl3

Na2S2O8

Pyridine

1a 2a

Figure S8. The 2D-kinetic profiles of the stoichiometric reaction in the adding sequence of pyridine (20 mmol), 1a

(1.0 mmol), FeCl3 (1.0 mmol), and Na2S2O8 (1.0 mmol) was monitored by in situ IR.

-2 0 2 4 6 8 10 12 14 16 18 20

0.0

0.2

0.4

0.6

2a

FeCl31aNa2S2O8

pyridine

Co

ncI

RT

t (min)

Figure S9. The 2D-kinetic profiles of the stoichiometric reaction in the adding sequence of Na2S2O8 (1.0 mmol),

pyridine (2.0 mmol), 1a (1.0 mmol), and FeCl3 (0.1 mmol) was monitored by in situ IR.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 12: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S12

4.2. Kinetic order investigation by in-situ IR. (Results see Table S4 , Figure S10 - S17)

General Procedure for the investigation of Fe-Catalyzed Oxidative C-H Functionalization /

C-S Bond Formation with 4-chloro-N-phenylbenzothioamide (1a) (1.0 mmol) monitored by

in-situ IR: A three-neck tube equipped with a stir-bar and Na2S2O8 was fixed on the in situ IR and

purged with nitrogen gas At 40 oC, 4 mL of DMSO was added to the reaction tube via a syringe,

and then the reactants and catalyst in DMSO were added to the tube in the sequence of pyridine

(2.0 mmol), 4-chloro-N-phenylbenzothioamide (1a), FeCl3 (0.10 mmol). 2 h later, the reaction was

then cooled to room temperature and the yield was determined by HPLC.

Table S4, entry 1-4, Figure S10-A and Figure S11-S14 indicated clearly that the reaction was first

order in [1a], and Table S4, entry 3, 5-7, Figure S10-B and Figure S13, S15-S17 revealed that zero

order in [Na2S2O8].

Table S4 Reaction rates in different concentrations of 1a and Na2S2O8

0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.220.004

0.006

0.008

0.010

0.012

0.014

0.016

Ra

te(m

ol*

L-1

*min

-1)

Conc. (mol*L-1)

0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.260.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

Ra

te(m

ol*

L-1

*min

-1)

Conc. (mol*L-1)

A B

Figure S10. Order kinetic experiment dependence on [1a] and [Na2S2O8]; A: first order kinetic dependence on

[1a]; B: zero order kinetic dependence on [Na2S2O8].

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 13: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S13

NH

S

N

SFeCl3 0.02 M

DMSO, 40oC

Cl

Cl+ Na2S2O8

0.2M 0.2M

Pyridine

0 10 20 30 40 50 60-0.02

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Co

nc(m

ol/L

)

t(min)

0.0 0.5 1.0 1.5 2.0 2.5-0.005

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

c = 1.56*10-2t-3.56*10-3

Con

c(m

ol/L

)

t(min)

Figure S11. Order kinetic experiment with 0.20 M 1a, 0.20 M Na2S2O8, 0.40 M pyridine, 0.02 M FeCl3.

NH

S

N

SFeCl3 0.02 M

DMSO, 40oC

Cl

Cl+ Na2S2O8

0.15M 0.2M

Pyridine

0 10 20 30 40 50 60

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Co

nc(m

ol/L

)

t(min)

0.0 0.5 1.0 1.5 2.0 2.5

0.000

0.005

0.010

0.015

0.020

0.025

0.030c = 1.22*10-2t-1.54*10-3

Con

c(m

ol/L

)

t(min)

Figure S12. Order kinetic experiment with 0.15 M 1a, 0.20 M Na2S2O8, 0.40 M pyridine, 0.02 M FeCl3.

NH

S

N

SFeCl3 0.02 M

DMSO, 40oC

Cl

Cl+ Na2S2O8

0.1M 0.2M

Pyridine

0 5 10 15 20 25

0.00

0.02

0.04

0.06

0.08

Co

nc(

mo

l/L)

t(min)

0.0 0.5 1.0 1.5 2.0 2.5

0.000

0.005

0.010

0.015

0.020c = 9.25*10

-3t-2.38*10

-3

Co

nc(

mo

l/L)

t(min)

Figure S13. Order kinetic experiment with 0.10 M 1a, 0.20 M Na2S2O8, 0.40 M pyridine, 0.02 M FeCl3.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 14: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S14

NH

S

N

SFeCl3 0.02 M

DMSO, 40oC

Cl

Cl+ Na2S2O8

0.06 M 0.2M

Pyridine

0.5 1.0 1.5 2.0 2.5

0.000

0.002

0.004

0.006

0.008

0.010

0.012 c = 5.23*10-3t-1.58*10-3

Co

nc(

mo

l/L)

t(min)

0 5 10 15 20

0.000

0.005

0.010

0.015

0.020

0.025

Co

nc(

mol

/L)

t(min)

Figure S14. Order kinetic experiment with 0.06 M 1a, 0.20 M Na2S2O8, 0.40 M pyridine, 0.02 M FeCl3.

.

NH

S

N

SFeCl3 0.02 M

DMSO, 40oC

Cl

Cl+ Na2S2O8

0.1M 0.25M

Pyridine

0.5 1.0 1.5 2.0 2.5

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018

c = 8.45*10-3t-3.85*10-3

Con

c(m

ol/L

)

t(min)0 10 20 30 40 50

0.00

0.02

0.04

0.06

0.08

Con

c(m

ol/L

)

t(min)

Figure S15. Order kinetic experiment with 0.10 M 1a, 0.25 M Na2S2O8, 0.40 M pyridine, 0.02 M FeCl3.

NH

S

N

SFeCl3 0.02 M

DMSO, 40oC

Cl

Cl+ Na2S2O8

0.1M 0.15M

Pyridine

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2-0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

c = 8.66*10-3t-2.01*10-3

Con

c(m

ol/L

)

t(min)

0 5 10 15 20 25 30-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Con

c(m

ol/L

)

t(min)

Figure S16. Order kinetic experiment with 0.10 M 1a, 0.15 M Na2S2O8, 0.40 M pyridine, 0.02 M FeCl3.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 15: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S15

NH

S

N

SFeCl3 0.02 M

DMSO, 40oC

Cl

Cl+ Na2S2O8

0.1M 0.1M

Pyridine

0.0 0.5 1.0 1.5 2.0 2.5-0.002

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

0.018 c = 8.32*10-3t-1.45*10-3

Con

c(m

ol/L

)

t(min)

0 5 10 15 20 25 30 35-0.01

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Con

c(m

ol/L

)

t(min)

Figure S17. Order kinetic experiment with 0.10 M 1a, 0.10 M Na2S2O8, 0.40 M pyridine, 0.02 M FeCl3.

