14
1 Sustainable Hydrogen Peroxide Production at Wastewater Treatment Plants BEE 4870: Sustainable Energy Systems Instructor: Dr. Lars Angenent Department of Biological and Environmental Engineering Cornell University, Ithaca, NY Keywords: bioprocessing, bioenergy, sustainability, wastewater treatment Time: 36 lecture periods, or equivalent This module requires students to access a computer in class and at home. Module Educational Level: Senior environmental, biological, or chemical engineers; graduate students in engineering. Prerequisites: engineering thermodynamics, general chemistry, general biology or microbiology. I. Learning Objectives By the end of this unit, you should be able to: 1. Estimate the required inputs and outputs for onsite production and commercial purchasing of hydrogen peroxide (H 2 O 2 ) and its use at wastewater treatment plants (WWTP). 2. Access scientific journals using library resources to find articles relating to the commercial production of hydrogen peroxide. 3. Apply the Economic InputOutput Life Cycle Assessment (EIOLCA) model to quantify emissions of pollutants for the two processes. 4. Discuss life cycle assessment (LCA) outputs in the evaluation of the two processes. II. Background Information A. Wastewater Treatment in the United States Annually in the United States, over $25 billion is spent to treat in excess of 11 trillion gallons of municipal and industrial wastewater [1]. A majority of wastewater treatment plants (WWTPs) utilize the activated sludge process to remove organic matter (Fig. 1). In this process, microorganisms convert organic matter to biomass and carbon dioxide under aerobic conditions in an aeration tank. During this process, the wastewater must be aerated to facilitate bacterial growth; this aeration can account for up to 60% of the total energy expenditure of wastewater treatment. Following the aeration tank, the biomass is separated from low organic matter effluent in a settling tank. The resulting settled biomass is called waste activated sludge (WAS) and it is the major waste product of the activated sludge process. A portion of the WAS is recycled back to the beginning of the activated sludge process to retain microorganisms, while the remainder must be treated. The treatment and disposal of WAS can account for up to 60% of operating costs at a WWTP [2, 3]. Anaerobic digesters (ADs) are frequently used to treat WAS, and biogas produced during this process can be combusted in a generator to offset heating and

Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment… · 2012-10-23 · 1" " Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment+Plants+ + BEE+4870:+SustainableEnergy+Systems+

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment… · 2012-10-23 · 1" " Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment+Plants+ + BEE+4870:+SustainableEnergy+Systems+

1    

Sustainable  Hydrogen  Peroxide  Production  at  Wastewater  Treatment  Plants    

BEE  4870:  Sustainable  Energy  Systems  Instructor:  Dr.  Lars  Angenent  

Department  of  Biological  and  Environmental  Engineering  Cornell  University,  Ithaca,  NY  

 Keywords:  bioprocessing,  bioenergy,  sustainability,  wastewater  treatment      Time:  3-­‐6  lecture  periods,  or  equivalent    This  module  requires  students  to  access  a  computer  in  class  and  at  home.    Module  Educational  Level:  Senior  environmental,  biological,  or  chemical  engineers;  graduate  students  in  engineering.  Prerequisites:  engineering  thermodynamics,  general  chemistry,  general  biology  or  microbiology.    

I. Learning  Objectives  By  the  end  of  this  unit,  you  should  be  able  to:  

1. Estimate  the  required  inputs  and  outputs  for  on-­‐site  production  and  commercial  purchasing  of  hydrogen  peroxide  (H2O2)  and  its  use  at  wastewater  treatment  plants  (WWTP).  

2. Access  scientific  journals  using  library  resources  to  find  articles  relating  to  the  commercial  production  of  hydrogen  peroxide.  

3. Apply  the  Economic  Input-­‐Output  Life  Cycle  Assessment  (EIO-­‐LCA)  model  to  quantify  emissions  of  pollutants  for  the  two  processes.  

