294
AD10 System Automation Drive USER MANUAL efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

System Automation Drive - EFES · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

Embed Size (px)

Citation preview

Page 1: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10System

AutomationDrive

USER MANUAL

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 2: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 3: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

© Saftronics Inc., USA.

All rights reserved.

This book is referred to SW version 2.X00

These instructions do not purport to cover all details or variations in equipment, nor to provide every possible

contingency to be met during installation, operation, and maintenance. If further information is desired or ifparticular problems arise that are not covered sufficiently for the purchaser’s purpose, the matter should bereferred to Saftronics Inc. Fort Myers, FL, USA.

This document contains proprietary information of Saftronics and is furnished to itscustomer solely to assist that customer in the installation, testing, operation, and/or maintenance of theequipment described. This document shall not be reproduced in whole or in part nor shall its contents be

disclosed to any third party without the written approval of Saftronics Inc.

Klixon is a trademark of Texas Instruments, Inc.

National Electric code and NEC are registered trademarks of the National Fire Protection Association.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 4: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

SAFETY SYMBOL LEGEND / LÉGENDE DES SIGNES DE SÉCURITÉ

WARNING! Commands attention to an operating procedure, practice, condition, or statement which, if notstrictly observed, could result in personal injury or death.

Attire l’attention sur les modes d’utilisation et les procédés et conditions d’exploitationqui, en cas d’inobservation, pourraient entraîner des blessures corporelles ou la mort.

CAUTION! Commands attention to an operating procedure, practice, condition, or statement which, if notstrictly observed, could result in damage or destruction of equipment.

The seriousness of the injuries and of the damages which could be caused by the non- obser-vance of such indications, depends on the different conditions. Anyway, the instructions givenbelow should always be followed with the highest attention.

Attire l’attention sur les modes d’utilization et les procédés et conditions d’exploitationqui, en cas d’inobservation, pourraient entraîner la détérioration ou la destruction desappareils.

La gravité des blessures et des dommages matériels possibles dépendent de différentfacteurs. Toutefois, les instructions mentionées ci-dessous devraient être toujours suiviesavec la plus grande attention.

NOTE! Commands attention to an operating procedure, practice, condition, or statement that must behighlighted.

Attire l’attention sur les modes d’utilization et les procédés et conditions d’exploitationqui présentent un intéret particulier.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 5: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

Table of Contents

Safety Symbol Legend / Légende des Signes de Sécurité ............................................. 4

Chapter 0 - Safety Precautions / Precautions de securit ............................................. 13

Chapter 1 - Function Description .................................................................................. 171.1 General Considerations ................................................................................................................... 17

1.1.1 Variable Connection Methods ................................................................................................. 181.1.2 Block Functions ....................................................................................................................... 191.1.3 Signal Normalization ............................................................................................................... 22

1.2 Drive Status Menu (STATUS).......................................................................................................... 251.2.1 Status ..................................................................................................................................... 251.2.2 State of the Digital Inputs/Outputs (I/O Status) ........................................................................ 251.2.3 Drive Advanced States (Advanced Status) ............................................................................. 261.2.4 DriveID States (Drive ID Status) .............................................................................................. 271.2.5 Alarm Register (Alarm Log) ..................................................................................................... 27

1.3 Drive Initialization (STARTUP - Setup Mode) ................................................................................... 281.3.1 Selection of the Regulation Mode (Regulation Mode) ................................................................ 281.3.2 Drive Starting Configurations (Startup Config) .......................................................................... 29

1.3.2.1 Setup Mode (Enter setup mode) .............................................................................................291.3.2.2 Loading of the Setup Settings (Load Setup) ..........................................................................311.3.2.3 Speed Scale (Full Scale Speed) ............................................................................................311.3.2.4 Encoder Configuration (Encoders Config) ............................................................................. 311.3.2.4.1 Index Storing Function .........................................................................................................331.3.2.5 SpeedRegulation Gain Calc Control (SpdReg Gain Calc) .......................................................351.3.2.6 Constant V/F Control (V/F Config) .......................................................................................351.3.2.7 Control of the Motor Overload (Overload Contr) ....................................................................361.3.2.7.1 I2t Protection Against a Drive Overload ...............................................................................361.3.2.7.2 Motor Thermal Protection (Motor Protection) ....................................................................371.3.2.8 Enabling of the Internal Braking (ENABLE BU) ......................................................................381.3.2.8.1 Braking Unit Protection (BU Protection) .............................................................................. 381.3.2.9 In General ...............................................................................................................................39

1.3.3 Recipes - Import Recipe & Export Recipe ................................................................................ 391.4 Parameter Settings on the Regulators (REGULATION PARAM) ....................................................... 45

1.4.1 Regulators ............................................................................................................................... 451.4.2 Dead Time Comp .................................................................................................................... 461.4.3 Function and parameterization of the V/f Control (V/f Reg Param)............................................. 47

1.4.3.1 V/f Regulation Control (V/f Control) ......................................................................................... 471.4.3.2 Energy Saving (V/f Save Energy) .......................................................................................... 481.4.3.3 V/f Catch on Fly from Running on AC Input ..........................................................................491.4.3.3.1 Automatic Restart after a Temporary Alarm: Retrying ..........................................................501.4.3.3.2 Catch on the Fly Process ..................................................................................................... 50

1.4.4 Gain Profiling Speed Feedback in a Sensorless Mode (Sls SpdFbk Gains) .............................. 501.4.5 Manual Tunings of Regulator Loops (Test Generator) ................................................................ 531.4.5.1 Test Generator Function ........................................................................................................ 531.4.5.2 Manual Tuning of the Current Regulator ................................................................................. 54

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 6: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

1.4.5.3 Manual Tuning of the Flux Regulator ...................................................................................... 551.4.5.4 Manual Tuning of the Speed Regulator ..................................................................................57

1.5 Command Configuration (I/O CONFIG) ........................................................................................... 591.5.1 Definition of the Commands ....................................................................................................591.5.2 Command Block (Commands) ................................................................................................ 60

1.5.2.1 Enable/Disable Control Function ............................................................................................. 621.5.3 Typical Command Configurations ............................................................................................ 62

1.5.3.1 Control from Keyboard/Display Module (Factory Setting) ..................................................... 621.5.3.2 Control from Remote Pushbuttons ......................................................................................... 631.5.3.3 Control from a LAN, Usage of Fast Stop ............................................................................... 64

1.5.4 Unmanned Installation ........................................................................................................... 641.6 Configuration of the Analog and Digital Inputs/Outputs (I/O CONFIG) ............................................. 66

1.6.1 Analog Input Block (Analog Inputs) .......................................................................................... 661.6.2 Analog Input Block for 1x and 2x Expansion Cards (Exp Analog Inputs 1X & 2X) ......................691.6.3 Analog Output Block (Analog Outputs) .................................................................................... 711.6.4 Digital Input Block (Digital Inputs) ............................................................................................ 721.6.5 Digital Output Block (Digital Outputs) ...................................................................................... 75

1.6.5.1 Configuration of the OK Relay (Terminals 80, 82) ................................................................... 771.6.6 Word Composing and Decomposing Block (Bits->Word & Word->Bits) ................................ 771.6.7 Forward and Reverse Control Block (Fwd Rev Ctrl) ................................................................81

1.7 Ramp Configuration (RAMP CONFIG) ............................................................................................. 831.7.1 Ramp Setpoint Block (Ramp Setpoint) ..................................................................................... 831.7.2 Multi Ramp Block (Multi Ramp) ............................................................................................... 851.7.3 Ramp Block (Ramp Function) ................................................................................................... 88

1.8 Speed Configurations (SPEED CONFIG) ........................................................................................... 901.8.1 Speed Setpoint Block and Speed Ratio Block (Speed Setpoint & Speed Ratio) ......................... 90

1.8.1.1 Example: Rubber Calender...................................................................................................... 921.8.2 Speed Regulation Block (Spd reg Function) .............................................................................. 931.8.3 Jog Function Block (Jog) ......................................................................................................... 951.8.4 Multi Speed Block (Multi Speed) ............................................................................................. 971.8.5 Motopotentiometer Block (Moto Pot) ....................................................................................... 991.8.6 Speed Zero Control Block (Spd 0 Logic) ................................................................................1011.8.7 Speed Regulator Gain Profile Block (Speed Gain Profile) ........................................................1031.8.8 Droop Block Current scale (Speed Droop) ..........................................................................1061.8.9 Speed Feedback Derivative Block Speed Up (Spd Fbk Deriv) .............................................1071.8.10 Inertia and Friction Compensation Block (Inertia / Frict cp) ...................................................108

1.9 Torque Current Configurations (TORQUE CONFIG) .........................................................................1101.9.1 Block Generating the Torque Setpoint, the Torque Current Limit Control and the Zero Torque.

(Torque Setpoint - Torque Curr Lim - Zero Torque Cmd) ..............................................................1101.9.2 DC Link Voltage Control (VdcCtrl Reg - Max Regen Power) .....................................................114

1.10 Flux Current Configurations (FLUX CONFIG) ...............................................................................1151.10.1 Control of the Flux Current Maximum Limit (Flux Max Limit) .................................................1151.10.2 Control of the Magnetizing Current (Magnetiz Config) ...........................................................1151.10.3 Output Voltage Control (Output Vlt Ref) ................................................................................. 116

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 7: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— TABLE OF CONTENTS —————— 7

1.11 Stop Option Control (STOP OPTION) ...............................................................................1181.11.1 Direct Current Braking Control - DC Braking ..............................................................1181.11.2 Power Loss Control (Power Loss Ctrl) .......................................................................119

1.11.2.1 Power Loss Ridethru (Pwrloss Ridethru) ......................................................1201.11.2.2 Power Loss Stop (Pwrloss Stop) ..................................................................120

1.12 Alarm Block Configurations (ALARM CONFIG).................................................................1241.12.1 Alarms .......................................................................................................................1241.12.2 Alarm State ...............................................................................................................1241.12.3 Alarm List and Alarm Recognition ..............................................................................1251.12.4 Alarm Log ..................................................................................................................1251.12.5 Alarm Configurations .................................................................................................125

1.12.5.1 Hold Off Time .............................................................................................................1251.12.5.2 Activity .........................................................................................................................1261.12.5.3 Restart .........................................................................................................................1261.12.5.4 Restart Time ................................................................................................................126

1.12.6 Regulation Alarm Reset .............................................................................................1261.12.7 Alarm Status on a Digital Variable ..............................................................................1291.12.8 Fault Pin .....................................................................................................................131

1.13 Serial Communications (COMMUNICATION) ...................................................................1321.13.1 Communication via the RS485 Serial Port (RS485) ....................................................1321.13.2 Communication via the SBI Bus Field Card (SBI) .......................................................132

1.14 Application Card Configuration (APPL CARD CONFIG) ....................................................1351.14.1 Configuration of the DGFC Option Card (DGFC) ........................................................135

1.15 PID Control (Appl Function)................................................................................................1381.15.1 PID Control Enabling (Pid Function) ...........................................................................1391.15.2 Feed Forward signal - PID Feed-Forward ...................................................................1391.15.3 PID Input Block (PID Input) .........................................................................................140

1.15.3.1 Dynamic Clamp Function ............................................................................................1421.15.4 Integer Proportional Control (PI control) ......................................................................142

1.15.4.1 Setting of the Starting Diameter ..................................................................................1461.15.4.2 Gain Increase at the Starting ......................................................................................1461.15.4.3 PI Clamp Top and Bottom Setting ............................................................................... 146

1.15.5 Proportional Derivative Control (PD Control) ...............................................................1461.15.6 PID Output Block (PID Output) ...................................................................................1481.15.7 Diameter Calculation (Diameter Calc) ..........................................................................149

1.15.7.1 Dancer Constant Measurement ...................................................................................1501.15.7.2 Procedure for the Calculation of the Starting Diameter ...............................................151

1.16 Applications Examples for the PID Function ....................................................................... 1521.16.1 Control of Nip Rolls with Dancer ..................................................................................152

1.16.1.1 Machine Data ................................................................................................................1521.16.1.2 Input/Output ..................................................................................................................1521.16.1.3 Parameters ....................................................................................................................153

1.16.2 Control of Nip Rolls with Loading Cell ..........................................................................1541.16.2.1 Machine Data ................................................................................................................155

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 8: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— TABLE OF CONTENTS ——————8

1.16.2.2 Input/Output ................................................................................................................1551.16.2.3 Parameters ..................................................................................................................155

1.16.3 Control of Winders/Unwinders with Dancer ................................................................1571.16.3.1 Machine Data ..............................................................................................................1571.16.3.2 Input/Output ................................................................................................................1571.16.3.3 Parameters ..................................................................................................................158

1.16.4 Parameters Referring to the Function for the Calculation of the Starting Diameter .......1601.16.5 Use of the Diameter Sensor ........................................................................................1611.16.6 Pressure Control for Pumps and Extruders ................................................................163

1.16.6.1 Machine Data ...............................................................................................................1631.16.6.2 Input/Output .................................................................................................................1631.16.6.3 Parameters ...................................................................................................................164

1.16.7 Generic PID .................................................................................................................1651.16.7.1 Parameters ...................................................................................................................165

1.16.8 Application Note: Dynamic Change of the PI Block Integral Gain ..................................1661.17 Customer Functions (CUSTOM FUNCTIONS) ....................................................................168

1.17.1 Signal Comparator (Compare) ..................................................................................... 1681.17.2 Use Variables (Pad Parameters) ..................................................................................170

Chapter 2 - Block Diagrams ................................................................................... 172Status V/f .....................................................................................................................................................172Status Field Oriented Control ......................................................................................................................173Status Sensorless .......................................................................................................................................174V/f Control ...................................................................................................................................................175Field Oriented Control ................................................................................................................................176Sensorless Vector Control ..........................................................................................................................177Inertia Compensation ..................................................................................................................................178Droop ..........................................................................................................................................................179Speed Feedback Derivative .......................................................................................................................180Speed Regulator ........................................................................................................................................181Speed/Torque Control ................................................................................................................................182Speed Reference generation .....................................................................................................................183Multi Speed .................................................................................................................................................184Motor Potentiometer ....................................................................................................................................185Ramp Setpoint ............................................................................................................................................186Multiramp .....................................................................................................................................................187Ramp ...........................................................................................................................................................188Jog ...............................................................................................................................................................189Speed Setpoint ...........................................................................................................................................190Motor Control ...............................................................................................................................................191Speed Feedback .........................................................................................................................................192Spd Gain Profile ..........................................................................................................................................193Power loss stop / Ride Through Control .....................................................................................................194Commands ..................................................................................................................................................195DC Braking ..................................................................................................................................................196Speed Zero Block .......................................................................................................................................197Custom Functions .......................................................................................................................................198

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 9: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— TABLE OF CONTENTS —————— 9

Input/Output, Appl Card Config, Communication, Fwd-Rev Control .......................................................199Terminal Board Layout Drawing ...............................................................................................................200Input-Output: Aninp 1 ...............................................................................................................................201Input-Output: Aninp 2 ...............................................................................................................................202Input-Output: Aninp 3 ...............................................................................................................................203Input- Aninp 1-2X ......................................................................................................................................204Input Output - Standard Analog Outputs .................................................................................................205Input Output - Expansion Analog Outputs ...............................................................................................206Input Output - Standard Digital Outputs ...................................................................................................207Input Output - Expansion Digital Outputs .................................................................................................208Input Output - Standard + Expansion Digital Outputs ..............................................................................209Bit to Word .................................................................................................................................................210Word to Bit .................................................................................................................................................211ISBus Configuration ...................................................................................................................................212Sbi Configuration .......................................................................................................................................213Dgfc Fast (sync) Channels Configuration .................................................................................................214Dgfc Slow (sync) Channels Configuration ................................................................................................215Forward Reverse Control Block ................................................................................................................216PID Function .............................................................................................................................................217PID Function - Input ..................................................................................................................................218PID Function - Feed Forward ...................................................................................................................219PID Function - Int Diameter Setting .........................................................................................................220PID Function - Intitial Diameter Calculation .............................................................................................221PID Function - PiPart ................................................................................................................................222PID Function - PiGain Scheduler .............................................................................................................223PID Function - PdPart ...............................................................................................................................224PID Function - Pd Gain Scheduler ...........................................................................................................225PID Function - Output ...............................................................................................................................226Overload Settings ......................................................................................................................................227

Chapter 3 - Parameters & Pick Lists ................................................................... 2283.1 Menu with Parameter Numbers ............................................................................................228

3.1.1 Menu Legend ................................................................................................................2283.1.2 Menu .............................................................................................................................229

3.1.3.1 Setup Mode Menu .........................................................................................................2493.1.3 Pick lists .......................................................................................................................250

Pick List 1 ......................................................................................................................................................................... 250Pick List 2 ......................................................................................................................................................................... 250Pick List 3 ......................................................................................................................................................................... 251Pick List 4 ......................................................................................................................................................................... 251Pick List 5 ......................................................................................................................................................................... 251Pick List 6 ......................................................................................................................................................................... 252Pick List 7 ......................................................................................................................................................................... 252Pick List 8 ......................................................................................................................................................................... 253Pick List 9 ......................................................................................................................................................................... 253Pick List 10 ....................................................................................................................................................................... 253Pick List 11 ....................................................................................................................................................................... 254Pick List 12 ....................................................................................................................................................................... 254Pick List 13 ....................................................................................................................................................................... 254Pick List 14 ....................................................................................................................................................................... 255

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 10: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— TABLE OF CONTENTS ——————10

Pick List 15 ............................................................................................................................................................................. 255Pick List 16 ............................................................................................................................................................................. 255Pick List 17 ............................................................................................................................................................................. 255Pick List 18 ............................................................................................................................................................................. 256Pick List 19 ............................................................................................................................................................................. 256Pick List 20 ............................................................................................................................................................................. 257Pick List 21 ............................................................................................................................................................................. 257Pick List 22 ............................................................................................................................................................................. 257Pick List 23 ............................................................................................................................................................................. 257Pick List 24 ............................................................................................................................................................................. 258Pick List 25 ............................................................................................................................................................................. 258Pick List 26 ............................................................................................................................................................................. 258Pick List 27 ............................................................................................................................................................................. 259Pick List 28 ............................................................................................................................................................................. 259Pick List 29 ............................................................................................................................................................................. 260Pick List 30 ............................................................................................................................................................................. 260Pick List 31 ............................................................................................................................................................................. 261Pick List 32 ............................................................................................................................................................................. 261Pick List 33 ............................................................................................................................................................................. 262Pick List 34 ............................................................................................................................................................................. 262Pick List 35 ............................................................................................................................................................................. 263Pick List 36 ............................................................................................................................................................................. 263Pick List 37 ............................................................................................................................................................................. 263Pick List 38 ............................................................................................................................................................................. 264Pick List 39 ............................................................................................................................................................................. 264Pick List 40 ............................................................................................................................................................................. 264Pick List 42 ............................................................................................................................................................................. 265Pick List 43 ............................................................................................................................................................................. 265Pick List 44 ............................................................................................................................................................................. 266Pick List 45 ............................................................................................................................................................................. 266

3.2 Numeric Order Parameters List ..............................................................................................2673.2.1 Numeric Order Parameter List Caption............................................................................2673.2.2 Numeric Order Parameter List .........................................................................................269

4. Warranty Parts and Service ................................................................................... 294

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 11: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— TABLE OF CONTENTS —————— 11

List of FiguresFigure 1.3.2.8.1: Braking Unit Function ..............................................................................................................38Figure 1.4.5.2.1: Output Current (Reaction Time @ 3ms) Displaying ................................................................54Figure 1.4.5.2.2: Optimal Output Current (Reaction Time @ 1ms) Displaying ................................................. 55Figure 1.4.5.3.1: Flux Reference (CH1) and Flux (CH2) Displaying .................................................................56Figure 1.4.5.3.2: Flux Reference (CH1) and Tuning of Flux (CH2) Displaying .................................................56Figure 1.4.5.3.3: Flux Reference (CH1) and Tuning of Magn Current Reference (CH2) Displaying ................57Figure 1.4.5.3.4: Flux Reference (CH1) and Magn Current Reference, with Overshoots, (CH2) Displaying ...57Figure 1.4.5.4.1: Speed Ref1 (CH1) and Norm Speed (CH2) Displaying ..........................................................58Figure 1.4.5.4.2: Speed Ref1(CH1) and Norm Speed (CH2), with Overshoot, Displaying................................58Figure 1.7.2.1: Acceleration and Deceleration Ramps........................................................................................87Figure 1.7.3.1: Ramp Shape ................................................................................................................................89Figure 1.11.2.1: Power Loss Control Function ..................................................................................................122Figure 1.11.2.2: Power Loss Stop ....................................................................................................................123Figure 1.15.7.1: Diameter Calculation ...............................................................................................................150Figure 1.16.1.1: Control of Nip Rolls with Dancer ...........................................................................................152Figure 1.16.2.1: Control of Nip Rolls with Loading Cell ....................................................................................154Figura 1.16.3.1: Control of Winders/Unwinders with Dancer ............................................................................157Figure 1.16.4.1: Outlining of the Dancer Constant Measurement ...................................................................160Figure 1.16.5.1: Winder/Unwinder Control with Diameter Sensor ..................................................................161Figure 1.16.5.2: Relationship Between the Transducer Signal and the Winder Diameter .............................162Figure 1.16.6.1: Pressure Control for Pumps and Extruders............................................................................163Figure 1.16.8.1: Example with a Small and Big Diameter ................................................................................166Figure 1.16.8.2: PI I Gain PID and PI I Output PID ratio ................................................................................167

List of TablesTable 1.3.3.1: Recipe “Appl Function” ................................................................................................................40Table 1.3.3.2: Recipe “Ramp & Speed Config” ..................................................................................................41Table 1.3.3.3: Recipe “Appl Card & Comm” .......................................................................................................42Table 1.3.3.4: Recipe”I/O Config” .......................................................................................................................43Table 1.5.3.1-1: Setup for Control from Keyboard (Factory Setup) ...................................................................63Table 1.5.3.2-1: Example Setup for Pushbutton Control ....................................................................................63Table 1.5.3.3-1: Example Setup for LAN Control with Wired Fast Stop............................................................64Table 1.5.3.4-1: Example Setup for Unmanned Installation ..............................................................................65Table 1.12.1: Alarm List ....................................................................................................................................130Table 1.12.8.1: Fault Pin List ............................................................................................................................131

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 12: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— TABLE OF CONTENTS ——————12

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 13: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Safety Precautions —————— Ch.013

Chapter 0 - SAFETY PRECAUTIONS / PRECAUTIONS DE SECURIT

NOTE! The terms “Inverter”, “Controller” and “Drive” are sometimes used interchangably through-out the industry. We will use the term “Drive” in this document

Les mots “Inverter”, “Controller” et “Drive” sont interchangeables dans le domaineindustriel. Nous utiliserons dans ce manuel seulement le mot “Drive”.

WARNING! / ATTENTION!- According to the EEC standards the AD10 and accessories must be used only after checking that the

machine has been produced using those safety devices required by the 89/392/EEC set of rules.

Drive systems cause mechanical motion. It is the responsibility of the user to insure that any such motiondoes not result in an unsafe condition. Factory provided interlocks and operating limits should not bebypassed or modified.

- Never open the device or covers while the AC Input power supply is switched on. Minimum time to waitbefore working on the terminals or internal devices is listed in section 5.11 on Hardware & Quick Start UpGuide.

- If the front plate has to be removed because the ambient temperature is higher than 40 degrees, the user hasto ensure that no occasional contact with live parts will occur.

- Always connect the Drive to the protective ground (PE) via the marked connection terminals (PE2) and thehousing (PE1). Adjustable Frequency Drives and AC Input filters have ground discharge currents greaterthan 3.5 mA. EN 50178 specifies that with discharge currents greater than 3.5 mA the protective conductorground connection (PE1) must be fixed type and doubled for redundancy.

- The drive may cause accidental motion in the event of a failure, even if it is disabled, unless it has beendisconnected from the AC input feeder.

- Selon les normes EEC, les drives AD10 et leurs accessoires doivent être employés seulement après avoirverifié que la machine ait été produit avec les même dispositifs de sécurité demandés par la réglementation89/392/EEC concernant le secteur de l’industrie.

Les systèmes provoquent des mouvements mécaniques. L’utilisateur est responsable de la sécurité concernantles mouvements mécaniques. Les dispositifs de sécurité prévues par l’usine et les limitations operationellesne doivent être dépassés ou modifiés.

- Ne jamais ouvrir l’appareil lorsqu’il est suns tension. Le temps minimum d’attente avant de pouvoir travaillersur les bornes ou bien à l’intérieur de l’appareil est indiqué dans la section 5.11 (Instruction manual).

- Si la plaque frontale doit être enlevée pour un fonctionnement avec la température de l’environnement plushaute que 40°C, l’utilisateur doit s’assurer, par des moyens opportuns, qu’aucun contact occasionnel nepuisse arriver avec les parties sous tension.

