16
Bol. Soc. Paran. Mat. (3s.) v. 34 1 (2016): 187202. c SPM –ISSN-2175-1188 on line ISSN-00378712 in press SPM: www.spm.uem.br/bspm Surfaces Family With Common Smarandache Asymptotic Curve According To Bishop Frame In Euclidean Space Gülnur Şaffak Atalay and Emin Kasap abstract: In this paper, we analyzed the problem of consructing a family of surfaces from a given some special Smarandache curves in Euclidean 3-space. Using the Bishop frame of the curve in Euclidean 3-space, we express the family of surfaces as a linear combination of the components of this frame, and derive the necessary and sufficient conditions for coefficents to satisfy both the asymptotic and isopara- metric requirements. Finally, examples are given to show the family of surfaces with common Smarandache asymptotic curve. Key Words:Smarandache Asymptotic Curve, Bishop Frame. Contents 1 Introduction 187 2 Preliminaries 188 3 Surfaces with common Smarandache asymptotic curve 190 4 Examples of generating simple surfaces with common Smarandache asymptotic curve 197 1. Introduction In differential geometry, there are many important consequences and properties of curves [1], [2],[3]. Researches follow labours about the curves. In the light of the existing studies, authors always introduce new curves. Special Smarandache curves are one of them. Special Smarandache curves have been investigated by some dif- ferential geometers [4,5,6,7,8,9,10]. This curve is defined as, a regular curve in Minkowski space-time, whose position vector is composed by Frenet frame vectors on another regular curve, is Smarandache curve [4]. A.T. Ali has introduced some special Smarandache curves in the Euclidean space [5]. Special Smarandache curves according to Bishop Frame in Euclidean 3-space have been investigated by Çetin et al [6]. In addition, Special Smarandache curves according to Darboux Frame in Eu- clidean 3-space has introduced in [7]. They found some properties of these special curves and calculated normal curvature, geodesic curvature and geodesic torsion of these curves. Also, they investigate special Smarandache curves in Minkowski 3-space, [8]. Furthermore, they find some properties of these special curves and they calculate curvature and torsion of these curves. Special Smarandache curves 2000 Mathematics Subject Classification: 53A04, 53A05 187 Typeset by B S P M style. c Soc. Paran. de Mat.

Surfaces Family With Common Smarandache Asymptotic Curve According To Bishop Frame In Euclidean Space

Embed Size (px)

DESCRIPTION

In this paper, we analyzed the problem of consructing a family of surfaces from a given some special Smarandache curves in Euclidean 3-space.

