72
Synchrotron based structural genomics project targeted to protein transport and posttranslational modification Soichi Wakatsuki Photon Factory, IMSS, KEK, Tsukuba, Japan

Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

  • Upload
    others

  • View
    8

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Synchrotron based structural genomics project targeted to

protein transport and posttranslational modification

Soichi WakatsukiPhoton Factory, IMSS, KEK, Tsukuba, Japan

Page 2: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Outline1. New national project of Protein 30002. Target oriented structural genomics on

posttranslational modification and transport of proteins

3. A case study of human GGA proteins in the vesicle transport of lysosomal proteins modified with mannose 6-phosphate

4. Beam line development and high-throughput R&D

Page 3: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

SPring-8Harima

Photon Factory in Tsukuba

TokyoOsaka

Page 4: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

関西学院大学理学部

国立遺伝学研究所構造遺伝学研究センター

昭和大学薬学部

日本医科大学医学部

東京工業大学大学院生命理工学研究科

東京農工大学工学部

東京大学大学院農学生命科学研究科東京大学大学院理学系研究科東京大学大学院薬学系研究科東京大学分子細胞生物学研究所

東北大学大学院工学研究科

長岡技術科学大学工学部

北海道大学大学院理学研究科北海道大学大学院薬学研究科

姫路工業大学理学部

大阪市立大学理学部

大阪大学蛋白質研究所大阪大学大学院理学研究科大阪大学大学院工学研究科

福井県立大学大学院生物資源学研究科

お茶の水女子大学理学部

奈良先端科学技術大学院大学バイオサイエンス研究科

京都大学大学院理学研究科京都大学化学研究所京都大学食糧科学研究所

名古屋大学大学院工学研究科名古屋大学大学院理学研究科

横浜市立大学大学院理学研究科

熊本大学薬学部

九州大学大学院生物資源環境科学研究科

徳島文理大学家政学部

広島大学大学院理学研究科

島根大学総合理工学部

東海大学医学部

Two synchrotron facilities and PX groups in Japan

徳島大学工学部

SPring-8

PF

Page 5: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational
Page 6: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

PF

AR

Biology

LINAC

Page 7: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

National project of determining 3000 structures in 5 years from FY 2002

The proposal of the Japanese universities• Initiative of the university researchers• Strong collaboration with biochemistry, molecular and

cell biology, medicine, pharmacology departments of the universities

• Key technology developments• Increase the overall efficiency of structure determination

in Japan by a factor of 10• Determining 500 biologically important protein

structures• Education of next generation structural biologists

Page 8: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

SPring-8

Photon Factory

Yokohama Genome Science CenterHarima Institute

Osaka Univ.Inst. for Protein

Research

Signal Transduction

Protein Transport and Modification

Transcription and Translation

Higher Order Biological Functions

Development and Cell Differentiation

Corporation in structural

genomics R&D

RIKENRIKEN Structural Genomics/Proteomics

Initiative (RSGI)(2500 structures、Structure.-Function、R&D)

Committee for the Advancement of Protein Structure-Function Analyses (Ministry of Education, Culture, Sports, Science and Technology)

Other Institutions

Industry

Collaboration

Other Research Centers of RIKEN

Metabolism

Network Committee for Protein Analyses

500~600 structures, R&D, Structure-Function,

Education

Beam time use

Corporation in R&D and

facility operation

Collaboration

Collaboration

Collaboration

Collaboration

Collaboration

Beam time use

Beam time use

Beam time use

Brain and Neurology

Page 9: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Transcription and Translation

Network Committee for Protein Analyses

500 structures/5 years, HT R&D

Target oriented structural genomics consortia of universities and national institutes

Development and Cell Differentiation

Protein Transport and Modification

Signal Transduction

Higher Order Biological Functions

Brain and Neurology

Metabolism

SPring-8

Photon Factory

Corporation in R&D and facility

operation

Page 10: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Concept of a S.G. Research ConsortiumStructural Genomics targeted to XYZ

Protein Cryst. Group I

Protein Cryst. Group II NMR structural analysis Group

Structural Genomics R&DOverexpression and purification

Automated crystallizationIsotope substitution of proteins for NMR measurements

Preparation of isotopic label for NMRHigh sensitivity NMR measurement techniques

High throughput MAD beam linesNext generation X-ray area detectors

High throughput structure determination software

Molecular biology group

Medical-pharmacology group

Cell biology group

Biochemistry group

Structural analysis, Functional analysis

Page 11: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Tsukuba Structural Biology ConsortiumProtein Transport and Posttranslational Modification

KEK, Photon Factory (X-ray)

Kanazawa University,Pharma & Cancer Institute

Riken, Membrane Traffic Group

Osaka UniversityMedical School

Structural analysisFunctional analysis

NAIST, Molecular Biology Lab

Structural Genomics related R & D Overexpression and purification

Large scale automate crystallizationCrystal handling robotsMicrofocus MAD beam lines

Next generation area detectorsHigh-throughput structure determination

software etc.