4. Discuss  life  cycle  assessment  (LCA)  outputs  in  the  evaluation  of  the  two  processes.  

II. Background  Information  A. Wastewater  Treatment  in  the  United  States  Annually  in  the  United  States,  over  $25  billion  is  spent  to  treat  in  excess  of  11  trillion  gallons  of  municipal  and  industrial  wastewater  [1].  A  majority  of  wastewater  treatment  plants  (WWTPs)  utilize  the  activated  sludge  process  to  remove  organic  matter  (Fig.  1).  In  this  process,  microorganisms  convert  organic  matter  to  biomass  and  carbon  dioxide  under  aerobic  conditions  in  an  aeration  tank.  During  this  process,  the  wastewater  must  be  aerated  to  facilitate  bacterial  growth;  this  aeration  can  account  for  up  to  60%  of  the  total  energy  expenditure  of  wastewater  treatment.  Following  the  aeration  tank,  the  biomass  is  separated  from  low  organic  matter  effluent  in  a  settling  tank.  The  resulting  settled  biomass  is  called  waste  activated  sludge  (WAS)  and  it  is  the  major  waste  product  of  the  activated  sludge  process.  A  portion  of  the  WAS  is  recycled  back  to  the  beginning  of  the  activated  sludge  process  to  retain  microorganisms,  while  the  remainder  must  be  treated.  The  treatment  and  disposal  of  WAS  can  account  for  up  to  60%  of  operating  costs  at  a  WWTP  [2,  3].  Anaerobic  digesters  (ADs)  are  frequently  used  to  treat  WAS,  and  biogas  produced  during  this  process  can  be  combusted  in  a  generator  to  offset  heating  and  

Page 2: Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment… · 2012-10-23 · 1" " Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment+Plants+ + BEE+4870:+SustainableEnergy+Systems+

2    

electrical  costs  at  WWTPs.  The  amount  of  energy  generated  onsite  varies  greatly  based  on  a  wide  variety  of  factors  (i.e.,  plant  size,  AD  efficiency,  use  of  co-­‐digestates),  but  can  account  for  anywhere  from  17%  to  100%  of  the  total  energy  needs  of  the  plant  [4].  Residual  biosolids  in  AD  effluent  are  dewatered  and  shipped  to  landfills  at  high  costs  ($52.92/ton  [5]).  A  2007  report  by  the  North  East  Biosolids  and  Residuals  Association  indicated  that  the  United  States  produces  approximately  6.5  million  dry  metric  tons  of  residual  biosolids  annually  [6].  

 B. Improving  treatment  and  decreasing  costs  Recently,  a  novel  process  has  shown  that  the  addition  of  hydrogen  peroxide  (H2O2)  to  ADs  at  WWTPs  can  decrease  costs  associated  with  biosolids  disposal  [5].  In  this  process,  H2O2  is  added  to  the  recycle  stream  between  two  ADs  (Fig.  1;  red  arrow);  there,  the  H2O2  is  combined  with  ferrous  iron  (Fe2+)  (already  in  the  waste  stream  from  a  previous  treatment  step)  to  form  hydroxyl  radicals  (OH•)  in  a  Fenton’s  reaction  (Reaction  1).    

!"!! + !!!! → !"!! + !" ∙ +!"!                                         Reaction  1  The  resulting  hydroxyl  radical  is  a  powerful  oxidant  that  breaks  up  otherwise  recalcitrant  WAS  materials,  thus,  increasing  the  organic  matter  available  for  conversion  to  methane  via  anaerobic  microorganisms  in  ADs.  Bench-­‐scale  tests  have  confirmed  the  viability  of  this  process,  where  the  five  day  biological  oxygen  demand  (BOD5)  of  total  biosolids  treated  with  this  process  increased  by  193%  [5].  When  installed  at  a  full-­‐scale  WWTP  using  commercially  purchased  H2O2,  this  process  resulted  in  numerous  benefits,  including:  1)  11.5%  reduction  in  residual  biosolids  for  disposal;  2)  13%  increase  in  specific  biogas  production;  and  3)  13%  higher  heat  output  from  energy  cogeneration.  The  combination  of  these  benefits  translated  to  a  net  economic  benefit  of  $78,000  annually  at  a  WWTP  treating  8  MGD  ($9750/MGD  treated)  [5].  

