SWIE Report

Embed Size (px)

Citation preview

  • 8/6/2019 SWIE Report

    1/23

    Forward Converter Project

    Department of ElectricalEngineering and Information

    Technology

    Copenhagen University Collegeof Engineering

    Lautrupvang 15, 2750 Ballerup

    Forward Converter Project

    ESWIE-EC51-E10

    This report forms the documentation of the designing and testing of a

    20 W Switch Mode Power Supply.

    The process has been highly iterative, and thus it is not possible to

    describe the entire process in a chronological manner within the

    constraint of these 15 pages.

    This document serves as a presentation of the finished product, with

    emphasis on key design considerations and the most prominent

    features.

    Student name Student number Signature

    Lasse Kastholm Martinussen 80817

    Havan Mohamed Mhedeen 80719

    Mohammed Errifi 70303

    Kasper Krogh Hansen 70286

    Marek Piwonski 81089

    Supervisor:Lars Maack

  • 8/6/2019 SWIE Report

    2/23

    List of content

    1. INTRODUCTION .................................................... .......................................................................3

    1.1 PREFACE ............................................................................................................................ 3

    1.2 REQUIREMENTSSPECIFICATION........................................................................................................... 3

    2. PROBLEM SOLUTION .......................................................... ........................................................4

    2.1 BLOCKDIAGRAM ............................................................................................................................ 4

    2.2 SCHEMATIC ............................................................................................................................ 4

    2.2.1 Coil ......................................................... ................................. ...5

    2.2.2 Transformer ......................................................... ................................. ...6

    2.3 MAINWAVEFORMS ...........................................................................................................................8

    2.3.1 Output voltage and coil current ................................................... .....................................8

    2.3.2 Primary current and MOSFET DS voltage ................................................... ................ ..9

    2.4 SYSTEMTESTRESULTS...................................................................................................................... 102.4.1 Loop Gain ......................................................... ................................ ..10

    2.4.2 Step load ......................................................... ................................ ..11

    2.4.3 Efficiency ......................................................... ................................ ..12

    3. CONCLUSION .................................................... ........................................................... ...............14

    4. APPENDICE ..................................................... ........................................................... ...................15

    4.1 TRANSFORMERLOSSES..................................................................................................................... 15

    4.2 LITTERATURE .......................................................................................................................... 16

    4.2.1 Notes ......................................................... ................................ ..16

    4.2.2 Books ......................................................... ................................ ..17

    4.3 MATLABCODE .......................................................................................................................... 17

    2

  • 8/6/2019 SWIE Report

    3/23

    Forward Converter Project

    1. Introduction

    1.1 Preface

    This project has been developed by a 5 persons group under time constraints

    equal to an eighth of a semester. The process has been problem oriented, and

    the report is a result of a highly iterative process. Along the way we have

    gotten a lot of problems solved thanks to our supervisor Lars Maack.

    1.2 Requirements specification

    Functional requirements:

    1. Nominal input DC voltage: 24 V

    2. Input DC voltage range: 20 - 30 V

    3. Output DC voltage: 4 V

    4. Output load current: 0 - 5 A

    5. Output ripple: 300 mVpp (Measured with a +50 MHz BW scope)6. Max. transient output voltage during 4 to 2 A step load: 150 mVpp

    (Neglecting ripple at switch frequency and above)

    7. Switch frequency: 100 kHz

    Non-functional requirements:

    1. The efficiency as a function of input voltage must be both simulated

    and measured at different loads and presented in a graph.

    2. If the efficiency is iteratively optimized, this should be done atmaximum load and nominal input voltage.

    3. Inductors and transformers must be home made.

    4. Potentiometers and variable resistors are unwanted.

    3

  • 8/6/2019 SWIE Report

    4/23

    Forward Converter Project

    2. Problem solution

    2.1 Block diagram

    2.2 Schematic

    Above, the schematics of the finished product is depicted.

    It is a forward converter topology, which produces a controlled DC output

    voltage from an unregulated DC input. The forward converter is a simple

    converter which provides a low voltage ripple at the output and a good

    conversion efficiency.

    The maximum duty-cycle must be less than 50% to prevent core saturation.