Okazaki, Natl. Institute of Physiological Sciences

Nagaoka Tech Univ (X-ray) Showa Univ (X-ray)

Kyoto UniversityPharmacology Department

Nagoya City Univ. (NMR)

JAERI, Nara (Bioinfo)

Osaka Univ (MS)

Page 12: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Structural analysis

Functional AnalysisIntracellular Transport

RIKEN, Membrane Traffic GroupKyoto Univ., Pharmacology DepartmentKanazawa Univ., Pharmacology Dept.

Okazaki, Natl. Institute of Physiological SciencesKanazawa Univ., Cancer Institute

Posttranslational ModificationKyoto Univ., Pharmacology Department

Osaka Univ. Medical SchoolAIST, Molecular Biology Lab

Nagoya City Univ., Phamaceutical ScienceOsaka Univ., School of Science

X-ray Crystallography

KEKNagaoka Univ. of Technology

Showa Univ., Pharmacology Dept.Ⅰ. Overexpression, purification, crystallizationⅡ. Crystal structurel analysisⅢ. Biochemical analysisIV. High-throughput technology development

Bioinformatics

JAERI, Center for Promotion ofComputational Science and Engineering

NMRNagoya City Univ., Phamaceutical Sciences

Stable isotopic label, 3-dimensional structural analysis, protein-protein interaction

Mass SpectrometryOsaka Univ., School of Science

Structural analysis of sugar chain and glycoprotein

Proposal of a Target Oriented Structural Genomics Consortium: Intracelluar Transport and Posttranslational

ModificationLeader : Soichi Wakatsuki (KEK)

Page 13: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

New technology development for high-throughput protein crystallography(1) New MAD beam lines

Mamoru Suzuki, Noriyuki Igarashi, Naohiro Matsugaki (KEK, PF)(2) Robotics

Masahiko Hiraki, Minoru Nagai (KEK, PF),Kenkichi Tanikawa, Kohtaro Ohba (AIST)

(3) New generation detectorWataru Mochizuki (NHK)

(4) SoftwareYuri Gaponov, Noriyuki Igarashi, Masahiko Hiraki (KEK, PF)

Center for protein expression and structural analysis (KEK, PF)(1) Protein expression, purification, biochemical analysis and crystallization

Ryuichi Kato, Masato Kawasaki (KEK, PF)Postdoc TechnicianPostdoc TechnicianPostdoc TechnicianPostdoc Technician

(2) Data collection and structural analysisMamoru Suzuki, Noriyuki Igarashi, Naohiro Matsugaki (KEK, PF)

Postdoc TechnicianPostdoc Technician

Core facilities (1)

Page 14: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Selection of an optimal expression system

Functional Analysis Group・gene source ・cell biological analyses ・target selection

Bioinformatics group

X-ray crystallography/NMR

Protein overexpression and purification

Biological assay

Feedback

SeMet incorporationE. coli. expression

Cell-free expression system

Baculovirus expression system

Pichia. expression system

S. cerevisiae expression system

Flowchart of functional and structural analysis team (total of 4)

1~2 Res. Assoc

1~2 Post-docs

2 Technicians

1~2 Res. Assoc

1~2 Post-docs

2 Technicians

Page 15: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Core facilities (2)

Functional analysis : post-translational modificationFaculty of Pharmaceutical Sciences, Kyoto University (Toshisuke

Kawasaki)Glycosyltransferases expressed in nervous system: GlcAT-P, GlcAT-S

Faculty of Medicine, Osaka University (Naoyuki Taniguchi)Glycosyltransferases for carcinogenesis and immune system: GnT-III, GnT-V

Research Center for Glycoscience, National Institute of Advanced IndustrialScience and Technology (Yoshifumi Jigami)

Metabolic system of sugar nucleotide : Och1, YND1Nagoya City University (Koichi Kato)