Citation preview

Bol. Soc. Paran. Mat. (3s.) v. 341(2016): 187202.c SPMISSN-2175-1188online ISSN-00378712inpressSPM:www.spm.uem.br/bspmSurfacesFamilyWithCommonSmarandacheAsymptoticCurveAccordingToBishopFrameInEuclideanSpaceGlnuraakAtalayandEmin Kasapabstract: Inthispaper, weanalyzedtheproblemof consructingafamilyofsurfaces from a given some special Smarandachecurves in Euclidean 3-space. Usingthe Bishop frame of the curve in Euclidean 3-space, we express the family of surfacesasalinearcombinationofthecomponentsofthisframe, andderivethenecessaryandsucientconditionsforcoecentstosatisfyboththeasymptoticandisopara-metric requirements. Finally, examples are given to show the family of surfaces withcommonSmarandacheasymptoticcurve.KeyWords: Smarandache AsymptoticCurve, BishopFrame.Contents1 Introduction 1872 Preliminaries 1883 SurfaceswithcommonSmarandacheasymptoticcurve 1904 ExamplesofgeneratingsimplesurfaceswithcommonSmarandacheasymptoticcurve 1971. IntroductionIn dierential geometry, there are many important consequences and propertiesof curves[1], [2], [3]. Researches follow labours about the curves. In the light of theexisting studies, authors always introduce new curves. Special Smarandache curvesareoneofthem. SpecialSmarandachecurveshavebeeninvestigatedbysomedif-ferential geometers [4,5,6,7,8,9,10]. This curveis denedas, aregular curveinMinkowski space-time,whoseposition vectoriscomposedbyFrenetframevectorson another regular curve, is Smarandache curve[4]. A.T.Alihasintroduced somespecial Smarandache curves in the Euclidean space[5]. Special Smarandache curvesaccording to Bishop Frame in Euclidean 3-space have been investigated by etin etal[6]. In addition, Special Smarandache curves according to Darboux Frame in Eu-clidean 3-space hasintroducedin[7]. Theyfoundsomepropertiesof thesespecialcurvesandcalculatednormal curvature, geodesiccurvatureandgeodesictorsionof thesecurves. Also, theyinvestigatespecial SmarandachecurvesinMinkowski3-space, [8]. Furthermore, theyndsomepropertiesof thesespecial curvesandtheycalculatecurvatureandtorsionofthesecurves. SpecialSmarandachecurves2000MathematicsSubjectClassication: 53A04,53A05187TypesetbyBSPMstyle.c Soc. Paran. deMat.188 GlnuraffakAtalayandEminKasapsuchas-SmarandachecurvesaccordingtoSabbanframeinEuclideanunitspherehas introduced in[9]. Also, they give some characterization of Smarandache curvesandillustrateexamplesoftheirresults.OntheQuaternionicSmarandacheCurvesinEuclidean3-Spacehavebeeninvestigatedin[10].One of themost signicant curve on a surface is asymptotic curve. Asymptoticcurveonasurfacehasbeenalong-termresearchtopicinDierential Geometry,[3,11,12]. Acurveonasurfaceiscalledanasymptoticcurveprovideditsvelocityalways points in an asymptotic direction,that is thedirection in which thenormalcurvatureiszero. AnothercriterionforacurveinasurfaceMtobeasymptoticis that its accelerationalways be tangent toM, [2].Asymptoticcurves arealsoencounteredinastronomy, astrophysicsandCADinarchitecture.Theconceptoffamilyofsurfaceshavingagivencharacteristiccurvewasrstintroduced by Wang et.al. [12]in Euclidean 3-space. Kasap