4.3. Kinetic profiles of the comparison reaction was monitored by in situ IR

General procedure: A three-necked tube equipped with a stir-bar was charged with FeCl3 (0.05

mmol), 1a (0.50 mmol) and Na2S2O8 (0.50 mmol). The tube was then fixed on the in situ IR and

purged with nitrogen gas. At 40 oC, 5 mL of DMSO was then added to the reaction tube via a

syringe. 4h later, the reaction was then cooled to room temperature and the yield was determined

by HPLC. Figure S18 indicated that at the first stage, the C-H activation product 2a was gained in

high selectivity (red line of Figure S18). 30 minutes later, 3a was produced mainly. Finally, we

obtained 40% C-H activation /C-S bond forming product 2a and 56% of

4-chloro-N-phenylbenzamide (3a). In order to reveal the role of FeCl3 and pyridine in the reaction more clearly, we carried out

comparison experiments monitored by in situ IR.. Figure S18 showed the reaction profile of 1a, Na2S2O8 and pyridine with and without FeCl3 catalyst. Almost no reaction took place without catalyst FeCl3 (Figure S18, black line).

0 20 40 60 80 100 120

0.00

0.05

0.10

0.15

0.20

with FeCl3Co

nc.

of

1a (m

ol*

L-1

)

t (min)

without FeCl3

0 20 40 60 80 100 120

0

20

40

60

80

100

without FeCl3

with FeCl3

Yie

ld o

f 2a

(%)

t (min)

Figure S18. The reactions with FeCl3 (0.2 mmol) or without catalyst between 1a (2.0 mmol), pyridine (4.0 mmol) and Na2S2O8 (2.0 mmol) in 10 mL DMSO at 40 oC monitored by in situ IR. A: the concentration of 1a vs time (red

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 16: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S16

line is with FeCl3 and black line is without FeCl3); B: the yield of product 2a vs time (red line is with FeCl3 and black line is without FeCl3).

Furthermore, we also compared the reaction of 1a, Na2S2O8, FeCl3 with pyridine and without

pyridine. As shown in Figure S19, the reaction without pyridine (Figure S19, black line) has slower rate and lower yield(40%, and 56% byproduct 4-chloro-N-phenylbenzamide (3a) as well).

A

B

0 50 100 150 200 250

0.00

0.05

0.10

0.15

0.20

without Py

with Py

Co

nc.

of

1a (m

ol*

L-1

)

t (min)

0 20 40 60 80 100 120 140

0

20

40

60

80

100

without Py

with Py

Yie

ld o

f 2a

(%

)

t (min)

Figure S19. The reactions with or without pyridine between 1a (2.0 mmol), FeCl3 (0.2 mmol) and Na2S2O8 (2.0 mmol) in 10 mL DMSO at 40 oC monitored by in situ IR. A: the concentration of 1a vs time (red line is with pyridine and black line is without pyridine); B: the yield of product 2a vs time (red line is with pyridine and black line is without pyridine).

In addition, we found the distribution of products were also interesting. In the first stage of the reaction, the C-H activation product was gained with high selectivity (red line of Figure S20). After around 30 minutes, the reaction turned to mainly produce 3a. We could conclude that pyridine is critical to the high yields and high selectivities of C-H activation/C-S bond formation, but so far we have no enough data to rationalize the phenomena in the Figure S20.

0 50 100 150 200 250

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Co

nc

. (m

ol/

L)

t (min)

Figure S20. The kinetic profiles of the reaction between Na2S2O8 (0.2 M), FeCl3 (0.02 M) and 1a (0.2 M) without pyridine was mornitored by in situ IR.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 17: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S17

5. Analytical Data of Benzothiazoles

General procedure for Fe-Catalyzed Oxidative C-H Functionalization/C-S Bond Formation

(Table 2, entry 1): A Schlenk tube equipped with a stir-bar was charged with FeCl3 (8.3 mg, 0.01

mmol), 1b (107.4mg, 0.50 mmol) and Na2S2O8 (122.5 mg, 1.0 mmol). The reaction tube was

purged with nitrogen. Then pyridine (79.0 mg, 1.0 mmol) and 2 mL of DMSO was added to the

reaction tube via a syringe. The mixture was stirred at 80 oC for 3h. After cooling to room

temperature, the reaction mixture was quenched with water and extracted with ethyl acetate (20

mL x 2). The organic layers were combined, dried over Na2SO4 and concentrated under reduced

pressure, and then purified by silica gel chromatograph (ethyl acetate/ petroleum ether = 1: 20) to

yield the desired product 2b (95.1 mg, 89%).

2-(4-chlorophenyl)benzothiazole1 (2a)

N

SCl

1H NMR (300 MHz, CDCl3) δ = 8.12 – 8.01 (m, 3H), 7.92 (d, J = 7.8 Hz, 1H), 7.57 – 7.45 (m,

3H), 7.41 ppm (t, J = 7.4 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ = 166.64, 154.12, 137.07,

135.14, 132.11, 129.32, 128.75, 126.58, 125.51, 123.40, 121.76 ppm.

2-phenylbenzothiazole1 (2b)

N

S

1H NMR (300 MHz, CDCl3) δ = 8.18 – 8.00 (m, 3H), 7.91 (d, J = 8.1 Hz, 1H), 7.60 – 7.44 (m,

4H), 7.39 (t, J = 7.2 Hz, 1H);13C NMR (75 MHz, CDCl3) δ = 167.95, 154.06, 134.99, 133.50

130.89, 128.94, 127.47, 126.25, 125.11, 123.16, 121.56 ppm.