Quality control and transport of proteins : Fcγ receptor II Faculty of Science, Osaka University (Sumihiro Hase)

Glycosyltransferases expressed in early embryo : FucT1, FucT2

X-ray crystallographic structural analysisFaculty of Pharmaceutical Sciences, Kyoto University (Hiroaki Kato)Nagaoka University of Technology (Takamasa Nonaka)

Showa University (Noabutada Tanaka)

NMR structural analysisNagoya City University (Koichi Kato)

Page 16: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Core facilities (3)Functional analysis : intracellular protein transport

Faculty of Pharmaceutical Sciences, Kanazawa University (Kazuhisa Nakayama)Transport between Golgi and lysosome : GGA, BIG

Cancer Research Institute, Kanazawa University (Hiroshi Ohno)Intracellular protein transport : AP complexes

The Institute of Physical and Chemical Research (Akihiko Nakano)Vesicle transport : Sar1p, Sec12p

Center for Integrative Bioscience, Okazaki National Research Institute (Masayuki Murata)Visualization of protein transport of semi-intact cells

Faculty of Pharmaceutical Sciences, Kyoto University (Hiroaki Kato)

Peroxisome protein import : Pex19p, PMP70

BioinformaticsCenter for Promotion of Computational Science and Engineering, Japan Atomic Energy Research Institute (Kei Yura)

TLOTsukuba Liaison (Akira Tasaki)

Page 17: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Protein modification is closely regulated by the cell’s transport mechanism.

We chose protein glycosylation and protein transport as the target of the structural genomics project.

Development of technologies for production of glycosylated human proteins in their active forms.

Target oriented structural genomics!(first proposed in Aug. 2000)

GlcNAcMannoseGlucosePhosphateFucoseGalactoseSialic acid

ER

Cis Golgi

Medial Golgi

Trans Golgi

Ribosomes

Page 18: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Application of 3-D structure of glycosyltransferases

・Highly active glycoprotein drugs

Development of new drugs for regulation of

glycosyltransferase activity

・Control of tumor metastasis

・Organ xeno-transplantation

・Defense against infective diseases

・Control of inflammation

N

Man

Man ManMan

ManManManManManMan

ManMan

GDP-Man

GDP GMP

GDP-Man

GMP

Golgi apparatus

GDPase

The current model for GDP-Mannose transport and utilization in the Golgi.

The current model for the utilization ofsugar nucleotides in the Golgi lumen emphasizethe conversion of GDP to GMP by lumenalGDPase.

It is hypothesized that this reaction isrequired for the import of an additional sugarnucleotide, from the cytosol into the Golgilumen, via the coupled GDP-Man/GMPexchange.

antiporter

Man

P

MNN6

OCH1

YND1 GDA1

YEA4

N-acetylgulcosimine transfereses

The current model of GDP-mannose transport and utilization in the Golgi-apparatus

Page 19: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

HNK-1 Carbohydrate Epitope (CD57)• is recognized by HNK- 1 (human natural killer -1) monoclonal antibody

• is found in insect and human cells, and is localized in nerve adhesion

molecules (NCAM, P0, L1, MAG etc.) and neuroglycolipids (SGGL-1,-2).

• is expressed in specific phase and position during development and growth

of nerve tissues.

• is used as marker of nerve development.

GlcAT-P, S :enzymes required for the synthesis of HNK-1 oligosaccharide epitopes

N-acetylglucosamine mannose galactose glucuronicacid sulfate group

R

R

(GlcAT-Pand GlcAT-S)

(HNK1-ST)

R

Asn P0

O

OHN SGGL-1

fucose

Glycoprotein

Glycolipid

N-Acetylglucosamine

HNK-1oligosaccharide

epitopes

Structure and biosynthesis of HNK-1 sugar chain

HNK-1oligosaccharide epitopes

HNK-1oligosaccharide epitopes

Page 20: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

XX

HiddenPlatformWaterPool

1 2 3 4TrainingDay

Mea

n Es

cape

Lat

ency

Day1 Day 4

CA3 Region

PyramidalCell

Schaffer Collateral

Mouse Hippocampus

Stimulation CA1 RegionPyramidalCell

FieldEPSP

GlcAT-P KO mouse(defective of HNK-1 oligosaccharide synthesis)

Decrease of long term potentiation (LTR) at hippocampus CA1

Difficulty of space recognition

Changes of cells which express HNK-1 sugar chain antibody

Elongation of neurite

Inhibition of cell adhesionHNK-1 positive cellHNK-1 negative cell

L1 L1 N-CAMN-CAM

Page 21: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Microheterogeneity and high mobility of oligosaccharides