 Figure  1.  A  process   flow  diagram   for   the  activated   sludge   treatment  process.  Organic  matter   in  wastewater  influent  is  converted  to  biomass  by  aerobic  microorganisms  in  the  Aeration  Tank.  The  biomass  settles  and  the  water  is  clarified  in  the  Clarifier-­‐Settler;  from  there  treated  water  is  sent  to  the  disinfection  step  of  the  wastewater  treatment  process.    A  portion  of  the  settled  biomass,  called  waste  activated  sludge  (WAS),  is  recycled  back  to  the  aeration  tank  to  maintain  the  proper  microorganism  population.  A  majority  of  the  WAS  is  sent  to  anaerobic  digesters  (ADs),  where  it  is  

Page 3: Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment… · 2012-10-23 · 1" " Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment+Plants+ + BEE+4870:+SustainableEnergy+Systems+

3    

converted  to  biogas  by  a  diverse  community  of  anaerobic  microorganisms.  Two  ADs  are  operated  –  a  primary  AD  (AD1)  and  a  secondary  AD  (AD2).  A  portion  of  the  biosolids  is  recycled  from  AD2  to  AD1;  the  addition  of  hydrogen  peroxide  occurs  in  this  recycle  stream,  and  is  denoted  by  a  red  arrow  in  the  figure.  Residual  biosolids  from  AD2  are  dewatered  and  shipped  to  a  landfill.      

C. Commercial  H2O2  production  is  unsustainable  However,  there  is  still  room  to  increase  the  net  economic  benefit  while  improving  sustainability  of  the  case-­‐study  WWTP.  Currently,  this  WWTP  purchases  hydrogen  peroxide  at  $20,000/year,  which  is  a  major  cost  for  this  system  [5].  In  addition,  the  commercial  method  of  hydrogen  peroxide  generation,  which  is  called  anthraquinone  oxidation  (AO),  is  far  from  sustainable  [7].  The  AO  process  that  produces  H2O2  requires  a  slow,  energy  intensive,  multi-­‐step  process  utilizing  a  variety  of  organic  solvents  to  extract  H2O2  [7].  Furthermore,  there  is  a  large  amount  of  waste  generated  via  this  process  and  the  transport,  storage,  and  handling  of  highly  concentrated  H2O2  is  hazardous  and  expensive.  Hydrogen  peroxide  can  also  be  produced  via  electrolysis,  an  environmentally  sustainable  process  that  can  be  operated  on-­‐site.  However,  electrolysis  produces  hydrogen  peroxide  at  concentrations  much  lower  (up  to  50X)  than  the  anthraquinone  process.  While  it  is  not  feasible  to  replace  commercial  hydrogen  peroxide  manufacturing  with  electrolysis,  it  may  be  possible  to  generate  hydrogen  peroxide  on-­‐site  for  some  applications,  such  as  use  at  a  WWTP,  using  electrolysis.    

Exercise  1  (~30  minutes):  Read  ‘Hydrogen  Peroxide  Synthesis:  An  Outlook  beyond  the  Anthraquinone  Process’  by  J.M.  Campos-­‐Martin  et  al.  [7].  Then,  construct  a  process  diagram  showing  the  required  inputs  and  outputs  (i.e.,  energy,  raw  materials,  waste  products)  for  hydrogen  peroxide  production  via  the  commercial  anthraquinone  process.  Exercise  2  (~20  minutes):  Read  the  Tech  Brief  from  Eltron  Water  Systems,  LLC  on  their  PeroxEgen  system,  which  produces  hydrogen  peroxide  electrochemically.  Construct  a  process  diagram  showing  the  required  inputs  and  outputs  for  this  system.  Exercise  3  (In  class,  ~20  minutes):  Discuss  the  two  methods  of  hydrogen  peroxide  production  from  the  readings.  Use  the  process  diagrams  to  identify  inputs  and  outputs,  and  make  a  list  of  potential  advantages  and  disadvantages.  Discuss  why  the  PeroxEgen  system  could  be  an  ideal  solution  for  application  at  a  WWTP,  and  why  it  is  not  suited  to  replace  commercial  hydrogen  peroxide  production  for  use  in  other  industries.    