    The SG3524 PWM controller is rated for a maximum duty ratio of 0.45. Some

    4

  • 8/6/2019 SWIE Report

    5/23

    Forward Converter Project

    headroom is needed to compensate for losses and therefore we have chosen to

    design for a Dmax of 0.35.

    The SG3524 is connected to a totem pole configuration of BJTs, that drive theMOSFET gate. The resistor mounted at the gate slows the switching speed a

    bit and helps reduce spikes on the drain of the MOSFET.

    The maximum allowed ripple at the output is 300 mV.

    Having designed the filter coil to allow 2 A of ripple current, a maximum

    allowed ESR of the output filter capacitor is 150 m.

    By impedance measurement we have selected a capacitor with a proven ESR

    of only 56 m, which reduces output voltage ripple beyond the requirement.

    The IRF630 MOSFET is chosen not only because of its low on resistance of 0.4

    ohm and its Drain current of 9 A.

    For development purposes it is suitable to have a high Drain Source voltage

    tolerance, which in the IRF630's case is 200 V.

    Changing to a MOSFET with a lower rating will make it possible to go lower

    than 0.4 in on resistance, thereby lowering on state losses in the MOSFET, but

    such optimizations are left to future development.

    2.2.1 Coil

    The chosen core for the coil is an RM8. This core fullfills the demanded

    AcoreAwindow factor calculated by the formula:

    AwindowAcoreLIpeakIRMS

    FBpeakG(Coil design procedure note)

    From this we got 1098,5 mm4 (Se appendice 4.3 for Matlab calculations). The

    RM8 have a value of 1900 mm4. (see appendice 4.2.1 for datasheet)

    To calculate the number of turns we use the formula:

    N=LIpeak

    BpeakAcore6 (Coil design procedure note)

    (Se appendice 4.3 for Matlab calculations)

    5

  • 8/6/2019 SWIE Report

    6/23

    Forward Converter Project

    By the formula for the area of the wire, Awire=IRMS

    G(Coil design procedure

    note), we got an diameter of 0.44mm, but because of the excess of space in thecoil, we fitted a 1 mm thickness.

    Designing for a ripple current of 2 A calls for a coil inductance of 16 uH,

    which has been achieved by adjusting core airgap while performing

    impedance measurements.

    2.2.2 Transformer

    The purpose of the transformer is to scale the input voltage to a lower output

    voltage in an efficient and instantaneous way. This transformation leads to

    power losses in practice, which we have been taken in to account.

    Once again the RM8 core is chosen due to the formula:

    AwindowAcoreUpriton2I pri rms

    FB peakG(Trafo design note)

    From this we got a value of 617.9mm4, which only calls for an RM7 core.

    However, the only available core is an RM8 which was chosen for obvious

    reasons. (See appendice 4.2.1 for details.)

    The turns ratio of 1.489, is calculated by:

    n=Npri

    Nsec=

    Vpri

    Vsec=

    Isec

    Ipri(The essence of power electronics note)

    (Se appendice 4.3 for Matlab calculations)

    From our calculated figure of total powerloss,

    the number of primary turns is chosen to be 13 since this number i placed in

    the region of lowest possible combined losses. (Core + Copper)Furthermore, a ratio of 13 to 9 offers the best integer representation of the

    turns ratio. Hereby the practical turns ratio is 1.44.

    The curve of total copperloss can be seen below.

    6

  • 8/6/2019 SWIE Report

    7/23

    Forward Converter Project

    The diameter of the wires is found by:

    dpri=2AwindowF

    NpriGiving 1.1 mm.

    dsec=2AwindowF

    NsecGiving 0.7 mm.

    (For calculations see appendice 4.1)

    2.3 Main waveforms

    2.3.1 Output voltage and coil current

    7

  • 8/6/2019 SWIE Report

    8/23

    Forward Converter Project

    As it can be visually asserted above, the coil current is 2App in the output coil

    as intended. (30 V supply, 5 A load)

    The output ripple is as low as 70 mV, while specification stated no more than

    300mVpp ripple voltage.

    This is achieved due to the very low ESR of the chosen output capacitor.