Difficulty of structural analysis

Page 22: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Analysis of dynamics of glycoproteins by NMR

Page 23: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Construction of protein expression system

Control of glyco-genes

Multi‐dimensionalHPLC mapping

procedure

Functional analysis

Three dimensional structural analysis by NMR

13C,15N-labeledprecursors

Atomic level observation of dynamics of sugar chains by NMR

Page 24: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Endocytic pathway

Autophagic pathway

GGA

Lysosomal function depends on membrane traffic

Page 25: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

21 18

?17

19

1

6

1 63 16

19

22 ? 23 9

417

3 16

19

13

14

? 2 12 10

19

8

5 7

7

207

5

5

PTS1 PTS2

PTS1 PTS2

PTS1 PTS2

サイトゾル

ペルオキシソーム マトリックス

mPTS?

mPTS?

?

膜タンパク質 可溶性タンパク質

不明な点が 多い

Structural and functional analysis of peroxisome inserted membrane protein and related protein transport system

(Pex3p, Pex6p, Pex19p, ABC transporter PMP70 )

Soluble proteinMembrane protein

Cytosol

Peroxisome matrixUnknown

functions and structures

Page 26: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Photon Factory Structural Biology Building (completed in April 2001)

Page 27: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational
Page 28: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Lysosomal Function Depends on Membrane TrafficLysosomal Function Depends on Membrane Traffic

Endocytic pathway

Autophagic pathway

GGA

Page 29: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Treatment of lysosomal deseases

Golgi apparatus

lowpH

Lysosome

CD-MPR

Plasma membrane

lysosomal enzymes with geneticallylow activity

(Lysosomal desease)Recombinant active

α-galactosidase

P

P

P

P

Prelysosome

P

P

P

P

P PP P P

P

P

P

CI-MPR

GGA

P

P

Enzyme injection

Page 30: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Fabry Disease and Enzyme Replacement Therapy

Fabry disease:A disease caused by mutation ofα-galactosidase gene, which degrades enzymatic activity of the hydrolase in lysosome leading to accumulation of glycolipids

Enlargement of the heart

Accumulation of glycolipids in glomerulus

Angiokeratoma

Page 31: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Lippincott-Schwartz, J. (1998) MBC 9, 1617

Vesicle transport from the ER to the Golgi apparatus

Page 32: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

M. Marsh and H. T. McMahon, Science, 1999, Vol. 285, 215

Clathrin movie by Allison Bruce,

Harvard University

http://www.hms.harvard.edu/news/clathrin/

Page 33: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

M. Marsh and H. T. McMahon, Science, 1999, V l 285 215

Page 34: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Figure 1 (Nogi et al.)

Page 35: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

VHS GAT Pro-rich GAE

144 307 513 639

Acidic di-leucine motif

ARF-GTP Rabaptin-5/

γ-synergine

Schematic representation of the domain structure of GGA1

VHS: Vps27p/Hrs/STAM Domain

GAT=GGAH: GGA Homology Domain

GAE=AGEH: Adaptor g Ear Homology Domain

Clathrin

Page 36: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational
Page 37: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

From S. A. Tooze, Science, vol. 292, 1 June, 2001

Takatsu et al, J. Biol. Chem. 276, 28541-28545

Red: acidic residues

Blue: leucine pairs

Purple: serine residues that can be phosphorylated by CK-II

ACLL Peptides recognized by GGA1-VHS domain

ACLL (acidic dileucin) motif

β-secretase -QHDDFADDISLLK

Page 38: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Pi

FEBS Letters, on line publication on 9 July 2002

Page 39: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Crystallization method: hanging drop vapor diffusionProtein conc.: 13 mg / mlPrecipitant: 17 % (w/v) PEG3350, 0.2 M KH2PO4Buffer: 0.1 M Tris-HCl (pH 7.5)Temperature: 20 ºC

Crystal ofHuman GGA1 VHS domain

bar=0.1 mm

Page 40: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Crystallization of Native VHS domain of human GGA1 and complex with M6PR peptide

Native ComplexProtein conc.: 13 mg / ml 9 mg / mlPrecipitant: 17 % (w/v) PEG3350, 0.2 M KH2PO4 14 % (w/v) PEG3350, 0.2 M NH4IBuffer: 0.1 M Tris-HCl (pH 7.5) 0.1 M Tris-HCl (pH 7.5)G1S : peptide: - 1:5Temperature: 20 ºC 20 ºC