- L’appaeil peut rédémarrer de façon accidentel en cas d’anomalie, sauf s’il a été déconnecté du reseau.

- Effectuer toujours des connexions de terre (PE) par le biais des bornes (PE2) et du chassis (PE1). Lecourant de dispersion vers la terre est supérieur à 3,5 mA. Selon EN 50178 il faut prévoir dans ces cas unedouble connexion à terre.

WARNING! - ELECTRICAL SHOCK AND BURN HAZARD / ATTENTION! DÉCHARGE ÉLECTRIQUE ETRISQUE DE BRÚLURE :When using instruments such as oscilloscopes to work on live equipment, the oscilloscope’s chassis should begrounded and a differential amplifier input should be used. Care should be used in the selection of probes and

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 14: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Safety Precautions ——————Ch.0 14

leads and in the adjustment of the oscilloscope so that accurate readings may be made. See instrumentmanufacturer’s instruction book for proper operation and adjustments to the instrument.

Lors de l’utilisation d’instruments (par example oscilloscope) sur des systémes en marche, le chassis del’oscilloscope doit être relié à la terre et un amplificateur différentiel devrait être utilisé en entrée.

Les sondes et conducteurs doivent être choissis avec soin pour effectuer les meilleures mesures à l’aide d’unoscilloscope. Voir le manuel d’instruction pour une utilisation correcte des instruments.

WARNING! - FIRE AND EXPLOSION HAZARD / ATTENTION! RISQUE DINCENDIES ET DEXPLOSIONS:Fires or explosions might result from mounting Drives in hazardous areas such as locations where flammable orcombustible vapors or dusts are present. Drives should be installed away from hazardous areas, even if usedwith motors suitable for use in these locations.

L’utilisation des drives dans des zônes à risques (présence de vapeurs ou de poussières inflammables),peut provoquer des incendies ou des explosions. Les drives doivent être installés loin des zônesdangeureuses, et équipés de moteurs appropriés.

WARNING! - STRAIN HAZARD / ATTENTION À LÉLÉVATION:Improper lifting practices can cause serious or fatal injury. Lift only with adequate equipment and trained personnel.

Une élévation inappropriée peut causer des dommages sérieux ou fatals. Il doit être élevé seulement avecdes moyens appropriés et par du personnel qualifié.

WARNING! - ELECTRIC SHOCK HAZARD / ATTENTION! - CAS DE DECHARGE ELECTRIQUE:- Drives and motors must be grounded according to NEC.

- Replace all covers before applying power to the Drive. Failure to do so may result in death or serious injury.

- Adjustable frequency drives are electrical apparatus for use in industrial installations. Parts of the Drives areat high voltage during operation. The electrical installation and the opening of the device should therefore onlybe carried out by qualified personnel. Improper installation of motors or Drives may therefore cause thefailure of the device as well as serious injury to persons or material damage. Follow the instructions given inthis manual and observe the local and national safety regulations applicable.

- Tous les moteurs et les drives doivent être mis à la terre selon le Code Electrique National ou équivalent.- Remettre tous les capots avant de mettre sous tension le drive. Des erreurs peuvent provoquer de

sérieux accidents ou même la mort.- Les drives à fréquence variable sont des dispositifs électriques utilisés dans des installations industriels.

Une partie des drives sont sous tension pendant l’operation. L’installation électrique et l’ouverturedes drives devrait être executé uniquement par du personel qualifié. De mauvaises installations demoteurs ou de drives peuvent provoquer des dommages materiels ou blesser des personnes.On doitsuivir les instructions donneés dans ce manuel et observer les régles nationales de sécurité.

CAUTION! / PRECAUTION!:- Do not connect power supply voltage that exceeds the standard specification voltage fluctuation permissi-

ble. If excessive voltage is applied to the Drive, damage to the internal components will result.

- Do not operate the Drive without the ground wire connected. The motor chassis should be grounded to earththrough a ground lead separate from all other equipment ground leads to prevent noise coupling.

- The grounding connector shall be sized in accordance with the NEC or Canadian Electrical Code. Theconnection shall be made by a UL listed or CSA certified closed-loop terminal connector sized for the wiregauge involved. The connector is to be fixed using the crimp tool specified by the connector manufacturer.

- Do not perform a megger test between the Drive terminals or on the control circuit terminals.

- Because the ambient temperature greatly affects Drive life and reliability, do not install the Drive in anylocation that exceeds the allowable temperature. Leave the ventilation cover attached for temperatures of

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 15: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Safety Precautions —————— Ch.015

104° F (40° C) or below.

- If the Drive’s Fault Alarm is activated, consult the TROUBLESHOOTING section of Hardware & Quick StartUp Guide., and after correcting the problem, resume operation. Do not reset the alarm automatically by externalsequence, etc.

- Be sure to remove the desicant dryer packet(s) when unpacking the Drive. (If not removed these packetsmay become lodged in the fan or air passages and cause the Drive to overheat).

- The Drive must be mounted on a wall that is constructed of heat resistant material. While the Drive isoperating, the temperature of the Drive's cooling fins can rise to a temperature of 194° F (90°C).

- Do not touch or damage any components when handling the device. Changing of isolation gaps or removingthe isolation covers is not permissible.

- Protect the device from disallowed environmental conditions (temperature, humidity, shock etc.)

- No voltage should be connected to the output of the frequency inverter (terminals U2, V2 W2). The parallelconnection of several frequency inverters via the outputs and the direct connection of the inputs and outputs(bypass) are not permissible.

- A capacitative load (e.g. Var compensation capacitors) should not be connected to the output of the fre-quency inverter (terminals U2, V2, W2).

- The electrical commissioning should only be carried out by qualified personnel, who are also responsiblefor the provision of a suitable ground connection and a protected power supply feeder in accordance withthe local and national regulations. The motor must be protected against overloads.

- No dielectric tests should be carried out on parts of the frequency inverter. A suitable measuring instrument(internal resistance of at least 10 kΩ/V) should be used for measuring the signal voltages.

- Ne pas raccorder de tension d’alimentation dépassant la fluctuation de tension permise par les normes.Dans le cas d’ une alimentation en tension excessive, des composants internes peuvent être endommagés.

- Ne pas faire fonctionner le drive sans prise de terre. Le chassis du moteur doit être mis à la terre àl’aide d’un connecteur de terre separé des autres pour éviter le couplage des perturbations. Leconnecteur de terre devrait être dimensionné selon la norme NEC ou le Canadian Electrical code. Leraccordement devrait être fait par un connecteur certifié et mentionné à boucle fermé par les normesCSA et UL et dimensionné pour l’épaisseur du cable correspondant. Le connecteur doit être fixé al’aide d’un instrument de serrage specifié par le producteur du connecteur.

- Ne pas exécuter un test megger entre les bornes du drive ou entre les bornes du circuit de contrôle.

- Étant donné que la température ambiante influe sur la vie et la fiabilité du drive, on ne devrait pasinstaller le drive dans des places ou la temperature permise est dépassée. Laisser le capot de ventila-tion en place pour températures de 104°F (40°C) ou inférieures.

- Si la Fault Alarm du drive est activée, consulter la section du manuel concernant les défauts et aprèsavoir corrigé l’erreur, reprendre l’opération. Ne pas réiniliatiser l’alarme automatiquement par uneséquence externe, etc….

- Lors du déballage du drive, retirer le sachet déshydraté. (Si celui-ci n’est pas retiré, il empêche laventilation et provoque une surchauffe du drive).

- Le drive doit être monté sur un mur construit avec des matériaux résistants à la chaleur. Pendant lefonctionnement du drive, la température des ailettes du dissipateur thermique peut arriver à 194°F (90°).

- Manipuler l’appareil de façon à ne pas toucher ou endommager des parties. Il n’est pas permis dechanger les distances d’isolement ou bien d’enlever des matériaux isolants ou des capots.

- Protéger l’appareil contre des effets extérieurs non permis (température, humidité, chocs etc.).

- Aucune tension ne doit être appliquée sur la sortie du convertisseur (bornes U2, V2 et W2). Il n’estpas permis de raccorder la sortie de plusieurs convertisseurs en parallèle, ni d’effectuer une connexiondirecte de l’entrée avec la sortie du convertisseur (Bypass).

- Aucune charge capacitive ne doit être connectée à la sortie du convertisseur (bornes U2, V2 et W2)(par exemple des condensateurs de mise en phase).

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 16: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Safety Precautions ——————Ch.0 16

- La mise en service électrique doit être effectuée par un personnel qualifié. Ce dernier est responsablede l’existence d’une connexion de terre adéquate et d’une protection des câbles d’alimentation selonles prescriptions locales et nationales. Le moteur doit être protégé contre la surcharge

- Il ne faut pas éxécuter de tests de rigidité diélectrique sur des parties du convertisseurs. Pour mesurerles tensions, des signaux, il faut utiliser des instruments de mesure appropriés (résistance interneminimale 10 kΩ/V).

NOTE! If the Drives have been stored for longer than three years, the operation of the DC linkcapacitors may be impaired. Before commissioning devices that have been stored for longperiods, connect them to a power supply for two hours with no load connected in order toregenerate the capacitors, (the input voltage has to be applied without enabling the inverter).

En cas de stockage des convertisseurs pendant plus de trois ans, il faut tenir compte du faitque les condensateurs du circuit intermédiaire gardent leurs caractéristiques d’origineseulement s’ils sont alimentés avant trois ans, à partir de leur date de fabrication. Avant lamise en service des appareils, qui sont restés stockés aussi longtemps, il est conseilléd’alimenter les convertisseurs pendant au moins deux heures, pour récupérer lescaractéristiques d’origine des condensateurs : appliquer une tension d’entrée sans activerle convertisseur (Disable).

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 17: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.117

Chapter 1 - FUNCTION DESCRIPTION

1.1 GENERAL CONSIDERATIONS

The drive control diagram is made of functional Blocks each representing a part of the total function. Forexample speed regulator, ramp etc., each containing some Variables, the gains, the ramp times, the limits etc.The input and / or output of Blocks are interconnected to make the complete system function. Such interconnec-tions are called SIGNALS.

The setting of the Drive parameters/variables can be performed via the keypad or a PC Configurator.

The structure of the menu functions is the following:

src (Source) These are parameters that select where an input comes from. Theselections are from a pick-list.The source is aimed at controlling (or enabling) the Block inputs.

cfg (Configuration) These are parameters that define how the function or parameter acts. Forexample: Ramp times, internal references adjustments.

mon (Monitor) Signals in this menu are variables. They are read only, and show the value orstate of a signal.

The three above elements are inside a menu, as needed by each single Block.

Example Block:

An out 1 src X

An out 1 lo lim

An out 1 hi lim

An out 1 scale

An out 1 monInput selected X

Parameter

Parameter

Parameter

Variable

cfg

src mon

This chapter describes:

· Variable connection methods

· Block functions

· Signal normalization

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 18: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————18Ch.1

1.1.1 Variable Connection Methods

The source allows you to assign the signal for the input Block.

Thanks to a predefined list, pick-list, the user can select the signal origin by connecting it to the input Block.

The signal selected will be assigned to the source. This signal controls the Block Function and is therefore definedas a control signal. The signals come from different points of the control system.

The connection points can derive from:

1 - Physical terminal board analog and digital signals from the drive terminal strip and from theEXP expansion cards.

2 - Analog and digital signals from DGFC option cards, Field Bus, keypad.

3 - Drive internal variables using keypad or toolbox.

The control signal is always connected on the Source of each Block. The state of this signal depends on theBlock Function.

For example: - the Ramp Setpoint Block which generates the ramp reference, defaults Ramp ref 1 srcsource from the Analog input 1 output signal (the Block output on the analog Input 1). Thissignal is in the pick-list of the Ramp ref 1 src, and can be changed. For example Int ramp ref1 (Ramp setpoint block internal value).

- the analog Input Block, connects on its Ai 1 sgn src Source (which inverts the outputreference signal) the NULL signal. If the user wants to enable the specific function, he hasto make a selection inside the pick-list of the Ai 1 sgn src (for example ONE, Digital Input1, etc.).

Ramp ref 1 src Ramp setpoint

Ramp ref inv src

+1

-1

* -1

* +1

AI 1 alt value

An inp 1 outputAnalog input 1 Block

Ramp Setpoint Block

Al 1 sgn src Al 1 alt sel srcNULL

NULL

NULL

Terminal input

NOTE! AI 1 alt sel src source allows you to select the signal to enable an alternative output reference.

AI 1 alt value parameter determines the value of the alternative output reference.

Ramp ref inv src allows you to select the signal for inverting the final output setpoint.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 19: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.119

1.1.2 Block Functions

Here is an example referring to the setting of a digital signal (Ramp output = 0) and of an analog signal (Speedref 1).

Digital signalLet’s consider a section of the Ramp Block.

In Ramp funct src menu, the source Ramp output = 0 allows the output of the RampBlock to be set to zero. Byediting (for example via the keypad by pressing enter) the source Ramp output = 0, the pick-list of the possiblesignal sources of control is displayed.

The selected signal on the source, will be enable the Ramp output = 0 function.

The Ramp funct cfg menu configures the block parameters. The Ramp funct mon display the signal state.

RAMP CONFIG / Ramp function / Ramp funct srcRamp output=0…………

The following commands are available inthe source Ramp output=0 (it is standard connected to Null):

One it connects the signal to One, ActiveNull it connects the signal to Zero, Non-activeDI 1 monitor it connects the signal to the standard digi

tal input 1, being active or non-active is afunction of the digital input state

………… …………DI 0X monitor it connects the signal to the expanded dgt 0 inputB0 W0 decomp it connects the signal to a digital bit de

rived from a complete word. For moredetail on this feature, refer to the 2.6.6‘chapter.

………… …………

RAMP CONFIG / Ramp function / Ramp funct cfgRamp shape…………

The Ramp shape configuration allows to select the Ramp:Linear it sets the Linear RampS-Shaped it sets the S Ramp

RAMP CONFIG / Ramp function / Ramp funct monRamp out mon………

It is possible to monitor:Ramp out mon Output Ramp monitorRamp cmds mon Ramp Block command monitor………… …………

NOTE! The points …………, refer to other possibilities parameters in the menus.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 20: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————20Ch.1

Ramp function Block example

Ramp input=0

Ramp shape Ramp out enable

NULL

ONE

DI 0 Enable mon

DI 1 monitor

DI 2 monitor

DI 3 monitor

DI 4 monitor

DI 5 monitor

DI 6 monitor

DI 7 monitor

DI 0X monitor

DI 1X monitor

........................

........................

Linear

S-Shaped

Enable

Disable

Ramp out mon

..................

..................

Ramp cmds mon

Ramp funct src

Ramp funct cfg

Ramp funct mon

Ramp setpoint

......................

......................

Pick-list

NOTE! Ramp out enable parameter allows to enable or disable the Ramp output .

Analog signal

Let’s consider a section of the Speed Block. In Speed ref src menu the source Speed ref 1 src selects the signalorigin to the Speed block input. Creating the Speed reference. By editing the source the pick-list of the signalpossible sources is displayed.

The block parameters are configured in the Speed ref cfg menu. The Speed ref mon menu allows to monitor thesignal state.

SPEED CONFIG / Speed setpoint / Speed ref srcSpeed ref 1 src

…………

The items of the Speed ref 1 src source are:

Int speed ref 1 it connects the signal to the Int speed ref 1.This variable allows the value digital setting, setinternally by keypad or toolbox.

…………

An inp 2 output connects the signal to the An inp 2 output. Blockto the standard analog input 2.

…………

An inp 1X output it connects the signal to the expanded analoginput 1.

…………

SBI Drv W0 mon it connects the signal to the W0 monitor derivingfrom the SBI.

…………

ISBus Drv W4 mon it connects the signal to the W4 monitor derivingfrom ISBus.

…………

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 21: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.121

SPEED CONFIG / Speed setpoint / Speed ref cfg

Int speed ref 1…………

It is possible to configure:

Int speed ref 1 it states the reference value…………

SPEED CONFIG / Speed setpoint / Speed ref mon

Speed ref 1 mon…………

It is possible to monitor:Speed ref 1 mon it states the reference value…………

Speed setpoint Block example

......................

Speed ref 1 src

-1

+1

Int speed ref 1

Int speed ref 1

NULL

ONE

Gen output

An inp 1 output

An inp 2 output

An inp 3 output

An inp 1X output

An inp 2X output

W0 comp out

W1 comp out

Speed setpoint

.................

Speed ref 1 mon

..................

Int speed ref 1 [rpm]

......................

Ramp out

Speed ref src

Pick-list

Speed ref cfg

Speed ref mon+

+

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 22: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————22Ch.1

1.1.3 Signal Normalization

This paragraph describes the relationship between the physical units (rpm, Nm, A etc) and the Drive internalvalues. The different values which can be read via process channels are stated through an internal value (Countvalue) and the corresponding physical unit or parameter containing the reference value (Parameter name orPhysical unit value).Sometimes the paragraph makes reference to tables listed in the following pages.

The conversion type, always linear, is stated for an internal use. The code N/A (Not allowed) refers to a one toone conversion.

IPA = Parameter number

Parameter Name Ipa NormalizedNormalized Physical

value

NULL 4000 N/AONE 4001 N/AOutput voltage 3060 16384 Table2 last columnOutput current 3070 16384 Table1 last columnOutput frequency 3080 16384 Table4 last columnDC link voltage 3100 16384 500VMagnetizing curr 3110 16384 Table1 last columnTorque curr 3120 16384 Table1 last columnMagn curr ref 3130 16384 Table1 last columnTorque curr ref 3140 16384 Table1 last columnCurrent phase U 3150 16384 Table1 last columnCurrent phase V 3160 16384 Table1 last columnCurrent phase W 3170 16384 Table1 last columnFlux ref 3180 16384 1WbFlux 3190 16384 1WbRamp ref 3200 16384 Full scale speedSpeed ref 3210 16384 Full scale speedSpeed 3220 16384 Table3 last columnNorm Speed 3221 16384 Full scale speedFault Pin 9098 N/ANorm Std enc spd 3222 16384 Full scale speedNorm Exp enc spd 3223 16384 Full scale speedDrv OL accum % 1540 16384 100%Mot OL accum % 1670 16384 100%BU OL accum % 1781 16384 100%Drive ready 161 N/AEnable SM mon 162 N/AStart SM mon 163 N/AFastStop SM mon 164 N/AALM Sequencer 9096 N/ADrive OK 9097 N/AJog state 8013 N/AGen output 2760 N/AAn inp 1 output 5009 16384 10V or 20mAAn inp 2 output 5029 16384 10V or 20mAAn inp 3 output 5049 16384 10V or 20mAAn inp 1X output 5067 16384 10V or 20mAAn inp 2X output 5087 16384 10V or 20mA

TAVyS00a

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 23: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.123

Parameter Name Ipa NormalizedNormalized Physical

value

W0 comp out 2116 N/AW1 comp out 9356 N/ARamp setpoint 7034 16384 Full scale speedRamp out mon 8022 16384 Full scale speedSpeed setpoint 7047 16384 Full scale speedSpeed draw out 7099 16384 Full scale speedJog output 8012 16384 Full scale speedMlt spd out mon 7070 16384 Full scale speedMpot output mon 7090 16384 Full scale speedTorque ref 2450 8192 Motor nominal torqueTcurr lim + 1210 16384 Table1 last columnTcurr lim - 1220 16384 Table1 last columnInuse Tcurr lim+ 1250 16384 Table1 last columnInuse Tcurr lim- 1260 16384 Table1 last columnInuse Outvlt ref 1180 16384 Table2 last columnPL next factor 2282 16384 100%PID FF mon 7217 16384 100%PID input 7256 16384 100%PID PI out mon 7294 16384 100%Last PI out 7295 16384 100%PID PD out mon 7343 16384 100%PID out mon 7352 16384 100%PID outS mon 7353 16384 100%Std enc position 9553 Std enc ppr * 4Exp enc position 9554 Exp enc ppr * 4H Index register 9555 N/AL Index register 9556 N/A

TAVyS00b

NOTE! See next tables below for table 1 - 2 - 3 - 4.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 24: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————24Ch.1

Drive size - 6K Current = 16384 count Mains voltage Voltage = 16384 count

0.75 KW - 0.75 Hp 3.82 A 230 V 217.5 V1.5 KW - 1.5 Hp 6.18 A 380 V 378.3 V2.2 KW - 2.0 Hp 8.86 A 400 V 378.3 V3.0 KW - 3.0 Hp 11.8 A 415 V 378.3 V4.0 KW - 5.0 Hp 14.97 A 440 V 435.1 V5.5 KW - 7.5 Hp 19.97 A 460 V 435.1 V7.5 KW - 10 Hp 27.92 A11 KW - 15 Hp 39.02 A15 KW - 20 Hp 52.03 A22 KW - 25 Hp 74.58 A30 KW - 30 Hp 90.65 A37 KW - 40 Hp 117.85 A45 KW - 50 Hp 149.17 A55 KW - 60 Hp 181.3 A Spd ref/fbk res Speed = 16384 count75 KW - 75 Hp 214.27 A 0.125 rpm 2048 rpm90 KW - 100 Hp 299.49 A 0.25 rpm 4096 rpm110 KW - 125 Hp 299.49 A 0.5 rpm 8192 rpm132 KW - 150 Hp 399.49 A160 KW - 200 Hp 417.17 A

Drive size - DS Current = 16384 count

250 Hp 553.29 A300 Hp 886.09 A350 Hp 886.09 A Switching Frequency Frequency = 16384 count400 Hp 886.09 A V/f Control = 2 KHz 1000 Hz450 Hp 886.09 A Field Oriented = 2 KHz 125 Hz500 Hp 1659.87 A Sensorless vect = 2 KHz 62.5 Hz600 Hp 1659.87 A V/f Control = 4, 8, 16 KHz 2000 Hz700 Hp 1659.87 A Field Oriented = 4, 8, 16 KHz 250 Hz800 Hp 1659.87 A Sensorless vect = 4, 8, 16 KHz 125 Hz

TAV3i001

Table 3: Speed Reference/Feedback resolution Scale

Table 4: Regulation Mode-Switching Frequency Scale

Table 1: Current Scale values (Amps = 16384 count) Table 2 : Voltage Scale values (Volts = 16384 count)

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 25: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.125

1.2 DRIVE STATUS MENU (STATUS)

This menu displays a series of variables useful to check the Drive state.

The variable function is clearly explained by the variable name.

In case it is needed, a short explanation is added.

Some variables are not applicable to all the different regulation modes.

In this case the display does not show the variable name but the writing N/A, “Not Available”.

The status variables are noted with a letter to show any ties to a specific regulation mode:

S Sensorless

F Field oriented

V V/f

If a variable is not available with a specific regulation mode, the system writes on its side the mode with which itis active. Example: Torque ref [S, F], valid only with S and F.

1.2.1 Status

STATUS

Output voltage Voltage on the output terminals [ V ]Output current Current on the output terminals [ A ]Output power Power on the output terminals [ kVA ]Torque ref[S, F] Torque reference on the motor [Nm]Output frequency Output frequency [Hz]Norm speed Motor speed [rpm]Speed ref Motor speed reference [rpm]Ramp ref Ramp Reference [rpm]Enable SM mon It shows the Drive Enable state (1= on , 0 = off )Start SM mon It shows the Drive Start state (1= on , 0 = off )FastStop SM mon It shows the Drive Fast Stop state (1= on , 0 = off )

1.2.2 State of the Digital Inputs/Outputs (I/O Status)

Menu displays the state on the Drive Digital inputs and outputs, at the drive terminal points.

The first line shows the numbers of the digital I/Os.

The second line shows, under each number, the I/O state (0 or 1). The state detects the voltage presence (1) or absence (0).

‘E’ Enable terminal

‘A’ Terminal 10 Digital input 10

‘B’ Terminal 11 Digital input 11

‘X’ Expanded

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 26: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————26Ch.1

I/O status

DI 7654321E Standard digital inputs00000000

DO 3210 Standard Digital outputs0000

DIX BA9876543210 Expanded digital inputs000000000000

DOX 76543210 Expanded digital outputs00000000

1.2.3 Drive Advanced States (Advanced Status)

Advanced StatusDC link voltage Drive DC link voltageMagnetizing curr Drive magnetizing current in AmpsTorque curr Drive torque current in AmpsMagn curr ref [S,F] Magnetizing current reference in AmpsTorque curr ref [S,F] Torque current reference in AmpsFlux ref [S,F] Drive flux reference in WebersFlux [S,F] Flux in WebersMot OL accum % Accumulated timer counts of the motor I2tBU OL accum % Accumulated timer counts of the Scale Unit (BU) I2tDrv OL accum % Accumulated timer counts of the Drive I2tNorm Std enc spd Standard encoder speed (Std)Norm Exp enc spd [F] Expanded encoder speed (Exp)Std enc position [F] Raw accumulated encoder pulses (counts) of the Std encoderExp enc position [F] Raw accumulated encoder pulses (counts) of the Exp encoderStd sin enc mod Module of sinusoidal encoder, “A” and “B” traceHT sensor temp Heatsink temperature °CRG sensor temp Temperature on the regulation card °CIA sensor temp Temperature of the heatsink incoming air temperature (available

from the size...)Sequencer status Sequencer status (State machine) see table below for statusCPU1 runtime Time needed by the CPU1 (microprocessor)CPU2 runtime Time needed by the CPU2 (microprocessor)

The drive State Machine, controls the drive running and starting, accounting for protection & alarming, commandsequence, and reset status.