    8

  • 8/6/2019 SWIE Report

    9/23

    Forward Converter Project

    2.3.2 Primary current and MOSFET DS voltage

    The figure above depicts the MOSFET's drain-source voltage and current.

    By multiplying the current and voltage, and integrating over one full period,

    the average MOSFET power dissipation was found to be 70 mW.

    9

  • 8/6/2019 SWIE Report

    10/23

    Forward Converter Project

    2.4 System test results

    2.4.1 Loop Gain

    By meams of simulation, the feedback control was copensated and depicted

    above. The system is compensated to give a proper phase margin of 36

    degrees at the unity gain point. The following figure shows the practically

    measured loop gain:

    The graphs are very similar, and the difference in gain is quite expected. The

    gain measurement is to high extent misshaped by noise present during

    measurement.

    Analysing the measured results, we can read that our phase margin is 36

    degree as intended.

    10

    Frequency

    300Hz 1. 0KHz 3. 0KHz 10KHz 30KHz 100KHzP(V(R4:1)) DB(V(R4:1))

    0

    50

    100

    150

  • 8/6/2019 SWIE Report

    11/23

    Forward Converter Project

    2.4.2 Step load

    The figure above depicts the practically measured step load response.

    As specified the system does not exceed 150 mVpp while stepping down from

    4 to 2 A load, - in fact the ripple is as small as 127 mV due to the high loop

    gain of the system.

    11

  • 8/6/2019 SWIE Report

    12/23

    Forward Converter Project

    2.4.3 Efficiency

    The efficiency has both been simulated and measured.

    For the simulation, the measured parameters of both coil and transformer was

    put in to provide relistic losses.

    As seen, theres quite a good correlation between the two figures.

    12

  • 8/6/2019 SWIE Report

    13/23

    Forward Converter Project

    Thermal view:

    The thermal view displays what elements dissipate most energy through heat

    radiation. From the picture it is seen that the diodes contribute most

    significantly to the total loss since they are the hottest.

    Taking the diode drop of 0.75 for the model used, and current output we can

    calculate power dissipation:

    P=UI=0.75V5 A=3.75W

    As each of the output diodes is active only half the period it is the total powerdissipation in both diodes.

    13

  • 8/6/2019 SWIE Report

    14/23

    Forward Converter Project

    3. Conclusion

    We have managed to construct a power supply that matches, and even

    exceeds some of the specified requirements. The converter has a very high

    loop gain in a wide frequency range. The supply can even operate at only 18 V

    supply at full load. Efficiency varies on current drawn from the supply, but it

    maintains a good percentage, as high as 84 % under optimal conditions.

    The switches generate very little noise, due to proper board layout and

    optimal snubbing, and the output voltage ripple is only 70 mV, which by far

    exceeds the reqirement.

    This leads to the conclusion that we have constructed a very good switch

    mode converter, which we are very proud of and look forward to present in

    detail at the exam.

    14

  • 8/6/2019 SWIE Report

    15/23

    Forward Converter Project

    4. Appendice

    4.1 Transformer losses

    There can occur some power losses in the transformer. We will look at the

    losses in the core and the wires, which can be described by the following

    formula:

    (Taken from trafo design note)

    Here the only unknown is z and K, which can be found in the data book

    Magnetic Components Catalogue form the graph showing power loss as

    function of frequency under the RM8 core(F44, page 12).

    If we take two point on the graph at 100 kHz frequency and put it in the

    formula, we will have 2 equations with 2 unknown which can be solved.

    (Taken from trafo design note)

    z = 1.737

    K = 3930000

    Now we have all the parameters and we can describe the Pcore

    , Pcopper

    and

    Ptotal

    as function of Npri

    .

    Her we see the graphs showing the relationship and we see that there is

    minimum total loss around 13-14 turns. We have chose 13 as Npri.

  • 8/6/2019 SWIE Report

    16/23

    Forward Converter Project

    4.2 Litterature

    4.2.1 Notes

    Coil Design procedure.pdf

    https://www.campusnet.ihk.dk/cnnet/filesharing/SADownload.aspx?

    ElementId=22197&FolderId=151619&FileId=598120(Demands a login)

    Trafo Design.pdf

    https://www.campusnet.ihk.dk/cnnet/filesharing/SADownload.aspx?