 D. Life  cycle  analysis  provides  a  robust  analysis  for  evaluating  processes  Due  to  the  low  price  of  fossil  fuels  and  inability  of  traditional  economic  analysis  to  consider  environmental  concerns,  it  is  unlikely  that  this  electrochemical  process  will  ever  be  able  to  compete  with  commercial  H2O2  generation  based  on  economics  alone.  However,  the  use  life  cycle  assessment  (LCA)  considers  all  aspects  of  a  products  life,  and  accounts  for  factors  missing  from  traditional  economic  analysis,  including  the  environmental  impacts  of  the  production,  use,  and  disposal  of  a  product.  This  type  of  analysis  can  elucidate  the  benefits  of  a  sustainable,  on-­‐site,  method  of  H2O2  production.  In  the  following  exercises,  we  will  examine  two  processes  using  LCA  to  examine  all  aspects  of:  1)  using  commercially  produced  H2O2  at  WWTPs,  and  2)  generating  H2O2  on  site  at  WWTPs.  

Page 4: Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment… · 2012-10-23 · 1" " Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment+Plants+ + BEE+4870:+SustainableEnergy+Systems+

4    

III. LCA  Tools  The  “Economic  Input  Output-­‐Life  Cycle  Assessment”  (EIO-­‐LCA)  [8],  which  is  accessible  at  http://www.eiolca.net,  is  a  tool  for  evaluating  processes  using  an  approach  that  estimates  the  “materials  and  energy  resources  required  for,  and  the  environmental  emissions  resulting  from,  activities  in  our  economy.”  It  identifies  the  material  and  energy  resources  and  environmental  emissions  based  on  the  product  output  (in  total  dollars).  The  website  includes  a  tutorial  detailing  the  use  of  the  EIO-­‐LCA  tool  that  can  be  accessed  by  following  the  ‘Tutorial’  link  on  the  left  side  of  the  homepage.  

Exercise  4  (In  class,  groups  of  3,  ~40  minutes):  Open  the  EIO-­‐LCA  website  at  http://www.eiolca.net  and  answer  the  following  questions:  

a. Identify  the  following  aspects  associated  with  $1M  of  hydrogen  peroxide  production:  

i. Greenhouse  Gas  Emissions  ii. Energy  Usage  iii. Resource  Conservation  and  Recovery  Act  (RCRA)  materials  (i.e.,  Hazardous  

Waste)  iv. Water  Withdrawals  

b. Discuss  the  results  from  Part  A.  Are  there  any  surprises?  c. Explore  data  for  other  industrial  manufacturing  processing  in  the  EIO-­‐LCA  model.  

Pick  one  process  and  compare  the  greenhouse  gas  emissions,  energy  use,  RCRA  (hazardous  waste),  toxic  releases,  and  water  withdrawals  with  those  of  hydrogen  peroxide  production.  Discuss  the  results  and  the  use  of  the  EIO-­‐LCA  tool.    

Note:  The  EIO-­‐LCA  tool  is  most  accurate  for  economic  activity  greater  than  or  equal  to  $1M.  To  calculate  emissions/usage  for  economic  activity  under  $1M,  run  the  EIO-­‐LCA  tool  for  $1M,  and  then  scale  the  resulting  emissions/usage  proportionally.  Hint:  Instructions  for  using  the  EIO-­‐LCA  tool:  

1. Access  www.eiolca.net  2. On  the  left  side  of  the  page,  click  ‘Use  the  Tool’  3. Select  the  ‘US  National  Producer  Price  Models/US  2002’  in  box  1.  4. Select  the  industry  and  sector.  For  hydrogen  peroxide,  select  the  industry  

‘Petroleum  and  Basic  Chemical’  and  the  sector  ‘All  other  basic  inorganic  chemical  manufacturing’.  

5. Enter  the  amount  of  economic  activity  in  box  3.  6. Select  the  desired  results  from  the  dropdown  menu  in  box  4.  7. Click  ‘run  the  model’.  

IV. Homework  Assignment  1. Use  campus  library  resources  (http://www.library.cornell.edu/)  to  access  2-­‐5  articles  discussing  

the  commercial  process  currently  used  for  hydrogen  peroxide  production.  After  thoroughly  reading  the  articles,  prepare  a  500-­‐1000  word  summary  of  commercial  hydrogen  peroxide  production.  This  should  include,  at  a  minimum,  a  discussion  of  the  processes  sustainability,  energy  efficiency,  and  economics.  Be  sure  to  properly  cite  the  articles.  