et.al. [13]generalizedthe work of Wang by introducing new types of marching-scale functions, coecientsoftheFrenetframeappearingintheparametricrepresentationofsurfaces. Withthe inspiration of work of Wang, Li et.al. [14] changed the characteristic curve fromgeodesictolineofcurvatureanddenedthesurfacepencilwithacommonlineofcurvature. Recently, in[15] Bayramet.al. dened the surface pencil with a commonasymptoticcurve. Theyintroducedthreetypes of marching-scalefunctions andderived thenecessary andsucientconditionson themtosatisfybothparametricandasymptoticrequirements.Bishopframe, whichisalsocalledalternativeorparallel frameof thecurves,wasintroducedbyL. R. Bishopin1975bymeansof parallel vectorelds, [16].Recently, manyresearchpapersrelatedtothisconcepthavebeentreatedintheEuclidean space, see[17,18]. And,recently, this special frame is extended to studyof canal and tubular surfaces, we refer to[19,20]. Bishop and FrenetSerret frameshaveacommonvectoreld, namelythetangentvectoreldoftheFrenetSerretframe. ApracticalapplicationofBishopframesisthattheyareusedintheareaofBiologyandComputerGraphics. Forexample, itmaybepossibletocomputeinformationabout theshopeof sequencesof DNAusingacurvedenedbytheBishopframe. TheBishopframemayalsoprovideanewwaytocontrol virtualcamerasincomputeranimatons, [21].In this paper, we study the problem: given a curve (with Bishop frame), how tocharacterizethosesurfacesthatposessthiscurveasacommonisoasymptoticandSmarandachecurveinEuclidean3-space. Insection2, wegivesomepreliminaryinformation aboutSmarandache curvesinEuclidean3-space anddeneisoasymp-toticcurve. Weexpresssurfacesasalinearcombinationof theBishopframeofthegivencurveandderivenecessaryandsucientconditionsonmarching-scalefunctionstosatisfybothisoasymptoticandSmarandacherequirementsinSection3. Weillustratethemethodbygivingsomeexamples.2. PreliminariesThe Bishopframe or parallel transport frame is analternativeapproachtodeningamovingframethatiswell denedevenwhenthecurvehasvanishingsecondderivative. Onecanexpress parallel transport of anorthonormal frameSurfacesFamilyWithCommonSmarandacheAsymptoticCurve 189alongacurvesimplybyparallel transportingeachcomponentof theframe [16].Thetangentvectorandanyconvenientarbitrarybasisfortheremainderof theframeareused(fordetails,see [17]). TheBishop frameisexpressed as [16,18].dds__T(s)N1(s)N2(s)__=__0 k1(s) k2(s)k1(s) 0 0k2(s) 0 0____T(s)N1(s)N2(s)__(2.1)Here,weshallcalltheset {T(s), N1(s), N2(s)}asBishopFrameandk1andk2asBishop curvatures. The relation between Bishop Frame and Frenet Frame of curve(s)isgivenasfollows;__T(s)N1(s)N2(s)__=__1 0 00 cos (s) sin (s)0 sin (s) cos (s)____T(s)N(s)B(s)__(2.2)where___ (s) = arctan_k2(s)k1(s)_ (s) = d(s)ds(s) =_k21(s) + k22(s)(2.3)HereBishopcurvaturesaredenedby_k1(s) = (s) cos (s)k2(s) = (s) sin (s)(2.4)LetrbearegularcurveinasurfacePpassingthroughsP, thecurvatureofratsandcos =n.N,whereNisthenormalvectortorandisnnormalvectortoPatsand . denotesthestandard innerproduct. Thenumberkn= cos isthencalledthenormalcurvatureofats [2].Let sbeapoint inasurface P.Anasymptoticdirection ofPat sisadirectionofthetangentplaneofPforwhichthenormalcurvatureiszero. Anasymptoticcurve