2-(4-methoxyphenyl)benzothiazole1 (2c)

N

SOMe

1H NMR (300 MHz, CDCl3) δ = 8.04 (d, J = 8.7 Hz, 3H), 7.88 (d, J = 7.8 Hz, 1H), 7.48 (t, J = 7.2

Hz, 1H), 7.36 (t, J = 7.2 Hz, 1H), 7.01 (d, J = 9.0 Hz, 2H), 3.89 ppm (s, 3H); 13C NMR (75 MHz,

CDCl3) δ = 167.79, 161.81, 154.16, 134.81, 130.89, 129.03, 126.15, 124.73, 122.75, 121.47,

114.26, 55.33 ppm.

2-(4-nitrophenyl)benzothiazole (2d)

N

SNO2

1H NMR (300 MHz, CDCl3) δ = 8.35 (d, J = 8.4 Hz, 2H), 8.26 (d, J = 8.4 Hz, 2H), 8.13 (d, J =

8.1 Hz, 1H), 7.96 (d, J = 8.1 Hz, 1H), 7.56 (t, J = 7.5 Hz, 1H), 7.47 ppm (t, J = 7.4 Hz, 1H); 13C

NMR (75 MHz, CDCl3) δ = 164.97, 154.25, 149.17, 139.32, 135.63, 128.38, 127.07, 126.37,

124.46, 124.09, 121.98 ppm; HRMS (APCI) calcd for C13H8N2O2S [M]+: 256.0307; found

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 18: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S18

256.0304.

2-(4-bromophenyl)benzothiazole2 (2e)

N

SBr

1H NMR (300 MHz, CDCl3) δ = 8.07 (d, J = 8.1 Hz, 1H), 7.97 (d, J = 8.4 Hz, 2H), 7.92 (d, J =

7.8 Hz, 1H), 7.64 (d, J = 8.4 Hz, 2H), 7.51 (t, J = 7.7 Hz, 1H), 7.41 ppm (t, J = 7.5 Hz, 1H); 13C

NMR (75 MHz, CDCl3) δ = 166.59, 153.98, 134.98, 132.40, 132.14, 128.81, 126.47, 125.41,

123.28, 121.64 ppm.

2-(4-iodophenyl)benzothiazole3 (2f)

N

SI

1H NMR (300 MHz, CDCl3) δ = 8.07 (d, J = 8.1 Hz, 1H), 7.92 (d, J = 7.5 Hz, 1H), 7.88 – 7.80 (m,

4H), 7.51 (t, J = 7.2 Hz, 1H), 7.41 ppm (t, J = 7.1 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ = 166.89,

154.05, 138.19, 135.00, 133.05, 128.94, 126.56, 125.52, 123.35, 121.74, 97.64 ppm.

6-methoxy-2-phenylbenzothiazole1 (2g)

N

SMeO

1H NMR (300 MHz, CDCl3) δ = 8.09 – 8.02 (m, 2H), 7.96 (d, J = 9.0 Hz, 1H), 7.57 – 7.43 (m,

3H), 7.37 (d, J = 2.1 Hz, 1H), 7.10 (dd, J = 8.9, 2.3 Hz, 1H), 3.90 ppm (s, 3H); 13C NMR (75

MHz, CDCl3) δ = 160.96, 153.20, 144.13, 131.91, 129.20, 126.01, 124.45, 122.68, 119.18, 111.15,

99.51, 51.18 ppm.

6-tert-butyl-2-phenylbenzothiazole (2h)

N

St-Bu

1H NMR (300 MHz, CDCl3) δ = 7.96 – 7.89 (m, 2H), 7.86 (d, J = 8.7 Hz, 1H), 7.71 (s, 1H), 7.38

(d, J = 8.7 Hz, 1H), 7.31 – 7.23 (m, 3H), 1.22 ppm (s, 9H); 13C NMR (75 MHz, CDCl3) δ =

167.35, 152.11, 148.60, 135.10, 133.75, 130.70, 128.93, 127.41, 124.49, 122.55, 117.67, 35.02,

31.54 ppm; HRMS (APCI) calcd for C17H17NS [M+H]+: 268.1160; found 268.1157.

6-bromo-2-phenylbenzothiazole1 (2i)

N

SBr

1H NMR (300 MHz, CDCl3) δ = 8.11 – 8.02 (m, 3H), 7.92 (d, J = 8.7 Hz, 1H), 7.59 (d, J = 8.7 Hz,

1H), 7.51 ppm (br, 3H); 13C NMR (75 MHz, CDCl3) δ = 168.47, 152.93, 136.62, 133.09, 131.25,

129.77, 129.07, 127.51, 124.26, 124.11, 118.74 ppm.

6-iodo-2-phenylbenzothiazole1 (2j)

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 19: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S19

N

SI

1H NMR (300 MHz, CDCl3) δ = 8.24 (s, 1H), 8.10 – 8.03 (m, 2H), 7.82 – 7.76 (m, 2H), 7.55 –

7.47 ppm (m, 3H); 13C NMR (75 MHz, CDCl3) δ = 168.61, 153.57, 137.20, 135.53, 133.16,

131.44, 130.19, 129.21, 127.69, 124.77, 89.60 ppm.

6-nitro-2-phenylbenzothiazole1 (2k)

N

SO2N

1H NMR (300 MHz, CDCl3) δ = 8.85 (s, 1H), 8.38 (d, J = 8.7 Hz, 1H), 8.21 – 8.06 (m, 3H), 7.63

– 7.47 ppm (m, 3H); 13C NMR (75 MHz, CDCl3) δ = 173.92, 157.96, 144.99, 135.44, 132.81,

132.38, 129.43, 128.05, 123.45, 122.04, 118.37 ppm.

4-methyl-2-phenylbenzothiazole4 (2l)

N

S

1H NMR (300 MHz, CDCl3) δ = 8.15 – 8.09 (m, 2H), 7.78 – 7.69 (m, 1H), 7.53 – 7.46 (m, 3H),

7.32 – 7.24 (m, 2H), 2.81 ppm (s, 3H); 13C NMR (75 MHz, CDCl3) δ = 166.84, 153.95, 135.39,

134.32, 133.65, 131.02, 129.27, 127.91, 127.16, 125.45, 119.36, 18.94 ppm.