The waiting phase for the State Machine reset is showed in the Alarm List as Sequencer. The table belowdisplays various operation states by Sequencer status number. See section 1.12.2 , Alarm state for more details.

Sequencer status State

1 Magnetization running

2 Magnetization completed, Stop

3 Start

4 Fast stop, Stop

5 Fast stop, Start

9 No alarm, drive is ready to accept all commands

10 Magnetization running and Start command already present

12 Alarm active

16 Alarm not active, waiting for reset

TAV3i020

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 27: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.127

1.2.4 DriveID States (Drive ID Status)

This menu shows the Drive identification values.Drive ID status

Drive cont curr Drive maximum continuos current ratingDrive size Drive size rating in kW of HPDrive type Drive type (Saftronics = 288)Drive name Drive name set using Saftronics PC toolActual setup Setup motor file in useSoftware version Software versionSoftware type Software type factory useSoftware status Software state factory useLife time Drive life time accumulated with power onSys time - ddmmyy Time and date setting from PC tools or serial communications

NOTE! on the new regulation card the variable called “Sys time - ddmmyy” take the value:

time = 00:00:00 date = 010170

With PC tools or serial communication is possible to set this variable at the actual date andtime. After this operation the clock is active only when the Drive is powered on.

The size number is shown in the Drive Size table below.

Drive size - Size number Drive size - Size number0.75 KW - 0.75 Hp 0 250 Hp 2

1.5 KW - 1.5 Hp 1 300 Hp 32.2 KW - 2.0 Hp 2 350 Hp 43.0 KW - 3.0 Hp 3 400 Hp 54.0 KW - 5.0 Hp 4 450 Hp 65.5 KW - 7.5 Hp 5 500 Hp 77.5 KW - 10 Hp 6 600 Hp 811 KW - 15 Hp 7 700 Hp 915 KW - 20 Hp 8 800 Hp 1022 KW - 25 Hp 9 ai8080

30 KW - 30 Hp 1037 KW - 40 Hp 1145 KW - 50 Hp 1255 KW - 60 Hp 1375 KW - 75 Hp 14

90 KW - 100 Hp 15110 KW - 125 Hp 16132 KW - 150 Hp 17160 KW - 200 Hp 18

1.2.5 Alarm Register (Alarm Log)

This function provides storical list of Drive trips or various system error messages. Together with cause indica-tions also time and date information is provided. This information is refered to variable “Sys time - ddmmyy”.

Example: Sys time ddmmyy03 : 11 : 42 010100Undervoltage

Alarm type

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 28: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————28Ch.1

1.3 DRIVE INITIALIZATION (STARTUP - SETUP MODE)

This menu heading covers:

· Selection of the regulation mode.

The drive can control the motor in three different ways:

V/f (VF), Field Oriented (FOC) and Sensorless vect (SLS).

The three methods are completely independent.

With such a condition each regulation mode can be configured differently from all the others.

· Switching to the Setup mode.

With this mode it is possible to set the Drive and motor data and, if required, to start the process for the motordata automatic measuring. The measured data can be stored in a file (Setup 0 or 1 or 2 or 3) via the savesetup command. In this way the detected data can be used during the automatic calculation of the Flux andCurrent loop gains.

· Automatic calculation of the flux and current loop gains according to the performed measuring processes(load setup).

· Setting of the information about:

-maximum speed

-encoder features, if used.

-Parameters of the I2t protections.

-Configuration of the V/f mode.

· Database storage.

The setting of the above-mentioned features changes the relationships among the different parameters. As aconsequence, after changing the parameters belonging to this menu, it is necessary to store the whole data-base via the save config command.

Such settings can be changed only with a disabled drive. While in this operation mode (Configuration)the data updating on the terminal strip and on the option cards is stopped.

After downloading drive parameters from a file, or entering the STARTUP MENU through the keypad, the driverestart is only permitted after:

a)cycling drive power

or:

b) when commands select = Terminal level, cycling input DI0, when commands select = Terminal edge, cycling inputDI0, and the digital input selected by Term strstp src, when commands select = Digital level, cycling the digital signalsselected by Digital strstp src and Digital enable src when commands select = Digital edge, cycle input DI0 or the digitalinput Digital enable src (if not selected to ONE), and the digital signal selected by Digital strstp src

1.3.1 Selection of the Regulation Mode (Regulation Mode)

It allows to select the desired regulation mode.

After choosing the setting, the Drive carries out the restart phase by setting the selected regulation mode.

Description:STARTUP

Regulation modeRegulation mode

Select new modeSave config ?

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 29: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.129

NOTE! when the Regulation mode function is selected, the active regulation mode is displayed: inorder to enter the Select new mode press “Enter”.

1.3.2 Drive Starting Configurations (Startup Config)

With this menu configures:

- the Drive Setup

- the speed scale factor

- the Encoders

- the V/F control

- the motor and braking unit “I2t” protection

- and to use the recipes

1.3.2.1 Setup Mode (Enter setup mode)

Enter setup mode It allows to enter the Setup mode where it is possible to set some Driveparameters and the motor parameters, and to perform the data measur-ing on the motor, autotune (with a moving or stopped rotor) for thecalculation of the current and flux loop gains.

Description:

STARTUP

Startup config

Enter setup mode

NOTE! the following description is valid when the SETUP MODE has been entered via Enter setupmode. Every time it is required to enter and afterwards to exit the setup mode, the Drivecarries out the Restart procedure (the drive will take around 15 seconds). After saving thesetup, it is required to load the setup to have the drive usit.

SETUP MODE

Drive data Drive parametersMains voltage Power supply voltage (230 – 380 – 400 – 415 – 440 – 460)Ambient temp Ambient temperature (40°C standard)Switching freq PWM Switching frequency (2 – 4 – 8 – 16 kHz)SPD ref/fbk res Resolution of the speed references (0 .125rpm, 0 . 250rpm, 0 . 500rpm)

Motor data Motor parametersRated voltage Motor rated voltageRated frequency Motor rated frequencyRated current Motor rated currentRated speed Motor rated speedRated power Motor rated powerCosfi Motor cosΦEfficiency Motor efficiencyLoad default mot It selects and loads the motor standard parameters:

Standard 400V or Standard 460V

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 30: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————30Ch.1

NOTE! by selecting one of the two factors, the motor standard parameters with 460V (or 400V) areloaded making reference to the used Drive size. Through this process, old data is overwritten.

CurrentReg autotune Current loop self-tuningStart ? enabling of the data detection

Press I key consent to the procedure start

Result Detected values (or Drive standard values):Measured Rs resistance detected on the StatorMeasured Rr resistance detected on the RotorMeasured Rr2 resistance2 detected on the RotorMeasured DTL dead time limitMeasured DTS dead time slopeMeasured LsSigma stator inductance

FluxReg autotune Flux loop self-tuningShaft rotating Self-tuning with a moving RotorStart ? enabling of the data detection

Press I key consent to the procedure start

Results detected values (or Drive standard values):Measured P1 flux P1 coefficient of the flux curveMeasured P2 flux P2 coefficient of the flux curveMeasured P3 flux P3 coefficient of the flux curveMeasured ImNom value of the rated magnetizing currentMeasured ImMax value of the maximum magnetizing currentMeasures FluxNom value of the rated fluxMeasures FluxMax value of the maximum flux

At standstill Self-tuning with a stopped RotorStart ? enabling of the data detection

Press I key consent to the procedure start

ResultsMeasured P1 flux P1 coefficient of the flux curveMeasured P2 flux P2 coefficient of the flux curveMeasured P3 flux P3 coefficient of the flux curveMeasured ImNom value of the rated magnetizing currentMeasured ImMax value of the maximum magnetizing currentMeasures FluxNom value of the rated fluxMeasures FluxMax value of the maximum flux

Save setup Saving of the set and detected datasave as ? it allows to select 4 files where 4 different setups can be saved.setup 0 selection of setup 0 – 1 – 2 – 3

Review setup Recall of the saved setup filesselect setup ? it allows to select the saved setup filesetup 0 selection of setup 0 – 1 – 2 – 3

Exit setup mode Exit from the setup mode (the drive will take around 15 seconds)

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 31: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.131

1.3.2.2 Loading of the Setup Settings (Load Setup)

In order to be used by the Drive, the performed SETUP has to be loaded.

The “Load Setup” function allows to load the desired Setup file. It also carries out the calculation of the gainsof the regulation system.

Description:STARTUP

Startup config

Load setup it allows to load the saved setupSelect setup ? it selects the setup to be loaded (setup 0-1-2-3)

Save config ?

1.3.2.3 Speed Scale (Full Scale Speed)

It allows to set the speed normalization value. In other words, what rpm is 100% speed.

(See chapter 1.1.3 Signal Normalizations)

Description:STARTUP

Startup config

Full scale speed normalization value of the Drive speedsave config ?

1.3.2.4 Encoder Configuration (Encoders Config)

The function allows to configure, on the regulation card, some standard encoder inputs identified as “std” andsome expanded encoder inputs identified as “exp”, which can be obtained using the expansion option card.

The Spd fbk sel src source allows to select the origin of a command encoder signal. It has connected Int spdfbk sel through which it is possible to switch the feedback between the Encoder sta and the Encoder exp.

The command can be activated only with a Field Oriented mode.

The Index Storing function is available for positioning applications to detect the zero cam position (see theparagraph below).

Description:

STARTUP

Startup config

Encoders config

Speed feedback

Int spd fbk sel

Spd fbk sel src

Std enc type

Std enc pulses

Std dig enc mode

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 32: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————32Ch.1

Std enc supply

Std sin enc Vp

Exp enc type

Exp enc pulses

Rep/Sim encoder

Index storing

Save config ?

Encoders config

Speed feedback

Int spd fbk sel Encoder input selection:Std encoder standard encoder input (default)Exp encoder expanded encoder input, using option cards:

S6KCV301ENCS6KCV301D14A4F

Spd fbk sel src Command source for the selection of the encoder used forspeed feedback (factory setting: Int spd fbk sel)

Std enc type Encoder type connected to the std input, it can be selected as:Frequency input digital single channel frequency input: channel A.

Signal +5V must be connected between A and powersupply common.

digital digital encoder (factory setting)sinusoidal sinusoidal encoder, select the correct jumper settings on the

regulation card, RV33 - 1 (see section 1.6 in the Hardware Guide)Std enc pulses Encoder pulses per revolution (ppr) value of the standard input (factory setting =1024 ppr)

Std dig enc mode measuring method of the digital encoder speed connected to thestandard input. It can be:FP frequency and period measuring.(factory setting)F frequency measuringThe FP mode has a higher resolution (position can drift with a 0 reference),default value.The F mode has lower resolution at high speeds, but is better at low speeds by varyingthe drive’s encoder scan rate. This provides low drift at 0 Reference.

Std enc supply Power supply voltage of the standard Encoder input.It can be selected among 6.16, 5.91, 5.68, 5.41 Vto compensate long motor length cable (factory setting = 5.41 V)

Std sin enc Vp Peak voltage value of the sinusoidal encoder connected to thestandard input. Range between 0.5V (default value) and 1.5V.

Exp enc type encoder type connected to the Exp input, it can be selected as:Digital digital encoderFrequency input digital single channel frequency input: channel A.

Signal +5V must be connected between A and powersupply common.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 33: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.133

Exp enc pulses encoder pulses per revolution (ppr) value of the expanded input (factory setting = 1024 ppr)Rep/sim encoder

Rep/sim enc sel selection of the encoder to be repeated using the optional card 6KCV301ENC (input/output):Repeat std enc repeat standard encoderRepeat exp enc repeat expanded encoder

1.3.2.4.1 Index Storing Function

Index Storing

.

.

.

.

Index storing en

Off

Int IS ctrl

0

IS ctrl src

Int IS ctrl

The index storing function is provided so that the encoder counts can be latched allowing the user to determinethe position of the encoder relative to an absolute position.

The function is available only with Field Oriented mode.

Description:Encoders config

………………

Index Storing

Index Storing en

Int IS ctrl

IS ctrl src

Index Storing en Function enabling parameter, as:Off function disabledStoring enable enables the capturing of the encoder count as de

scribed by the setting of the control word. The controlword is the value of Int IS ctrl or the word selectedby IS ctrl src (see below for details).

Control Std enc with this setting, constantly reads all the generatedpulses on the standard encoder input(ex.: if encoder = 1024 pulses, 1 turn shaft = 1024 pulses).

Control Exp enc same as above using expansion encoder input cardInt IS ctrl Internal value factory connected to IS ctrl src.

Default value is: 0X0000IS ctrl src Parameter to select the source Index storing command.

For example it is possible to switch the factory setting, Int IS ctrl, to control fromanother source, for example, from an SBI word or DGFC word; see table belowfor the corresponding values for control.

NOTE! Digital input 7 (terminal 39) is dedicated to the use of the “Index Qualifier” (homeposition switch) when Index storing is enabled.

NOTE! Terminals 91-92 are dedicated to the use of the “Index Qualifier”, if it used6KCV301D14A4F expansion card.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 34: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————34Ch.1

In the table are showed the values of IS ctrl src from SBI word, DGFC word or Int IS ctrl if:

IS ctrl src = Int IS ctrl.

No. bit Name Description Access (Read/ Write) Default

0-1 - Not used - -

It indicates the encoder index edge polarity:

0= rising edge

1= falling edge

3 - Not used - -It sets the qualifier input state to activate the encoder index reading:

=0, switched off when dig.input 7 = 0

=1, switched off when dig.input 7 = 1

=2, through signal = 0

=3, through signal = 1

It points out for whitch encoder the values of this parameter are reported:

=0, operations requested on the Std Encoder input

=1, operations requested on the Exp Encoder input

7 - Not used - -Control function of the encoder inedx reading

=0, swtched off, function disabled

=1, once, enables the reading of the first index signal edge only.

=2, continuous, enables the reading of the index signal

TAV13241

R/W 0

8-9 R/W 0ENNLT

2

4-5

6

POLNLT

ENNQUAL

Target Enc Num

0R/W

W 0

For the Index storing function, the control Registers are not available via the keypad and are to be used forthe configuration and the data reading. These are:

L index register Ipa 9556

H index register Ipa 9555

In the table are showed the registers values:

Ipa No. bit Name Description

Access

(Read/

Write)Default

It indicates to which encoder is used for index storing:

=0, register data are referred to the Std Encoder input

=1, register data are referred to the Exp Encoder input

Actual Qualifier input value (digital input 7):

=0, qualifier input level is low

=1, qualifier input level is high

Status of the acquisition function; as:

0=OFF

1=Once, storing is not executed yet

2=Once, storing is already executed

3=Continuous

Position counter value corresponding to the index.

Value is only valid when STANLT is equal to 2 or 3

indexstorpar

9556

9555

0

1

2-3

0-15

MP_IN

STATNLT

CNTNLT

Source Enc Num

R

R

0

0

0

0

R

R

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 35: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.135

1.3.2.5 SpeedRegulation Gain Calc Control (SpdReg Gain Calc)

The Function is active only in a Sensorless or Field oriented mode. It allows Speed regulator Gain calculation.

First, load inertia must be entered into the Calc Inertia parameter. Load inertia is either known application

parameter or it can be obtained by using Speed regulator autotune procedure.

With Calc method parameter two gain calculation methods can be selected:

Variable bandw resulting speed regulation bandwidth is internally selected according to the principle thatbandwidth is decreased as inertia is increased and vice versa.

Fixed bandw resulting speed regulation bandwidth is specified by parameter Bandwidth

NOTE! Parameters Calc method and Bandwidth are also valid for Speed regulator autotune procedure.Description:

STARTUPStartup config

SpdReg gain calcCalc methodCalc InertiaBandwidth

Save config ?

Calc method calculation methodCalc Inertia load inertia [Kg*m2]Bandwidth speed regulator bandwidth [rad/sec]

1.3.2.6 Constant V/F Control (V/F Config)

Characteristics Type of load

0 Constant torque requirement across the whole speed range

1 Mixed load between types 0 and 3

2 Mixed load between types 0 and 3

3 Load where the torque is proportional to the speed squared,

e.g. fans and certain types of pumpGA6080g

Description:STARTUP

Startup configV/f configV/f voltageV/f frequencyV/f shape

Save config ?V/f voltage Discharge starting voltage for the V/f modeV/f frequency Discharge starting frequency for the V/f modeV/f shape V/F Curve shape. It can be selected among:

Type 0 V/f ^ 1.0 (use this selection for loads with a constant torque)Type 1 V/f ^ 1.5Type 2 V/f ^ 1.7Type 3 V/f ^ 2.0

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 36: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————36Ch.1

1.3.2.7 Control of the Motor Overload (Overload Contr)

The Overload control function is based on a I2t. Three independent control types are supplied:for the protection of the Drive, of the motor and of the BU (Brake unit) against thermal overloads.

1.3.2.7.1 I2t Protection Against a Drive Overload

The I2t protection on the Drive is set to allow the IEC 146 service class 2The integrator acts according to the following formula:Drv OL accum %= ∫ (I2-I

CONT2).dt

Where ICONT is the direct current supplied by the Drive (consider the derating factors).A restriction for the 0...3 Hz frequency fields is applied (see the note below)A short overload of 200% (I2N output rated current according to IEC 146 Class 2) is possible for 0.5 secondseach 60 seconds.The Drive protection logic reduces the current limit to the I

CONT value when the integrator times out. It is possible

to configure the action of the alarm signal (see Alarm Block), default setting also causes the drip to fault.The current limit is automatically reset when the accumulator goes back to zero.The following variables are available as digital signals:Drv OL trip It states that the trip condition of I2t has been reached.Drv OL warning It states that I2t has reached 90%Drv OL accum % It states the condition, as a percentage, of the Rms current integration.

100 % = alarm level I2t

Overload time

Pause time

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 37: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.137

NOTE! In the 0...3 Hz output frequency range a faster I2t function is active. It is tuned to reduce the currentlimit to I

CONT if an overload equal to 1.36 . I

CONT is applied for a period longer than 2 seconds.

The current limit is reset when the fastest accumulator is at zero or when the output fre-quency overcomes a 3 Hz value.

The current limits depend on the value of ICONT

(I2N

. Derating factor) which is selectedaccording to the ambient temperature, the switching frequency and the main voltage.

NOTE! the function can not be parameterized.

1.3.2.7.2 Motor Thermal Protection (Motor Protection)

This function is similar to the protection of the motor thermal relay controlled by the Drive. This protection statesthe I2t typical behavior.

When the protection gets active, it is possible to generate an alarm condition.

NOTE! Some motors have a motor current (Ic) higher than the rated one (In). The service factormakes reference to the Ic/In ratio.

Description:

STARTUP

Startup config

Motor protection

Service factor

Motor OL factor

Motor OL time

Save config ?

Service factor Service factorMotor OL factor Allowed motor overload factor referring to the Motor nominal current * Service factor.Motor OL time Allowed overload time with a current equal to Motor OL factor

The integrator state is given by:

Mot OL accum % It gives the percentage state of the Rms current integration.

100 % = I2t alarm level

It is available as a digital signal

Mot OL trip It states that the trip condition of I2t has been reached. Possible or non-possible overload.

The intervention time depends on the value of the motor current as follows:

(Motor nominal current * Service factor * Motor OL factor )^2* Motor OL time

Overload time = ———————————————————————————————

(Motor current)^2

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 38: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————38Ch.1

1.3.2.8 Enabling of the Internal Braking (ENABLE BU)

ExternalResistor

I2t

logic

BU

ALARM

BU disable

Drive alarm

T

Externalresistor

BU resistance

BU Control

BU res OL factor

BU res cont pwr BU res OL time

Figure 1.3.2.8.1: Braking Unit Function

1.3.2.8.1 Braking Unit Protection (BU Protection)

It controls the I2t Braking Unit protection function.

When the protection becomes active, it is possible to generate an alarm condition.

According to the different cases it is possible to use the device internal IGBT (Internal-External).

Overload factor = overload Power/ rated Power

Example:DB resistance = 50 ΩResistor continuos Amp rating = 15ARated for 5 X Amps for 15 secsResistor short time overload rating = 5 time quarter minute (5 time continuous amps for 15 secs)Set parameters:Bu resistance = 50 I2 * RBu res cont pwr = 11.25 kW (152 * 50)Bu res OL time = 15 secsBu res OL factor = 25 (power = 12 R, 5 times overload current squared = 25)STARTUP

Startup config

BU protection

BU control

BU resistance

BU res cont pwr

BU res OL time

BU res OL factor

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 39: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.139

Save config ?BU control BU control. Off, Internal, ExternalBU resistance BU Braking resistanceBU res cont pwr Resistance continuos powerBU res OL factor BU allowed overload factor referring to the overload power of the braking resistanceBU res OL time Resistance allowed overload time referring to the overload Power

The control of the external braking unit and of the resistance I2t protection is indipendent of BU type (BU digitaloutput command, comm output, on the regulation card).

1.3.2.9 In General

Load default ? Drive reset with default dataAbort ? Reload of the last saved database. The data set after the saving process are not

stored. It is advisable to carry out a save config before entering the start up menu.Save config ? It saves the database. It is advisable to carry out a save config after leaving the

start up menu.

1.3.3 Recipes - Import Recipe & Export Recipe

A recipe is a file where a bank of setup information can be written (Export) or read (Import)between regulationmodes. Such information includes:

· Parameter index, Value.

The recipe use allows to move a parameter set among the different regulation modes or among different Drivesvia the PC Configurator.

The recipes present on the drive are:

· I/O config See the excel sheet: I_O config Recipe

· Ramp & speed cfg Ramp _ speed config Recipe

· Appl function Appl function Appl card & comm Recipe Appl card _ comm Recipe

· User 5 Not used

· User 6 Not used

· User 7 Not used

Description:STARTUP

Import recipe

Select recipe:

Export recipe

Select recipe:

Save config ?