Page 5: Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment… · 2012-10-23 · 1" " Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment+Plants+ + BEE+4870:+SustainableEnergy+Systems+

5    

2. Use  the  EIO-­‐LCA  model  to  compare  the  following  two  scenarios  on  a  per-­‐year  basis:  a. One  year  supply  of  commercial  production  of  H2O2  ($20,000,  not  including  shipment  of  

H2O2  from  the  production  site  to  the  plant).  b. One  year  of  on  site  production  of  H2O2  with  an  electrochemical  system.  Use  the  

following  assumptions  about  the  electrochemical  system:  i. 0.36  kW  (3  A  at  120  Vac)  to  operate  the  system,  and  a  cost  of  $0.10/kWh  ii. 3.6  gal/day  of  H2O  at  a  price  of  $0.44/gal  iii. 0.16  lb/day  of  sodium  sulfate  as  a  electrolyte  at  $5/lb  Hint:  To  do  this,  calculate  the  financial  amount  of  energy,  water,  or  chemical  usage  –  then  use  the  EIO-­‐LCA  tool  to  calculate  the  associated  emissions/usage  for  each  input  over  a  year  and  sum  the  three  inputs  to  get  the  total  emissions/usage.  

Compare  the  two  processes  using  the  following  metrics:  i. Greenhouse  gas  emissions  in  tons  of  CO2  equivalent  per  year.  ii. Energy  requirements  iii. Hazardous  Waste  emissions  iv. Water  usage  

Present  the  results  of  the  analysis  in  a  table  comparing  the  two  processes.  Provide  a  description  of  your  analysis,  including  any  assumptions.  Summarize  the  differences  between  the  two  processes,  and  advantages/disadvantages  of  each.  Discuss  any  drawbacks  of  LCA  analysis,  and  suggest  possible  improvements.  

V. References    1.   Clean  safe  water  for  the  21st  century.  2001,  Water  Infrastructure  Network.  2.   Zhao,  Q.L.,  and  G.  Kugel,  Thermophilic/mesophilic  digestion  of  sewage  sludge  and  organic  waste.  

Journal  of  Environmental  Science  and  Health  Part  a-­‐Toxic/Hazardous  Substances  &  Environmental  Engineering,  1997.  31:  p.  2211-­‐31.  

3.   Horan,  N.J.,  Biological  wastewater  treatment  systems  :  theory  and  operation.  1990,  Chichester  ;  New  York:  Wiley.  viii,  310  p.  

4.   Law-­‐Flood,  A.  Tapping  Energy  and  Revenue  Potential  in  Our  Waste  Streams:  A  Discussion  of  Anaerobic  Digestion  and  Combined  Heat  and  Power  in  MA.  in  Massachusetts  Water  Pollution  Control  Association  Quaterly  Meeting.  2011.  Boxborough,  MA.  

5.   Lozano,  J.  Enhanced  anaerobic  digestion  using  Fenton's  reagent.  in  83rd  Annual  Water  Environment  Federation  Technical  Exhibition  and  Conference  (WEFTEC).  2010.  New  Orleans,  LA.  

6.   Association),  N.N.E.B.a.R.,  A  National  Biosolids  Regulation,  Quality,  End  use  and  Disposal  Survey—Preliminary  Report,  April  14,  2007.  North  EastBiosolids  and  Residuals  Association  Web.  2007.  

7.   Campos-­‐Martin,  J.M.,  G.  Blanco-­‐Brieva,  and  J.L.  Fierro,  Hydrogen  peroxide  synthesis:  an  outlook  beyond  the  anthraquinone  process.  Angewandte  Chemie  International  Edition,  2006.  45(42):  p.  6962-­‐84.  

8.   Hendrickson,  C.,  et  al.,  Economic  input-­‐output  models  for  environmental  life-­‐cycle  assessment.  Environmental  Science  &  Technology,  1998.  32(7):  p.  184a-­‐191a.  