2-phenylnaphtho[1,2-d]thiazole (2m)

N

S

1H NMR (300 MHz, CDCl3) δ = 8.93 (d, J = 8.1 Hz, 1H), 8.21 (d, J = 6.3 Hz, 2H), 7.95 (t, J = 9.0

Hz, 2H), 7.82 (d, J = 8.7 Hz, 1H), 7.70 (t, J = 7.4 Hz, 1H), 7.63 – 7.48 ppm (m, 4H); 13C NMR

(75 MHz, CDCl3) δ = 166.88, 150.33, 133.87, 131.96, 131.61, 130.46, 128.91, 128.03, 127.21,

126.84, 126.02, 125.77, 124.02, 118.84 ppm; HRMS (APCI) calcd for C17H11NS [M]+: 261.0612;

found 261.0619.

5 (2n)

S

N S

N

1H NMR (300 MHz, CDCl3) δ = 8.22 – 8.14 (m, 4H), 8.09 (d, J = 8.7 Hz, 1H), 7.97 (d, J = 8.7 Hz,

1H), 7.56 – 7.50 ppm (m, 6H); 13C NMR (75 MHz, CDCl3) δ = 169.80, 168.08, 154.00, 147.87,

133.66, 133.49, 131.76, 131.28, 131.09, 129.22, 128.87, 127.63, 120.51, 119.46 ppm; HRMS

(APCI) calcd for C20H12N2S2 [M+H]+: 345.0520; found 345.0519.

2-tert-butylbenzothiazole (5a)6

N

S

1H NMR (300 MHz, CDCl3) δ = 7.99 (d, J =6.9 Hz, 1H), 7.85 (d, J = 7.8 Hz, 1H), 7.44 (t, J = 7.7 Hz,

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 20: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S20

1H), 7.33 (t, J = 7.5 Hz, 1H), 1.52 ppm (s, 9H); 13C NMR (75 MHz, CDCl3) δ = 181.39, 153.12, 134.80,

125.56, 124.34, 122.53, 121.26, 38.09, 30.57 ppm.

2-tert-butyl-6-methoxybenzothiazole (5b)

N

SO

1H NMR (300 MHz, CDCl3) δ 7.78 (d, J = 9.0 Hz, 1H), 7.21 (d, J = 1.8 Hz, 1H), 6.95 (dd, J = 9.0, 2.2

Hz, 1H), 3.76 (s, 3H), 1.41 ppm (s, 9H).; 13C NMR (75 MHz, CDCl3) δ = 179.47, 157.41, 147.87,

136.40, 123.30, 115.06, 104.35, 55.96,38.37,30.96ppm; HRMS (APCI) calcd for C12H15NOS [M]+:

221.0874; found 221.0875.

2-tert-butyl-6-nitrobenzothiazole (5c)

N

SO2N

1H NMR (300 MHz, CDCl3) δ = 8.72 (s, 1H), 8.26 (d, J = 9.0 Hz, 1H), 7.99 (d, J = 8.7 Hz, 1H), 1.48

ppm (s, 9H); 13C NMR (75 MHz, CDCl3) δ = 188.56, 157.31, 144.76, 135.57, 123.09, 121.54, 118.30,

39.27, 30.78 ppm; HRMS (APCI) calcd for C11H12N2O2S [M]+: 236.0619; found 236.0616.

2-benzylbenzothiazole (5d)7

N

S

1H NMR (300 MHz, CDCl3) δ = 8.00 (d, J = 8.1 Hz, 1H), 7.79 (d, J = 7.8 Hz, 1H), 7.45 (t, J = 7.7 Hz,

1H), 7.38 – 7.29 (m, 6H), 4.44 ppm (s, 2H); 13C NMR (75 MHz, CDCl3) δ = 171.29, 153.36, 137.29,

135.76, 129.26, 128.97, 127.44, 126.07, 124.91, 122.87, 121.62, 40.72 ppm.

N,N-dibutylbenzothiazol-2-amine (5f)8

N

SN

nBu

nBu

1H NMR (300 MHz, CDCl3) δ = 7.56 (d, J = 7.8 Hz, 1H), 7.52 (d, J = 8.1 Hz, 1H), 7.31 – 7.22 (m, 1H),

7.02 (t, J = 7.5 Hz, 1H), 3.50 (t, J = 7.5 Hz, 4H), 1.77 – 1.57 (m, 4H), 1.48 – 1.31 (m, 4H), 0.97 ppm (t,

J = 7.2 Hz, 6H); 13C NMR (75 MHz, CDCl3) δ = 167.67, 153.26, 130.61, 125.61, 120.49, 120.31,

118.43, 50.84, 29.53, 20.13, 13.85 ppm.

N,N-diethylbenzothiazol-2-amine (5g)9

N

SN

1H NMR (300 MHz, CDCl3) δ = 7.63 – 7.46 (m, 2H), 7.33 – 7.22 (m, 1H), 7.03 (t, J = 7.5 Hz, 1H),

3.58 (q, J = 7.2 Hz, 4H), 1.29 ppm (t, J = 7.2 Hz, 6H); 13C NMR (75 MHz, CDCl3) δ = 167.26, 153.19,

130.52, 125.76, 120.65, 120.47, 118.44, 45.32, 12.82 ppm.

N-phenylbenzothiazol-2-amine (5h)10

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 21: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S21

N

SNH

1H NMR (300 MHz, CDCl3) δ = 8.94 (br.s, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.57 (d, J = 7.8 Hz, 1H), 7.50

(d, J = 7.5 Hz, 1H), 7.40 (t, J = 6.9 Hz, 2H), 7.32 (t, J = 7.4 Hz, 2H), 7.22 – 7.10 ppm (m, 2H); 13C

NMR (75 MHz, CDCl3) δ = 165.98, 151.16, 140.15, 129.66, 126.20, 124.67, 122.29, 120.92, 119.04

ppm.