M6PRpeptide: SFHDDSDEDLLHI

Crystallographic Data of Native VHS domain of human GGA1 and complex with M6PR peptide

Native ComplexCrystal system: Tetragonal OrthorhombicSpace group P43212 P212121Cell dimensions: a = 55.12, c = 105.51 Å a = 55.2, b= 65.9, c = 101.6 ÅNumber of molecule: 1 / asymmetric unit 2 / asymmetric unitVm: 2.39 Å3 / Da 2.57 Å3 / DaSolvent content: 48.4 % 52.1 %

Page 41: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Diffraction Data Collection Statistics of Native VHS domain of human GGA1 and complex with M6PR peptide

Native ComplexX–ray source: Synchrotron PF-BL6B ALS 5.0.2Wavelength: 1.0 Å 1.0 ÅTemperature: Room temperature 100 KResolution: 15 – 2.1 Å 30 –2.0 ÅTotal reflections: 39,125 167,862Unique reflections: 9,580 25,975Completeness: 95.6 % (89.4) 99.6 % (99.3)R merge (I ): 4.4 % (28.8) 6.7 % (35.9)I / sigma: 25.8 (4.7) 7.1 (1.9)

Values in parentheses are for the highest resolution shell; (2.17 – 2.1 Å) for the native and (2.11 –2.0 Å) for the complex

Page 42: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Refinement Statistics of Native VHS domain of human GGA1 and complex with M6PR peptide

Native ComplexResolution range (Å) 15.0 – 2.1 30 - 2.0Number of reflections (completeness) 24,632 (99.7%)Number of non – hydrogen atoms (protein) 2,246Number of non – hydrogen atoms (peptide) - 103Number of Water molecules 206Number of iodide Ion molecules - 6R total (%) 20.3 22.7R work (%) 22.5R free (%) 26.1 26.0 Average B - value (Å2) 38.85R.m.s. deviation from ideal values

Bond length (Å) 0.039 0.011Bond angle (°) 3.128 1.313

Page 43: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

α1

α2

α3

α4

α5

α6α7

α8

N

C

Protein preparation started on 23 April, 2001Structure solved on 28 May, 2001

2.1A structure of the VHS domain of a human GGA protein in the apoform

Page 44: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

α1

α2

α3α4

α5

α6α7

α8

N

C

Fig.1Ribbon diagram of VHS domain of human GGA1 complex with M6PR peptide. The peptide molecule is shown as a ball-and-stick model colored according to atom type (nitrogen, blue; carbon, yellow; oxygen, red).

Monday 5 PM, 13 August, complex crystals FedExed to ALSWednesday 1 PM, 15 August, 1.8A data set collected at ALS!

Page 45: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational
Page 46: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

α6α8

I

HL

L

DE

D

K131

M138

F88

I95

R89

K96

N92α6

α8

I

HL

L

DE

D

K131

M138

F88

I95

R89

K96

N92

Fig. 3Stereo view of the omit Fo – Fc electron density map of M6PR peptide (chain C). The map is contoured at 3.0 σ. The peptide molecule is shown as a ball-and-stick model colored by atom type (nitrogen, blue; carbon, yellow; oxygen, red) and bond color is shown as black. The protein (chain A) residues, which interaction with the peptide (chain C) is shown as a ball-and-stick model.

Page 47: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Superposition of the native GGA1 VHS domain (green) and its complex with the ACLL peptide (blue). The peptide molecule is shown as a ball-and-stick model.

Page 48: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Structural changes of the GGA-VHS are rather small upon binding of the MP6R signal peptide

(a)

α6α8

K101 Q142

α6α8

K131

M138

F88

I95

R89K87

K96N92

S99

Y102

(b)

α8 shifts by 1.3 Å

α6 shifts by 0.7 Å

Page 49: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Summary on GGA1 VHS complexed with CI-M6PR • Similar to Tom1 and Hrs, GGA1 VHS domain forms a super helix with 8 α-

helices.• There are no drastic changes in the superhelical structure upon binding of the

cation independent mannose 6-phosphate receptor (CI-M6PR) C-terminal peptide except for the linear movement of Helix 8 by 1.3 Å towards the N-terminal end of the helix and upward flipping of Lys87, Phe88, Arg89, Asn92, and Lys131.