    ElementId=22197&FolderId=151619&FileId=598119(Demands a login)

    MC Catalogue.pdf

    https://www.campusnet.ihk.dk/cnnet/filesharing/SADownload.aspx?

    ElementId=22197&FolderId=151621&FileId=598101(Demands a login)

    Key solid RM Core Parameters.pdf

    https://www.campusnet.ihk.dk/cnnet/filesharing/SADownload.aspx?

    ElementId=22197&FolderId=151621&FileId=598102(Demands a login)

    4.2.2 Books

    The essence of power electronics (J. N. Ross)

    4.3 Matlab code

    close all;clear all;

    clc;

    format shorteng;

    set(0,'DefaultFigureWindowStyle','docked');

    % SEE SCHEMATIC DRAWING FOR DETAILS

    % DEFINITIONS

    f_switch=100e3;

    Vin=20; %range: 20-30 V, worst case scenario = 20 V

    Vmax=30;

    Vout=4; % 4 V nominally

    16

  • 8/6/2019 SWIE Report

    17/23

    Forward Converter Project

    Dmax=0.35; % SG3524 is rated for a max D of .45. We subtr. 5 %

    for headroom

    Dnom=Dmax*(20/24);

    Dmin=Dmax*(20/30);

    % FINDING TRANSFORMER TURNS RATIO n = N1/N2

    % Vout=Vin*Dmax/(N1/N2) (N1/N2) = n = (Vin*Dmax)/Vout hence:

    n=(Vin*(Dmax))/(Vout+0.7); % 0.7 V added to compensate for Diode

    voltage drop

    % No. OF PRIMARY TURNS

    % Before calculating the number of primary turns that will give

    the lowest

    % possible loss, we need to know i_pri_RMS which is dependant on

    i_L_RMS

    % i_L is specified to max 5 A.

    i_L=5; % Assuming that the ripple is 0

    i_pri=(i_L/n);i_pri_RMS=i_pri*sqrt(Dmax);

    % CHOISE OF TRANSFORMER CORE

    % The core must satisfy: A_window*A_core >=

    (U_pri*t_on*2*i_pri_RMS)/(F*B_peak*G)

    % Constants:

    U_pri=20; % the nominal supply voltage

    t_on=Dmax*(1/f_switch); % on time pr. period, Dmax=0.4

    F=0.5; % fill factor

    B_peak=0.3; % Max allowable peak B-field

    G=3; % Current density [A/(mm)^2]

    A_windowA_core=((U_pri*t_on*2*i_pri_RMS)/

    (F*B_peak*G*10^6))*10^12;

    % RM8 transformer core is suitable

    Awindow=30e-6; % m^2

    Acore=64e-6; % m^2

    % MIN N0. OF TRANSFORMER PRIMARY TURNS (that will prevent

    saturation)

    N_pri=(U_pri*t_on)/(B_peak*Acore);

    N_sec=N_pri/n;

    %N_pri*3

    %N_sec*3

    % practical turns ratio: 13/9. 13/9

    % TRANSFORMER WIRE DIAMETERSd_pri=sqrt((2*Awindow*F)/(pi*N_pri))*1000;

    d_sec=sqrt((2*Awindow*F)/(pi*N_sec))*1000;

    % FINDING RM8 F44 FERRITE CORE LOSS CONSTANTS K & z

    %syms K z;

    %A=solve('K*(0.200)^z*2430e-3=250','K*(0.200)^z*2430e-3=160')

    %S = [S.x S.y]

    %Pcore1=(K*((U_pri*t_on)/(N_pri*A_core))^z)*V_core;

    %solution=solve(Pcore,K);

    %solution

    17

  • 8/6/2019 SWIE Report

    18/23

    Forward Converter Project

    K=3.93e6; %[W/m^3

    z=1.737;

    V_core=2430e-9; %[m^3]

    rho_copper=1.68e-8; %[OHM*m]

    l_winding=pi*1.e-2; %[m]

    % Now using the total power loss formula in the "Transformer

    design note"

    % to plot total loss (P_Copper + P_Core), as function of N_pri.