 VI. Appendix  I  –  Eltron  Water  Systems,  LLC.  Tech  Brief  

Page 6: Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment… · 2012-10-23 · 1" " Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment+Plants+ + BEE+4870:+SustainableEnergy+Systems+

6    

Page 7: Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment… · 2012-10-23 · 1" " Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment+Plants+ + BEE+4870:+SustainableEnergy+Systems+

7    

 Sustainable  Hydrogen  Peroxide  Production  at  Wastewater  Treatment  Plants  

   

Page 8: Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment… · 2012-10-23 · 1" " Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment+Plants+ + BEE+4870:+SustainableEnergy+Systems+

8    

 Solutions  to  exercises  and  homework  problems  

   

These  solutions  were  prepared  by  Elliot  Friedman  (Graduate  Teaching  Assistant)  and  Dr.  Lars  Angenent  (Associate  Professor)  

Department  of  Biological  and  Environmental  Engineering  Cornell  University,  Ithaca,  NY  

     

Page 9: Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment… · 2012-10-23 · 1" " Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment+Plants+ + BEE+4870:+SustainableEnergy+Systems+

9    

Solutions  to  exercises    Section  II.C     Process  flow  diagram  for  commercial  hydrogen  peroxide  production:     Example  Solution  1:  

    Example  Solution  2:  

      Process  flow  diagram  for  electrochemical  hydrogen  peroxide  production:     Example  Solution  1:  

Page 10: Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment… · 2012-10-23 · 1" " Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment+Plants+ + BEE+4870:+SustainableEnergy+Systems+

10    

    Example  Solution  2:  

 Section  III  

a. Identify  the  following  aspects  associated  with  $1M  of  hydrogen  peroxide  production:  i. Greenhouse  Gas  Emissions  (all  in  tons  of  CO2e)  

Total  =  2720  tons  CO2  fossil  =  2140  tons  CO2  Process  =  98.4  tons  CH4  =  216  tons  N2O  =  203  tons  HFC/PFCs  =  66.1  tons  

ii. Energy  Usage    

Page 11: Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment… · 2012-10-23 · 1" " Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment+Plants+ + BEE+4870:+SustainableEnergy+Systems+

11    

Total  Energy  =  45.3  TJ  Coal  =  8.11  TJ  Natural  Gas  =  16.9  TJ  Petroleum  =  8.43  TJ  Bio/Waste  =  8.39  TJ  Non-­‐Fossil  Electric  =  3.44  TJ  

iii. RCRA  (Hazardous  Waste)  Total  Waste  =  10.8  X  106  short  tons  

iv. Water  Withdrawals  Total  water  withdrawal  =  49,800,000  gal  

b. Discuss  the  results  from  Part  A.  Are  there  any  surprises?  c. Explore  data  for  other  industrial  manufacturing  processing  in  the  EIO-­‐LCA  model.  Pick  one  

process  and  compare  the  greenhouse  gas  emissions,  energy  use,  RCRA  (hazardous  waste),  toxic  releases,  and  water  withdrawals  with  those  of  hydrogen  peroxide  production.  Discuss  the  results.  

    Category  

$1M  Hydrogen  Peroxide  Production  

$1M  Petroleum  Refinery  

Greenhouse  Gas  

Emissions  

Total  (tons  CO2e)   2720   2790  

CO2  fossil  (tons  CO2e)   2140   1800  

CO2  process  (tons  CO2e)   98.4   242  

CH4  (tons  CO2e)   216   734  

N2O  (tons  CO2e)   203   6.39  

HFC/PFCs  (tons  CO2e)   66.1   11.3  

Energy  Use  

Total  Energy  (TJ)   45.3   31.7  Coal  (TJ)   8.11   2.59  Natural  Gas  (TJ)   16.9   12.9  Petroleum  (TJ)   8.43   13  Bio/Waste  (TJ)   8.39   1.15  Non-­‐fossil  Electric  (TJ)   3.44   2.09  

Hazardous  Waste   Total  (short  tons)   10,800,000   412,000  Water  Withdrawal   Total  (kgal)   498,000   9,410  

 Discussion:  While  aggregate  greenhouse  gas  emissions  (total  tons  CO2e)  are  comparable,  $1M  of  hydrogen  peroxide  production  requires  ~50%  more  energy  than  the  same  amount  of  activity  at  a  petroleum  refinery.  Additionally,  the  hydrogen  peroxide  production  industry  generates  over  25  times  the  amount  of  hazardous  waste  and  uses  50  times  the  amount  of  water.    