of Pisaregular curver Psuch thatfor eachsrthetangent lineof ratsisanasymptoticdirection[2].Anisoparametriccurve(s)isacurveonasurface=(s, t)isthathasaconstantsort-parametervalue. Inotherwords, thereexistaparameterorsuchthat(s) = (s, t0)or(t) = (s0, t).Givenaparametriccurve(s),wecall(s)anisoasymptoticofasurfaceifitisbothaasymptoticandanisoparametriccurveon.Let=(s)beaunitspeedregularcurveinE3and {T(s), N1(s), N2(s)}beitsmovingBishopframe. SmarandacheTN1curvesaredenedby= (s) =12 (T(s) + N1(s)) ,SmarandacheTN2curvesaredenedby= (s) =12 (T(s) + N2(s)),SmarandacheN1N2curvesaredenedby= (s) =12 (N1(s) + N2(s)),SmarandacheTN1N2curvesaredenedby= (s) =13 (T(s) + N1(s) + N2(s)), [5].190 GlnuraffakAtalayandEminKasap3. SurfaceswithcommonSmarandacheasymptoticcurveLet = (s, v) be a parametric surface. The surface is dened by a given curve = (s)asfollows:(s, v) = (s)+[x(s, v)T(s)+y(s, v)N1(s)+z(s, v)N2(s)], L1 s L2, T1 v T2(3.1)wherex(s, v) , y(s, v)andz(s, v)areC1functions. Thevaluesof themarching-scale functionsx(s, v) , y(s, v) and z(s, v) indicate, respectively; the extension-like,exion-like and retortion-like eects, by the point unit through the time v, startingfrom(s)and {T(s), N1(s), N2(s)}istheBishopframeassociatedwiththecurve(s).Ourgoalistondthenecessaryandsucientconditionsforwhichthesomespecial Smarandachecurvesof theunitspacecurve(s) isanparametriccurveandanasymptoticcurveonthesurface(s, v).Firstly,sinceSmarandachecurveof(s)isanparametriccurveonthesurface(s, v),thereexistsaparameterv0[T1, T2]suchthatx(s, v0) = y(s, v0) = z(s, v0) = 0, L1 s L2, T1 v T2. (3.2)Secondly, accordingtotheabovedenitions, thecurve(s)isanasymptoticcurveonthesurface(s, v)ifandonlyifthenormalcurvaturekn=cos = 0,whereistheanglebetweenthesurfacenormaln(s, v0)andtheprincipalnormalN(s) of the curve(s). Since n(s, v0).T(s) =0, L1s L2, byderivatingthisequationwithrespecttothearclengthparameters, wehavetheequivalentconstraintdnds(s, v0).T(s) = 0 (3.3)for thecurve(s) tobeanasymptoticcurveonthesurface(s, v), where .denotesthestandardinnerproduct.Theorem3.1. : SmarandacheTN1curveofthecurve(s)isisoasymptoticonasurface(s, v)ifandonlyif thefollowingconditionsaresatised:_x(s, v0) = y(s, v0) = z(s, v0) = 0,zv(s, v0) = tan (s)yv(s, v0).Proof: Let (s) be aSmarandache TN1curve onsurface (s, v).From(3.1) ,(s, v),parametricsurfaceisdenedbyagivenSmarandacheTN1curveofcurve(s)asfollows:(s, v) =12(T(s) + N1(s)) + [x(s, v)T(s) + y(s, v)N1(s) + z(s, v)N2(s)].IfSmarandacheTN1curveisanparametriccurveonthissurface,thenthereexistaparameterv = v0suchthat,12 (T(s) + N1(s)) = (s, v0),thatis,x(s, v0) = y(s, v0) = z(s, v0) = 0 (3.4)SurfacesFamilyWithCommonSmarandacheAsymptoticCurve 191Thenormal vectorof(s, v)canbewrittenasn(s, v) =(s, v)ds(s, v)vSinceThenormalvectorcanbeexpressed asn(s, v) = [z(s, v)dv(k1(s)2+y(s, v)ds+ k1(s)x(s, v))y(s, v)dv(k2(s)2+z(s, v)ds+ k2(s)x(s, v))]T(s)+[x(s, v)dv(k2(s)2+z(s, v)ds+ k2(s)x(s, v))z(s, v)dv(k1(s)2+x(s, v)dsk1(s)y(s, v) k2(s)z(s, v))]N1(s)+[y(s, v)dv(k1(s)2+x(s, v)dsk1(s)y(s, v) k2(s)z(s, v))x(s, v)dv(k1(s)2+y(s, v)ds+ k1(s)x(s, v))]N2(s) (3.5)Using(3.4),ifwelet___1(s, v0) =k1(s)2zdv(s, v0) k2(s)2ydv(s, v0),2(s, v0) =k1(s)2zdv(s, v0) +k2(s)2xdv(s, v0),3(s, v0) = k1(s)2ydv(s, v0) k1(s)2xdv(s, v0).