Import recipe

Select recipe: It imports (reads) the data of the recipeExport recipe

Select recipe: It exports (writes) the data of the recipe

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 40: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————40Ch.1

Table 1.3.3.1: Recipe Appl Function

Ipa Description Ipa Description

7201 PIDenable 7326 IntPIDMltPI37211 IntPIDinpFF 7342 PDderfilter7212 PIDinpFFgain 7350 PIDoutsign7230 IntPIDfbk 7351 PIDoutgain7231 IntPIDdraw 7360 Maxdeviation7232 IntPIDset0 7361 Positioningspd7233 IntPIDset1 7362 Gearboxratio7236 PIDgaindraw 7363 Dancerconstant7237 PIDacctime 7364 Minimumdiameter7238 PIDdectime 7210 PIDinpFFsrc7239 PIDclampbot 7210 PIDinpFFsrc7240 PIDclamptop 7210 PIDinpFFsrc7263 PIsteadydelay 7210 PIDinpFFsrc7264 PIsteadythr 7220 PIDfbksrc7270 PIP1gain% 7220 PIDfbksrc7271 PII1gain% 7220 PIDfbksrc7272 PIP2gain% 7220 PIDfbksrc7273 PII2gain% 7221 PIDdrawsrc7274 PIP3gain% 7221 PIDdrawsrc7275 PII3gain% 7221 PIDdrawsrc7276 PIGPtran21hthr 7221 PIDdrawsrc7277 PIGPtran32lthr 7222 PIDset0src7278 PIGPtran21band 7222 PIDset0src7279 PIGPtran32band 7222 PIDset0src7281 IntPIGPref 7222 PIDset0src7290 PIPinitgain 7223 PIDset1src7291 PIIinitgain 7223 PIDset1src7292 PIclamptop 7223 PIDset1src7293 PIclampbot 7223 PIDset1src7300 PDP1gain% 7226 PIDseloff0src7301 PDD1gain% 7260 PIDPIenabsrc7302 PDP2gain% 7261 PIDIfreezesrc7303 PDD2gain% 7280 PIGPrefsrc7304 PDP3gain% 7310 PDGPrefsrc7305 PDD3gain% 7320 PIDMltPIsel07306 PDGPtran21hthr 7321 PIDMltPIsel17307 PDGPtran32lthr 7322 PIDMltPI3src7308 PDGPtran21band 7322 PIDMltPI3src7309 PDGPtran32band 7322 PIDMltPI3src7311 IntPDGPref 7322 PIDMltPI3src7324 IntPIDMltPI1 7340 PIDPDenabsrc7325 IntPIDMltPI2 7402 DiaClcstartsrc

Appfnc

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 41: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.141

Table 1.3.3.2: Recipe Ramp & Speed Config

Ipa Description Ipa Description

2480 Droopgain 8064 MR2fdecdltspd2490 Droopfilter 8065 MR2fdecdlttime2500 Drooplimit 8066 MR2accScurve2510 Droopcomp 8067 MR2decScurve2530 Sfbkderenable 8070 MR3accdltspd2540 Sfbkdergain 8071 MR3accdlttime2550 Sfbkderbase 8072 MR3decdltspd2560 Sfbkderfilter 8073 MR3decdlttime2580 I/Fcpenable 8074 MR3fdecdltspd2590 Inertiacpflt 8075 MR3fdecdlttime2600 Friction 8076 MR3accScurve2610 Inertia 8077 MR3decScurve7030 Intrampref1 3700 SpdP1gain%7031 Intrampref2 3701 SpdI1gain%7040 Intspeedref1 3702 SpdP2gain%7041 Intspeedref2 3703 SpdI2gain%7042 Speedtop 3704 SpdP3gain%7043 Speedbottom 3705 SpdI3gain%7044 Intspeedratio 3706 SGPtran21hthr7059 Spdregenable 3707 SGPtran32lthr7060 Mltspd0 3708 SGPtran21band7061 Mltspd1 3709 SGPtran32band7062 Mltspd2 3710 IntSGPref7063 Mltspd3 3720 Spd0enable7064 Mltspd4 3721 Intspd0ref7065 Mltspd5 3722 Spd0Pgain%7066 Mltspd6 3723 Spd0Igain%7067 Mltspd7 3724 Spd0speedthr7080 Mpotlowerlim 3725 Spd0spddelay7081 Mpotupperlim 3726 Spd0refthr7082 Mpotaccdltspd 3727 Spd0refdelay7083 Mpotaccdlttim 7035 Rampref1src7084 Mpotdecdltspd 7035 Rampref1src7085 Mpotdecdlttim 7036 Rampref2src7086 Mpotinitcfg 7036 Rampref2src7087 Mpotpresetcfg 7037 Ramprefinvsrc7097 Mpotinverskey 7050 Speedref1src8000 Jog0 7050 Speedref1src8001 Jog1 7051 Speedref2src8002 Jog2 7051 Speedref2src8003 Jog3 7052 Speedratiosrc8004 Jogaccdltspd 7053 Speedrefinvsrc8005 Jogaccdlttime 7071 Mltspd0src8006 Jogdecdltspd 7071 Mltspd0src8007 Jogdecdlttime 7072 Mltspds0src8009 Joginverskey 7073 Mltspds1src8021 Rampshape 7074 Mltspds2src8030 Rhysteresisthr 7091 Mpotupsrc8031 Rampoutenable 7092 Mpotdownsrc8040 MR0accdltspd 7093 Mpotinverssrc8041 MR0accdlttime 7094 Mpotpresetsrc8042 MR0decdltspd 8014 Jog0src8043 MR0decdlttime 8014 Jog0src8044 MR0fdecdltspd 8015 Jogcmdsrc8045 MR0fdecdlttime 8016 Jogsel0src8046 MR0accScurve 8017 Jogsel1src8047 MR0decScurve 8018 Joginverssrc8050 MR1accdltspd 8027 Rampinput=08051 MR1accdlttime 8028 Rampoutput=08052 MR1decdltspd 8029 Rampfreeze8053 MR1decdlttime 8090 Mltramps0src8054 MR1fdecdltspd 8091 Mltramps1src8055 MR1fdecdlttime 3713 SGPrefsrc8056 MR1accScurve 3732 Spd0refsrc8057 MR1decScurve 7054 SpdI=0src8060 MR2accdltspd 7056 SpdPI=0src8061 MR2accdlttime 2470 Droopensrc8062 MR2decdltspd 2475 Droopcompsrc8063 MR2decdlttime 2605 Inertiasrc Rmpspd

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 42: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————42Ch.1

Table 1.3.3.3: Recipe Appl Card & Comm

Ipa Description Ipa Description Ipa Description

105 SLink4address 4231 DrvISBusW1src 4135 DrvDGFC-AW5src105 SLink4address 4231 DrvISBusW1src 4136 DrvDGFC-AW6src106 SLink4restime 4232 DrvISBusW2src 4136 DrvDGFC-AW6src

8999 SBIenable 4232 DrvISBusW2src 4136 DrvDGFC-AW6src9020 IntDrvSBIW0 4232 DrvISBusW2src 4136 DrvDGFC-AW6src9021 IntDrvSBIW1 4232 DrvISBusW2src 4137 DrvDGFC-AW7src9022 IntDrvSBIW2 4233 DrvISBusW3src 4137 DrvDGFC-AW7src9023 IntDrvSBIW3 4233 DrvISBusW3src 4137 DrvDGFC-AW7src9024 IntDrvSBIW4 4233 DrvISBusW3src 4137 DrvDGFC-AW7src9025 IntDrvSBIW5 4233 DrvISBusW3src 4138 DrvDGFC-AW8src9320 IntDrvISBusW0 4234 DrvISBusW4src 4138 DrvDGFC-AW8src9321 IntDrvISBusW1 4234 DrvISBusW4src 4138 DrvDGFC-AW8src9322 IntDrvISBusW2 4234 DrvISBusW4src 4138 DrvDGFC-AW8src9323 IntDrvISBusW3 4234 DrvISBusW4src 4139 DrvDGFC-AW9src9324 IntDrvISBusW4 4235 DrvISBusW5src 4139 DrvDGFC-AW9src9325 IntDrvISBusW5 4235 DrvISBusW5src 4139 DrvDGFC-AW9src9326 IntDrvISBusW6 4235 DrvISBusW5src 4139 DrvDGFC-AW9src9327 IntDrvISBusW7 4235 DrvISBusW5src Appcard

4225 ISBusenable 4236 DrvISBusW6src4226 ISBusNodeID 4236 DrvISBusW6src4241 Heartbeattime 4236 DrvISBusW6src4242 ISBFAULTdelay 4236 DrvISBusW6src4105 IntDrvDGFC-SW0 4237 DrvISBusW7src4106 IntDrvDGFC-SW1 4237 DrvISBusW7src4107 IntDrvDGFC-SW2 4237 DrvISBusW7src4108 IntDrvDGFC-SW3 4237 DrvISBusW7src4109 IntDrvDGFC-SW4 4100 DrvDGFC-SW0src4129 DGFCenable 4100 DrvDGFC-SW0src4129 DGFCenable 4100 DrvDGFC-SW0src4140 IntDrvDGFC-AW0 4100 DrvDGFC-SW0src4141 IntDrvDGFC-AW1 4101 DrvDGFC-SW1src4142 IntDrvDGFC-AW2 4101 DrvDGFC-SW1src4143 IntDrvDGFC-AW3 4101 DrvDGFC-SW1src4144 IntDrvDGFC-AW4 4101 DrvDGFC-SW1src4145 IntDrvDGFC-AW5 4102 DrvDGFC-SW2src4146 IntDrvDGFC-AW6 4102 DrvDGFC-SW2src4147 IntDrvDGFC-AW7 4102 DrvDGFC-SW2src4148 IntDrvDGFC-AW8 4102 DrvDGFC-SW2src4149 IntDrvDGFC-AW9 4103 DrvDGFC-SW3src9010 DrvSBIW0src 4103 DrvDGFC-SW3src9010 DrvSBIW0src 4103 DrvDGFC-SW3src9010 DrvSBIW0src 4103 DrvDGFC-SW3src9010 DrvSBIW0src 4104 DrvDGFC-SW4src9011 DrvSBIW1src 4104 DrvDGFC-SW4src9011 DrvSBIW1src 4104 DrvDGFC-SW4src9011 DrvSBIW1src 4104 DrvDGFC-SW4src9011 DrvSBIW1src 4130 DrvDGFC-AW0src9012 DrvSBIW2src 4130 DrvDGFC-AW0src9012 DrvSBIW2src 4130 DrvDGFC-AW0src9012 DrvSBIW2src 4130 DrvDGFC-AW0src9012 DrvSBIW2src 4131 DrvDGFC-AW1src9013 DrvSBIW3src 4131 DrvDGFC-AW1src9013 DrvSBIW3src 4131 DrvDGFC-AW1src9013 DrvSBIW3src 4131 DrvDGFC-AW1src9013 DrvSBIW3src 4132 DrvDGFC-AW2src9014 DrvSBIW4src 4132 DrvDGFC-AW2src9014 DrvSBIW4src 4132 DrvDGFC-AW2src9014 DrvSBIW4src 4132 DrvDGFC-AW2src9014 DrvSBIW4src 4133 DrvDGFC-AW3src9015 DrvSBIW5src 4133 DrvDGFC-AW3src9015 DrvSBIW5src 4133 DrvDGFC-AW3src9015 DrvSBIW5src 4133 DrvDGFC-AW3src9015 DrvSBIW5src 4134 DrvDGFC-AW4src4230 DrvISBusW0src 4134 DrvDGFC-AW4src4230 DrvISBusW0src 4134 DrvDGFC-AW4src4230 DrvISBusW0src 4134 DrvDGFC-AW4src4230 DrvISBusW0src 4135 DrvDGFC-AW5src4231 DrvISBusW1src 4135 DrvDGFC-AW5src4231 DrvISBusW1src 4135 DrvDGFC-AW5src

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 43: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.143

Table 1.3.3.4: RecipeI/O Config

Ipa Description Ipa Description Ipa Description Ipa Description Ipa Description

4003 StrStplogic 5062 Aninp1Xthr 4084 DO4Xsrc 2102 Word0B2src 9343 Word1B3src4003 StrStplogic 5063 Aninp1Xscale 4084 DO4Xsrc 2103 Word0B3src 9343 Word1B3src4004 Stopmode 5064 Aninp1Xgain 4085 DO5Xsrc 2103 Word0B3src 9343 Word1B3src4004 Stopmode 5065 Aninp1Xlolim 4085 DO5Xsrc 2103 Word0B3src 9343 Word1B3src4005 Jogstopctrl 5066 Aninp1Xhilim 4085 DO5Xsrc 2103 Word0B3src 9344 Word1B4src4006 Spd0disdly 5080 Aninp2Xtype 4085 DO5Xsrc 2104 Word0B4src 9344 Word1B4src4007 IOkeysmode 5081 Aninp2Xoffset 4086 DO6Xsrc 2104 Word0B4src 9344 Word1B4src4007 IOkeysmode 5082 Aninp2Xthr 4086 DO6Xsrc 2104 Word0B4src 9344 Word1B4src4010 DI0inversion 5083 Aninp2Xscale 4086 DO6Xsrc 2104 Word0B4src 9345 Word1B5src4011 DI1inversion 5084 Aninp2Xgain 4086 DO6Xsrc 2105 Word0B5src 9345 Word1B5src4012 DI2inversion 5085 Aninp2Xlolim 4087 DO7Xsrc 2105 Word0B5src 9345 Word1B5src4013 DI3inversion 5086 Aninp2Xhilim 4087 DO7Xsrc 2105 Word0B5src 9345 Word1B5src4014 DI4inversion 6010 Anout1hilim 4087 DO7Xsrc 2105 Word0B5src 9346 Word1B6src4015 DI5inversion 6011 Anout1lolim 4087 DO7Xsrc 2106 Word0B6src 9346 Word1B6src4016 DI6inversion 6012 Anout1scale 5011 AI1sgnsrc 2106 Word0B6src 9346 Word1B6src4017 DI7inversion 6015 Anout2hilim 5012 AI1altselsrc 2106 Word0B6src 9346 Word1B6src4030 DI0Xinversion 6016 Anout2lolim 5031 AI2sgnsrc 2106 Word0B6src 9347 Word1B7src4031 DI1Xinversion 6017 Anout2scale 5032 AI2altselsrc 2107 Word0B7src 9347 Word1B7src4032 DI2Xinversion 6020 Anout1Xhilim 5051 AI3sgnsrc 2107 Word0B7src 9347 Word1B7src4033 DI3Xinversion 6021 Anout1Xlolim 5052 AI3altselsrc 2107 Word0B7src 9347 Word1B7src4034 DI4Xinversion 6022 Anout1Xscale 5069 AI1Xsgnsrc 2107 Word0B7src 9348 Word1B8src4035 DI5Xinversion 6025 Anout2Xhilim 5089 AI2Xsgnsrc 2108 Word0B8src 9348 Word1B8src4036 DI6Xinversion 6026 Anout2Xlolim 3570 Anout1src 2108 Word0B8src 9348 Word1B8src4037 DI7Xinversion 6027 Anout2Xscale 3570 Anout1src 2108 Word0B8src 9348 Word1B8src4038 DI8Xinversion 6030 Anout3Xhilim 3570 Anout1src 2108 Word0B8src 9349 Word1B9src4039 DI9Xinversion 6031 Anout3Xlolim 3570 Anout1src 2109 Word0B9src 9349 Word1B9src4040 DI10Xinversion 6032 Anout3Xscale 3570 Anout1src 2109 Word0B9src 9349 Word1B9src4041 DI11Xinversion 6034 Anout3xtype 3570 Anout1src 2109 Word0B9src 9349 Word1B9src4060 DO0inversion 6035 Anout4Xhilim 3580 Anout2src 2109 Word0B9src 9350 Word1B10src4061 DO1inversion 6036 Anout4Xlolim 3580 Anout2src 2110 Word0B10src 9350 Word1B10src4062 DO2inversion 6037 Anout4Xscale 3580 Anout2src 2110 Word0B10src 9350 Word1B10src4063 DO3inversion 6039 Anout4xtype 3580 Anout2src 2110 Word0B10src 9350 Word1B10src4070 DO0Xinversion 2121 W0decompinp 3580 Anout2src 2110 Word0B10src 9351 Word1B11src4071 DO1Xinversion 9360 W1decompinp 3580 Anout2src 2111 Word0B11src 9351 Word1B11src4072 DO2Xinversion 4065 DO0src 4090 Anout1Xsrc 2111 Word0B11src 9351 Word1B11src4073 DO3Xinversion 4065 DO0src 4090 Anout1Xsrc 2111 Word0B11src 9351 Word1B11src4074 DO4Xinversion 4065 DO0src 4090 Anout1Xsrc 2111 Word0B11src 9352 Word1B12src4075 DO5Xinversion 4065 DO0src 4090 Anout1Xsrc 2112 Word0B12src 9352 Word1B12src4076 DO6Xinversion 4065 DO0src 4091 Anout2Xsrc 2112 Word0B12src 9352 Word1B12src4077 DO7Xinversion 4066 DO1src 4091 Anout2Xsrc 2112 Word0B12src 9352 Word1B12src5000 Aninp1type 4066 DO1src 4091 Anout2Xsrc 2112 Word0B12src 9353 Word1B13src5001 Aninp1offset 4066 DO1src 4091 Anout2Xsrc 2113 Word0B13src 9353 Word1B13src5002 AI1altvalue 4066 DO1src 4092 Anout3Xsrc 2113 Word0B13src 9353 Word1B13src5003 Aninp1thr 4067 DO2src 4092 Anout3Xsrc 2113 Word0B13src 9353 Word1B13src5004 Aninp1scale 4067 DO2src 4092 Anout3Xsrc 2113 Word0B13src 9354 Word1B14src5005 Aninp1gain 4067 DO2src 4092 Anout3Xsrc 2114 Word0B14src 9354 Word1B14src5006 Aninp1filter 4067 DO2src 4093 Anout4Xsrc 2114 Word0B14src 9354 Word1B14src5007 Aninp1lolim 4068 DO3src 4093 Anout4Xsrc 2114 Word0B14src 9354 Word1B14src5008 Aninp1hilim 4068 DO3src 4093 Anout4Xsrc 2114 Word0B14src 9355 Word1B15src5020 Aninp2type 4068 DO3src 4093 Anout4Xsrc 2115 Word0B15src 9355 Word1B15src5021 Aninp2offset 4068 DO3src 8083 Forwardsrc 2115 Word0B15src 9355 Word1B15src5022 AI2altvalue 4080 DO0Xsrc 8084 Reversesrc 2115 Word0B15src 9355 Word1B15src5023 Aninp2thr 4080 DO0Xsrc 153 TermStrStpsrc 2115 Word0B15src 9361 W1decompsrc5024 Aninp2scale 4080 DO0Xsrc 9210 TermStartsrc 2120 W0decompsrc 9361 W1decompsrc5025 Aninp2gain 4080 DO0Xsrc 9211 TermStopsrc 2120 W0decompsrc 9361 W1decompsrc5026 Aninp2filter 4081 DO1Xsrc 154 FastStopsrc 2120 W0decompsrc 9361 W1decompsrc5027 Aninp2lolim 4081 DO1Xsrc 156 DigEnablesrc 2120 W0decompsrc I/Oconf

5028 Aninp2hilim 4081 DO1Xsrc 157 DigStrStpsrc 9340 Word1B0src5040 Aninp3type 4081 DO1Xsrc 2100 Word0B0src 9340 Word1B0src5041 Aninp3offset 4082 DO2Xsrc 2100 Word0B0src 9340 Word1B0src5042 AI3altvalue 4082 DO2Xsrc 2100 Word0B0src 9340 Word1B0src5043 Aninp3thr 4082 DO2Xsrc 2100 Word0B0src 9341 Word1B1src5044 Aninp3scale 4082 DO2Xsrc 2101 Word0B1src 9341 Word1B1src5045 Aninp3gain 4083 DO3Xsrc 2101 Word0B1src 9341 Word1B1src5046 Aninp3filter 4083 DO3Xsrc 2101 Word0B1src 9341 Word1B1src5047 Aninp3lolim 4083 DO3Xsrc 2101 Word0B1src 9342 Word1B2src5048 Aninp3hilim 4083 DO3Xsrc 2102 Word0B2src 9342 Word1B2src5060 Aninp1Xtype 4084 DO4Xsrc 2102 Word0B2src 9342 Word1B2src5061 Aninp1Xoffset 4084 DO4Xsrc 2102 Word0B2src 9342 Word1B2src

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 44: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————44Ch.1

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 45: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.145

1.4 PARAMETER SETTINGS ON THE REGULATORS (REGULATION PARAM)

1.4.1 Regulators

According to the chosen regulation mode, some control loops could be inactive.

The following table states (with X) which are the active loops corresponding to each different mode:

Mode Speed loop (Spd) Current loop (Curr) Flux loop (Flx) Speed loop (Vlt)

V/f *

Sensorless (SLS) X X X X

Field Oriented (FOC) X X X X

TAV3i005

* A pseudo-regulator, that is a circuit allowing some of the regulator protective functions, is active for the current loop with a V/f mode..

As for the manual tuning of the different loops, if required, see section 1.4.5 – MANUAL TUNINGS.

The settings of the percentage gains are carried out according to the Basic value stated inside the specific menu.

Description:

REGULATION PARAM

Spd regulator Speed loop

Percent values percentage values:SpdP1 gain % Gain of the Proportional section as a percentage of the basic valueSpdI1 gain % Gain of the Integral section as a percentage of the basic value

Base values basic values:SpdP base value Basic value of the Proportional gainSpdI base value Basic value of the Integral gain

In use values In use values:InUse SpdP gain% In use value of the Proportional gain. It shows the active

gain in case a setting of the gain adaptive curve is required.InUse SpdI gain% In use value of the Integral gain.

SpdReg autotune Speed loop self-tuning >>active with a FOC and SLS mode<<

>> Test torque ref << torque reference applicable during the self-tuning procedure [Nm]Start ? enabling of the data detection phase

Waiting start... waiting time during the procedure

Results Detected value>> Measured Inertia << value of the measured inertia [Kg * m2]>> Measured Frict << value of the measured friction [Nm]

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 46: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————46Ch.1

Curr regulator Current loopPercent values percentage values:

CurrP gain % Gain of the Proportional section as a percentage of the basic valueCurrI gain % Gain of the Integral section as a percentage of the basic value

Base values basic values:CurrP base value Basic value of the Proportional gainCurrI base value Basic value of the Integral gain

Flux regulator Flux loopPercent values percentage values:

FlxP gain % Gain of the Proportional section as a percentage of the basic valueFlxI gain % Gain of the Integral section as a percentage of the basic value

Base values basic values:FlxP base value Basic value of the Proportional gainFlxI base value Basic value of the Integral gain

Vlt regulator Speed loopPercent values percentage values:

VltP gain % Gain of the Proportional section as a percentage of the basic valueVltI gain % Gain of the Integral section as a percentage of the basic value

Base values basic values:

VltP base value Basic value of the Proportional gain

VltI base value Basic value of the Integral gain

REGULATION PARAM SAVE PARAMETERS

1.4.2 Dead Time Comp

The Dead time comp function allows for compensation of the output voltage distortion due to IGBT voltagedrop and its switching characteristics. Distortion of output voltage may cause non uniform, non smooth shaftrotation in open loop V/f control or in a closed loop Sensorless Vector control mode errors in speed estimationespecially at very low speeds.Through the two parameters it is possible to set a voltage value and the compen-sation variation, called Gradient.

Description:REGULATION PARAM

Dead time comp

Dead time limit Value of the voltage compensationDead time slope Compensation Gradient

REGULATION PARAM SAVE PARAMETERS

NOTE! Both parameters are automatically measured during CurrReg autotune procedure.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 47: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.147

Dead time compensation

Dead time slope

i

v

Dead time limit

Voltage cmd to pwrOutput voltage

+

+

1.4.3 Function and parameterization of the V/f Control (V/f Reg Param)

1.4.3.1 V/f Regulation Control (V/f Control)

When the motor is loaded, the mechanical speed changes according to the applied load.

In order to reduce the speed error, it is possible to compensate for the motor slip.

The function parameterization allows:

- to increase the output voltage with low frequencies (voltage Boost)

- to compensate the speed change due to a load increase

- to parameterize a filter on the compensation

- to damp the DC link oscillations

The V/f mode has no current regulator.

A pseudo-regulator changes the output frequency in order to prevent the current from overcoming the set current limit.

Description:

REGULATION PARAM

V/f reg param

V/f control

Voltage boost

Slip comp

Slip comp filter

Antioscill gain

V/f ILim P gain

V/f ILim I gain

REGULATION PARAM SAVE PARAMETERS

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 48: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————48Ch.1

Voltage boost It increases the output voltage with low frequencies in orderto compensate the voltage drop on the stator. It avoids thetorque loss with a low output frequency.

Slip comp It compensates the speed change due to the load increaseconsidering the slip value.

Slip comp filter Filter on the slip compensation. It avoids oscillations due to astep-load application (non-gradual).

Antioscill gain It allows to damp the current oscillations between the motorand the DC link, which could be developed in the middlerange of the rated speed.

V/f ILim P gain Proportional gain of the pseudo-regulator

V/f ILim I gain Integral gain of the pseudo-regulator

1.4.3.2 Energy Saving (V/f Save Energy)

The function allows to reduce the motor Flux in order to reduce the losses.

As a consequence it is possible to obtain an energy saving when the load requires a reduced torque as comparedto the rated one (save energy).

Through the input sources it is possible to select the origin of the save energy command signal and of the signalstating the flux level.

The sources are:

-SE cmd src save energy command source

-SE flx level src source of the flux level value during the save energy

In the configurations it is possible to set via Int SE flx level an internal percentage value stating the flux level andvia SE flx ramp time a ramp time on the level.

Description:REGULATION PARAM

V/f reg param

V/f save energy

Save energy src

SE cmd src

SE flx level src

Save energy cfg

Int SE flx level

SE flx ramp time

REGULATION PARAM SAVE PARAMETERS

Save energy src

SE cmd src Save energy command source (see List 3)

SE flx level src Source of the flux level value during save energy (see List 23)

Save energy cfg

Int SE flx level Internal value of the flux level (standard connected to the source)

SE flx ramp time Ramp time on the flux level

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 49: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.149

V out

f

SAVE ENERGY

SE flux ramp time

SE cmd src

SE flux level src

1.4.3.3 V/f Catch on Fly from Running on AC Input

The function allows the Drive to catch an already rotating motor, “Autocapture”.

An automatic restart of the Drive is possible after a “Retrying” temporary alarm condition.

Through the V/f catch cmd src source it is possible to select the origin of the command signal enabling the function.

In the configurations the function can be parameterized according to the application.

REGULATION PARAM

V/f reg param

V/f catch on fly

V/f catch src

V/f catch cmd

V/f catch cfg

Spd search time

Vlt search time

Catch init speed

Catch demag dly

Catch retry dly

V/f catch src

V/f catch cmd Source of the command starting the catch procedure (see List 3)

V/f catch cfg

Spd search time It states the change of the Drive output frequency. It shows thetime needed to perform a frequency change from zero to the motorrated one if the output current is equal to the motor rated one.

Vlt search time It states the machine flux change. It shows the time needed toperform a flux change from zero to the motor rated one, if theoutput current is equal to the motor rated one.

Catch init speed It states the starting speed for the synchronism search.

Catch demag dly Delay time for the motor demagnetization before performing thesynchronism search (in case the “autocapture” function is present).

Catch retry dly Delay time for the motor demagnetization (with the “retrying”function).