• Helices 6 and 8 and adjoining loops are responsible for recognition of the acidic dileucine motif of M6PR C-terminal peptide.

• The Asp7M of CI-M6PR is mainly recognized by basic residues of the protein whereas Leu10M and Leu11M find themselves in tight packing with hydrophobic residues and hydrophobic parts of Tyr102 and Lys96.

• CI-MPR specific recognition is achieved by the interaction between His12M

and Ile13M to the adjoining loops of Helices 6 and 8. • Lys101 of the C-terminal loop of Helix 6 is expected to play a crucial role in

recognizing glutamic acid at the C-terminal end of sotilin.• Taken together, the structure of GGA1 VHS domain in complex with CI-

M6PR shows the intricate recognition of M6P receptor in the vesicle transport of soluble proteins destined for lysosomes in the cell. This is the first example of protein-protein interaction of a VHS domain.

Page 50: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational
Page 51: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational
Page 52: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

The two-hybrid experiments of the mutants confirm the importance of specific interactions between the peptide and the protein.

M6PR recognition by GGA1-VHS

Page 53: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

VHS domain only VHS domain + M6PR peptide

Page 54: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

GGA1-VHS M6PR complex structure:Acknowledgement

Institute of Biological Sciences and Gene Experiment Center, University of Tsukuba, JapanH. Takatsu & K. Nakayama

ALS, Berkeley, CA, USAT. Earnest

Photon Factory Structural Biology GroupT. Shiba, T. Nogi, N. Matsugaki, M. Suzuki, N. Igarashi, M. Kawasaki, & R. Kato

Page 55: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Diffraction Data Collection Statistics of Native VHS domain of human GGA1 and complex with M6PR peptide

Native ComplexX–ray source: Synchrotron PF-BL6B ALS 5.0.2Wavelength: 1.0 Å 1.0 ÅTemperature: Room temperature 100 KResolution: 15 – 2.1 Å 30 –2.0 ÅTotal reflections: 39,125 167,862Unique reflections: 9,580 25,975Completeness: 95.6 % (89.4) 99.6 % (99.3)R merge (I ): 4.4 % (28.8) 6.7 % (35.9)I / sigma: 25.8 (4.7) 7.1 (1.9)

Values in parentheses are for the highest resolution shell; (2.17 – 2.1 Å) for the native and (2.11 –2.0 Å) for the complex

Page 56: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

NATURE |VOL 415 | 21 FEBRUARY 2002

pp 937-941pp 933-937

Page 57: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

“Single-handed recognition of a

sorting traffic motif by the GGA proteins”, T.

Kirchhausen, Nature Structural Biology, April 2002 Vol. 9

pp 241 – 244.

Page 58: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

VHS GAT Pro-rich GAE

144 307 513 639

Acidic di-leucine motif

ARF-GTP Rabaptin-5/

γ-synergine

Schematic representation of the domain structure of GGA1

VHS: Vps27p/Hrs/STAM Domain

GAT=GGAH: GGA Homology Domain

GAE=AGEH: Adaptor g Ear Homology Domain

Clathrin

Page 59: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

γ1/ human 700 I A A G I P S I T A Y S K N G L K I E F T F E R S N T N P S V T V I T I Q A S N S T E L D M T D F V F Q A A V P K T F Q L Q L L S 764γ2/ human 663 P P A P I P D L K V F E R E G V Q L N L S F I R P P E N P A L L L I T I T A T N F S E G D V T H F I C Q A A V P K S L Q L Q L Q A 727γ1/ mouse 700 I A P G I P S I T A Y S K N G L K I E F T F E R S N T N P S V T V I T I Q A S N S T E L D M T D F V F Q A A V P K T F Q L Q L L S 764γ2/ mouse 669 P P A P I P S V R V F E R E G L Q L D L S F M R P L E T P A L L L V T A T T T N S S K E D V T H F V C Q A A V P K S F Q L Q L Q A 733γ/ plant 754 N G P A Y A P I V A Y E S S S L K I E F T F S K T P G N L Q T T N V Q A T F T N L S P N T F T D F I F Q A A V P K F L Q L H L D P 818γ/ yeast 718 V T L P L D A N K I Y D S S S L N V Y A S L L S A N S G L A H L D L Y F Q A K S L I S D L K T F C A V P K A Q K L T L G Q L Y 780γ/ fungus 738 A S T V A K S H T V Y T K H G L T I T L T P T T N P A R P E I V H I T A R F T S A T S A I S N I N F Q A A V P K T H K L Q M Q A I S 803GGA1 / human 508 K P S N I L P V T V Y D Q H G F R I L F H F A R D P L P G R S D V L V V V V S M L S T A P Q P I R N I V F Q S A V P K V M K V K L Q P 574GGA2 / human 482 K P S S L P P L I V Y D R N G F R I L L H F S Q T G A P G H P E V Q V L L L T M M S T A P Q P V W D I M F Q V A V P K S M R V K L Q P 548GGA3 / human 592 K P S S A L P V T A Y D K N G F R I L F H F A K E C P P G R P D V L V V V V S M L N T A P L P V K S I V L Q A A V P K S M K V K L Q P 758Gga1p / yeast 438 I T A Q S Q R H I L N Q S D H L R I D Y E L T R E S M T K L R L V I F Y S N I S S D P I T N F A L L V A S P K G T T L S L Q P 500Gga2p / yeast 466 T T T A P A R T L V N Q S P N L K I E F E I S R E S N S V I R I K S F F T N L S S S P I S N L V F L L A V P K S M S L K L Q P 528