    % This will show the lowest loss point. RM8 core chosen!

    xN_pri=linspace(3,25,1000);

    Pcore=K*(((U_pri*t_on)./(xN_pri.*Acore)).^z)*V_core;

    Pcopper=(4*(i_pri_RMS)^2)*rho_copper*((l_winding.*xN_pri.^2)./

    (Awindow*F));

    Ptotal=Pcore+Pcopper;

    plot(xN_pri,Pcore);

    hold on

    plot(xN_pri,Pcopper,'r');

    hold on

    plot(xN_pri,Ptotal,'m');

    %(1/n)*17

    % Transformer n=13/9 Measurements

    % Lpri: 3.33 Ohm, 31.84 pF, 338.24 uH (Sec open)

    % Lpri: 266 mOhm, 37.74 pF, 372.00 nH (Sec closed)

    % Demag: 3.34 Ohm, 30.6 pF, 339.85 uH (Sec open)

    % Demag: 224 mOhm, 22.3 pF, 775.00 nH (Sec closed) % Lsec: 1.87 Ohm, 54.92 pF, 161.36 uH (Pri open)

    % Lsec: 1.4 Ohm, 97.71 pF, 162.233 uH (Pri closed)

    % SELECTION OF POWER MOSFET -SEE AND8039/D app note

    % MOSFET: IRF630 CHOSEN:

    R_DS_on=0.4;

    V_DS_on=i_pri_RMS*R_DS_on;

    V_D=0.7;

    % COIL DESIGN % COILS L VALUE SEE AN-776 (p.113 says otherwise)

    i_L_ripple=0.4*i_L;

    L=((Vmax-V_DS_on)*(N_sec/N_pri)-V_D-Vout)*(Dmin/

    (i_L_ripple*f_switch));

    % COILS RMS CURRENT

    i_L_RMS=i_L-i_L_ripple+i_L_ripple/sqrt(3);

    i_peak=i_L+i_L_ripple/2;

    A_windowA_core_L=(L*i_peak*i_L_RMS)/(F*B_peak*G)*10^6;

    % RM8 is once again chosen

    18

  • 8/6/2019 SWIE Report

    19/23

    Forward Converter Project

    % Number of turns

    N=(L*i_peak)/(B_peak*Acore); % round up = 6

    A_wire_L=i_L_RMS/(G); % result in mm2 = 1.3849

    D_wire=A_wire_L/pi;

    % SELECTION OF POWER DIODES -SEE AND8039/D app note

    % DIODES

    V_rev_min=Vmax*(N_sec/N_pri); % > 18 V

    i_D_RMS=i_L_RMS*(1-Dmin); % > 3 A

    % MBRB1560CT chosen.

    % Diode for Demagnetization: BYW29

    % OUTPUT FILTER CAP SEE AN-776

    C=(i_L_ripple*1/f_switch)/(8*0.3); % however such small cap has significant ESR

    % Maximum allowed ESR: deltaVo/i_L_ripple

    ESR_max=0.300/i_L_ripple; % 0.150 ohm

    % By impedance measurent a good cap was found to be:

    % 220 uF/100 V electrolytic w. ESR: 56 mOhm (ESC=221 uF,

    ESL=55* nH)

    % *is probably lower when properly mounted on PCB

    % Calculation of transfer function, ie. poles and zeros of

    % uncompensated circuit.

    % Compensation of circuit % PCB

    % transformer

    % coil

    % open loop test

    % A totem pole conf. of BCX54 and BCX51 in SOT89 housings chosen

    for gate drive

    % SG3524 timing cap and res to give 200 kHz

    R_t=1.3/(200e3*3.48e-9) % 1 nF < cap value < 100nF, 1.8k < R

  • 8/6/2019 SWIE Report

    20/23

    Forward Converter Project

    %InpCurrVect30=[ 0.0 0.045 0.085 0.12 0.16 0.20

    0.24 0.28 0.32 0.365 0.41 0.455 0.5 0.55 0.59 0.64

    0.69 0.74 0.79 0.84 0.89]

    %InpVoltVect30=[30.000 30.000 30.000 30.000 30.000 30.000

    30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000

    30.000 30.000 30.000 30.000 30.000 30.000]