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 50: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————50Ch.1

1.4.3.3.1 Automatic Restart after a Temporary Alarm: Retrying

Before the autocapture process starts, it is necessary to wait for the motor to be demagnetized in order to avoidhigh current transient due to the E.M.F. (electromotive force) which causes Overcurrent alarms.

The demagnetizing time can be set in ms via the Catch rety dly parameter.

In general: the bigger the motor, the longer the time.

Too low values of Catch rety dly cause high insertion currents.

After the demagnetizing time, the speed autocaputure phase starts. This function is influenced by the Spdsearch time and Vlt search time parameters.

The process starts by supplying the motor with a frequency equal to the one supplied by the inverter before thealarm intervention; the machine flux is afterwards increased thus making it equal to the corresponding outputfrequency value (V/f feature).

If during this phase the output current is higher than the motor rated one, the output frequency is decreased andthe flux increasing speed is made slower.

1.4.3.3.2 Catch on the Fly Process

The procedure is similar to the above-mentioned one; the demagnetizing time is set via the Catch demag dlyparameter while the synchronism search starting speed via Catch init speed in rpm.

Example: switching of a mains (AC lines) connected motor (4 poles) (AC 50Hz) on the inverter.

- Set Catch init speed = 1500

- Inverter in a STOP condition

- Disconnect the motor from the mains and switch it on the inverter

WARNING! No voltage can be applied on the inverter output (terminals U2, V2, W2). No direct connec-tion between input and output is allowed (Bypass).

Pay particular attention to the sequences of the switching contacts between the network and the inverter.

- Give the START command to the inverter

Act on the Spd search time and Vlt search time parameters as stated before.

WARNING! When this function is selected and if the power or the alarm have been reset, the driveautomatically starts its normal functioning procedure. This function must be used only withapplications which do not put in danger people or things during their automatic reset. Any-way, the enforced safety rules have to be taken into consideration.

1.4.4 Gain Profiling Speed Feedback in a Sensorless Mode (Sls SpdFbk Gains)

The function is active only with a Sensorless mode.

With a Sensorless mode the motor speed is estimated. The gains of this observer depend on the speed, onMotoring or Regen. It is possible to set a Profile for the gains. In both operating areas (quadrants).

Each Profile is defined by three segments:

H = High - M = MedPoint - L = Low

For each segment it is possible to state the % Proportional Integral gain of the speed.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 51: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.151

Each segment is linearly connected by two Bands from H to M, from M to L, and by two Levels from H to M,from M to L.

In the configurations it is possible to set for each Profile (Motoring gains & Regen gains) the gain values and theBand and Level values common to both Profiles.

Furthermore, in order to smooth the transition between Motoring and Regen, other two parameters are used:

Sls 0 tran bnd band in the speed 0 neighborhood, connecting the profiles linearly;

the band smoothes the change between one Profile and the other

Observer filter time constant of the first-order Filter on both gains

Description:

REGULATION PARAM

Sls SpdFbk gains

Motoring gains Gains for the functioning as a motor

Sls mot HPgain proportional H gain

Sls mot HIgain integral H gain

Sls mot MPgain proportional M gain

Sls mot MIgain integral M gain

Sls mot LPgain proportional L gain

Sls mot LIgain integral L gain

Regen gains Gains for the functioning as a Regenerator

Sls regen HPgain proportional H gain

Sls regen HIgain integral H gain

Sls regen MPgain proportional M gain

Sls regen MIgain integral M gain

Sls regen LPgain proportional L gain

Sls regen LIgain integral L gain

Gain transitions Gain transition

Sls H/M tran lev level from H to M

Sls M/L tran lev level from M to L

Sls H/M tran bnd band from H to M

Sls M/L tran bnd band from M to L

Sls 0 tran bnd speed 0 band

Observer filter filter time constant

Gain monitor Displaying of the in use gains

Inuse Sls P gain in use proportional gains

Inuse Sls I gain in use integral gain

Observer ref mon displaying…………

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 52: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————52Ch.1

Sls H/M tran levelSls H/M tran level Sls M/L tran levelSls M/L tran level In use gain

Sls H/M tran bnd

Sls M/L tran bnd

Sls H/M tran bnd

Sls M/L tran bnd

Sls 0 tran bnd

Sls mot HP gain

Sls regen HP gain

Sls regen HI gain

Sls regen MP gain

Sls regen MI gain

Sls regen MP gain

Sls regen MI gain

Sls mot HI gain

Sls mot MP gain

Sls mot MI gain

Sls mot LP gain

Sls mot LI gain

MOTORINGREGEN

H

H

M

ML

L

0

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 53: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.153

1.4.5 Manual Tunings of Regulator Loops (Test Generator)

The automatic loops tuning (CurrentReg, FluxReg and SpeedReg autotune) is strongly recommended before tocarry out any manual tuning. The manual tunings can be useful to improve the response time of the drive loops.

Using the Test generator function it is possible to carry out the manual tunings.

In the following paragraphs it is described the procedure:

- Manual tuning of the Current regulator

- Manual tuning of the Flux regulator

- Manual tuning of the Speed regulator

1.4.5.1 Test Generator Function

The tuning of the regulators is performed via an internal test signal generator in order to evaluate the regulatorresponse. This operation requires the use of a digital oscilloscope. The “Test generator” generates signal shapedas a rectangular wave with a programmable frequency and amplitude.

For each tuning, described in the following= pararagraphs, follow the steps below.

In the REGULATION PARAM menu, scroll Down until Test generator command, then press Enter.

The display will show: Test generator

Test gen mode press Enter.

The display will show: Test gen mode

Off press Enter.

The display will show: Select new mode

Off press Enter and scroll Down to select the regulatorinput on which the signal must work(see procedures):

Off off

Ramp ref 1 Ramp reference 1

Speed ref 1 Speed reference 1

Torque ref 2 Torque reference 2

Magn curr ref Magnetizzant current reference

Flux ref Flux reference

Outvlt lim Voltage reference

then press Enter and wait for the end of “Busy - Please wait....”message.

Press Escape two times to return Test gen mode menu.

Scroll Down to: Test generator

Test gen cfg press Enter.

Set the following parameters:

Gen hi ref Value in count of the higher value

Gen low ref Value in count of the lower value

Gen period Period of the square wave

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 54: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————54Ch.1

1.4.5.2 Manual Tuning of the Current Regulator

The manual tuning procedure below, can be used to change the standard response time of currentregulator.

The following procedure is recomended after executing Current Regulator autotune .

Use a 2 channel digital scope.

Connect the probe of the scope, channel 1(CH1), on the XY4/XY5 test points of the regulation card (see Hard-ware manual, chapter 5.3.1).

Disable the drive: press [O] key (red key) for 2 seconds.

In the REG PARAMETERS/Test generator menu set the following parameters:

Test gen mode = Magn curr ref

Gen hi ref = 3000

Gen low ref = 0

Gen period = 0.1 s

NOTE! Gen hi ref value is approximate; it depends on the drive size. The setting must corre-spond to 20% of the Output current (This value can be verified in the STATUS menu).

Enable the drive:

terminal 12 should be active (+24V) and press [I] key (green key). Verify and adjust the step response of thecurrent regulator looking the leading edge of the Output current (see figure: 1.4.5.2.1).

For tuning, follow the steps below:

- In the REGULATION PARAM/Curr regulator menu, adjust the values of CurrP gain % and CurrIgain % until the response of current is approximatly 1 ms, without overshoot (see figure: 1.4.5.2.2); optimalresponse time of current regulator.

- Disable the drive: press O key (red key) for 2 seconds.

- Set Test gen mode = Off

- In the REG PARAMETERS menu save the settings done via the SAVE PARAMETERS command.

Figure 1.4.5.2.1: Output Current (Reaction Time @ 3ms) Displaying

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 55: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.155

Figure 1.4.5.2.2: Optimal Output Current (Reaction Time @ 1ms) Displaying

1.4.5.3 Manual Tuning of the Flux Regulator

This tuning is necessary only with applications where the use of the field weakening is required.

Use a 2 channel digital scope.

In the I/O CONFIG/Analog outputs/Std analog outs menu set the analog outputs 1 & 2 (seechapter 1.1 how to connect the variables):

- An out 1 src source connect the Flux ref variable

- An out 2 src source connect the Flux variable

On 21-22 terminals (see chapter 1.3 hardware manual) place channel 1 of the digital scope (CH1) on the Fluxref (flux reference) signal; on 23-22 terminals place channel 2 (CH2) for the Flux signal (actual flux).

Disable the drive: press [O] key (red key) for 2 seconds.

In the TORQUE CONFIG/Zero torque cmd menu, set Zero torque cmd src = ONE.

In the REG PARAMETERS/Test generator menu to set the following parameters:

Test gen mode = Flux ref

Gen hi ref = Measured FluxNom · 16384 · √2

Gen low ref = Measured FluxNom · 0.8 · 16384 · √2

Gen period = 0.1 s

NOTE! Measured FluxNom is the nominal Flux value calculated by the drive during the “FluxRegautotune”procedure; in the SETUP MODE/FluxReg autotune results it’s possible toread this value.

In the REG PARAMETERS/Vlt regulator/Base values menu, set VltP base value parameter to itsmax value. This value depends by the drive size. Pressing “Shift + Help” the max value is displayed.

In the REG PARAMETERS/Vlt regulator/Percent values menu, set VltP gain % parameter to100%.

In the REG PARAMETERS/Flux regulator/Percent values, set to zero the FlxP gain % &FlxI gain % parameters.

Enable the drive:

make sure that terminal 12 is active (+24V) and press [I] key (green key). On the channel CH1 the Flux ref willbe displayed; on the channel CH2 the Flux signal will be displayed (see figure: 1.4.5.3.1).

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 56: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————56Ch.1

For the tuning follow the steps below:

· Increase the FlxP gain % and FlxI gain % values until the Flux signal follows the Flux ref displayed(see figure: 1.4.5.3.2).

· Disable the drive: press [O] key (red key) for 2 seconds.

· For An out 2 src source connect the Magn curr ref variable.

· Enable the drive. On the channel CH1 scope the Flux ref signal will be displayed; on the channel CH2 theMagn current reference signal will be displayed (see figure: 1.4.5.3.3).

NOTE! On the CH2 signal dislayed avoid the overshoots (see figure: 1.4.5.3.4), if necessary, de-creasing the FlxP gain % & FlxI gain % gains values.

· Disable the drive: press [O] key (red key) for 2 seconds.

· Set Test gen mode = Off

· Restore initial values set: VltP base value to zero, VltP gain % to zero and the source Zero torque cmd src= NULL.

· In the REG PARAMETERS menu save the new settings via the SAVE PARAMETERS command.

Figure 1.4.5.3.1: Flux Reference (CH1) and Flux (CH2) Displaying

Figure 1.4.5.3.2: Flux Reference (CH1) and Tuning of Flux (CH2) Displaying

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 57: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.157

Figure 1.4.5.3.3: Flux Reference (CH1) and Tuning of Magn Current Reference (CH2) Displaying

Figure 1.4.5.3.4: Flux Reference (CH1) and Magn Current Reference, with Overshoots, (CH2) Displaying

1.4.5.4 Manual Tuning of the Speed Regulator

The manual tuning procedure below, can be used to improve the response of Speed regulator.

The following procedure is recommended after Speed Regulator autotune.

NOTE! The tuning requires free motor shaft rotation with the load applied.

Use a double trace digital scope.

In the I/O CONFIG/Analog outputs/Std analog outs menu set the analog outputs 1 & 2 (seechapter 1.1 how to connect the variables):

- An out 1 src source connect the Speed ref variable

- An out 2 src source connect the Norm speed variable

On 21-22 terminals (see chapter 1.3 hardware manual) connect channel 1 of the digital scope (CH1) to theSpeed ref (speed reference) signal; on 23-22 terminals place channel 2 (CH2) for the Norm speed signal.

Disable the drive: press [O] key (red key) for 2 seconds.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 58: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————58Ch.1

In the REG PARAMETERS/Test generator menu set the following parameters:

Test gen mode = Speed ref 1

Gen hi ref = 3200 (≈ 20% in count of the “Full Scale Speed”)

Gen low ref = 0

Gen period = 2 s

Enable the drive:

make sure that terminal 12 is active (+24V) and press [I] key (green key). On the channel CH1the “Speed ref”will be displayed; on the channel CH2 the “Norm speed” will be displayed.

For the tuning follow the steps below:

· In the REGULATION PARAM/Spd regulator/Percent values, adjust the values of SpdP1gain % and SpdI1 gain % until the “Norm speed” signal follows the “Speed ref “ displayed (see fig-ure:1.4.5.4.1); tune to havesmall overshoot (see figure: 1.4.5.4.2)

NOTE! If necessary in the REG PARAMETERS/Spd regulator/Percent values menu, increase thespeed base values gains: SpdP base value & SpdI base value.

· Disable the drive: press [O] key (red key) for 2 seconds.

· Set Test gen mode = Off

· In the REG PARAMETERS menu save the settings done via the SAVE PARAMETERS command.

Figure 1.4.5.4.1: Speed Ref1 (CH1) and Norm Speed (CH2) Displaying

Figure 1.4.5.4.2: Speed Ref1(CH1) and Norm Speed (CH2), with Overshoot, Displaying

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 59: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.159

1.5 COMMAND CONFIGURATION (I/O CONFIG)

1.5.1 Definition of the Commands

For starting, the drive always requires the Enable command, Start command and Fast stop when enabled.

The above different commands affect the drive rotation:

Enable - this command unlocks power converter firing. It is made of a terminal wired permissivethat affects firing hardware directly. In addition, this can be optionally ANDed with aboolean input "Digital enable" from an external source (communication, application card).Enable command can also be "gated" by the "En/Disable control function" as describedbelow. Enable unsuicides the drive regulators and current can circulate. See DiagramBlock chapter , "Commands - Enable logic".

Start/Stop - this command unlocks the reference to the regulation chain: Ramp, speed regulator ortorque regulator, depending on which is enabled. When the command is asserted (0 to 1transition) it is said that the drive is being "started", when the command is negated (1 to0 transition) it is said that the drive is being "stopped".

The Command select parameter defines the use of Enable drive and start/stop of the drive. It may have differentsource:

• Terminal: Enable and Start and Stop commands are active from programmable digital input terminals. En-able has a dedicated input, Start is programmed as default as Term Str/Stp src (Start & Stop can also beseparate commands from PB inputs). If the command source id Digital or I O Keys, terminals are acting aspermissive inputs.

• Digital: The commands comes as boolean input "Digital Start/Stop" from a communication or applicationcard. (Terminals are acting as level sensitive permissive inputs)

• [I] and [O] keys on the keyboard/display module. (Terminals are acting as level sensitive permissive inputs)

Through "Terminal" and "Digital" can be select an "edge-sensitive" section, which is meant for manual controlfrom an operator, or automatic control from a PLC, and a "level-sensitive" section, which is meant for wiredcontrol in an unmanned installation where automatic restart after power fault is desired.

For unmanned installations requiring the drive to restart after a power fault without any external sequencer logic,the edge sensitive section may be bypassed by setting parameter Command select = "Terminal Level". SeeDiagram Block chapter , "Commands - Start Stop logic".

NOTE! With Command select = "I O Keys", the [O] key on the keyboard/display module (if present)can be used to stop the drive. In this case, to resume normal operation, the [I] key must bepressed, alternatively power must be cycled in orded to clear the sequencer. The keyboard/display module can be used as a monitor device with the different selection of Commandselect parameter.

Fast stop - usage of this command is optional. This command is used when the drive is operatedwith Ramp and speed regulation. When the command is active, the Ramp input refer-ence is zeroed and the ramp operates on a specific deceleration slope that can be setindependently from the standard deceleration slope. The command can be accessedeither from a communication source or a programmable digital input terminal.

NOTE! when Fast stop command is negated, the drive will restart unless also Start/Stop commandhas been negated. The exception is when En/Disable control parameter is programmed as

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 60: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————60Ch.1

"Stop/Fs&Spd=0". In this case the Start command must be recycled after Fast stop is no moreactive in order to let the drive to start again.

Jog - this command provides momentary rotation of the drive with ramp and speed referencesettings independent of the ones defined for operation with Start/stop command.

NOTE! Start/Stop command takes priority over the Jog command. The Jog command can beactivated by concurrent sources: the [+/Jog] key on the keyboard, and a boolean sourcethat can be either a communication or application card or a programmable digital input. TheJog command is complemented by a toggle command for rotation direction inversion. Thesource of inversion may also be a dedicated key on the keyboard/display module or aconfigurable source, both sources may be concurrently active.

NOTE! Due to the double function of the keys, it is initially necessary to hit [Shift] and [+/Jog] inorder to turn the keyboard section into jog mode. After that, the simple pressure of [+/Jog]key will cause the drive to jog, and the pressure of the [-/<->] key will cause inversion of therotation. To exit keyboard jog mode press [</Escape].

1.5.2 Command Block (Commands)

The command Block, via the input sources, allows to select the signal origin to control:

- Term enable src command source for the terminal strip Enable

- Term StrStp src * source of the Start (1) command and of the terminal strip Stop (0) command

- Term Start src * command source for the terminal strip Start

- Term Stop src * command source for the terminal strip Stop

- Dig enable src digital Enable command source

- Dig StrStp src source of the Start (1) command and of the digital Stop (0) command.

- FastStop src Fast Stop command source

(*) The start and stop command can be controlled, as an alternative, via:

· A single terminal In this case (+24) 1 refers to the Start and (open) 0 to the Stop

+ 24V START=Closed, STOP=open

· Two terminals connected with buttons In this case the change of state is caused by the positivefront (0 to1) on the terminal.

START

STOP

+ 24V

START

STOP

+ 24V

NOTE! For factory setup see section 1.5.3.1

NOTE! DI0, enable input, terminal point 12, has to be open to change parameter COMMANDSSELECT from the keypad or toolbox.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 61: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.161

Description:

I/O CONFIG

Commands

Commands src

Term StrStp src

Term Start src

Term Stop src

Dig Enable src

Dig StrStp src

FastStop src

I/O CONFIG SAVE PARAMETERS

In the Block configurations it is possible to set the following parameters:

- Command select Logic for the Start/Stop Edge or Level sensitive signal

Terminal level The drive is controlled via terminal strip using the level sensitive mode

Terminal edge The drive is controlled via terminal strip using the edge sensitive mode

Digital level The drive is controlled from a communication or application card usingthe level sensitive mode

Digital edge The drive is controlled from a communication or application card usingthe edge sensitive mode

I/O keys The drive is controlled from the keyboard using the I O keys

- En/Disable mode Action time to the stop condition. Setting of this parameter is not allowedwhile terminal enable is active. The drive can act:

· With the enable and start/stop commands controlled independentlyby the operator ( En/Disable mode = Off )

· With just the start/stop command, while the enable and disable com-mand is controlled by the drive. In this case with the start command thedrive enables itself. When the stop command is generated (and/or faststop according to the En/Disable mode selection), the Drive reaches azero speed and after a Spd 0 dis dly time, it disables itself automati-cally (for more details see section 1.5.2.1.).

- Spd 0 dis dly Delay time between the zero speed and the disabling procedure

Description:

I/O CONFIG

Commands

Commands cfg

Command select

En/Disable mode

Spd 0 dis dly

The monitor menu displays:

Enable cmd mon it displays the Enable command state

Start cmd mon it displays the Start command state

FastStop cmd mon it displays the Fast Stop command state

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 62: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————62Ch.1

Commands mon

Enable cmd mon

Start cmd mon

FastStop cmd mon

1.5.2.1 Enable/Disable Control Function

The interaction of the different commands may be affected by a “En/Disable mode” logic function. Thisfunction may provide gating of the enable command with the Start/Stop of Fast Stop commands and the value ofspeed. The purpose of this function is to defer actuation of the power bridge to the time the drive is required toactually start, and terminate the actuation once drive stop has been commanded and the drive has come to astop. The operation mode is controlled by parameters En/Disable mode [4004] according to these criteria:

En/Disable mode = “Off” [0] Enable actuation (Power converter firing) is independent from Start/stop, Fast Stop or Jog commands.

En/Disable mode = “Stop/ FS & Spd=0” [1]

Enable actuation is initiated when the Start/Stop command is assertedand the Fast stop is not asserted. Enable actuation is terminated after:

Start/Stop is negated OR Fast Stop is asserted, AND

speed feedback has reached the value specified in parameter Spd 0speed thr [3724], AND

the delay specified in parameter Sped 0 dis delay [4006] has elapsed.

NOTE! to enable again the drive, Fast stop must not be assertedand the Start/Stop must be recycled

1.5.3 Typical Command Configurations

1.5.3.1 Control from Keyboard/Display Module (Factory Setting)

Command select = "I O Keys"

The drive comes with a setup meant for control from the keboard/display unit, with the mandatory TerminalEnable permissive. En/Disable control logic and Jog are active. No input is set for Fast stop command. Param-eters are set as per following table. The drive behaviour is described below.

At power up, the power converter firing will not be initiated even if Terminal Enable is asserted (driven high).

Once Terminal Enable is asserted, no actuation occurrs until the [I] key is pressed. When [I] key is pressed, thepower converter firing is initiated, Motor magnetization sequence is executed, then Ramp and speed regulationare unlocked.

When [O] key is pressed, the drive is stopped, and after the programmed delay, power converter firing isterminated.

Negating Terminal Enable will terminate converter firing at any time, and the motor will coast to a stop.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 63: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.163

Table 1.5.3.1-1: Setup for Control from Keyboard (Factory Setup)

Parameter description Index Value Comments

Command select 4002 Stop/FS & Spd=0

En/Disable mode 4004 I O keys

Dig Enable src 0156 Do not care This source bypassed (AND logic)Term StrStp src 0153 "DI 1 mon" This source bypassed (AND logic)Dig StrStp src 0157 Do not care This source not usedTerm Start src 9210 Do not care This source not usedTerm Stop src 9211 Do not care This source not usedFStop src 0154 "NULL" Fast stop not usedJog cmd src 8015 "NULL" Jog from the keyboardJog invers src 8018 "NULL" Jog inversion from the keyboardSpd 0 dis dly 4006 1000 msecSpd 0 speed thr 3724 10 rpm

TAV35311

1.5.3.2 Control from Remote Pushbuttons

Command select = "Terminal edge"

This setup is useful for simple, standalone installations where no PLC is used and the external relay logic isminimal.

The keyboard/display module is not required, a LED module can be used instead. Momentary action pushbuttonsare used for Start, Stop, Jog and Jog inversion, with the mandatory Terminal Enable permissive.

En/Disable control logic and Jog are active.

No input is set for Fast stop command.

Parameters can be set as per example in table 1.5.3.2-1.

Complete wiring information for digital inputs may be found in the hardware reference section. The drive behaviouris similar to the one for keyboard control (sect. 1.5.3.3.1), but for the fact that the four remote wired pushbuttonsreplace the corresponding keys on the keyboard.

Of course there is no need to use a [Shift] button as remote buttons do not have multiple functions.

Table 1.5.3.2-1: Example Setup for Pushbutton Control

Parameter description Index Value Comments

Command select 4002 Terminal edge

En/Disable mode 4004 Stop/FS & Spd=0

Dig Enable src 0156 Do not care This source bypassed (AND logic)Term StrStp src 0153 "NULL" This source bypassed (AND logic)Dig StrStp src 0157 Do not care This source not usedTerm Start src 9210 "DI 1 monitor" Tie Start button to terminal 13Term Stop src 9211 "DI 2 monitor" Tie Stop button to terminal 14FStop src 0154 "NULL" Fast stop not usedJog cmd src 8015 "DI 3 monitor" Tie Jog button to terminal 15 (Jog used)

Jog invers src 8018 "DI 4 monitor" Tie Jog invert button to terminal 36 (Jog used)TAV35321

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 64: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————64Ch.1

1.5.3.3 Control from a LAN, Usage of Fast Stop

Command select = "Digital level"

This setup represents one possible example for system applications.

The keyboard/display module is not required.

A LAN interface card is used to send commands from a PLC to the drive, with the mandatory Terminal Enablepermissive.

En/Disable control logic is not active: enable sequencing is controlled from the LAN. Jog is controlled from thekeyboard, when present.

Fast stop command is used for Emergency Stop, employing a digital input for redundancy to the LAN system.Parameters can be set as per example in following table.

Complete wiring information for digital inputs may be found in the hardware reference section. The drive behaviouris described below.

At power up, the power converter firing will not be initiated even if Terminal Enable is asserted (driven high).

Once Terminal Enable is asserted, no actuation occurs until the Digital enable from the LAN is asserted. Whenthe latter is asserted, the power converter firing is initiated and Motor magnetization sequence is executed.

The LAN asserts Start/Stop command to unlock Ramp and speed regulation. The [I] key of the keyboard, ifpresent, has the same effect.

When Start/Stop command is negated, the drive is stopped, but regulation remains active at zero speed. This waytension on processed material can be maintained.

Negating Terminal Enable will terminate converter firing at any time, and the motor will coast to a stop.