N-benzylbenzothiazol-2-amine (5i)10

N

SNH

1H NMR (300 MHz, CDCl3) δ = 7.58 (d, J = 7.8 Hz, 1H), 7.49 (d, J = 8.1 Hz, 1H), 7.43 – 7.23 (m, 6H),

7.09 (t, J = 7.5 Hz, 1H), 6.06 (br.s, 1H), 4.64 ppm (s, 2H); 13C NMR (75 MHz, CDCl3) δ = 167.99,

152.33, 137.59, 130.44, 128.93, 127.95, 127.76, 126.08, 121.64, 120.95, 118.88, 49.56 ppm.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 22: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S22

Reference

1. K. Inamoto, C. Hasegawa, K. Hiroya and T. Doi, Org. Lett., 2008, 10, 5147.

2. S. Billeau, F. Chatel, M. Robin, R. Faure and J. P. Galy, Magn. Reson. Chem., 2006, 44, 102.

3. L. Chen, C. Yang, S. Li and J. Qin, Spectrochim Acta A Mol Biomol Spectrosc, 2007, 68, 317.

4. J. Perregaard and S. O. Lawesson, Acta Chem. Scand., Ser. B, 1977, 31, 203.

5. G. Grandolini, A. Ricci, A. Martani and F. D. Monache, J. Heterocycl. Chem., 1966, 3, 302.

6. H. M. Walborsky and P. Ronman, J. Org. Chem., 1978, 43, 731.

7. H. Sharghi and O. Asemani, Synth. Commun., 2009, 39, 860.

8. M. W. Hooper, M. Utsunomiya and J. F. Hartwig, J. Org. Chem., 2003, 68, 2861.

9. E. Feng, H. Huang, Y. Zhou, D. Ye, H. Jiang and H. Liu, J. Comb. Chem., 2010, 12, 422.

10. J.-W. Qiu, X.-G. Zhang, R.-Y. Tang, P. Zhong and J.-H. Li, Adv. Synth. Catal., 2009, 351,

2319.

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 23: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S23

NMR Spectra of Products 1H NMR (300 MHz, CDCl3) δ = 8.12 – 8.01 (m, 3H), 7.92 (d, J = 7.8 Hz,

1H), 7.57 – 7.45 (m, 3H), 7.41 ppm (t, J = 7.4 Hz, 1H); 13C NMR (75 MHz,

CDCl3) δ = 166.64, 154.12, 137.07, 135.14, 132.11, 129.32, 128.75, 126.58,

125.51, 123.40, 121.76 ppm.

1.

113.

20

1.00

3.06

-0.0

00

1.60

2

7.26

27.

383

7.40

77.

432

7.46

37.

491

7.51

27.

536

7.90

37.

929

8.02

28.

051

8.08

5

121.

758

123.

396

125.

507

126.

582

128.

745

129.

320

132.

115

135.

137

137.

070

154.

120

166.

642

N

SCl

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 24: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S24

1H NMR (300 MHz, CDCl3) δ = 8.18 – 8.00 (m, 3H), 7.91 (d, J = 8.1 Hz, 1H),

7.60 – 7.44 (m, 4H), 7.39 (t, J = 7.2 Hz, 1H);13C NMR (75 MHz, CDCl3) δ =

167.95, 154.06, 134.99, 133.50 130.89, 128.94, 127.47, 126.25, 125.11, 123.16,

121.56 ppm.

.

0102030405060708090110130150170190210230ppm

whb-6-106-1.c

76.7

3377

.160

77.5

82

121.

562

123.

157

125.

113

126.

246

127.

466

128.

935

130.

885

133.

499

134.

986

154.

060

167.

954

N

S

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 25: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S25

1H NMR (300 MHz, CDCl3) δ = 8.04 (d, J = 8.7 Hz, 3H), 7.88 (d, J = 7.8

Hz, 1H), 7.48 (t, J = 7.2 Hz, 1H), 7.36 (t, J = 7.2 Hz, 1H), 7.01 (d, J = 9.0

Hz, 2H), 3.89 ppm (s, 3H); 13C NMR (75 MHz, CDCl3) δ = 167.79, 161.81, 154.16, 134.81, 130.89,

129.03, 126.15, 124.73, 122.75, 121.47, 114.26, 55.33 ppm.

3.00

1.94

0.94

0.95

0.85

2.58

0.00

0

1.60

8

3.88

9

6.99

27.

022

7.26

27.

334

7.35

87.

382

7.45

17.

475

7.49

97.

869

7.89

58.

026

8.05

5

0102030405060708090100110120130140150160170180190ppm

whb-6-106-6-1.c

55.3

26

76.7

3777

.160

77.5

84

114.

262

121.

474

122.

748

124.

729

126.

147

129.

025

130.

894

134.

807

154.

164

161.

811

167.

786

N

SOMe

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 26: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S26

1H NMR (300 MHz, CDCl3) δ = 8.35 (d, J = 8.4 Hz, 2H), 8.26 (d, J = 8.4

Hz, 2H), 8.13 (d, J = 8.1 Hz, 1H), 7.96 (d, J = 8.1 Hz, 1H), 7.56 (t, J = 7.5

Hz, 1H), 7.47 ppm (t, J = 7.4 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ =

164.97, 154.25, 149.17, 139.32, 135.63, 128.38, 127.07, 126.37, 124.46, 124.09, 121.98 ppm.

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5ppm

whb-6-162-2

1.07

1.17

0.95

1.00

1.82

1.80

0.00

0

1.61

8

7.26

57.

444

7.46

87.

493

7.53

57.

561

7.58

57.

946

8.11

78.

144

8.24

88.

276

8.33

78.

365

0102030405060708090100110120130140150160170180ppm

whb-6-162-2.c

76.7

3677

.160

77.5

83

121.

985

124.

085

124.

456

126.

371

127.

066

128.

377

135.

633

139.

320

149.

174

154.

247

164.

970

N

SNO2

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 27: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S27

1H NMR (300 MHz, CDCl3) δ = 8.07 (d, J = 8.1 Hz, 1H), 7.97 (d, J = 8.4

Hz, 2H), 7.92 (d, J = 7.8 Hz, 1H), 7.64 (d, J = 8.4 Hz, 2H), 7.51 (t, J = 7.7

Hz, 1H), 7.41 ppm (t, J = 7.5 Hz, 1H); 13C NMR (75 MHz, CDCl3) δ =

166.59, 153.98, 134.98, 132.40, 132.14, 128.81, 126.47, 125.41, 123.28, 121.64 ppm.

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5ppm

whb-6-160-5-11.

071.