    %LoadCurrVect30=[0 0.25 0.5 0.75 1 1.25

    1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75

    4 4.25 4.5 4.75 5]

    %LoadVoltVect30=[4.05 4.05 4.05 4.05 4.05 4.05

    4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05 4.05

    4.05 4.05 4.05 4.05 4.05]

    %InPowerVect=InpCurrVect30.*InpVoltVect30;

    %OutPowerVect=LoadCurrVect30.*LoadVoltVect30;

    % 30 V supply, new 13/9 transformer

    InpCurrVect30=[ 0.045 0.085 0.127 0.16 0.20 0.24

    0.29 0.33 0.38 0.42 0.47 0.52 0.57 0.62 0.67 0.720.77 0.83 0.88 0.94]

    InpVoltVect30=[30.000 30.000 30.000 30.000 30.000 30.000

    30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000 30.000

    30.000 30.000 30.000 30.000 30.000]

    LoadCurrVect=[0.25 0.5 0.75 1 1.25 1.5 1.75

    2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 4.25

    4.5 4.75 5]

    LoadVoltVect30=[4.12 4.12 4.12 4.12 4.12 4.12

    4.12 4.12 4.12 4.12 4.12 4.12 4.12 4.12 4.12 4.12

    4.12 4.12 4.12 4.12]

    InPowerVect30=InpCurrVect30.*InpVoltVect30;

    OutPowerVect30=LoadCurrVect.*LoadVoltVect30;

    % 24 V supply, new 13/9 transformer

    InpCurrVect24=[ 0.054 0.1 0.15 0.2 0.25 0.3

    0.36 0.42 0.47 0.53 0.59 0.65 0.71 0.78 0.84 0.91

    0.98 1.04 1.11 1.19]

    InpVoltVect24=[24.000 24.000 24.000 24.000 24.000 24.000

    24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000 24.000

    24.000 24.000 24.000 24.000 24.000 ]

    LoadVoltVect24=[4.12 4.12 4.12 4.12 4.12 4.12

    4.12 4.12 4.12 4.12 4.12 4.12 4.12 4.12 4.12 4.12

    4.12 4.12 4.12 4.12]

    InPowerVect24=InpCurrVect24.*InpVoltVect24;

    OutPowerVect24=LoadCurrVect.*LoadVoltVect24;

    % 20 V supply, new 13/9 transformer

    InpCurrVect20=[ 0.07 0.12 0.18 0.24 0.3 0.37

    0.44 0.5 0.58 0.64 0.72 0.79 0.87 0.95 1.02 1.11

    1.19 1.28 1.36 1.45]

    InpVoltVect20=[20.000 20.000 20.000 20.000 20.000 20.000

    20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000 20.000

    20.000 20.000 20.000 20.000 20.000 ]

    LoadCurrVect=[ 0.25 0.5 0.75 1 1.25 1.5

    1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4

    4.25 4.5 4.75 5]

    20

  • 8/6/2019 SWIE Report

    21/23

    Forward Converter Project

    LoadVoltVect20=[4.12 4.12 4.12 4.12 4.12 4.12

    4.12 4.12 4.12 4.12 4.12 4.12 4.12 4.12 4.12 4.12

    4.12 4.12 4.12 4.12]

    InPowerVect20=InpCurrVect20.*InpVoltVect20;

    OutPowerVect20=LoadCurrVect.*LoadVoltVect20;

    figure(2);

    plot(LoadCurrVect,OutPowerVect30*100./InPowerVect30);

    legend '30 V supply';

    hold on;

    plot(LoadCurrVect,OutPowerVect24*100./InPowerVect24, 'r');

    legend '24 V supply';

    hold on;

    plot(LoadCurrVect,OutPowerVect20*100./InPowerVect20, 'g');

    legend '20 V supply';

    hold on;

    legend('30 V supply','24 V supply','20 V supply');

    title('Forward Converter Efficiency','Fontsize',15)

    axis([0, 5, 0, 100]);

    grid;

    xlabel('Load [A]','Fontsize',15);

    ylabel('% Efficiency','Fontsize',15);

