33
Synthesizing Electrical and Thermal Load Profiles for Non-Residential Buildings in Germany Master Thesis Presentation Wael A. Al-Qubati Renewable Energy and Energy Efficiency for the Middle East and North Africa Region [REMENA] University of Kassel Apr. 08, 2019 Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 1 / 28

Synthesizing Electrical and Thermal Load Profiles for Non ... · Master Thesis Presentation Wael A. Al-Qubati Renewable Energy and Energy Efficiency for the Middle East and North

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Synthesizing Electrical and Thermal Load Profiles forNon-Residential Buildings in Germany

Master Thesis Presentation

Wael A. Al-Qubati

Renewable Energy and Energy Efficiency for the Middle East and North Africa Region [REMENA]University of Kassel

Apr. 08, 2019

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 1 / 28

Table of Contents

Table of Contents

1 Introduction

2 Methodology

3 Results

4 Conclusions and Outlook

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 2 / 28

Introduction

Table of Contents

1 IntroductionMotivationThesis Contribution

2 Methodology

3 Results

4 Conclusions and Outlook

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 3 / 28

Introduction Motivation

Motivation

Energy consumption of non-residential sector, trade, commerce and services(TCS), amounted up to 401 TWh in 2017 (15.6% of the total energy demand inGermany) [3].

Majority of existing models for electrical and thermal load profiles: Residentialsector [7].

Lack of information regarding the energy demand of the non-residential sector [1].

Necessity for the stability of the supply and network management.

Optimal integration of new efficient technologies in non-residential buildings.

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 4 / 28

Introduction Thesis Contribution

Thesis Contribution

Create a model to synthesize individualized electrical and thermal load profiles fornon-residential buildings in 15 minutes resolution.

Takes into account the influence of the behavioural (occupancy, equipment use,etc.) and calendar (holidays, weekdays, seasons, etc.) effects on the load.

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 5 / 28

Methodology

Table of Contents

1 Introduction

2 MethodologyWork FlowchartElectrical ModelThermal Model

3 Results

4 Conclusions and Outlook

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 6 / 28

Methodology Work Flowchart

Work Flowchart

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 7 / 28

Methodology Electrical Model

Electrical Model

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 8 / 28

Methodology Electrical Model

Seasonality and Trend: Bottom-up approachLighting load in W at time t for building (DIN V 18599) [5]:

Plight,B(t) =nz∑i=1

Pel,l,i(t) · Focc,i(t) · Fc,i(t) (1)

nz: Number of zones in the buildingPel,l,i(t): Individual light use in the ith zone in WFocc,i(t): Occupancy factor in the ith zoneFc,i(t): Light control factor in the ith zone

Equipment load in W at time t for building (DIN V 18599) [5]:

Peq,B(t) = ηB ·nz∑i=1

Peq,i(t) · Flo,i(t) ·Ai (2)

Peq,i(t): Specific electrical power of an equipment perzone i in W/m2

Flo,i(t): Load factor on the zone levelηB: Efficiency of the building

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 9 / 28

Methodology Electrical Model

Residuals: Statistical Model - ARIMA model

ARIMA model satisfies [2]:

(1−p∑i=1

φiBi)(1− B)dXt = (1 +q∑i=1

θiBi)Et (3)

where,Xt: Residual value in a stationary time seriesE: Error, white noise (0,σ2)B: Backward shift operatord: Number of differencing timesp: Number of autoregressive (AR) termsq: Number of moving-average (MA) termsφ: AR (lagged value) coefficientθ: MA (lagged error) coefficient

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 10 / 28

Methodology Electrical Model

Residuals: Statistical Model - ARIMA model

Annual measured data of the electric load in 15 minutesresolution for 16 office buildings

ARIMA steps (Box-Jenkins methodology):1 Preprocessing:

Data cleaningData filling

2 Decomposition:Extract the residuals

3 Identification: p, d, qAutocorrelation function and partial autocorrelationfunction;Akaike information criterion (AIC)

4 Estimation: φ & θ

5 Diagnostics: E WN?

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 11 / 28

Methodology Electrical Model

Residuals: Statistical Model - Regression Model

For each building i ∈ {1, . . . , N}, regression analysiscan be defined as a column vector [6]:

ai = C · bi + d (4)

where,ai: ARIMA model coefficients;bi: Building’s parameters;C: Estimated regression coefficients;d: Disturbances vector.

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 12 / 28

Methodology Electrical Model

Electrical ModelTherefore, the synthetic electrical load for the building (B) at time t is:

Pel,B(t) = Plight,B(t) + Peq,B(t) +X(t) (5)

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 13 / 28

Methodology Electrical Model

Validation - Performance Metrics

Resulting values out of the estimated model x and measured data y are evaluated by:

Pearson’s correlation coefficient (r):

r =

∑M

i=1 ((xi − x) (yi − y))√∑M

i=1 (xi − x)2∑M

i=1 (yi − y)2(6)

Coefficient of determination (R2):

R2 =

M∑i=1

(xi − y)2

M∑i=1

(yi − y)2(7)

The mean absolute percentage error (MAPE):

MAPE =

(1M

M∑i=1

|yi − xi||yi|

)× 100 (8)

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 14 / 28

Methodology Thermal Model

Thermal Model

5R1C thermal model of the building at time t is expressed byassessing the energy balance (ISO EN 13790) [4]:

Qhc(t) = Ql,ve(t)+Ql,tr(t)−Qg,so(t)−Qg,in(t)−Cm(t)∆Tm(t)

∆t(9)

where,Qhc(t): Heating/Cooling demand in WQl,ve(t): Heat loss rate of ventilation in WQl,tr(t): Heat loss rate of transmission in WQg,so(t): Solar gains in WQg,in(t): Internal gains in WCm(t): Heat capacity representing the building’s thermalmass in J/K∆Tm(t): Temperature change of the building mass in K

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 15 / 28

Results

Table of Contents

1 Introduction

2 Methodology

3 ResultsBottom-up ApproachStatistical ModelValidationThermal Model

4 Conclusions and Outlook

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 16 / 28

Results Bottom-up Approach

Bottom-up Approach (seasonality and trend)

Figure: Calibrated weekly profile of an administrative office building

Figure: Annual trend of an administrative office building

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 17 / 28

Results Statistical Model

ARIMA model (Decomposition Process)

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 18 / 28

Results Statistical Model

ARIMA model (Identification)

pmax = 3; qmax = 3; d = 1After calculating AIC for the different combinations of p and q, the selectedmodel is ARIMA (1,1,2)

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 19 / 28

Results Statistical Model

ARIMA model (Diagnostics)

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 20 / 28

Results Validation

Validation of the Synthetic Electrical Load Profile

Figure: Duration curve of the annual electrical load

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 21 / 28

Results Validation

Validation of the Synthetic Electrical Load Profile

Figure: Comparison of one week load profiles

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 22 / 28

Results Validation

Validation of the Synthetic Electrical Load Profile

Table: Values of the evaluation metrics for the compared profiles

Profile Annual peak load[kW]

r[-]

R2

[-]MAPE

[%]Measured 12.3 x x xSynthetic 11.6 0.92 0.85 6.4SLP 6 0.84 0.71 57.7

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 23 / 28

Results Thermal Model

Thermal Model

(a) Heating load (b) Cooling load

Figure: Hourly thermal loads for one year

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 24 / 28

Results Thermal Model

Thermal Model

(a) Heating load (b) Cooling load

Figure: Hourly thermal Load for one year

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 25 / 28

Conclusions and Outlook

Table of Contents

1 Introduction

2 Methodology

3 Results

4 Conclusions and Outlook

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 26 / 28

Conclusions and Outlook

Conclusions

The purpose of this thesis is to synthesize electrical and thermal load profiles.

1 For the electrical load profile:A combination of a bottom-up approach (seasonality and trend) and a statistical model

Statistical model output defines a generalized model for the residuals

Synthetic load profile validated against real measured load data for office buildingsusing three different metrics

Synthetic load profile was shown to be superior and more accurate than traditionalstandard electric load profile

2 For the thermal load profile:Non-residential buildings modelled using a 5R1C representation (ISO 13790)

Synthetic electrical load profile is injected as a part of the internal gains

Obtained results reflect the change in heating and cooling needs in accordance toseasonal and behavioural changes

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 27 / 28

Conclusions and Outlook

Outlook

As part of the synGHD project, the next steps are to:

Include energy efficiency (EE) scenarios for potential future savings;

Integrate the domestic hot water (DHW) and gas profiles for entirenon-residential areas;

Extend to other new technology trends and applications (heat pumps, electricvehicles, · · · );

Implement a developed thermal model.

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 28 / 28

References

Anmar Arif and IEEE Transactions on Smart Grid others.

Load modeling - A Review, volume 9.November 2018.

Peter J. Brockwell and Richard A. Davis.

Introduction to time series and forecasting.Springer texts in statistics. Springer, New York, 2002.

Arbeitsgemeinschaft Energiebilanzen e.V.

Auswertungstabellen zur energiebilanz deutschland 1990 bis 2017, Juli 2018.

David Fischer, Tobias Wolf, Johannes Scherer, and Bernhard Wille-Haussmann.

A stochastic bottom-up model for space heating and domestic hot water load profiles for germanhouseholds.Energy and Buildings, 124:120–128, 2016.

Deutsches Institut fur Normung.

Energetische Bewertung von GebA¤uden.Germany, 10 2016.

Sastry G. Pentula John O. Rawlings and David A. Dickey.

Applied Regression Analysis.Springer texts in statistics. Springer, New York, 2002.

M. Pipattanasomporn S. Shao and S. Rahman.

Development of physical-based demand response-enabled residential load models.28(2):607–614, May 2013.

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 28 / 28

References

Bottom-up Modelling

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 28 / 28

References

Box-Jenkins methodology

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 28 / 28

References

5R1C thermal model of the building

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 28 / 28

References

Results of regression model

The resulting values of R2 for φ1, θ1, θ2 and σ2 are 0.183, 0.452, 0.452 and 0.953, respectively.

Intercept value (b0) is 0.0098548.

The numerical results of the descriptive coefficients of regression and disturbance:

Table: Numerical results of office building regression model

n cn1 cn2 cn3 dn

1 -18.8488 19.1937 0.2273 181.6112 -91.6800 90.9286 -0.5502 166.9613 91.8233 -91.0703 0.55444 167.794 -13.0733 13.8146 -0.3138 41.324

Wael A. Al-Qubati Synthetic Load Profile Apr. 08, 2019 28 / 28