Table 1.5.3.3-1: Example Setup for LAN Control with Wired Fast Stop

Parameter description Index Value Comments

Command select 4002 "Digital level"

En/Disable mode 4004 "Stop FS & Spd=0"

Dig Enable src 0156 "B0 W1 decomp" Bit 0 of bitmapped input Word 1Term StrStp src 0153 "ONE" This source bypassed (AND logic)Dig StrStp src 0157 "B1 W1 decomp" Bit 1 of bitmapped input Word 1Term Start src 9210 Do not care This source not usedTerm Stop src 9211 Do not care This source not usedFStop src 0154 "DI 1 monitor" tie Fast stop input to term 13

DI 1 inversion 4011 "Inverted" Safety critical function requires negative logicJog cmd src 8015 "NULL" Jog is commanded from the keyboardJog invers src 8018 "NULL" Jog inversion is commanded from the keyboardSBI enable 8999 "Enabled" enable operation of LAN interfaceW1 decomp src 9361 "SBI Drv W0 mon" first incoming process data channel from LAN

TAV35331

1.5.4 Unmanned Installation

Command select = "Terminal level"

This setup represents an example for applications like remote pumping stations, where external logic may beminimal, and it is required for the drive to restart automatically after a power fault.

The keyboard/display module is not required.

Terminal Start/Stop is used to control the drive, with the mandatory Terminal Enable permissive. En/Disablecontrol logic is active, in order to have the drive disabled when stopped. Although possible when keyboard ispresent, Jog is normally not used. Fast stop command is not used. Parameters can be set as per example in tablefollowing. Complete wiring information for digital inputs may be found in the hardware reference section. Thedrive behaviour is described below.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 65: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.165

At power up, the power converter firing and Ramp/speed regulation may be initiated if Terminal Enable andTerminal Start/Stop are asserted (driven high).

Once Terminal Enable is asserted, no actuation occurs until the Terminal Start/Stop is asserted. When thisoccurs, the power converter firing is initiated, Motor magnetization sequence is executed, then Ramp and speedregulation are unlocked.

When terminal Start/Stop is negated, the drive is stopped, and after the programmed delay power converter firingis terminated.

Negating Terminal Enable will terminate converter firing at any time, and the motor will coast to a stop.

After a power fault, if Terminal enable and Terminal Start/Stop do not change, the drive will restart at power up.

Table 1.5.3.4-1: Example Setup for Unmanned Installation

Parameter description Index Value Comments

Command select 4002 "Terminal level"

En/Disable mode 4004 "Stop/FS & Spd=0"

Dig Enable src 0156 Do not care This source bypassed (AND logic)Term StrStp src 0153 "DI 1 monitor" Tie Start/Stop signal to terminal 13Dig StrStp src 0157 Do not care This source not usedTerm Start src 9210 Do not care This source not usedTerm Stop src 9211 Do not care This source not usedFStop src 0154 "NULL" Fast stop not used

Jog cmd src 8015 "NULL" Jog from the keyboardJog invers src 8018 "NULL" Jog inversion from the keyboard

TAV35341

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 66: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————66Ch.1

1.6 CONFIGURATION OF THE ANALOG AND DIGITAL INPUTS/OUTPUTS (I/O CONFIG)

The Drive, in its standard version on the regulation card, has at its disposal the following analog/digital I/Os:

3 analog inputs (terminals:1-2, 3-4, 5-6), configured as voltage or current differential inputs.

2 voltage analog outputs (terminals: 21-22-23), with a common reference potential.

8 digital inputs (terminals: 12-13-14-15, 36-37-38-39), with a common reference potential and a galvanicisolation.

4 digital outputs (terminals: 41-42, 80-82, 83-85), with a common reference potential, a common powersupply and galvanic isolation.

NOTE! see chapter 1.3 in the Hardware Guide.

Other analog and digital I/Os are available by using the EXP…. expansion cards.

1.6.1 Analog Input Block (Analog Inputs)

The 2 Block sources allow to select the origin of the command signals for the following functions:

Analog input 1 sign src allows the inversion of the output signal, Analog input 1 alt sel src allows the selectionof an alternative output reference.

In the configurations it is possible to perform the self-tuning of the offset and of the gain on the input, to modifythe input filter time constant, to set the input multiplicative factor (+1 or –1).

The upper and lower limit of the output signal can be set via the hi lim and lo lim parameters.

This function is shown in the figure of the following page.

· The Block has a sampling time of 2 msec. The resolution is: 10V=2047 counts.

The inputs of this Block are: · Analog input 1 sign src· Analog input 1 alt sel src

The outputs:· Analog input 1 output· Analog input 1 < thr

The following description of the parameters of the standard analog input 1 is valid also for the analog inputs 2 and 3.

Description:

I/O CONFIG Analog inputs

Std analog inps

Analog input 1

An inp 1 src

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 67: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.167

AI 1 sgn src

AI 1 alt sel src

An inp 1 cfg

An inp 1 type

AI 1 alt value

An inp 1 thr

An inp 1 scale

An inp 1 filter

An inp 1 lo lim

An inp 1 hi lim

AI 1 offs tune Start ?

AI 1 gain tune Start ?

An inp 1 mon

An inp 1 output

An inp 1 < thr

An inp 1 offset

An inp 1 gain

I/O CONFIG SAVE PARAMETERS

The Block of the Analog input 1 is shown in the figure below (it is valid also for the input 2 and 3).

AI 1 sgn src

* -1

* +1

X

AI 1 alt set src

An inp 1 type

An inp 1 lo lim

An inp 1 hi lim

An inp 1 scale

An inp 1 thr

AI 1 alt value

+

+

An inp 1 < thr

An inp 1 output

An inp 1 offset

Terminal Input

An inp 1 src

AI 1 sgn src It connects the selected signal to the selector of the multiplier input:if the signal is 0, multiply by +1, or if the signal is 1, multiply by -1.

AI 1 alt sel src It connects the selected signal to the selector of the alternative reference.

An inp 1 cfg

An inp 1 type It allows selection of the input type (+/- 10V, 0-10V… …0-20mA,4-20mA).

AI 1 alt value Alternative reference value in count.

An inp 1 thr Input threshold value in count.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 68: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————68Ch.1

An inp 1 scale Scale factor of the input.

An inp 1 filter Time constant of the input filter.

An inp 1 lo lim Upper limit of the Block output in count (see figure).

An inp 1 hi lim Lower limit of the Block output in count (see figure).

AI 1 offs tune Start ? Autotune command for the input offset. Input automatic fine-tuning.

AI 1 gain tune Start ? Autotune command for the input gain. Conditions containing anoffset can be compensated.

An inp 1 mon

An inp 1 output Monitor for the Block output value.

An inp 1 < thr Monitor for the threshold compensator state (1 the condition is true)

An inp 1 offset Monitor for the offset value

An inp 1 gain Monitor for the gain value

The figure below shows the function of the lo and hi lim parameters. The input voltage, after the offset and gaincompensation, supplies on the output a linear value included between lo lim and hi lim. The two parameters canassume any value with the restriction of:

lo lim lower than hi lim

lo lim

Hi lim

Input Voltage

NOTE! it is important to remember that the hardware configuration on the regulation card has to beset according to the selected input.

-10V…+10V 0-20mA

0-10V 4-20 mA

Analog input 1 S8 = OFF S8 = ON

Analog input 2 S9 = OFF S9 = ON

Analog input 3 S10 = OFF S10 = ON

TAVyS0 6

Input signal

Analog inputs

ON Jumper OFF Jumper

- 10V… +10V input connects a signal with a maximum voltage of +/-10V.

The change in the motor rotation direction is obtained according to the signal polarity.

Input voltage > 10V or >-10V cause saturation of the count value.

0 – 10V, 0 – 20mA on the input it is possible to connect a maximum voltage of +10V or a 0…20mA current signal.The signal must always have a positive sign, through which, if used as a reference, itis possible to change the motor rotation direction via AI 1 sgn src.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 69: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.169

4 –20 mA on the input it is possible to connect a 4… 20mA current signal. The signal must alwayshave a positive sign through which, if used as a reference, it is possible to change themotor rotation direction via AI 1 sgn src. Through the An inp X <thr output it ispossible to state if the current signal is lower than the one of the set threshold. If thecurrent is <= 4mA , the output supplies a signal (error signal). This, for example, can becombined with a digital output.

How to perform the self-tuning procedure of the analog input via the Menu:

I/O CONFIG ↵

Analog inputs ↵ ↵ = enterStd analog inputs 1 ↵

An inp 1 cfg ↵

AI offs tune (autotune offset)

Start? Set the potentiometer at zero, then ↵

When the operation has been performed,

the following operator message is displayed: Autotune

End to cancel the message press 3

An inp gain tune (gain autotune)

Start? Set the potentiometer with the maximum value, then ↵When the operation has been performed,

the following operator message is displayed: Autotune

End to cancel the message press 3

Go back to the main menu, I/O CONFIG, by pressing Escape, then press ↵press 6 several times till SAVE PARAMETERS has been reached, then press ↵ to save the settings.

In the Analog input 1 mon submenu it is possible to monitor the values of the calculated offset and gain.

1.6.2 Analog Input Block for 1x and 2x Expansion Cards (Exp Analog Inputs 1X & 2X)

This Block refers to possible Option Expansion cards. See the considerations listed in the previous paragraph,including the parameter description. The points of difference are:· No input filter is present· No alternative reference can be selected (the analog input 1alt sel src is missing)· The Block has a sampling time of 8 msec

The inputs of this Block are:· Analog input 1X sign src

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 70: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————70Ch.1

The outputs:

· Analog input 1X output

· Analog input 1X < thr

Description:· Anolog input 1X output· Analog input 1X < thr

I/O CONFIG Analog inputs

Exp analog inps

Analog input 1X

An inp 1X src

AI 1X sgn src

An inp 1X cfg

An inp 1X type

An inp 1X thr

An inp 1X scale

An inp 1X lo lim

An inp 1X hi lim

AI 1X offs tune Start ?

AI 1X gain tune Start ?

An inp 1X mon

An inp 1X output

An inp 1X < thr

An inp 1X offset

An inp 1X gain

I/O CONFIGSAVE PARAMETERS

The Block of the expanded analog input 1X and 2X is shown in the figure below.

AI 1 sgn src

* -1

* +1

X

An inp 1 type

An inp 1 lo lim

An inp 1 hi lim

An inp 1 scale

An inp 1 thr

+

+

An inp 1 < thr

An inp 1 output

An inp 1 offset

Terminal Input

The Block and parameter description is valid also for Analog input 2X.

In order to obtain two physical analog inputs, the use of an EXP… option card is required.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 71: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.171

1.6.3 Analog Output Block (Analog Outputs)

The Blocks of the analog outputs allow to turn a voltage internal signal (or a current signal if the EXP-D20A6option card is used) into a signal available on the terminal strip. As with the analog inputs, there are a series ofstandard outputs on the drive, referred as Std, and a series of outputs available on the expansion cards, referredas Exp with the “X” suffix. It is possible to obtain 4 expanded analog outputs: 1X, 2X, 3X and 4X.

Their use requires an enabling procedure (enable / disable).

Note! Each analog output has its menu of src, cfg and mon (source, configuration and monitor).

The input of this Block is:

· Analog output 1 src

Description:

I/O CONFIG Analog outputs

Std analog outs

Analog output 1

An out 1 src

An out 1 src

An out 1 cfg

An out 1 scale

An out 1 hi lim

An out 1 lo lim

An out 1 mon

An out 1 mon

Exp ana out en

Analog output 1X

Analog output 2X

Analog output 3X

Analog output 4X

Exp ana out en

I/O CONFIG SAVE PARAMETERS

The analog output Block is shown in the figure below.

An out 1 src X

An out 1 lo lim

An out 1 hi lim

An out 1 scale

An out 1 monAn out 1 src X

An out 1 lo lim

An out 1 hi lim

An out 1 scale

An out 1 mon

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 72: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————72Ch.1

An out 1 src

An out 1 src It connects the selected signal to the Block input

An out 1 cfg

An out 1 scale Scale or multiplicative factor of the Block

An out 1 hi lim Count value aimed at obtaining +10V. Value must be higher than zero.

An out 1 lo lim Count value aimed at obtaining -10V. Value must be lower than zero.

An out 1 mon

An out 1 mon Monitor for the output value in count

Exp analog outs en

Analog output 1X Source, Configuration and Monitor of the Analog output 1X

………… …………

Analog output 4X Source, Configuration and Monitor of the Analog output 4X

Exp ana out en Enabling of the expanded analog outputs.

1.6.4 Digital Input Block (Digital Inputs)

The Blocks of the digital inputs allow to turn a signal available on the terminal strip into an internal signal. Asdescribed before, the output of the Blocks is included in the lists for the selection of the different sources (src). TheBlock function allows to invert the signal on the terminal strip.

For example, if the potential available on the terminal strip is +24V, and the inversion is disabled (not inverted)the input state is 1 (one), standard configuration; if the inversion is enabled (inversion) the input state is 0 (null).

The Drive is supplied with 8 standard digital programmable inputs, referred as Std. The Drive ENABLE isset on the Digital input 0; such condition can not be changed as it is performed via the hardware. Its function,anyway, can be combined with a command signal in the sources of the other Blocks. For example, with theDrive Enable it is possible to set at zero the Ramp output. In the list of the control signals for the Ramp controlBlock from the Ramp funct src source, it is possible to connect to Ramp input = 0 the Digital Input 0 Enablemon (the Drive enable set on Digital input 0).

During the Drive enabling phase, therefore, by making the ENABLE active, the Ramp output is set at zero. Withthe expansion cards it is possible to obtain 12 expanded digital programmable inputs, referred as Exp with a“X” suffix.

Description:

I/O CONFIG Digital inputs

Std digital inps

Std dig inp cfg

DI 1 inversion

DI 2 inversion

DI 3 inversion

DI 4 inversion

DI 5 inversion

DI 6 inversion

DI 7 inversion

Std dig inp mon

DI 0 Enable mon

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 73: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.173

DI 1 monitor

DI 2 monitor

DI 3 monitor

DI 4 monitor

DI 5 monitor

DI 6 monitor

DI 7 monitor

DI 7654321E

Digital inputs

Exp digital inps

Exp dig inp cfg

DI 0X inversion

DI 1X inversion

DI 2X inversion

DI 3X inversion

DI 4X inversion

DI 5X inversion

DI 6X inversion

DI 7X inversion

DI 8X inversion

DI 9X inversion

DI 10X inversion

DI 11X inversion

Exp dig inp mon

DI 0X monitor

DI 1X monitor

DI 2X monitor

DI 3X monitor

DI 4X monitor

DI 5X monitor

DI 6X monitor

DI 7X monitor

DI 8X monitor

DI 9X monitor

DI 10X monitor

DI 11X monitor

DIX BA9876543210

Exp dig inp en

Exp dig inp en

I/O CONFIG SAVE PARAMETERS

The Digital Input Block is shown in the figure below.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 74: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————74Ch.1

Std digital inps cfg

DI 1 inversion It inverts the input signal……… ………DI 7 inversion It inverts the input signalStd digital inps monDI 0 Enable mon Monitor for the Enable terminalDI 1 monitor Monitor for the Block output 1……… ………DI 7 monitor mon Monitor for the Block output 7DI 7654321E Monitor for all Inputs. Under each number the logical state of each single

Input is displayed.Exp digital inps cfgDI 0X inversion It inverts the input signal……… ………DI 11X inversion It inverts the input signalExp digital inps monDI 0X monitor Monitor for the Block output 0X……… ………DI 11x monitor Monitor for the Block output 11XDIX BA9876543210 Monitor for all Exp Inputs. Under each number the logical state of each

single Input is displayed.Exp digital inps en

Exp dig inp en Enabling of the expanded digital inputs

DIX BA9876543210

DI 7654321E

DI 0X inversion

DI 11X inversion

DI 1 inversion

DI 7 inversion

Exp dig inp en

DI 1 MON

DI 0X MON

DI 0 MON

DI 2 MON

DI 3 MON

DI 4 MON

DI 5 MON

DI 6 MON

DI 7 MON

DI 1X MON

DI 2X MON

DI 3X MON

DI 4X MON

DI 5X MON

DI 6X MON

DI 7X MON

DI 8X MON

DI 9X MON

DI 10X MON

DI 11X MON

Terminal Inputs Std

Terminal Inputs Exp

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 75: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.175

1.6.5 Digital Output Block (Digital Outputs)

The Blocks of the digital outputs allow to turn an internal signal into a signal available on the terminal strip. In thiscase too there are a series of standard outputs on the drive, referred as Std, and a series of outputs available onthe expansion cards, referred as Exp with a “X” suffix in the numeration sequence. As for the digital inputs, thisBlock allows the output inversion.

The Drive is supplied with 4 standard digital programmable outputs referred as Std. With the expansion cardsit is possible to obtain 8 expanded digital programmable outputs referred as Exp with a “X” suffix.

The Block inputs are: · Digital output 0 src

· Digital output 1 src

· Digital output 2 src

· Digital output 3 src

Description:I/O CONFIG Digital outputs

Std digital outsStd dig out src

DO 0 srcDO 1 srcDO 2 srcDO 3 src

Std dig out cfgDO 0 inversionDO 1 inversionDO 2 inversionDO 3 inversion

Std dig out monDO 3210

Exp digital outsExp dig out src

DO 0X srcDO 1X srcDO 2X srcDO 3X srcDO 4X srcDO 5X srcDO 6X srcDO 7X src

Exp dig out cfgDO 0X inversionDO 1X inversionDO 2X inversionDO 3X inversionDO 4X inversionDO 5X inversionDO 6X inversionDO 7X inversion

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 76: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————76Ch.1

Exp dig out monDOX 76543210

Exp dig out enExp dig out en

I/O CONFIG SAVE PARAMETERS

The Digital Output Block is shown in the figure below.

DO 76543210

DO 3210

Exp dig out en

Do 0 src

Do 1 src

Do 2 src

Do 3 src

Do 0X src

Do 1X src

Do 2X src

Do 3X src

Do 4X src

Do 5X src

Do 6X src

Do 7X src

Terminal Outputs Std

Terminal Outputs Exp

DOX 7 inversion

DO 0 inversion

DO 3 inversion

DOX 0 inversion

Std digital outs src

DO 0 src It connects the selected signal to the output

DO 1 src It connects the selected signal to the output

DO 2 src It connects the selected signal to the output

DO 3 src It connects the selected signal to the output

Std digital outs cfg

DO 0 inversion It inverts the output signal

……… ………

DO 3 inversion It inverts the output signal

Std digital outs mon

DO 3210 Monitor for all Standard outputs.

The output logical state is displayed under each number.

Exp digital out src

DO 0X src It connects the selected signal to the output

……… ………

DO 7X src It connects the selected signal to the output

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 77: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.177

Exp digital out cfg

DO 0X inversion It inverts the output signal

……… ………

DO 7X inversion It inverts the output signal

Exp digital out mon

DO 76543210 Monitor for all Expanded outputs.

The output logical state is displayed under each number.

Exp digital outs en

Exp dig out en Enabling of the expanded digital outputs

1.6.5.1 Configuration of the OK Relay (Terminals 80, 82)

DO 0 src parameter defines the conditions that the relay contacts will close.

Drive OK The contact closes when the drive is powered up with no failure alarms.

Drive Ready The contact closes when the following conditions are fulfilled:

- The drive is powered up

- There are no failure alarms present

- The drive is enabled. The enable operation is defined by parameters [En/disable mode]& [Commands sel]

- The magnetizing procedure has been completed (Drive is ready to deliver torque).

NOTE! The contact opens immediately on a drive failure, or when the drive is disabled.

1.6.6 Word Composing and Decomposing Block (Bits->Word & Word->Bits)

Sometimes it is necessary to put some bits together in order to transfer some information along the communica-tion channel. The Word Composing Block, Bit->Word, is useful in this case to communicate, for example, withthe DGFC: it is possible to compose a word made of Drive ready, Drive ok, Ref is zero, Speed is zero, bycommunicating on a single word.

The opposite operation is necessary when the digital words written, for example, by the DGFC have to be read.The Word Decomposing Block, Word->Bit, allows to set some signals on a digital word; each signal composingthe word, on the Block input, can be combined with an output channel.

The Bits->Wordn Block has 16 inputs, where each of them can be connected to a signal; the output of theWord compn Block contains the packed input bits.

The Wordn->Bits Block has an input word and 16 Bx Wn decomp output bits.

- Wordn and Wn, where n is 0 or 1.

- Bx, where x is a bit from 0 to 15.

Each function has two blocks: Word 0 and Word 1 – W0 decomp and W1 decomp.

Description:

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 78: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————78Ch.1

I/O CONFIG Bits->Word

Bits->Word0 src

Word0 B0 src

Word0 B1 src

Word0 B2 src

Word0 B3 src

Word0 B4 src

Word0 B5 src

Word0 B6 src

Word0 B7 src

Word0 B8 src

Word0 B9 src

Word0 B10 src

Word0 B11 src

Word0 B12 src

Word0 B13 src

Word0 B14 src

Word0 B15 src

Bits->Word0 mon

W0 comp out

Bits->Word1 src

Word1 B0 src

Word1 B1 src

Word1 B2 src

Word1 B3 src

Word1 B4 src

Word1 B5 src

Word1 B6 src

Word1 B7 src

Word1 B8 src

Word1 B9 src

Word1 B10 src

Word1 B11 src

Word1 B12 src

Word1 B13 src

Word1 B14 src

Word1 B15 src

Bits->Word1 monW1 comp out

I/O CONFIG Word->BitsWord0->Bits src

W0 decomp srcWord0->Bits cfg

W0 decomp inp

Word0->Bits mon

W0 decomp mon

B0 W0 decomp

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 79: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.179

B1 W0 decomp

B2 W0 decomp

B3 W0 decomp

B4 W0 decomp

B5 W0 decomp

B6 W0 decomp

B7 W0 decomp

B8 W0 decomp

B9 W0 decomp

B10 W0 decomp

B11 W0 decomp

B12 W0 decomp

B13 W0 decomp

B14 W0 decomp

B15 W0 decomp

Word1->Bits src

W1 decomp src

Word1->Bits cfg

W1 decomp inp

Word1->Bits mon

W1 decomp mon

B0 W1 decomp

B1 W1 decomp

B2 W1 decomp

B3 W1 decomp

B4 W1 decomp

B5 W1 decomp

B6 W1 decomp

B7 W1 decomp

B8 W1 decomp

B9 W1 decomp

B10 W1 decomp

B11 W1 decomp

B12 W1 decomp

B13 W1 decomp

B14 W1 decomp

B15 W1 decomp

I/O CONFIG SAVE PARAMETERS

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 80: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————80Ch.1

The Bits - > Word / Word ->Bits Block is shown in the figure below.

W0 comp outBIT_0

BIT_1

BIT_2

BIT_3

BIT_4

BIT_5

BIT_6

BIT_7

BIT_8

BIT_9

BIT_10

BIT_11

BIT_12

BIT_13

BIT_14

WORD_0

BIT_0

BIT_1

BIT_2

BIT_3

BIT_4

BIT_5

BIT_6

BIT_7

BIT_8

BIT_9

BIT_10

BIT_11

BIT_12

BIT_13

BIT_14

WORD_0

Word B0 src

Word B0 src

Word B0 src

Word B0 src

Word B0 src

Word B0 src

Word B0 src

Word B0 src

Word B0 src

Word B0 src

Word B0 src

Word B0 src

Word B0 src

Word B0 src

Word B0 src

Word-> Bits

Word-> Bits

Word-> Bits

Word-> Bits

Word-> Bits

Word-> Bits

Word-> Bits

Word-> Bits

Word-> Bits

Word-> Bits

Word-> Bits

Word-> Bits

Word-> Bits

Word-> Bits

W0 decomp src

Bits->Wordn src

Wordn B0 src It connects the selected signal to the Block input

………… …………

Wordn B15 src It connects the selected signal to the Block input

Bits->Wordn mon

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 81: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.181

Wn comp out Monitor for the hexadecimal output value

Wordn->Bits src

Wn decomp src It connects the selected signal to the Block input

Wordn->Bits cfg

Wn decomp inp It allows to set the Wn decomp inp with a value.The Wn decomp inp is the default source of the DecompWord block.

Wordn->Bits mon

W0 decomp mon Monitor of the hexadecimal input value for the Decomp Word Block.

B0 Wn decomp Monitor for each output.

…………

B15 Wn decomp

1.6.7 Forward and Reverse Control Block (Fwd Rev Ctrl)

The use of this Block allows a protection in case of a sudden failure of the Forward or Reverse command,therefore a protection on the rotation direction. The Block has two inputs, Forward src and Reverse src, andtwo outputs FRC invers and FRC alarm.

The output can be connected where necessary, for example on the Ramp or Speed Blocks.

When the drive is started, refer to the following table:

Forward src Reverse src FRC invers FRC alarm

1 1 0 1

TAVyS006

If one of the two input signals is zero, refer to the table below:

Forward src Reverse src FRC invers FRC alarm

0 0 Not change 1

1 0 0 0

0 1 1 0

1 1 Not change Not changeTAVyS008

If both inputs are high during the functioning phase, both outputs maintain the previous state.