Page 12: Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment… · 2012-10-23 · 1" " Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment+Plants+ + BEE+4870:+SustainableEnergy+Systems+

12    

Homework  Solutions  Part  2:  

Use  the  EIO-­‐LCA  model  to  compare  the  following  two  scenarios  on  a  per-­‐year  basis:  i. Commercial  production  of  $20,000  worth  of  H2O2  shipped  to  the  Wastewater  

Treatment  Plant  (WWTP).  ii. An  equivalent  amount  of  hydrogen  peroxide  produced  on  site  with  an  

electrochemical  system.  Use  the  following  assumptions  about  the  electrochemical  system:  

i. 0.36  kW  (3  A  at  120  Vac)  to  operate  the  system,  and  a  cost  of  $0.10/kwh  

ii. 3.6  gal/day  of  H2O  at  a  price  of  $0.44/gal  iii. 0.16  lb/day  of  sodium  sulfate  as  a  electrolyte  at  $5/lb  

Compare  the  two  processes  using  the  following  metrics:  i. Greenhouse  gas  emissions  in  tons  of  CO2  equivalent  per  year.  ii. Energy  requirements  iii. Hazardous  waste  emissions  iv. Water  usage  

Present  the  results  of  the  analysis  in  a  table  comparing  the  two  processes.  Provide  a  description  of  your  analysis,  including  any  assumptions.  Summarize  the  differences  between  the  two  processes,  and  advantages/disadvantages  of  each.  Discuss  any  drawbacks  of  LCA  analysis,  and  suggest  possible  improvements.  

    Category  $20,000  Hydrogen  Peroxide  Production  

Yearly  Hydrogen  Peroxide  Production  with  Electrochemical  

System   %  Reduction  

Greenhouse  Gas  Emissions  

Total  (tons  CO2e)   54.4   1.79   96.71%  CO2  fossil  (tons  CO2e)   42.8   1.17   97.26%  CO2  process  (tons  

CO2e)   1.968   0.13   93.64%  CH4  (tons  CO2e)   4.32   0.39   90.99%  N2O  (tons  CO2e)   4.06   7.89E-­‐02   98.06%  

HFC/PFCs  (tons  CO2e)   1.322   2.54E-­‐02   98.08%  

Energy  Use  

Total  Energy  (TJ)   0.906   2.17E-­‐02   97.60%  Coal  (TJ)   0.1622   6.82E-­‐03   95.80%  

Natural  Gas  (TJ)   0.338   6.52E-­‐03   98.07%  Petroleum  (TJ)   0.1686   3.29E-­‐03   98.05%  Bio/Waste  (TJ)   0.1678   7.86E-­‐04   99.53%  

Non-­‐fossil  Electric  (TJ)   0.0688   4.33E-­‐03   93.70%  Hazardous  Waste   Total  (short  tons)   216000   764.27   99.65%  Water  Withdrawal   Total  (kgal)   9960   6.25   99.74%  

 

Page 13: Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment… · 2012-10-23 · 1" " Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment+Plants+ + BEE+4870:+SustainableEnergy+Systems+