(3.6)weobtainn(s, v0) = 1(s, v0)T(s) + 2(s, v0)N1(s) + 3(s, v0)N2(s).FromEqn. (2.2),wegetn(s, v0) = 1(s, v0)T(s) + cos (s) 2(s, v0) + sin (s) 3(s, v0))N(s)+(cos (s) 3(s, v0) sin (s) 2(s, v0))B(s).Fromtheeqn. (3.2),weshouldhavens(s, v0).T(s) = 0(cos (s)2(s,v0)+sin(s)3(s,v0))N(s)+(cos (s)3(s,v0)sin (s)2(s,v0))B(s))s.T(s) = 01s(s, v0) (s) (cos (s) 2(s, v0) + sin (s) 3(s, v0)) = 0. (3.7)192 GlnuraffakAtalayandEminKasapFrom (3.4), wehave1s(s, v0) = 0.Weusing Eqn. (3.6) and Eqn.(2.4) in Eqn.(3.7),since(s) = 0,wegetz(s, v0)dv= tan (s) y(s, v0)dv(3.8)whichcompletestheproof. Combiningtheconditions (3.4) and(3.8), wehavefoundthenecessaryandsucientconditionsforthe (s, v) tohavetheSmarandacheTN1curveof thecurveisanisoasymptotic.Theorem3.2. : SmarandacheTN2curveofthecurve(s)isisoasymptoticonasurface(s, v)ifandonlyif thefollowingconditionsaresatised:_x(s, v0) = y(s, v0) = z(s, v0) = 0,zv(s, v0) = tan (s)yv(s, v0).Proof: Let (s) be aSmarandache TN2curve onsurface (s, v).From(3.1) ,(s, v)parametricsurfaceisdenedbyagivenSmarandacheTN2curveofcurve(s)asfollows:(s, v) =12(T(s) + N2(s)) + [x(s, v)T(s) + y(s, v)N1(s) + z(s, v)N2(s)].If Smarandache TN2curve is an parametric curve on this surface , then there existaparameterv= v0suchthat,12 (T(s) + N2(s)) = (s, v0),thatis,x(s, v0) = y(s, v0) = z(s, v0) = 0 (3.9)Thenormal vectorcanbeexpressed asn(s, v) = [z(s, v)dv(k1(s)2+y(s, v)ds+ k1(s)x(s, v))y(s, v)dv(k2(s)2+z(s, v)ds+ k2(s)x(s, v))]T(s)+[x(s, v)dv(k2(s)2+z(s, v)ds+ k2(s)x(s, v))z(s, v)dv(k2(s)2+x(s, v)dsk1(s)y(s, v) k2(s)z(s, v))]N1(s)+[y(s, v)dv(k2(s)2+x(s, v)dsk1(s)y(s, v) k2(s)z(s, v))x(s, v)dv(k1(s)2+y(s, v)ds+ k1(s)x(s, v))]N2(s) (3.10)SurfacesFamilyWithCommonSmarandacheAsymptoticCurve 193Using(3.9),ifwelet___1(s, v0) =k1(s)2zdv(s, v0) k2(s)2ydv(s, v0),2(s, v0) =k2(s)2zdv(s, v0) +k2(s)2xdv(s, v0),3(s, v0) = k2(s)2ydv(s, v0) k1(s)2xdv(s, v0).(3.11)weobtainn(s, v0) = 1(s, v0)T(s) + 2(s, v0)N1(s) + 3(s, v0)N2(s).FromEqn. (2.2),wegetn(s, v0) = 1(s, v0)T(s) + cos (s) 2(s, v0) + sin (s) 3(s, v0))N(s)+(cos (s) 3(s, v0) sin (s) 2(s, v0))B(s).Fromtheeqn. (3.2),weshouldhavens(s, v0).T(s) = 0(cos (s)2(s,v0)+sin(s)3(s,v0))N(s)+(cos (s)3(s,v0)sin (s)2(s,v0))B(s))s.T(s) = 01s(s, v0) (s) (cos (s) 2(s, v0) + sin (s) 3(s, v0)) = 0. (3.12)From(3.9), wehave1s(s, v0) =0.WeusingEqn. (3.11) andEqn.(2.4) inEqn. (3.12),since(s) = 0,wegetz(s, v0)dv= tan (s) y(s, v0)dv(3.13)whichcompletestheproof. Theorem3.3. : SmarandacheN1N2curveof thecurve(s)isisoasymptoticonasurface(s, v)if andonlyif thefollowingconditionsaresatised:___x(s, v0) = y(s, v0) = z(s, v0) = 0,k1 (s) + k2 (s) = 0,zv(s, v0) = tan (s)yv(s, v0).Proof: Let (s) beaSmarandacheN1N2curveonsurface(s, v).From(3.1) ,(s, v)parametric surfaceisdenedbyagiven SmarandacheN1N2curve ofcurve(s)asfollows:(s, v) =12(N1(s) + N2(s)) + [x(s, v)T(s) + y(s, v)N1(s) + z(s, v)N2(s)].194 GlnuraffakAtalayandEminKasapIf SmarandacheN1N2curveisanparametriccurveonthis surface, thenthereexistaparameterv = v0suchthat,12 (N1(s) + N2(s)) = (s, v0),thatis,x(s, v0) = y(s, v0) = z(s, v0) = 0 (3.14)Thenormal vectorcanbeexpressed asn(s, v) = [z(s, v)dv(y(s, v)ds+ k1(s)x(s, v)) y(s, v)dv(z(s, v)ds+k2(s)x(s, v))]T(s) + [x(s, v)dv(z(s, v)ds+ k2(s)x(s, v))z(s, v)dv(k1(s) + k2(s)2+x(s, v)dsk1(s)y(s, v)k2(s)z(s, v))]N1(s) + [y(s, v)dv(k1(s) + k2(s)2+x(s, v)dsk1(s)y(s, v) k2(s)z(s, v))x(s, v)dv(y(s, v)ds+ k1(s)x(s, v))]N2(s) (3.15)Using(3.14),ifwelet___1(s, v0) = 0,2(s, v0) =_k1(s)+k2(s)2_zdv(s, v0),3(s, v0) = _k1(s)+k2(s)2_ydv(s, v0).(3.16)weobtainn(s, v0) = 2(s, v0)N1(s) + 3(s, v0)N2(s).FromEqn. (2.2),wegetn(s, v0) = cos (s) 2(s, v0) + sin (s) 3(s, v0))N(s)+(cos (s) 3(s, v0) sin (s) 2(s, v0))B(s).Fromtheeqn. (3.2),weshouldhavens(s, v0).T(s) = 0(cos (s)2(s,v0)+sin(s)3(s,v0))N(s)+(cos (s)3(s,v0)sin (s)2(s,v0))B(s))s.T(s) = 0(s) (cos (s) 2(s, v0) + sin (s) 3(s, v0)) = 0. (3.17)WeusingEqn. (3.16) andEqn.(2.4)inEqn. (3.17), since(s) = 0,wegetcos (s)_k1(s) + k2(s)2_z(s, v0)dv= sin (s)_k1(s) + k2(s)2_y(s, v0)dvSurfacesFamilyWithCommonSmarandacheAsymptoticCurve 195For,k1 (s) + k2 (s) = 0weobtainz(s, v0)dv= tan (s) y(s, v0)dv(3.18)whichcompletestheproof. Theorem3.4. SmarandacheTN1N2curveof thecurve(s)isisoasymptoticonasurface(s, v)if andonlyif thefollowingconditionsaresatised:___x(s, v0) = y(s, v0) = z(s, v0) = 0,k1 (s) + k2 (s) = 0,zv(s, v0) = tan (s)yv(s, v0).Proof: Let(s)beaSmarandacheTN1N2curveonsurface(s, v).From(3.1),(s, v) parametric surface is dened by a given Smarandache TN1N2 curve of curve(s)asfollows:(s, v) =12(T(s) + N1(s) + N2(s)) +[x(s, v)T(s) +y(s, v)N1(s) +z(s, v)N2(s)].IfSmarandacheTN1N2curveisanparametriccurveonthissurface, thenthereexistaparameterv=v0suchthat,12 (T(s) + N1(s) + N2(s))=(s, v0), thatis,x(s, v0) = y(s, v0) = z(s, v0) = 0 (3.19)Thenormal vectorcanbeexpressed asn(s, v) = [z(s, v)dv(k1(s)3+y(s, v)ds+ k1(s)x(s, v))y(s, v)dv(k2(s)3+z(s, v)ds+ k2(s)x(s, v))]T(s)+[x(s, v)dv(z(s, v)ds+ k2(s)x(s, v) +k2(s)3)z(s, v)dv(k1(s) + k2(s)3+x(s, v)dsk1(s)y(s, v)k2(s)z(s, v))]N1(s)+[y(s, v)dv(k1(s) + k2(s)3+x(s, v)dsk1(s)y(s, v) k2(s)z(s, v))x(s, v)dv(k1(s)3+y(s, v)ds+ k1(s)x(s, v))]N2(s) (3.20)Using(3.19),ifwelet___1(s, v0) =k1(s)3zdv(s, v0) k2(s)3ydv(s, v0),2(s, v0) =k2(s)3xdv(s, v0) +_k1(s)+k2(s)3_zdv(s, v0),3(s, v0) = k1(s)3xdv(s, v0) _k1(s)+k2(s)3_ydv(s, v0).(3.21)196 GlnuraffakAtalayandEminKasapweobtainn(s, v0) = 1(s, v0)T(s) + 2(s, v0)N1(s) + 3(s, v0)N2(s).FromEqn. (2.2),wegetn(s, v0) = 1(s, v0)T(s) + cos (s) 2(s, v0) + sin (s) 3(s, v0))N(s)+(cos (s) 3(s, v0) sin (s) 2(s, v0))B(s).FromtheEqn. (3.2),weshouldhavens(s, v0).T(s) = 0(cos (s)2(s,v0)+sin(s)3(s,v0))N(s)+(cos (s)3(s,v0)sin (s)2(s,v0))B(s))s.T(s) = 0(s) (cos (s) 2(s, v0) + sin (s) 3(s, v0)) = 0. (3.22)From(3.19),wehave1s(s, v0) = 0.WeusingEqn. (3.21)andEqn.(2.4)inEqn.(3.22),since(s) = 0,wegetcos (s)_k1(s) + k2(s)3_z(s, v0)dv= sin (s)_k1(s) + k2(s)3_y(s, v0)dvFor,k1 (s) + k2 (s) = 0weobtainz(s, v0)dv= tan (s) y(s, v0)dv(3.23)whichcompletestheproof. Nowletusconsiderothertypesof themarching-scalefunctions. IntheEqn.(3.1) marching-scalefunctions x(s, v) , y(s, v) andz(s, v) canbechoosenintwodierentforms:1) Ifwechoose___x(s, v) =p