Description:

I/O CONFIG Fwd Rev Ctrl

Fwd Rev Ctrl src

Forward src

Reverse src

Fwd Rev Ctrl mon

FRC cmd mon

FRC invers

FRC alarm

I/O CONFIG SAVE PARAMETERS

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 82: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————82Ch.1

The Forward and Reverse control Block is shown in the figure below.

FRC cmd mon

Forward src

Reverse src

FRC

FRC invers

FRC alarm

Fwd Rev Ctrl src

Forward src It connects the selected signal to Forward

Reverse src It connects the selected signal to Reverse

Fwd Rev Ctrl mon

FRC cmd mon Monitor for the Fwd Rev. Fwd LSB, Rev MSB signals.

FRC invers Monitor for the Invers output

FRC alarm Monitor for the Alarm output

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 83: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.183

1.7 RAMP CONFIGURATION (RAMP CONFIG)

It is possible to select a Linear or S- shaped ramp.

0

NULL

NULL

NULL

NULL

Mlt ramp s1 src

Mlt ramp s0 src

Mlt ramp sel m

CTRL

Mlt ramp set 0

Mlt ramp set 1

Mlt ramp set 2

Mlt ramp set 3

Scurve time set 0

Ramp output=0

Ramp freeze

Ramp setpoint

Ramp input=0

Ramp out mon

Ramp shape Ramp out enable

Ramp ref 1 src

Ramp setpoint

Ramp ref inv src

Ramp ref 2 src

Ramp ref 3 src

+1

-1

+

+

+

+

RAMP FUNCTIONRAMP SETPOINT

0

MULTI RAMP

Analog input 1 out

(Default)

Mlt ramp set 0

Int ramp ref 2

Speed setpoint input

RAMP CONFIG (factory setup)

1.7.1 Ramp Setpoint Block (Ramp Setpoint)

The Function of this Block is to generate the speed Setpoint for the Ramp Block. A Setpoint is a Reference.

By algebraically adding its inputs, the Block generates the output Setpoint.

On the input the Block allows to select the origin of the sources: Ramp Ref 1 src and Ramp Ref 2 src are twoselectable references.

The internal value can be allocated in the Block configurations through the Int ramp ref 1 and Int ram ref 2 parameters.

Ramp Ref 3 src will be added to Ramp Ref 1 src. Default setting is connected to Moto potentiometer output.

Ramp Ref inv src allows to invert the whole output Setpoint. The output state is determined by a multiplieraccording to the state of the connected signal.

The following references are connected together with the signals of the three input Sources: the output referenceof the Motopotentiometer Block and the output reference of the Multi Speed Block.

NOTE! Ramp ref 2 mon must be zero for the drive to stop without opening the enable input.

The inputs of this block are: · Ramp Ref 1 src

· Ramp Ref 2 src

· Ramp Ref 3 src

· Ramp ref inv src

The outputs are: · Ramp setpoint

Some Inputs and the Ramp Setpoint Output signal can be monitored.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 84: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————84Ch.1

Description:RAMP CONFIG Ramp setpoint

Ramp ref srcRamp ref 1 srcRamp ref 2 srcRamp ref 3 srcRamp ref inv src

Ramp ref cfgInt ramp ref 1Int ramp ref 2Int ramp ref 3

Ramp ref monRamp ref 1 monRamp ref 2 monRamp ref 3 monRamp setpoint

RAMP CONFIG SAVE PARAMETERS

The Ramp Setpoint Block is shown in the figure below.

Ram ref 1 src

Ram ref 3 src

Ram ref 2 src

Ram ref inv src

Ram setpoint

Ramp ref src

Ramp ref 1 src It connects the selected signal as Ramp Ref 1Ramp ref 2 src It connects the selected signal as Ramp Ref 2Ramp ref 3 src It connects the selected signal as Ramp Ref 3Ramp ref inv src It connects the selected signal to the selector of the multiplier input:

if the signal is 0, multiply by +1, or if the signal is 1, multiply by -1.Ramp ref cfg

Int ramp ref 1 Setting of the Int ramp ref 1 variableInt ramp ref 2 Setting of the Int ramp ref 2 variableInt ramp ref 3 Setting of the Int ramp ref 3 variableRamp ref mon

Ramp ref 1 mon Monitor of the Ramp ref 1 signalRamp ref 2 mon Monitor of the Ramp ref 2 signalRamp ref 3 mon Monitor of the Ramp ref 3 signalRamp setpoint Monitor of the Ramp setpoint output signal

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 85: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.185

1.7.2 Multi Ramp Block (Multi Ramp)

This Block allows to select 4 different sets of the Ramp times. Each Ramp time set allows to set the accelera-tion and deceleration times of the Ramp and of the S-Ramp and the deceleration time of the Fast Stop.

The Block has two input sources: Multi Ramp set 0 src and Multi ramp set 1 src.

According to the state of the signals connected to the sources, it is possible to select one of the output MultiRamp Sets.

These are called: MRO – MR1 – MR2 – MR3.

The state of each single Set is monitored via the Multi Ramp sel mon menu, where if MR0 is active, the valuedisplayed is 0, if MR1 is active, the value displayed is 1, etc.

The next table lists the possible combinations of the inputs, which, on their turn, determine the different outputs:

TAV3i009

0

1

1

1

0

1

MR1

MR2

MR3

Multi Ramp set 0 srcMulti Ramp set 1 src ACTIVE SET

0 MR00

The normally used Ramp is the one set in Set 0.

The inputs of this Block are: · Mlt ramp s0 src

· Mlt ramp s1 src

The outputs are: · The ACTIVE SET which goes into the Ramp Block

Each set is made of (for example MR0):

· MR0 acc dlt spd Delta speed acceleration – speed variation in rpm

· MR0 acc dlt time Delta time acceleration - time, in seconds, needed to perform the acc dtl sdp

· MR0 dec dlt spd Delta speed deceleration – speed variation in rpm

· MR0 dec dlt time Delta time deceleration - time, in seconds, needed to perform the dec dtl spd

· MR0 fdec dlt spd Faststop-Delta speed deceleration – for the faststop ramp, as for dec dtl spd

· MR0 fdec dlt time Faststop-Delta time deceleration – for the faststop ramp, as for dec dtl time

· MR0 acc S curve acceleration half-adjust time for the S-Ramp in seconds

· MR0 dec S curve deceleration half-adjust time for the S-Ramp in seconds

Description:RAMP CONFIG Multi ramp

Multi ramp srcMlt ramp s0 srcMlt ramp s1 src

Multi ramp cfgMulti ramp set 0

Acc set 0MR0 acc dlt spdMR0 acc dlt time

Dec set 0MR0 dec dlt spd

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 86: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————86Ch.1

MR0 dec dlt timeDec FS set 0

MR0 fdec dlt spdMR0 fdec dlttime

Scurve time set0MR0 acc S curveMR0 dec S curve

Multi ramp set 1Acc set 1

MR1 acc dlt spdMR1 acc dlt time

Dec set 1MR1 dec dlt spdMR1 dec dlt time

Dec FS set 1MR1 fdec dlt spdMR1 fdec dlttime

Scurve time set1MR1 acc S curveMR1 dec S curve

Multi ramp set 2Acc set 2

MR2 acc dlt spdMR2 acc dlt time

Dec set 2MR2 dec dlt spdMR2 dec dlt time

Dec FS set 2MR2 fdec dlt spdMR2 fdec dlttime

Scurve time set2MR2 acc S curveMR2 dec S curve

Multi ramp set 3Acc set 3

MR3 acc dlt spdMR3 acc dlt time

Dec set 3MR3 dec dlt spdMR3 dec dlt time

Dec FS set 3MR3 fdec dlt spdMR3 fdec dlttime

Scurve time set3MR3 acc S curveMR3 dec S curve

Multi ramp monMlt ramp sel mon

RAMP CONFIG SAVE PARAMETERS

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 87: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.187

The Multi Ramp Block is shown in the figure below.

Mlt ramp s1 src

Mlt ramp s0 src

Mlt ramp sel m

CTRL

Mlt ramp set 0

Mlt ramp set 1

Mlt ramp set 2

Mlt ramp set 3

Scurve time set 0

Ramp Setpoint

Multi ramp src

Mlt ramp s0 src 0 selector source of the Ramp SetMlt ramp s1 src 1 selector source of the Ramp SetMulti ramp set 0

RAMP Acc set 0

MR0 acc dlt spd

MR0 acc dlt time

RAMP Dec set 0

MR0 dec dlt spd

MR0 dec dlt time

RAMP Dec FS set 0

MR0 fdec dlt spd

MR0 fdec dlttime

RAMP Scurve time set0

MR0 acc S curve

MR0 dec S curve

Multi ramp mon

Mlt ramp sel mon Monitor of the selected ramp set

MR0 acc dlt spd

Ramp

output

MR0 dec dlt spd

1=MR0 acc dlt time2=MR0 dec dlt time

1 1

2 2

n

t

t

t

Figure 1.7.2.1: Acceleration and Deceleration Ramps

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 88: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————88Ch.1

1.7.3 Ramp Block (Ramp Function)

The Function of this Block is to generate the Ramped Speed reference. Such signal is generated by tracking thereference of the Ramp Setpoint Block with the Ramp times defined in the Multi Ramp Block.

The Block allows to select the source origin on the input:

Ramp input = 0 which allows to obtain the input zero setting, Ramp output = 0 which allows to obtain theoutput zero setting, Ramp freeze which maintains on the output the reference value independently of the pos-sible variations on the input.

Furthermore, among the parameters it is possible to configure:

with Ramp shape the ramp type, if a Linear or an S-shaped, with Ramp out enable it is possible to disable theRamp output only as a reference, that is blocking the output by keeping the signal active.

When the Drive is enabled, the Block has at its disposal the Catch on the fly function, capturing a rotating motor.The function allows to detect the motor speed and to set the output of the Ramp Block at the same speed as the motor one.

The main application fields are: the reinsertion after an alarm intervention or during the capturing of a motoralready started by a load, etc.

It is possible to monitor the output signal, the output state (if enabled or disabled), the ramp acceleration ordeceleration state and the command state.

The inputs of this Block are: · Ramp input=0

· Ramp output=0

· Ramp freeze

The outputs are: · Ramp out mon

· Ramp acc state

· Ramp dec state

· Ramp out != 0

Description:

RAMP CONFIG Ramp function

Ramp funct src

Ramp input=0

Ramp output=0

Ramp freeze

Ramp funct cfg

Ramp out enable

Ramp shape

Ramp funct mon

Ramp out mon

Ramp acc state

Ramp dec state

Ramp out != 0

Ramp cmds mon

RAMP CONFIG SAVE PARAMETERS

The Ramp Block is shown in the figure below.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 89: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.189

Ramp output=0

Ramp freeze

Ramp setpoint

Ramp input=0

Ramp out mon

Ramp shape Ramp out enable

Ramp functionRAMP CONFIG Ramp funct srcRamp input=0 Selection of the source Ramp imput=0Ramp output=0 Selection of the source Ramp output=0Ramp freeze Selection of the source Ramp freeze=0Ramp funct cfgRamp out enable Ramp enablingRamp shape Ramp selection. Linear or S-shaped rampRamp funct monRamp out mon Ramp output monitorRamp acc state Ramp state. 1 = AccelerationRamp dec state Ramp state. 1 = DecelerationRamp out != 0 Ramp output different from zero. If enable = 0. If disable = 1Ramp cmds mon Command monitor for the ramp Block

Bit 0 -> Ramp output = 0, if ONE the value is 1Bit 1 -> Ramp input = 0, if ONE the value is 2Bit 2 -> Ramp freeze, if ONE the value is 4Bit 3 -> Ramp out enable

NOTE! the acceleration/deceleration state makes reference to a speed increase/decrease with anabsolute value.

Ramp shapen

t

Figure 1.7.3.1: Ramp Shape

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 90: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————90Ch.1

1.8 SPEED CONFIGURATIONS (SPEED CONFIG)

1.8.1 Speed Setpoint Block and Speed Ratio Block (Speed Setpoint & Speed Ratio)

The Function of the speed Setpoint block is to generate the Setpoint for the speed regulation Block. The speed Setpointis obtained by algebraically adding on the input the references Speed ref 1 and Speed ref 2, the Ramp Block output

Ramp output and the Jog Block output, Jog output. A Setpoint is a Reference.

On the input the Block allows to connect the following sources:

Speed ref 1 src and Speed ref 2 src allow to select the origin of the speed references. In a standard conditionsuch sources are connected to Int speed ref 1 and Int speed ref 2, which can be set in the Block configurations.

Speed ref inv src allows to invert the whole output Setpoint. A multiplier determines the output state accordingto the state of the connected signal.

NOTE! Ramp ref 2 mon must be zero for the drive to stop without opening the enable input.

The Speed Ratio function is implemented on the Block. With such function, given a line reference on severalDrives, it is possible to regulate the percentage (%) of the local speed reference as compared to the line.

The Function adds to its inputs the Ramp Block output, Ramp output, with the Speed ref 1 reference. The sumis multiplied by the Speed ratio. The resulting value is referred as Speed Draw (in rpm).

Speed ratio src allows to select the origin of the signals stating the speed ratio, for example the Int speed ratiowith a % value is standard connected and can be configured in the Ratio Block.

In the Block configurations, furthermore, together with the already mentioned references, it is also possible to configurethe Speed top and the Speed bottom. They state the speed upper and lower limit. Their value is given in rpm.

On the output it is possible to monitor some input signals and the Block outputs: the Speed setpoint reference, theSpeed draw output and the Speed limit state, which determines the reaching of the set speed limit.

The inputs of this Block are: · Speed Ref 1 src

· Speed Ref 2 src

· Speed ref inv src

· Speed ratio src

· Ramp out mon

· Jog output

The outputs: · Speed setpoint

· Speed draw out

· Speed lim state

The Function of the Speed Ratio Block allows to set the Speed Ratio.

The Block source, Speed ratio src, is the same as the one present in the Speed Setpoint Block.

int speed ratio with a % value is standard connected, but, anyway, also the connection of analog and digitalsignals is possible.

The Speed ratio cfg configuration menu allows to configure the Int speed ratio parameter.

Its default value is 100%, corresponding to the multiplicative factor 1.

The Block input: · Speed ratio src

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 91: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.191

The output: · Speed ratio mon

Description:

SPEED CONFIG Speed setpoint

Speed ref src

Speed ref 1 src

Speed ref 2 src

Speed ratio src

Speedref inv src

Speed ref cfg

Int speed ref 1

Int speed ref 2

Speed top

Speed bottom

Speed ref mon

Ramp out mon

Speed ref 1 mon

Speed ref 2 mon

Jog output

Speed draw out

Speed lim state

Speed setpoint

SPEED CONFIG Speed ratio

Speed ratio src

Speed ratio src

Speed ratio cfg

Int speed ratio

Speed ratio mon

Speed ratio mon

SPEED CONFIG SAVE PARAMETERS

The Speed Setpoint and Speed Ratio Block is shown in the figure below.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 92: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————92Ch.1

Speed ref src

Speed setpoint

Speed ref 1 src Selection of the source of the speed reference 1Speed ref 2 src Selection of the source of the speed reference 2Speed ratio src Selection of the source of speed ratioSpeedref inv src It connects the selected signal to the selector of the multiplier input:

if the signal is 0, multiply by +1, or if the signal is 1, multiply by -1.Speed ref cfg

Int speed ref 1 Setting of the Int speed ref 1 variableInt speed ref 2 Setting of the Int speed ref 2 variableSpeed top Speed upper limit (in rpm)Speed bottom Speed lower limit (in rpm)Speed ref mon

Ramp out mon Monitor for the output of the Ramp BlockSpeed ref 1 mon Speed ref 1 MonitorSpeed ref 2 mon Speed ref 2 MonitorJog output Monitor for the output of the Jog BlockSpeed draw out Monitor for the Speed draw outputSpeed lim state Monitor for the speed Limit state. 1 active limitSpeed setpoint Speed setpoint MonitorSpeed ratio src Source selectionSpeed ratio cfg Setting of the speed ratio with a % value

Speed ratio mon Monitor for the speed ratio value

1.8.1.1 Example: Rubber Calender

M

DRIVE A

MASTER = 1000 rpm 1050 rpm 1100 rpm

+LINE SPEED

DRIVE B DRIVE C

+

Line speedratio 1 = ±5%

Line speedratio 2 = ±10%

AN. INPUT1

AN. INPUT1 2

AN. INPUT1 2

- +-

M M

Example setting:

DRIVE A (master)

Set: Ramp ref 1 src = An inp 1 output

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 93: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.193

DRIVE B

Line speed ratio 1 = Line speed +/- 5%

Set: Ramp ref 1 src = An inp 1 output

Set: Speed ratio src = An inp 2 output

Set in submenù Analog input 2 config: An inp 2 type = +/-10V

An inp 2 lo lim = 15564 count

An inp 2 hi lim = 17203 count

DRIVE C

Line speed ratio 2 = Line speed +/- 10%

Set: Ramp ref 1 src = An inp 1 output

Set: Speed ratio src = An inp 2 output

Set in submenù Analog input 2 config: An inp 2 type = +/-10V

An inp 2 lo lim = 14745 count

An inp 2 hi lim = 18072 count

For count parameters of lo lim e hi lim to see capter 1.1.3 Signal Normalization, or to use:

100% : 16384 = 105% : X hi lim for Line speed +5%

100% : 16384 = 95% : X lo lim for Line speed -5%

1.8.2 Speed Regulation Block (Spd reg Function)

The Block Function, Regulator of the PI Speed (Proportional Integrative), is only active in a Sensorless andField Oriented mode.

Among its functions the Block is set to work together with the Speed/Torque regulation Block (OR regulator).Through the input sources it is possible to select the origin of the input signals:

Spd I=0 src allows to set at zero, temporary, the Regulator Integral section, while Spd PI=0 src allows to set atzero, temporary, the Regulator ProportionalIntegral section.

In the configurations it is possible to enable or disable the Block function (enable/disable ) via the Spd regenable parameter.

The gains set in the Adaptive Block of the Speed Regulator gains are active in the Speed Regulator itself.

They are set in the REGULATION PARAM / spd regulator menu where it is possible to set the basic gain of theP and I sections and their respective % gains.

The inputs of this Block are: · Speed ref Out

· Speed feedback

· Speed PI = 0 src

· Speed I = 0 src

· P gain

· I gain

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 94: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————94Ch.1

Description:SPEED CONFIG Spd reg function

Spd reg func srcSpd I=0Spd PI=0

Spd reg func cfgSpd reg enable

Spd reg func monSpd I=0 monSpd PI=0 mon

SPEED CONFIG SAVE PARAMETERS

REGULATION PARAM Spd regulatorPercent values

SpdP1 gainSpdI1 gain

Base valuesSpdP base valueSpdP base value

In use valuesInUse SpdP gain%InUse SpdI gain%

REGULATION PARAM SAVE PARAMETERS

The Speed Regulation Block is shown in the figure below.

Speed setpoint

Speed

Droop out

Speed up out

In Use spd P gain %

In Use spd I gain %

Spd PI=0

Spd I=0

Spd reg enable

Spd I=0 mon

Spd PI=0 mon

SPEED CONFIG

Spd reg func src

Spd I=0 Selection of the Source of the Integral section Block. Theintegral section is set at zero and stops its integrating activity.

Spd PI=0 Selection of the source of the Integral and Proportional sec-tion Block. The integral section is set at zero and stops itsintegrating activity.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 95: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.195

Spd reg func cfg

Spd reg enable Enabling of the speed regulator

Spd reg func mon

Spd I=0 mon State monitor for the command Spd I=0

Spd PI=0 mon State monitor for the command Spd PI=0

REGULATION PARAM

Spd regulator

Percent values

SpdP1 gain Gain of the Proportional section as a percentage of the basic value

SpdI1 gain Gain of the Integral section as a percentage of the basic value

Base values

SpdP base value Basic value of the Proportional gain

SpdP base value Basic value of the Integral gain

In use values

InUse SpdP gain% Value in use for the Proportional gain. It allows to know theactive gain if the gain profile curve has been set.

InUse SpdI gain% Value in use for the integral gain.

1.8.3 Jog Function Block (Jog)

This Block states the Speed reference of the Jog Function.

It is possible to set 4 Jog speeds: Jog 0, Jog 1, Jog 2 and Jog 3. The output desired speed can be activated accordingto the state of the selection inputs Jog sel 0 src and Jog sel 1 src. On the Block input it is possible to select via Joginvers src a signal which, through an internal multiplier, is able to state the output inversion (Jog output).

Furthermore with Jog 0 src it is possible to select the reference signal of Jog 0 (Jog 0 standard configuration); with Jogcmd src it is possible to select the command for the activation of the Jog Block (NULL standard configuration).

In the Block configurations, together with the setting of the 4 different speeds, it is possible to state the ramptimes (acceleration and deceleration) of the Jog Function. The table below lists the possible combinations of theinputs stating the active reference:

TAV3i010

1

1

1

0

1

Jog 1

Jog 2

Jog 3

Jog sel 1 src Jog sel 0 src ACTIVE JOG

0 Jog 00

0

The usually active Speed is that of JOG 0.

Through Jog sel mon it is possible to monitor which speed is active on the output. The Jog 0 reference value, theBlock state and the Block output (in rpm) can be monitored too.

The Block inputs are: · Jog 0 src

· Jog cmd src

· Jog sel 0 src

· Jog sel 1 src

· Jog invers src

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 96: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————96Ch.1

The outputs: · Jog output

· Jog sel mon

· Jog 0 mon

· Jog state

Description:

SPEED CONFIG Jog

Jog src

Jog 0 src

Jog cmd src

Jog sel 0 src

Jog sel 1 src

Jog invers src

Jog cfg

Jog 0

Jog 1

Jog 2

Jog 3

Jog acc dlt spd

Jog acc dlt time

Jog dec dlt spd

Jog dec dlt time

Jog mon

Jog 0 mon

Jog sel mon

Jog output

Jog state

SPEED CONFIG SAVE PARAMETERS

The Jog Block is shown in the figure below (* Keypad command).

Jog 0 src

Jog output

Jog sel 1 src

Jog invers src

Jog cmd src

Jog state

Jog sel 0 src

Jog 0

Jog 1

Jog 2

Jog 3

Jog sel mon

Jog acc dlt spd

Jog acc dlt time

Jog dec dlt spd

Jog dec dlt time

+1

-1

INVK *

JOGCMDK *

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 97: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.197

Jog src

Jog 0 src Reference source for Jog 0

Jog cmd src Source for the Jog Block activation command

Jog sel 0 src Bit 0 source for the selection of the active Jog reference

Jog sel 1 src Bit 1 source for the selection of the active Jog reference

Jog invers src Source for the Jog reference inversion command

Jog cfg

Jog 0 Jog 0 speed

Jog 1 Jog 1 speed

Jog 2 Jog 2 speed

Jog 3 Jog 3 speed

Jog acc dlt spd Delta speed acceleration for the Jog ramp

Jog acc dlt time Delta time acceleration for the Jog ramp

Jog dec dlt spd Delta speed deceleration for the Jog ramp

Jog dec dlt time Delta time deceleration for the Jog ramp

Jog mon

Jog 0 mon Monitor for the Jog 0 reference value

Jog sel mon Monitor for the active Jog speed

Jog output Jog Block output

Jog state Jog Block state

1.8.4 Multi Speed Block (Multi Speed)

This Block allows to set up to 8 Internal Speed references, one of which is supplied with the Speed 0 Referencefunction. Three selection inputs allow to activate on the output the desired Speed.

Through the Mtl spd s 0 src, Mtl spd s 1 src, Mtl spd s 2 sources, it is possible to select the origin of the signalsstating the input combination (they are standard connected to NULL).

The Mtl spd 0 src source states the origin of the Speed 0 Reference signal (it is standard connected to Mtl spd 0).The 8 chosen speeds can be set in the configurations via Mtl spd 0 – 7. The following table lists the possiblecombinations of the three inputs stating the active Speed (0-7):

TAV3i011

1 1 1 Multi speed 7

1 1 0 Multi speed 6

1 0 1 Multi speed 5

1 0 0 Multi speed 4

0 1 1 Multi speed 3

0 1 0 Multi speed 2

0 0 1 Multi speed 1

0 0 0 Multi speed 0

Mtl spd sel 2 src Mtl spd sel 1 src Mtl spd sel 0 src ACTIVE SPEED

Speed 0 is usually active

It is possible to monitor the Block output, the state of the Speed 0 Reference and the output active Speed.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 98: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————98Ch.1

The Block inputs are: · Mtl spd 0 src

· Mtl spd s 0 src (Mtl spd s 0 = Multi speed s(elector) 0)

· Mtl spd s 1 src

· Mtl spd s 2 src

The outputs: · Mtl spd 0 mon

· Mtl spd sel mon

· Mtl spd out monDescription:

SPEED CONFIG Multi speed

Multi speed src

Mlt spd 0 src

Mlt spd s 0 src

Mlt spd s 1 src

Mlt spd s 2 src

Multi speed cfg

Mlt spd 0

Mlt spd 1

Mlt spd 2

Mlt spd 3

Mlt spd 4

Mlt spd 5

Mlt spd 6

Mlt spd 7

Multi speed mon

Mlt spd 0 mon

Mlt spd sel mon

Mlt spd out mon

SPEED CONFIG SAVE PARAMETERS

The Multi Speed Block is shown in the figure below.