122.

081.

051.

971.

00

-0.0

00

1.59

4

7.26

37.

387

7.41

17.

437

7.48

97.

514

7.54

07.

623

7.65

17.

904

7.93

07.

955

7.98

38.

061

8.08

8

0102030405060708090100110120130140150160170180190ppm

whb-6-160-5-1.c

76.7

3777

.160

77.5

84

121.

645

123.

279

125.

409

126.

472

128.

806

132.

144

132.

403

134.

978

153.

983

166.

588

N

SBr

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 28: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S28

1H NMR (300 MHz, CDCl3) δ = 8.07 (d, J = 8.1 Hz, 1H), 7.92 (d, J = 7.5 Hz,

1H), 7.88 – 7.80 (m, 4H), 7.51 (t, J = 7.2 Hz, 1H), 7.41 ppm (t, J = 7.1 Hz,

1H); 13C NMR (75 MHz, CDCl3) δ = 166.89, 154.05, 138.19, 135.00, 133.05,

128.94, 126.56, 125.52, 123.35, 121.74, 97.64 ppm.

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.5ppm

whb-6-160-6-1

1.06

1.10

4.05

0.95

1.00

0.00

0

1.57

9

7.26

47.

389

7.41

37.

436

7.48

97.

513

7.53

77.

807

7.83

77.

841

7.87

17.

904

7.92

98.

060

8.08

7

0102030405060708090100110120130140150160170180190ppm

whb-6-160-6-1.c

76.7

2677

.149

77.5

73

97.6

38

121.

736

123.

353

125.

524

126.

561

128.

943

133.

048

135.

004

138.

189

154.

045

166.

892

N

SI

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 29: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S29

1H NMR (300 MHz, CDCl3) δ = 8.09 – 8.02 (m, 2H), 7.96 (d, J = 9.0 Hz,

1H), 7.57 – 7.43 (m, 3H), 7.37 (d, J = 2.1 Hz, 1H), 7.10 (dd, J = 8.9, 2.3

Hz, 1H), 3.90 ppm (s, 3H); 13C NMR (75 MHz, CDCl3) δ = 160.96,

153.20, 144.13, 131.91, 129.20, 126.01, 124.45, 122.68, 119.18, 111.15, 99.51, 51.18 ppm.

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0ppm

whb-6-118-2a

3.00

0.91

0.93

2.71

0.87

1.74

0.00

0

1.60

0

3.90

2

7.08

07.

088

7.11

07.

117

7.26

37.

362

7.36

97.

477

7.48

87.

943

7.97

38.

037

8.05

08.

061

0102030405060708090100110120130140150160170180ppm

whb-6-118-2.c

51.1

78

72.2

5372

.677

73.1

01

99.5

06

111.

154

119.

176

122.

681

124.

451

126.

005

129.

197

131.

909

144.

132

153.

195

160.

963

N

SMeO

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 30: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S30

1H NMR (300 MHz, CDCl3) δ = 7.96 – 7.89 (m, 2H), 7.86 (d, J = 8.7 Hz,

1H), 7.71 (s, 1H), 7.38 (d, J = 8.7 Hz, 1H), 7.31 – 7.23 (m, 3H), 1.22 ppm (s,

9H); 13C NMR (75 MHz, CDCl3) δ = 167.35, 152.11, 148.60, 135.10,

133.75, 130.70, 128.93, 127.41, 124.49, 122.55, 117.67, 35.02, 31.54 ppm.

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.5ppm

whb-6-131-1

9.00

2.69

0.95

0.83

0.89

1.79

0.00

0

1.22

5

7.26

47.

278

7.36

47.

393

7.70

87.

849

7.87

87.

906

7.91

97.

930

0102030405060708090100110120130140150160170180ppm

whb-6-131-1.c

31.5

4135

.016

76.7

3677

.160

77.5

85

117.

668

122.

551

124.

495

127.

412

128.

931

130.

701

133.

753

135.

097

148.

604

152.

107

167.

348

N

St-Bu

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 31: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S31

1H NMR (300 MHz, CDCl3) δ = 8.11 – 8.02 (m, 3H), 7.92 (d, J = 8.7 Hz,

1H), 7.59 (d, J = 8.7 Hz, 1H), 7.51 ppm (br, 3H); 13C NMR (75 MHz, CDCl3)

δ = 168.47, 152.93, 136.62, 133.09, 131.25, 129.77, 129.07, 127.51, 124.26,

124.11, 118.74 ppm.

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0ppm

whb-6-113-42.

991.

011.

002.

64

-0.0

00

1.60

6

7.26

07.

510

7.57

57.

604

7.90

37.

932

8.03

78.

055

8.06

68.

080

0102030405060708090100110120130140150160170180190ppm

whb-6-113-4.c

76.7

3677

.160

77.5

82

118.

739

124.

110

124.

259

127.

511

129.

068

129.

768

131.

251

133.

087

136.

623

152.

933

168.

468

N

SBr

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 32: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S32

1H NMR (300 MHz, CDCl3) δ = 8.24 (s, 1H), 8.10 – 8.03 (m, 2H), 7.82 – 7.76

(m, 2H), 7.55 – 7.47 ppm (m, 3H); 13C NMR (75 MHz, CDCl3) δ = 168.61,

153.57, 137.20, 135.53, 133.16, 131.44, 130.19, 129.21, 127.69, 124.77, 89.60

ppm.

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.5ppm

whb-6-137-3-1

3.07

2.00

1.96

0.83

-0.0

01

1.57

6

7.26

17.

499

7.51

17.

517

7.75

57.

784

7.79

37.

821

8.06

28.

073

8.08

58.

244

0102030405060708090100110120130140150160170180190ppm

whb-6-137-3-1.c

76.7

3777

.160

77.5

84

89.6

02

124.

765

127.

686

129.

214

130.

191

131.

441

133.

160

135.

533

137.

198

153.

575

168.

606

N

SI

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 33: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S33

1H NMR (300 MHz, CDCl3) δ = 8.85 (s, 1H), 8.38 (d, J = 8.7 Hz, 1H),

8.21 – 8.06 (m, 3H), 7.63 – 7.47 ppm (m, 3H); 13C NMR (75 MHz, CDCl3)

δ = 173.92, 157.96, 144.99, 135.44, 132.81, 132.38, 129.43, 128.05, 123.45,

122.04, 118.37 ppm.