k=1a1kl(s)kx(v)k,y(s, v) =p

k=1a2km(s)ky(v)k,z(s, v) =p

k=1a3kn(s)kz(v)k.thenwecansimplyexpressthesucientconditionforwhichthecurve(s)isanSmarandacheasymptoticcurveonthesurface(s, v)as_x(v0) = y(v0) = z(v0) = 0,a31n(s)dz(v0)dv= tan (s) a21m(s)dy(v0)dv.(3.24)SurfacesFamilyWithCommonSmarandacheAsymptoticCurve 197wherel(s), m(s), n(s), x(v), y(v)andz(v)areC1functions, aijIR, i =1, 2, 3, j= 1, 2, ..., p.2)Ifwechoose___x(s, v) = f_p

k=1a1kl(s)kx(v)k_,y(s, v) = g_p

k=1a2km(s)ky(v)k_,z(s, v) = h_p

k=1a3kn(s)kz(v)k_.then we can write the sucient condition for which the curve (s) is an Smaran-dacheasymptoticcurveonthesurface(s, v)as_x(v0) = y(v0) = z(v0) = f(0) = g(0) = h(0) = 0,a31n(s)dz(v0)dvh(0) = tan (s) a21m(s)dy(v0)dvg(0).(3.25)wherel(s), m(s), n(s), x(v), y(v), z(v), f, gandhareC1functions.Alsoconditionsfordierenttypesofmarching-scale functionscanbeobtainedbyusingtheEqn. (3.4)and(3.9).4. ExamplesofgeneratingsimplesurfaceswithcommonSmarandacheasymptoticcurveExample4.1. Let (s)=_45 cos(s), 35 cos(s), 1 sin(s)_beaunit speedcurve.ThenitiseasytoshowthatT(s) =_45 sin(s),35 sin(s), cos(s)_, = 1, = 0.FromEqn.(2.3), (s) = d(s)ds (s) = c, c =cons tant. Herec =4canbetaken.FromEqn. (2.4),k1=12, k2=32.FromEqn. (2.1),N1= _k1T,N2= _k2T.N1(s) =_25 cos(s), 35 cos(s),12 sin(s)_,N2(s) =_235cos(s),3310cos(s),32sin(s)_.If wetakex(s, v) =0, y(s, v) =ev 1, z(s, v) =3 (ev1) ,weobtainamemberofthesurfacewithcommoncurve(s)as1(s, v) =

45cos(s) (1 + 2(ev1)) , 35cos(s)

1 12 (ev1)

, 1 sin(s) (1 + 2 (ev1))

where0 s 2, 1 v 1(Fig. 1).198 GlnuraffakAtalayandEminKasapFigure1: 1(s, v)asamemberofsurfacesandcurve(s).Ifwetakex(s, v)=0, y(s, v)=ev 1, z(s, v)=3 (ev1)andv0=0thentheEqns.(3.4)and(3.7)aresatised. Thus, weobtainamemberof thesurfacewithcommonSmarandacheTN1asymptoticcurveas2(s, v)=

252(2 sin(s)+cos(s))+85 cos(s)(ev1),352(sin(s)cos(s))+310cos(s)(ev1),12(12sin(s) cos(s)) + 2 sin(s)(ev1)

where0 s 2, 1 v 1(Fig. 2).A member of thesurface withcommon SmarandacheTN2asymptotic curve as3(s, v) =___252(2 sin(s) 3 cos(s)) +85 cos(s)(ev1),352(sin(s) +32cos(s)) +310 cos(s)(ev1),12(32sin(s) cos(s)) + 2 sin(s)(ev1)___where0 s 2, 1 v 1(Fig. 3).AmemberofthesurfacewithcommonSmarandacheN1N2asymptoticcurveas4(s, v) =

252 cos(s)(1+3)+85 cos(s)(ev1), 352 cos(s)(1+32)+310cos(s)(ev1),122 sin(s)(1 +3) + 2 sin(s)(ev1)