13    

  Discussion:  This  analysis  suggests  that  the  on-­‐site  production  of  H2O2  would  offer  significant  non-­‐monetary  advantages  –  including  more  than  a  96%  reduction  in  total  greenhouse  gas  emissions,  energy  usage,  hazardous  waste  generation,  and  water  usage.  As  this  is  a  preliminary  analysis,  many  assumptions  are  made.  One  major  assumption  is  that  the  EIO-­‐LCA  values  for  ‘basic  inorganic  chemical  manufacturing’  are  valid  for  the  hydrogen  peroxide  industry.  Additionally,  any  emissions/usages  associated  with  shipping  (i.e.,  H2O2  for  the  commercial  case  or  sodium  sulfate  for  the  on-­‐site  case)  are  not  considered  because  the  distance  that  these  items  would  need  to  be  shipped  is  unknown.  This  LCA  analysis  does  not  consider  any  economics,  which  would  need  to  be  evaluated  before  any  further  recommendations  can  be  made.  The  implementation  of  an  electrochemical  system  would  require  a  significant  initial  investment,  and  the  rate  of  return  may  be  very  low.  Additionally,  for  this  analysis  we  have  not  considered  the  use  of  biogas  from  the  anaerobic  digesters  as  a  source  of  electrical  power.  If  an  electrochemical  cell  were  to  be  employed,  it  may  be  feasible  to  power  its  operation  using  the  additional  methane  generated  from  using  H2O2  in  the  digesters.  However,  further  data  is  required  to  determine  whether  this  will  be  possible  and  the  cost  of  grid  electricity  for  the  electrochemical  cell  is  so  low  (<  $13/year)  that  any  changes  to  this  analysis  would  likely  be  insignificant.        

Page 14: Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment… · 2012-10-23 · 1" " Sustainable+Hydrogen+Peroxide+Production+at+Wastewater+Treatment+Plants+ + BEE+4870:+SustainableEnergy+Systems+

14    

Description  of  Calculations  for  Electrochemical  System  Operation:  1. First,  calculate  the  annual  production  costs  for  the  three  major  inputs  

Costs  Electricity  ($/kwh)    $              0.10    Water  ($/gal)    $              0.44    Sodium  Sulfate  ($/lb)    $              5.00            

Usage  Electricity  (kW)   0.36  Water  (gal/day)   3.6  Sodium  Sulfate  (lb/day)   0.16          

Annual  Costs  Electricity  ($)    $        12.92    Water  ($)    $    581.45    Sodium  Sulfate  ($)    $    292.00    

 2. Then  get  the  data  for  “Power  generation  and  supply  ”,  “Water,  sewage,  and  other  systems  ”,  and  

“All  other  basic  inorganic  chemical  manufacturing”  by  using  the  EIO-­‐LCA  tool.  Obtain  the  values  for  $1M  of  economic  activity  and  then  scale  down  to  the  annual  costs  calculated  in  the  previous  step.  Add  them  together  to  get  the  total  values  for  yearly  hydrogen  peroxide  production  using  an  electrochemical  cell.  

    Category   Electricity     Water   Sodium  Sulfate   Total  

Greenhouse  Gas  

Emissions  

Total  (tons  CO2e)   0.12   1.03   0.64   1.79  

CO2  fossil  (tons  CO2e)   0.11   0.59   0.47   1.17  

CO2  process  (tons  CO2e)   4.04E-­‐04   0.03   0.10   0.13  

CH4  (tons  CO2e)   4.47E-­‐03   0.35   3.39E-­‐02   0.39  

N2O  (tons  CO2e)   7.27E-­‐04   5.87E-­‐02   1.95E-­‐02   7.89E-­‐02  

HFC/PFCs  (tons  CO2e)   7.43E-­‐04   5.34E-­‐03   1.94E-­‐02   2.54E-­‐02  

Energy  Use  

Total  Energy  (TJ)   1.43E-­‐03   1.08E-­‐02   9.46E-­‐03   2.17E-­‐02  Coal  (TJ)   1.01E-­‐03   3.21E-­‐03   2.59E-­‐03   6.82E-­‐03  Natural  Gas  (TJ)   3.19E-­‐04   3.11E-­‐03   3.10E-­‐03   6.52E-­‐03  Petroleum  (TJ)   6.64E-­‐05   2.07E-­‐03   1.15E-­‐03   3.29E-­‐03  Bio/Waste  (TJ)   1.25E-­‐06   1.22E-­‐04   6.63E-­‐04   7.86E-­‐04  Non-­‐fossil  Electric  (TJ)   3.95E-­‐05   2.32E-­‐03   1.98E-­‐03   4.33E-­‐03  

Hazardous  Waste   Total  (short  tons)   1.62   123.17   639.48   764.27  Water  Withdrawal   Total  (kgal)   3.24   12.14   10.86   26.25