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.5ppm

whb-6-162-1-13.

09

2.96

1.00

0.87

-0.0

00

1.58

2

7.26

47.

548

7.56

9

8.13

18.

161

8.36

68.

395

8.85

4

0102030405060708090100110120130140150160170180190ppm

whb-6-162-1-1.c

76.7

3777

.160

77.5

84

118.

374

122.

044

123.

448

128.

055

129.

432

132.

382

132.

808

135.

438

144.

988

157.

960

173.

923

N

SO2N

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 34: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S34

1H NMR (300 MHz, CDCl3) δ = 8.15 – 8.09 (m, 2H), 7.78 – 7.69 (m, 1H), 7.53 –

7.46 (m, 3H), 7.32 – 7.24 (m, 2H), 2.81 ppm (s, 3H); 13C NMR (75 MHz, CDCl3)

δ = 166.84, 153.95, 135.39, 134.32, 133.65, 131.02, 129.27, 127.91, 127.16,

125.45, 119.36, 18.94 ppm.

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.5ppm

whb-6-113-1

3.00

2.25

2.84

0.90

1.77

-0.0

00

1.58

0

2.81

3

7.25

77.

273

7.28

97.

485

7.49

87.

719

7.73

27.

749

8.10

68.

119

0102030405060708090100110120130140150160170180190ppm

whb-6-113-1.c

18.9

37

77.2

4377

.668

78.0

92

119.

361

125.

447

127.

156

127.

864

129.

265

131.

019

133.

650

134.

321

135.

387

153.

946

166.

836

N

S

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 35: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S35

1H NMR (300 MHz, CDCl3) δ = 8.93 (d, J = 8.1 Hz, 1H), 8.21 (d, J = 6.3 Hz,

2H), 7.95 (t, J = 9.0 Hz, 2H), 7.82 (d, J = 8.7 Hz, 1H), 7.70 (t, J = 7.4 Hz,

1H), 7.63 – 7.48 ppm (m, 4H); 13C NMR (75 MHz, CDCl3) δ = 166.88,

150.33, 133.87, 131.96, 131.61, 130.46, 128.91, 128.03, 127.21, 126.84,

126.02, 125.77, 124.02, 118.84 ppm.

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.5ppm

whb-6-118-4

3.55

1.06

1.00

1.73

1.61

0.71

-0.0

00

1.57

0

7.26

07.

511

7.53

17.

571

7.59

77.

622

7.67

67.

702

7.72

57.

802

7.83

17.

915

7.94

67.

975

8.19

58.

216

8.91

28.

939

0102030405060708090100110120130140150160170180ppm

whb-6-118-4.c

76.7

3677

.160

77.5

86

118.

842

124.

025

125.

775

126.

022

126.

841

127.

210

128.

029

128.

907

130.

456

131.

610

131.

964

133.

871

150.

329

166.

876

N

S

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 36: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S36

1H NMR (300 MHz, CDCl3) δ = 8.22 – 8.14 (m, 4H), 8.09 (d, J = 8.7 Hz,

1H), 7.97 (d, J = 8.7 Hz, 1H), 7.56 – 7.50 ppm (m, 6H); 13C NMR (75

MHz, CDCl3) δ = 169.80, 168.08, 154.00, 147.87, 133.66, 133.49,

131.76, 131.28, 131.09, 129.22, 128.87, 127.63, 120.51, 119.46 ppm.

-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0ppm

whb-6-131-3-16.

20

1.00

1.00

3.92

0.00

0

1.58

4

7.26

27.

530

7.54

17.

960

7.98

98.

080

8.10

98.

159

8.17

18.

183

76.7

3777

.160

77.5

84

119.

459

120.

510

127.

627

129.

224

131.

088

131.

281

133.

486

133.

658

147.

873

153.

999

168.

085

169.

796

S

N S

N

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 37: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S37

1H NMR (300 MHz, CDCl3) δ = 7.99 (d, J =6.9 Hz, 1H), 7.85 (d, J = 7.8 Hz, 1H),

7.44 (t, J = 7.7 Hz, 1H), 7.33 (t, J = 7.5 Hz, 1H), 1.52 ppm (s, 9H); 13C NMR (75

MHz, CDCl3) δ = 181.39, 153.12, 134.80, 125.56, 124.34, 122.53, 121.26, 38.09,

30.57 ppm.

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1 (ppm)

N

S

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 38: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S38

1H NMR (300 MHz, CDCl3) δ 7.78 (d, J = 9.0 Hz, 1H), 7.21 (d, J = 1.8 Hz,

1H), 6.95 (dd, J = 9.0, 2.2 Hz, 1H), 3.76 (s, 3H), 1.41 ppm (s, 9H).; 13C NMR

(75 MHz, CDCl3) δ = 179.47, 157.41, 147.87, 136.40, 123.30, 115.06, 104.35,

55.96,38.37,30.96ppm.

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.5ppm

whb-7-059-1

9.00

3.06

0.89

0.90

0.89

-0.000

1.409

3.757

6.928

6.936

6.958

6.965

7.206

7.212

7.762

7.792

0102030405060708090100110120130140150160170180190200210220ppm

whb-7-059-1.c30.961

38.374

55.958

77.335

77.534

77.756

104.350

115.062

123.297

136.399

147.872

157.407

179.474

N

SO

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 39: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S39

1H NMR (300 MHz, CDCl3) δ = 8.72 (s, 1H), 8.26 (d, J = 9.0 Hz, 1H), 7.99 (d,

J = 8.7 Hz, 1H), 1.48 ppm (s, 9H); 13C NMR (75 MHz, CDCl3) δ = 188.56,

157.31, 144.76, 135.57, 123.09, 121.54, 118.30, 39.27, 30.78 ppm.