where0 s 2, 1 v 1(Fig. 4).AmemberofthesurfaceanditsSmarandacheTN1N2asymptoticcurveas5(s, v) =___253(2 sin(s) + cos(s) +3 cos(s)) +85 cos(s)(ev1),353(sin(s) cos(s) +32) +310 cos(s)(ev1),13(cos(s) +12 sin(s)(1 +3)) + 2 sin(s)(ev1)___where0 s 2, 1 v 1(Fig. 5).SurfacesFamilyWithCommonSmarandacheAsymptoticCurve 199Figure2: 2(s, v)asamemberofsurfacesanditsSmarandacheTN1asymptoticcurveof(s).Figure3: 3(s, v)asamemberofsurfacesanditsSmarandacheTN2asymptoticcurveof(s).200 GlnuraffakAtalayandEminKasapFigure4: 4(s, v)asamemberofsurfaces anditsSmarandacheN1N2asymptoticcurveof(s).Figure 5: 5(s, v) as a member of surfaces and its Smarandache TN1N2 asymptoticcurveof(s).SurfacesFamilyWithCommonSmarandacheAsymptoticCurve 201References1. B.ONeill, ElementaryDierentialGeometry,AcademicPressInc.,NewYork,1966.2. M.P. do Carmo, Dierential Geometry of Curves and Surfaces, Prentice Hall, Inc., EnglewoodClis, New Jersey,1976.3. B.ONeill, Semi-RiemannianGeometry,AcademicPress,New York,1983.4. M. Turgut, andS. Yilmaz, Smarandache Curves inMinkowski Space-time, InternationalJournalofMathematicalCombinatorics,Vol.3,pp.51-55.5. Ali, A.T. ,SpecialSmarandacheCurves in Euclidean Space,InternationalJournalof Mathe-maticalCombinatorics,Vol.2,pp.30-36,2010.6. etin,M. ,TunerY. ,Karacan,M.K. , SmarandacheCurvesAccordingto Bishop FrameinEuclideanSpace.arxiv: 1106.3202v1[math.DG],16Jun2011.7. Bekta, . andYce, S. , SmarandacheCurvesAccordingtoDarbouxFrameinEuclideanSpace.arxiv: 1203.4830v1[math.DG],20Mar2012.8. Turgut, M. andYlmaz, S. , Smarandache Curves inMinkowski Space-time. InternationalJ.Math.Combin.Vol.3 (2008),51-55.9. Takpr, K. ,and Tosun. M. , Smarandache Curves According to Sabban Frame on . BoletimdaSociedadeParaneansedeMatematica,vol,32,no.1,pp.51-59,2014.10. etin, M. , andKocayiit, H. , OntheQuaternionicSmarandacheCurvesinEuclidean3-Space.Int.J.Contemp.Math.Sciences,Vol.8,2013,no.3,139150.11. Deng,B.,2011.SpecialCurvePatternsforFreeformArchitecturePh.D.thesis,EingereichtanderTechnischenUniversitatWien,FakultatfrMathematikund Geoinformationvon.12. G. J. Wang, K. Tang, C. L. Tai, Parametric representation of a surface pencil with a commonspatialgeodesic,Comput.Aided Des.36(5)(2004)447-459.13. E. Kasap,F.T. Akyildiz,K. Orbay,A generalizationofsurfacesfamily with commonspatialgeodesic,Applied MathematicsandComputation,201(2008)781-789.14. C.Y. Li, R.H. Wang, C.G. Zhu, Parametricrepresentationof a surface pencil with a commonline ofcurvature, Comput.AidedDes.43(9)(2011)1110-1117.15. Bayram E. , Gler F. , Kasap E. Parametric representation of a surface pencil with a commonasymptoticcurve.Comput.AidedDes.(2012),doi:10.1016/j.cad.2012.02.007.16. Atalay. G. , KasapE. SurfacesFamilyWithCommonSmarandacheAsymptoticCurve.Boletim daSociedadaParanaensedeMatematica(InPress),doi:10.5269/bsmp.v34i1.24392.17. L.R.Bishop,Thereis morethanonewaytoFrameaCurve,Amer.Math.Monthly82(3)(1975)246-251.18. B. Bukcu, M.K. Karacan, Special BishopmotionandBishopDarbouxrotationaxisofthespacecurve,J.Dyn.Syst.Geom.Theor.6(1)(2008)2734.19. B. Bukcu, M.K. Karacan, The slant helices according to Bishop frame, Int. J. Math. Comput.Sci.3(2)(2009)6770.20. M.K.Karacan,B.Bukcu,Analternativemovingframefortubularsurfacesaroundtimelikecurvesin theMinkowski3-space,BalkanJ.Geom.Appl.12(2)(2007)7380.21. M.K. Karacan,B. Bukcu,An alternativemoving frame for a tubular surface around a space-likecurvewithaspacelikenormal inMinkowski 3-space, Rend. Circ. Mat. Palermo57(2)(2008)193201.22. M. Petrovic,J. Vertraelenand L. Verstraelen,2000. Principal Normal SpectralVariations ofSpaceCurves.Proyecciones19(2),141-155.202 GlnuraffakAtalayandEminKasapGlnuraakAtalayandEminKasapOndokuzMayisUniversity,ArtsandScienceFaculty,Department of Mathematics, Samsun55139, TurkeyE-mail address: [email protected] address: [email protected]