γ1/ human 765 P S S S I V P A F N T G T I T Q V I K V L N P Q K Q Q L R M R I K L T Y N H K G S A M Q D L A E V N N F P P Q S W Q 822γ2/ human 728 P S G N T V P A R G G L P I T Q L F R I L N P N K A P L R L K L R L T Y D H F H Q S V Q E I F E V N N L P V E S W Q 785γ1/ mouse 765 P S S S V V P A F N T G T I T Q V I K V L N P Q K Q Q L R M R I K L T Y N H K G S A M Q D L A E V N N F P P Q S W Q 822γ2/ mouse 734 P S G N T I P A Q G G L P I T Q V F R I L N P N Q A P L R L K L R L T Y N H S G Q P V Q E I F E V D N L P V E T W Q 791γ/ plant 819 A N S N T L P A S G S G A I T Q N L R V T N S Q Q G K K S L V M R M R I G Y K L N G K D V L E E G Q V S N F P R G L 876γ/ yeast 781 P S S T I N A S Q I C K Q S L K I S G S G K L K L R V K L D F H L N G S S S I T N E Q F D H K F D E T L 832γ/ fungus 804 N S T V H P D S T E T Q P L R V M V P P G A A V R L R L R I A F Q V D G H S V Q D Q T D W A Q P S A 853GGA1 / human 575 P S G T E L P A F N P I V H P S A I T Q V L L L A N P Q K E K V R L R Y K L T F T M G D Q T Y N E M G D V D Q F P P P E T W G S L 639GGA2 / human 549 A S S S K L P A F S P L M P P A V I S Q M L L L D N P H K E P I R L R Y K L T F N Q G G Q P F S E V G E V K D F P D L A V L G A A 613GGA3 / human 759 P S G T E L S P F S P I Q P P A A I T Q V M L L A N P L K E K V R L R Y K L T F A L G E Q L S T E V G E V D Q F P P V E Q W G N L 723Gga1p / yeast 501 Q S G N M L Q S N S R D G I K Q I A S V E G I S V N L G K P I K L K W K A N Y C T K G D S K E E S G T T S L P T I 557Gga2p / yeast 529 Q S S N F M I G N A K D G I S Q E G T I E N A P A N P S K A L K V K W K V N Y S V N S T Q A E E T A V F T L P N V 585

β-1 β-2 β-5β-4β-3

β-8β-7β-6α-1 α-2

Figure 2 (Nogi et al. Nature Structural Biology, vol. 9, 527, July 2002 )

Residues 677-822 of human GGA1 (γ1-ear domain) were expressed in E. coli

Page 60: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Table 1 Crystallographic data