    % 2 A load, new 13/9 transformer

    InpCurrVect2A=[0.56 0.53 0.50 0.47 0.45 0.43 0.41

    0.40 0.38 0.37 0.35 0.34 0.33]

    InpCurrVect4A=[1.16 1.14 1.08 1.03 0.98 0.94 0.90

    0.86 0.83 0.79 0.76 0.74 0.71]

    InpCurrVect5A=[1.44 1.45 1.41 1.34 1.27 1.22 1.161.12 1.07 1.03 0.99 0.95 0.92]

    InpVoltVect= [18 19 20 21 22 23 24

    25 26 27 28 29 30 ]

    LoadCurrVect2A=[2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0

    2.0 2.0 2.0 2.0]

    LoadCurrVect4A=[4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0

    4.0 4.0 4.0 4.0]

    LoadCurrVect5A=[5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0

    5.0 5.0 5.0 5.0]

    LoadVoltVect=[4.08 4.08 4.08 4.08 4.08 4.08 4.084.08 4.08 4.08 4.08 4.08 4.08 ]

    InPowerVect2A=InpCurrVect2A.*InpVoltVect;

    InPowerVect4A=InpCurrVect4A.*InpVoltVect;

    InPowerVect5A=InpCurrVect5A.*InpVoltVect;

    OutPowerVect2A=LoadCurrVect2A.*LoadVoltVect;

    OutPowerVect4A=LoadCurrVect4A.*LoadVoltVect;

    OutPowerVect5A=LoadCurrVect5A.*LoadVoltVect;

    Vs_sim_eff=[18 20 22 24 26 28 30];

    Pin_2A=[3.64 4.6 5.6 6.8 8.1 9.5 11];

    Pout_2A=[2.84 3.6 4.5 5.57 6.68 7.9 9.2];

    Eff_2A=Pout_2A./Pin_2A;

    21

  • 8/6/2019 SWIE Report

    22/23

    Forward Converter Project

    Pin_4A=[6.93 8.75 10.771 13 15.45 18 20.95];

    Pout_4A=[5.15 6.63 8.29 10.15 12.18 14.39 16.81];

    Eff_4A=Pout_4A./Pin_4A;

    Pin_5A=[8.45 10.65 13.11 15.83 18.8 22 25.5];

    Pout_5A=[6.16 7.92 9.92 12.13 14.58 17.24 20.11];

    Eff_5A=Pout_5A./Pin_5A;

    figure(3);

    subplot(2,1,1);

    plot(InpVoltVect,OutPowerVect2A*100./InPowerVect2A, 'g'); hold

    on

    plot(InpVoltVect,OutPowerVect4A*100./InPowerVect4A, 'b');

    plot(InpVoltVect,OutPowerVect5A*100./InPowerVect5A, 'm')

    legend ('2 A loading current', '4 A loading current','5 A

    loading current');

    hold on;title('Forward Converter Efficiency, Measured','Fontsize',15)

    axis([18, 30, 50, 90]);

    grid;

    ylabel('% Efficiency','Fontsize',15);

    subplot(2,1,2);

    plot(Vs_sim_eff,Eff_2A*100,'-*g'); hold on;

    plot(Vs_sim_eff,Eff_4A*100,'-*b');

    plot(Vs_sim_eff,Eff_5A*100,'-*m');

    legend ('2 A loading current','4 A loading current','5 A

    loading current');

    hold on;

    title('Forward Converter Efficiency,Simulated','Fontsize',15)

    axis([18, 30, 50, 90]);

    grid;

    xlabel('Supply voltage [V]','Fontsize',15);

    ylabel('% Efficiency','Fontsize',15);

    LoopGain = importdata('LoopGainMeas_24V_2R2_300to100k_long.txt' );

    %

  • 8/6/2019 SWIE Report

    23/23

    Forward Converter Project

    %--- Phase vs Frequency ---%

    subplot(2,1,2);

    semilogx(frequency, Phase, 'b', 'LineWidth',2);

    grid;

    ylabel('Phase [degrees]');

    xlabel('Frequency_{log} [Hz]');

    axis([300, 100e3,-80,160]);

    % [EOF]

    23