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.5ppm

whb-7-059-5

9.00

0.93

0.92

0.83

0.000

1.480

7.972

8.001

8.241

8.271

8.718

0102030405060708090100110120130140150160170180190200210220ppm

whb-7-059-5.c

30.779

39.269

76.881

77.306

77.728

118.301

121.541

123.086

135.571

144.760

157.311

188.559

N

SO2N

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 40: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S40

1H NMR (300 MHz, CDCl3) δ = 8.00 (d, J = 8.1 Hz, 1H), 7.79 (d, J = 7.8 Hz, 1H),

7.45 (t, J = 7.7 Hz, 1H), 7.38 – 7.29 (m, 6H), 4.44 ppm (s, 2H); 13C NMR (75

MHz, CDCl3) δ = 171.29, 153.36, 137.29, 135.76, 129.26, 128.97, 127.44, 126.07,

124.91, 122.87, 121.62, 40.72 ppm.

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.0f1 (ppm)

wlu-1-034-4-0520

2.23

5.83

1.19

1.04

1.00

-0.000

1.611

4.443

7.258

7.289

7.310

7.317

7.334

7.352

7.363

7.371

7.428

7.452

7.479

7.777

7.803

7.984

8.011

0102030405060708090100110120130140150160170180190f1 (ppm)

wlu-1-034-4.c

40.720

76.738

77.160

77.584

121.619

122.874

124.914

126.067

127.442

128.965

129.259

135.764

137.289

153.362

171.287

S

N

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 41: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S41

1H NMR (300 MHz, CDCl3) δ = 7.56 (d, J = 7.8 Hz, 1H), 7.52 (d, J = 8.1 Hz, 1H),

7.31 – 7.22 (m, 1H), 7.02 (t, J = 7.5 Hz, 1H), 3.50 (t, J = 7.5 Hz, 4H), 1.77 – 1.57

(m, 4H), 1.48 – 1.31 (m, 4H), 0.97 ppm (t, J = 7.2 Hz, 6H); 13C NMR (75 MHz,

CDCl3) δ = 167.67, 153.26, 130.61, 125.61, 120.49, 120.31, 118.43, 50.84, 29.53, 20.13, 13.85 ppm.

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.5f1 (ppm)

WLu-1-024-4

5.84

4.15

4.76

4.00

0.89

1.30

0.79

0.76

0.000

0.942

0.966

0.990

1.327

1.351

1.376

1.401

1.426

1.451

1.629

1.655

1.676

1.705

1.730

3.470

3.495

3.520

6.991

7.016

7.041

7.261

7.284

7.504

7.531

7.549

7.575

0102030405060708090100110120130140150160170180190f1 (ppm)

WLu-1-024-4.c

13.849

20.027

29.532

50.842

76.737

77.160

77.585

118.433

120.310

120.485

125.607

130.606

153.262

167.673

N

SN

nBu

nBu

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 42: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S42

1H NMR (300 MHz, CDCl3) δ = 7.63 – 7.46 (m, 2H), 7.33 – 7.22 (m, 1H), 7.03 (t, J =

7.5 Hz, 1H), 3.58 (q, J = 7.2 Hz, 4H), 1.29 ppm (t, J = 7.2 Hz, 6H); 13C NMR (75

MHz, CDCl3) δ = 167.26, 153.19, 130.52, 125.76, 120.65, 120.47, 118.44, 45.32,

12.82 ppm.

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.5ppm

whb-7-136-6

6.32

4.00

0.86

1.23

1.66

1.267

1.291

1.315

1.702

3.547

3.570

3.594

3.618

7.007

7.032

7.057

7.247

7.266

7.298

7.527

7.554

7.566

7.593

0102030405060708090100110120130140150160170180190200ppm

whb-7-13612.819

45.325

76.655

77.080

77.504

118.439

120.474

120.650

125.756

130.524

153.193

167.261

N

SN

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 43: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S43

1H NMR (300 MHz, CDCl3) δ = 8.94 (br.s, 1H), 7.63 (d, J = 7.8 Hz, 1H), 7.57 (d,

J = 7.8 Hz, 1H), 7.50 (d, J = 7.5 Hz, 1H), 7.40 (t, J = 6.9 Hz, 2H), 7.32 (t, J = 7.4

Hz, 2H), 7.22 – 7.10 ppm (m, 2H); 13C NMR (75 MHz, CDCl3) δ = 165.98,

151.16, 140.15, 129.66, 126.20, 124.67, 122.29, 120.92, 119.04 ppm.

-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.5f1 (ppm)

2.18

1.28

2.27

2.19

1.11

1.12

1.00

-0.000

1.253

7.126

7.149

7.171

7.193

7.253

7.298

7.323

7.347

7.381

7.404

7.427

7.489

7.514

7.554

7.580

7.614

7.640

8.938

0102030405060708090100110120130140150160170180190f1 (ppm)

WLu-1-024-1-1.c

76.720

77.143

77.569

119.036

120.919

122.286

124.673

126.198

129.660

140.154

151.159

165.977

N

SNH

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011

Page 44: Supporting Information · 2011-11-08 · S1 Supporting Information Fe-Catalyzed Oxidative C-H Functionalization / C-S Bond Formation Haibo Wang,a Lu Wang,a Jinsai Shang,a Xing Li,a

S44

1H NMR (300 MHz, CDCl3) δ = 7.58 (d, J = 7.8 Hz, 1H), 7.49 (d, J = 8.1 Hz,

1H), 7.43 – 7.23 (m, 6H), 7.09 (t, J = 7.5 Hz, 1H), 6.06 (br.s, 1H), 4.64 ppm

(s, 2H); 13C NMR (75 MHz, CDCl3) δ = 167.99, 152.33, 137.59, 130.44,

128.93, 127.95, 127.76, 126.08, 121.64, 120.95, 118.88, 49.56 ppm.

0.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.5f1 (ppm)

wlu-1-034-1-2-0520

2.00

0.92

0.94

5.80

0.98

0.97

0.000

1.256

1.667

4.640

6.057

7.060

7.085

7.110

7.257

7.283

7.308

7.336

7.363

7.391

7.476

7.503

7.562

7.588

0102030405060708090100110120130140150160170180190200f1 (ppm)

wlu-1-034-1-2.c

49.556

76.737

77.160

77.584

118.881

120.945

121.639

126.076

127.765

127.949

128.929

130.437

137.592

152.328

167.991

S

NNH

Electronic Supplementary Material (ESI) for Chemical CommunicationsThis journal is © The Royal Society of Chemistry 2011