Data set Native KAu(CN)2 for SIRAS SeMet for MADRemote Peak Edge

Crystal dataSpace group P 43212 P 43212 P 43212Cell dimensions

a = b (Å) 62.13 62.24 62.06c (Å) 147.87 147.58 147.20

Data collection statisticsBeam line BL-44XU, SPring-8 BL-44XU, SPring-8 BL-6A, PF BL-6A, PF BL-6A, PFWavelength (Å) 0.900 0.900 0.9600 0.9778 0.9785Resolution range (Å) 57.0-1.8 57.0-1.8 40.0-2.6 40.0-2.6 40.0-2.6Outer resolution shell (Å) 1.89-1.80 1.89-1.80 2.73-2.60 2.73-2.60 2.73-2.60Observations 372969 214570 129917 129874 129501Unique reflections 27518 27823 9485 9476 9476Completeness (%) 99.2 (99.2) 99.9 (100.0) 99.9 (99.3) 99.9 (99.2) 99.9 (99.2)I/σ 7.0 (2.7) 4.9 (1.6) 7.3 (2.5) 7.9 (2.8) 7.7 (2.7)R sym (%) 6.4 (21.9) 9.3 (34.3) 9.6 (30.7) 8.7 (27.3) 9.0 (28.2)R anom (%) 4.4 (13.5) 4.5 (9.3) 5.4 (9.8) 2.9 (7.4)

Phasing statisticsNumer of sites 1 Numer of sites 6R cullis (centric/acentric) 0.72 / 0.84 Refined ∆f' -3.793 -7.098 -8.829Phasing power (centric/acentric) 0.93 / 1.08 Refined f'' 3.402 4.521 1.562FOM 0.34 FOM 0.55FOM after DM 0.86 FOM after RESOLVE 0.64

Refinement statisticsResolution (Å)Outer resolution shell (Å)R work (%)R free (%)Number of non-H atoms

ProteinWater

Rmsd from idealityBonds (Å)Angles (deg.)

Average B-factors (Å2)Protein

A-monomerB-monomer

Water

20.0-1.81.85-1.80

22.6 (27.1)24.7 (31.7)

1898134

0.0091.35

23.9819.9727.9227.84

Page 61: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

The First MAD experiment using the new set-up of BL6A

The first structure determined of a transport protein from a Se-MAD experiment using the new set-up of BL6A(T. Nogi et al., Nature Structural Biology vol. 9, 527, July 2002)

N

First 23 a.a. are not seen in the map

Page 62: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Binding assay using gamma-1 ear mutants

Isolated mutations; hydrophobic residues

Page 63: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Figure 1 (Nogi et al. Nature Structural Biology vol. 9, 527, July 2002 )

Page 64: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Lys 756Arg 793

Arg 795

Lys 797

Ala 753

Glu 812

N

C

α-adaptin ear domain β2-adaptin ear domain

N-term. Ig-fold

C-term. Platform

Hydrophobic binding pocket for accessory proteins

γ1 ear domain

Ear domain structurs

Basic patch for accessory proteins

Page 65: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Lys-756Arg-793

Lys-797

Glu-812

Arg-795

Lys-756Arg-793

Lys-797

Glu-812

Arg-795

γ-synergin binding site

Page 66: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

膜融合Membrane fusion

小胞形成Vesicle formation

Figure 3 (Nogi et al. Nature Structural Biology vol. 9, 527, July 2002 )

Page 67: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

CD-MPR lumenal domain with a Lysosomal Enzyme, β-Glucuronidase Roberts et al. Cell, Vol. 93, 639–648, 1998

Page 68: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

① ②③

Page 69: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Balraj Doray, Kerry Bruns, Pradipta Ghosh, and Stuart A. Kornfeld

Autoinhibition of the ligand-binding site of GGA1/3 VHS domains by an internal acidic cluster-dileucine motif

PNAS vol. 99, pp.8072-8077. (11 June 2002)

Must be phosphorylated for autoinhibition

Casein kinase 2

Page 70: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Science, vol 297, 1700, 6 September 2002

Page 71: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

Doray,,, Kornfeld, Science, vol 297, 1700, 6 September 2002

GGA1 hinge region interacts with the γ-ear domain of AP-1

Page 72: Synchrotron based structural genomics project …conference.kek.jp/JASS02/PDF_PPT/33_wakatsuki.pdfSynchrotron based structural genomics project targeted to protein transport and posttranslational

TGN membrane

M6PR

ARF-GTP

cargo protein

NGAE

N

C

VHS

Hinge regionclathrin box

C

N

GATC

TGN membrane

M6PR

ARF-GTP

NGAE

N

C

VHS

Hinge regionclathrin box

C

N

GATC

cargo protein

Clathrin-TD

Clathrin

TGN membrane

Model for the assembly of GGA coat

M6PR

NGAE

N

C

VHS

Hinge regionclathrin box

C

N

GAT

Clathrin-TD

Clathrin

C

ARF-GTP

cargo protein

γ-synergin/Rabaptin

NIH Bethesda

MRC Cambridge