Mlt spd 0 src

Mlt spd out mon

Mlt spd s 0 src

Mlt spd s 1 src

Mlt spd s 2 src

Mlt spd 0

Mlt spd 1

Mlt spd 2

Mlt spd 3

Mlt spd 4

Mlt spd 5

Mlt spd 5

Mlt spd 7

Mlt spd sel mon

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 99: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.199

Multi speed src

Mlt spd 0 src Mlt spd 0 source referenceMlt spd s 0 src Bit 0 source for the selection of the active Multi spd referenceMlt spd s 1 src Bit 1 source for the selection of the active Multi spd referenceMlt spd s 2 src Bit 2 source for the selection of the active Multi spd referenceMulti speed cfg

Mlt spd 0 Speed 0Mlt spd 1 Speed 1Mlt spd 2 Speed 2Mlt spd 3 Speed 3Mlt spd 4 Speed 4Mlt spd 5 Speed 5Mlt spd 6 Speed 6Mlt spd 7 Speed 7Multi speed mon

Mlt spd 0 mon Speed 0 monitorMlt spd sel mon Active selection monitorMlt spd out mon Monitor for the multispeed Block output

1.8.5 Motopotentiometer Block (Moto Pot)

The Motopotentiometer Function is always active.

Furthermore, through the Motopot up src and Motopot down src sources it is possible to select the origin of theSpeed increase and decrease and of the command signals.

The Block offers also the possibility to invert the output reference. The Motopot invers src source selects theinversion command.

The Speed Preset source, Motopot preset src, allows to select the Preset command. Such function can activatea series of settings active on the input and/or output reference.

In the Block configurations it is possible to set, with Motopot lower lim and Motopot upper lim, the speed upperand lower limit (in rpm and standard configured with 0 and 1000).

The Motopotentiometer acceleration and deceleration ramps are independent from those of the Ramp Block.

This Block, therefore, with Motopot acc dtl spd/time and Motopot dec dtl spd/time, allows to set theMotopotentiometer Ramp.

Motopot init config allows to set the function stating the Motopotentiometer reference value when the Drive isstarted. This parameter is selected among:

· Power off value at the turning off

· Zero zero rpm

· Lower limit Lower limit value

· Upper limit Upper limit value

Furthermore, Motopot preset cfg states the function of the Preset command. It is possible to select:

· None no operation

· Input = 0 the input state is set at zero

· Input = low lim it sets on the input the speed lower limit

· Input & ref = 0 it sets at zero the input and reference state

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 100: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————100Ch.1

· Input & ref = low lim it sets on the input and on the reference the speed lower limit

· Output = 0 it sets at zero the output state

· Output = low lim it sets on the output the speed lower limit

· Output & ref = 0 it sets at zero the output and reference state

· Output & ref = low lim it sets on the output and on the reference the speed lower limit

· Input = upp lim it sets on the input the speed upper limit

· Input & ref = upp it sets on the input and on the reference the speed upper limit

· Freeze input it freezes the input reference independently of the following variations

On the output it is possible to monitor the output and command state.

The Block inputs are: · Motopot up src

· Motopot down src

· Motopot invers src

· Motopot preset src

The outputs: · Motopot cmd mon

· Motopot output mon

Description:SPEED CONFIG Moto pot

Moto pot src

Mpot up src

Mpot down src

Mpot invers src

Mpot preset src

Moto pot cfg

Mpot lower lim

Mpot upper lim

Mpot acc dlt spd

Mpot acc dlt tim

Mpot dec dlt spd

Mpot dec dlt tim

Mpot init cfg

Mpot preset cfg

Moto pot mon

Mpot cmd mon

Mpot output mon

SPEED CONFIG SAVE PARAMETERS

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 101: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1101

The Motopotentiometer Block is shown in the figure below.

Mpot up src

Mpot down src

Mpot invers src

Mpot preset src

Mpot output mon

Mpot init cfg Mpot preset cfg

Mpot acc dlt spd

Mpot lower lim

Mpot upper lim

Mpot acc dlt tim

Mpot dec dlt spd

Mpot dec dlt tim

MPOT

CRTL

UPK

DOWNK

INVK

Moto pot src

Mpot up src Source of the up command, speed increase

Mpot down src Source of the down command, speed decrease

Mpot invers src Source of the command inverting the output speed

Mpot preset src Source of the preset command

Moto pot cfg

Mpot lower lim Upper limit

Mpot upper lim Lower limit

Mpot acc dlt spd Delta speed acceleration for the Motopot ramp

Mpot acc dlt tim Delta time acceleration for the Motopot ramp

Mpot dec dlt spd Delta speed deceleration for the Motopot ramp

Mpot dec dlt tim Delta time deceleration for the Motopot ramp

Mpot init cfg Configuration of the Init command

Mpot preset cfg Configuration of the Preset command

Moto pot mon

Mpot cmd mon Command monitor

Mpot output mon Block output monitor

1.8.6 Speed Zero Control Block (Spd 0 Logic)

The Function of the Speed 0 Block is active only in a Sensorless and Field oriented mode.

The Function generates the Speed 0 signal, Spd is zero, and the Reference 0 signal, Ref is zero.

In the configurations it is possible to set: with Spd 0 speed thr and Spd 0 spd delay the Speed 0 threshold anddelay; with Spd 0 ref thr and Spd 0 ref delay the threshold and the delay of the reference 0. Furthermorewith Spd 0 enable it is possible to enable the gain adaptive function with a Speed 0 value and with Spd 0 P gainand Spd 0 I gain to adapt the Proportional and Integral gain to a Speed 0 value.

The gains become active when both conditions Spd is zero and Ref is zero are true. They are not active whenRef is zero is false.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 102: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————102Ch.1

The Speed 0 signal, Speed is zero, becomes active when the motor speed is lower than the Spd 0 speedthr threshold. The signal “Spd is zero delay” is delayed by Spd 0 spd delay.

The Reference 0 signal, Ref is zero, becomes active when the speed reference connected to Spd 0 ref srcis lower than the Spd 0 ref thr threshold. The signal “Ref is zero delay” is delayed by Spd 0 ref delay.

On the Spd 0 ref src source it is possible to select the following signals:

· Null zero

· Ramp ref Ramp Block reference

· Speed ref Speed Block reference

· Int spd 0 ref internal value (it can be set in the configurations)

Description:

SPEED CONFIG Spd 0 logicSpd 0 logic src

Spd 0 ref srcSpd 0 logic cfg

Spd 0 enableInt spd 0 refSpd 0 P gainSpd 0 I gainSpd 0 speed thr

Spd 0 spd delaySpd 0 ref thrSpd 0 ref delay

Spd 0 logic monSpd is zero

Ref is zeroSpd is zero dly

Ref is zero dlyInUse SpdP gain%InUse SpdI gain%

SPEED CONFIG SAVE PARAMETERS

The Speed 0 Block is shown in the figure below.

Spd is zero

Ref is zero

Spd is zero dly

Ref is zero dly

InUse SpdP Gain%

InUse SpdI Gain%

Spd 0 ref src

>>Spd 0 P gain<<

>>Spd 0 I gain<<

Spd 0 speed thr

Spd 0 spd delay

Spd 0 ref thr

Spd 0 ref delay

Norm

Gain

SalGain

SPEED

Spd=0

&

Ref=0 Ref=0

Sbk P gain out

Sbk I gain out

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 103: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1103

Spd 0 logic src

Spd 0 ref src Reference selection to determine ref= 0. It can beselected among Ramp, Speed, Null, Int spd 0 ref

Spd 0 logic cfg

Spd 0 enable Adaptive enable with a speed 0

Int spd 0 ref Internal spd ref variable

Spd 0 P gain P gain with a speed 0

Spd 0 I gain I gain with a speed 0

Spd 0 speed thr Speed 0 threshold

Spd 0 spd delay Delay on the speed 0

Spd 0 ref thr Threshold on the Reference 0

Spd 0 ref delay Delay on the Reference 0

Spd 0 logic mon

Spd is zero Speed 0 state

Ref is zero Reference 0 state

Spd is zero dly Delayed speed 0 state

Ref is zero dly Delayed reference 0 state

InUse SpdP gain% Gains in use

InUse SpdI gain% Gains in use

1.8.7 Speed Regulator Gain Profile Block (Speed Gain Profile)

The Block function is active only in a Sensorless and Field Oriented mode.

The Speed Gain Profile function, SGP, allows different gains of the speed Regulator according to the variationsin the speed value or another user defined signal (ex. load variations, diameter, PID output, etc ).

The Block adapts the gains of the speed regulator according to the signal connected to the SGP ref src source(standard connected to Int SGP ref, Block internal value in count) and to the Profile of the set gains.

The Profile of the set gain is stated by:

. three levels of speed Proportional and Integral gain, SpdPx gain % and Spd Ix gain %.

· two thresholds (threshold - thr), SPG tran21 h thr and SPG tran32 l thr, which define the point of thetransitions between the three gain levels (see the figure)

· two transition Bands, SGP tran21 band and SGP tran32 band, that define the slope, by straight lines,connecting the gain levels.

Refer to the Speed Gain Profile block diagram. It is possible to set the value of the internal reference, Int SGPref, and its specific basic value, SGP base value.

SPG function is defaulted for use with Ramp reference, Speed reference or Norm speed. These variable'sscalings are 16384 counts, corresponding to the drive parameter [Full scale speed]. This is the reason why SGPbase value parameter is defaulted to 16384 counts.

SGP base value parameter can also be changed if gain modification is driven by some variable that has full scaledifferent then 16384 counts. For example 4096 counts, that comes from bus or other variables present in thesystem. It is also possible to write an independent variable value to Int SGP ref parameter.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 104: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————104Ch.1

NOTES! The selection of base value must be done prior to assigning thresholds and bands. After anychange of SPG base value, gains must be reassigned.

Values assigned to thresholds and bands must be in ascending order.

The value assigned to parameter [SGP tran21 h thr] must be higher then parameter [SGPtran 32 I thr] . Bands must be narrower then half the distance between [SGP tran21 h thr]and [SGP tran 32 I thr].

When the motor is stopped, the gain of the Speed Regulator is set by the Speed 0 P gain andSpeed 0 I gain, if the speed 0 function is enabled.

The Block input is: · SGP ref src

The outputs are: · SGP ref mon

· In use SpeedP gain%

· In use SpeedI gain%Description:

SPEED CONFIG Spd gain profile

SGP src

SGP ref src

SGP cfg

SpdP1 gain %

SpdI1 gain %

SpdP2 gain %

SpdI2 gain %

SpdP3 gain %

SpdI3 gain %

SGP tran21 h thr

SGP tran32 l thr

SGP tran21 band

SGP tran32 band

Int SGP ref

SGP base value

SGP mon

SGP ref mon

InUse SpdP gain%

InUse SpdI gain%

SPEED CONFIG SAVE PARAMETERS

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 105: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1105

The Gain Adaptive Block is shown in the figure below.

. . . .

Ref

Ref

SGP ref src

Int SGP ref

Int SGP ref

0 cnt

SpdI2 gain %

10 %

SpdP2 gain %10 %

SGP tran32 l thr

0 %

SGP tran21 h thr

0 %

SGP tran32 band

0 %

SGP tran21 band0 %

InUse SpdP gain%

InUse SpdI gain%

SGP base value

16384 cnt

SGP ref mon

SpdP3 gain %10 %

SpdP1 gain %

10 %

SpdI1 gain %

10 %

SpdI3 gain %10 %

Spd gain profile src

SGP ref src Source selection of the adaptive x axisSpd gain profile cfg

SpdP1 gain % Proportional Gain 1° segmentSpdI1 gain % Integral Gain 1° segmentSpdP2 gain % Proportional Gain 2° segmentSpdI2 gain % Integral Gain 2°segmentSpdP3 gain % Proportional Gain 3° segmentSpdI3 gain % Integral Gain 3° segmentSGP tran21 h thr Segment transition point from 1 to 2SGP tran32 l thr Segment transition point from 2 to 3SGP tran21 band Width of the transition band from 1 to 2SGP tran32 band Width of the transition band from 2 to 3Int SGP ref SGP internal referenceSGP base value Basic value corresponding to 100% of the SGP ReferenceSpd gain profile mon

SGP ref mon SGP Reference MonitorInUse SpdP gain% Value of the proportional gain in useInUse SpdI gain% Value of the integral gain in use

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 106: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————106Ch.1

1.8.8 Droop Block Current scale (Speed Droop)

The Function of the Droop Block is active only in a Sensorless and Field oriented mode.The Block is made of:

- a comparison node between the torque reference (generated by the speed regulator or with trq 2?) and theDroop Comp variable

- a proportional regulator whose output is (added or subtracted) to the overall speed reference. This is suppliedwith a low passing filter and a limit on the correction to be provided

It is used, for example, with the coupling of two motors. The advantage of using the Droop Block is the possibilityto let the speed regulators enabled on both Drives. The correction on the Drive reference, when the Droop Blockis enabled, avoids the loop saturation. In case a load loss occurs on one of the two motors, the speed is controlledwith a difference as compared to the reference of Droop limit al +.

This function is used to realize a current scale. It is typically used when two motors are mechanically combinedone with the other (ex. they are connected on the same shaft). They both must rotate at the same speed. If oneof the two motors tends to rotate at a higher speed, the consequence is a difference typical for the control Drivesand an overload condition. The second motor acts as a brake.

Such a condition causes an unbalance between the two currents, which can be eliminated via the Droop Func-tion. By adding a correction term to the Drive speed reference (proportional to the load difference), the twocurrents on the motors are balanced again.

The Droop enable src source states the origin of the signal enabling the Droop function.

Droop comp src allows the connection of the Droop reference signal (standard connected to the Droop compinternal reference).

In the Block configurations it is possible to set: with Droop gain the function gain, with Droop filter the timeconstant of the input filter, with Droop limit the allowed reference correction limit and with Droop comp thevalue of the internal reference.

It is possible to monitor the Block output, Droop out (in rpm).

The Block inputs are: · Droop enable src

· Droop comp src

The outputs: · Droop output

Description:

SPEED CONFIG Speed droopSpeed droop src

Droop en src

Droop comp src

Speed droop cfg

Droop gain

Droop filter

Droop limit

Droop comp

Speed droop mon

Droop out

SPEED CONFIG SAVE PARAMETERS

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 107: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1107

The Droop Block is shown in the figure below.

Droop comp src

Droop en src

Droop out

Torque

Droop gain Droop comp Droop limit

X

_

+

Speed droop src

Droop en src Source of the function enablingDroop comp src Droop reference functionSpeed droop cfg

Droop gain Function gainDroop filter Filter time constantDroop limit Allowed correction limitDroop comp Internal value of the Droop referenceSpeed droop mon

Droop out Block output correction

1.8.9 Speed Feedback Derivative Block Speed Up (Spd Fbk Deriv)

The Function is active only in a Sensorless and Field oriented mode.

The Block Function, Spd fbk derivative, is used to avoid oscillations or provide forcing in case of loads with a high momentof inertia. It is made of a Derivative component in the feedback circuit, which is in a position to limit the “Overshoot”.

The function can be used in case of cyclical non-constant loads applied on the motor (ex. cams).

The Derivative component applied to the speed regulator Block is made of two components:

- motor speed

- output signal of the Speed up function

In the Block configurations it is possible with Sfbk der enable to enable or disable the function, with Sfbk dergain to set the % gain of the function, with Sfbk der base to set the basic % gain and with Sfbk der filter to setthe time constant of the derivative component.

Description:SPEED CONFIG Spd fbk deriv

Sfbk deriv cfg

Sfbk der enable

Spfbk der gain

Sfbk der base

Sfbk der filter

SPEED CONFIG SAVE PARAMETERS

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 108: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————108Ch.1

The Speed feedback derivative Block is shown in the figure below.

Speed Speed up out

Z-1

Spfbk der gain Sfbk der filter

Sfbk der base Sfbk der enable

X

_

+IN

Speed fbk deriv cfg

Sfbk der enable Function enabling (enable or disable)

Spfbk der gain % Gain value

Sfbk der base Basic value of the % gain

Sfbk der filter Time constant of the Derivative component

1.8.10 Inertia and Friction Compensation Block (Inertia / Frict cp)

The Function is active only in a Sensorless and Field oriented mode.

The Block Function is to compensate the Inertia and the Frictions caused by the loads during the motor accelera-tion or deceleration phase.

The function, by calculating the acceleration on the reference, is in a position to supply a Torque FeedForward.

Such condition allows a better regulation in the presence of loads with a high inertia.

The parameter calculation is performed during the self-tuning procedure of the speed loop.

As an alternative, the user can set the parameters by hands.

The source, I/F cp en src allows to select the origin of the to enable or disable the function. Inertia src allowsto select the origin of the command signal moment of inertia; default this is connected to Int Inertia (starevalue) that it possible to set in the configurations.

Morever in the Block configurations it is possible with Int Friction to set the friction value and with Inertia cpflt to state the time constant of the filter on the compensation.

The Block input is: · I/F cp en src

· Inertia src

Description:SPEED CONFIG Inertia/Frict cp

I/F cp en src

I/F cp en src

Inertia src

I/F cp cfg

Int Inertia

Int Friction

Inertia cp flt

I/F cp mon

I/F cp mon

SPEED CONFIG SAVE PARAMETERS

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 109: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1109

The Inertia and Friction compensation Block is shown in the figure below.

Inertia/Frict cp src

I/F cp en src Value source to enable or disable the funtion

Inertia src Value source of the moment of inertia

Inertia/Frict cp cfg

Int Inertia Internal value of the moment of Inertia

Int Friction Friction internal value

Inertia cp flt Filter on the compensation

Inertia/Frict cp mon

I/F cp mon Monitor of output

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 110: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————110Ch.1

1.9 TORQUE CURRENT CONFIGURATIONS (TORQUE CONFIG)

1.9.1 Block Generating the Torque Setpoint, the Torque Current Limit Control and theZero Torque. (Torque Setpoint - Torque Curr Lim - Zero Torque Cmd)

The Block generates the Torque Current Setpoint.

The inputs are:

· the output of the Speed regulator if it is enabled

· the additional Torque setpoint

· the Current limit, which is also controlled, by Drive, the Motor and BU I2t function

· Flux, for flux compensation of the Torque current

NOTE! to see Torque control Block figure

The Block add the output of the Speed regulator and the additional Torque reference 2.

With SpeedTorque control Mode function, SpdTrq ctrl mode, it possible to select the behaviour ofthe reference Torque reference 1 + Torque reference 3 control over Torque current reference limit.

The Torque ref 1 + Torque ref 3 behavior: · OFF

· Limiting the requested Torque

· SpeedTorque mode

The SpdTrq mode src source selects the origin signal for the SpeedTorque control Mode function. This source isdefault connected to Int SpdTrq mode. It that can be set in the following configurations:

OFF, Symmetrical lim, Positive lim, Negative lim, Positive SpeedTorque, Negative SpeedTorque

· OFF (0) Disabled

Symmetrical lim, Positive lim, Negative lim

The speed regulator is saturated by the Speed reference selections. Using Torque ref 1 and/or Torque ref 3it is possible to regulate the output torque from the maximum to zero. In case of slippage or material break, thespeed will increase up to reach the speed reference, or until the net torque ref is below needed load current. It ispossible to select Torque ref 1 + Torque ref 3 to act:

· Symmetrical lim (1) On positive and negative limits symmetrically (Torque ref sum must be positive; if it’snegative the value is clamped to zero)

· Positive lim (2) Torque ref only modifies the Positive limit (Torque ref sum must be positive; if it’snegative the value is clamped to zero)

· Negative lim (3) Torque ref only modifies the negative limit (Torque ref sum must be negative; if it’spositive the value is clamped to zero)

Positive SpeedTorque, Negative SpeedTorque

In this case the torque requested by the Speed regulator is compared with the sum of Torque ref 1 + Torque ref3. If the Net Torque ref is lower in respect to the Speed regulator command, the Torque ref wins and it is givenas reference to the Current regulator (Iq Current). Otherwise the Speed regulator command will produce thereference for the current regulator. It is possible to select Torque ref 1 + Torque ref 3 to act:

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 111: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1111

· Positive SpdTrq (4) Saturating the speed regulator output positive, the sum [Torque ref 1 + Torque ref 3]can be positive or negative. The sum [Torque ref 1 + Torque ref 3] will be Torque refunless the Speed regulator output is more negative than the sum [Torque ref 1 +Torqueref 3].

If sum [Torque ref 1 + Torque ref 3] is negative, while the Speed regulator output ispositive, an external control may be needed to keep from motor overspeed in the nega-tive direction, during a material break or slippage.

· Negative SpdTrq (5) Saturating the speed regulator output negative, the sum [Torque ref 1 + Torque ref 3]can be positive or negative. The sum [Torque ref 1 + Torque ref 3] will be Torque refunless the Speed regulator output is more positive than the sum [Torque ref 1 +Torqueref 3]. If sum [Torque ref 1 + Torque ref 3] is positive, while the Speed regulator outputis negative, an external control may be needed to keep from motor overspeed in thepositive direction, during a material break or slippage.

NOTE! It is possible to assign Torque ref 3 src to Inertia compensation. This allows a user to inertiaconpensate a torque regulator internally. Using SpdTrq mode src from another variableother than Int Spdtrq mode requires the variable to write an integer value to select the mode.The corresponding integer is shown in parenthesis.

The Torque ref 3 src source allow to select the origin of the Torque ref 3 signal, which is adds with Torque ref1. This source is standard connected to Int torque ref 3 [Nm] that can be set in the configurations.

The Torque ref 1 src source allow to select the origin reference signal to control the Current limit (Torqueref 1). This source is standard connected to Int torque ref 1 [Nm] that can be set in the configurations.

The Torque ref 2 src source allow to select the origin of the Torque reference 2 signal.

This source is standard connected to Int torque ref 2 [Nm] that can be set in the configurations.

NOTE! During operation it’s necessary to disable the Speed reguator output.

It is possible to set the Filter time constant on the Speed regulator proportional part, via Prop filterparameter.

Current Torque limit control

After Torque control, the Torque Current Limit can modify Torque current reference.

Through the Tcurr lim sel parameter it is possible to select, into a list, the limit to be controlled:

off none

T lim +/- positive or negative limit

T lim mot/gen generator motor limit

T lim gen power limit on the generated power

T lim Vdc ctrl limit on the DC link voltage control

Furthermore, via the Tcurr lim + and Tcurr lim – parameters it is possible to set the positive and negative currentlimit value.

Zero Torque control

The Block controls the Zero Torque sets the sum of Speed regulator output + Torque reference to zero. (Torquereference is refered to Torque ref 1, Torque ref 2 and Torque ref 3).

The origin of the zero Torque command signal can be selected via the Zero trq cmd src source. The parametersand the sources included into >>Torque<< are available only with a Sensorless and Field Oriented mode.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 112: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————112Ch.1

Description:TORQUE CONFIG Torque setpoint

T setpoint src

>>Torque ref 1 src<<

>>Torque ref 2 src<<

>>Torque ref 3 src<<

>>SpdTrq mode src <<

T setpoint cfg

>>Int torque ref 1<<

>>Int torque ref 2<<

>>Int torque ref 3<<

>>Prop filter <<

>>Int SpdTrq mode <<

T setpoint mon

>>Torque ref 1 mon<<

>>Torque ref 2 mon<<

>>Torque ref 3 mon<<

>>Torque ref <<

>>SpdTrq ctrl stat<<

>>SpdTrq mode mon <<

TORQUE CONFIG Torque curr lim

Trq curr lim cfg

Tcurr lim sel

Tcurr lim +

Tcurr lim –

Trq curr lim mon

Inuse Tcurr lim+

Inuse Tcurr lim-

Tcurr lim state

TORQUE CONFIG Zero torque cmd

Zero trq cmd src

>>Zero trq cmd src<<

Zero trq cmd mon>>Zero torque mon<<

TORQUE CONFIG SAVE PARAMETERS

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 113: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1113

The Torque Setpoint Block is shown in the figure below.

Torque setpoint src>> Torque ref 1 src << Torque reference 1 source>> Torque ref 2 src << Torque reference 2 source>> Torque ref 3 src << Torque reference 3 source>> SpdTrq mode src << SpeedTorque select mode sourceTorque setpoint cfg>> Int torque ref 1 << Torque ref 1 internal value>> Int torque ref 2 << Torque ref 2 internal value>> Int torque ref 3 << Torque ref 3 internal value>> Prop filter << Filter on the torque reference>> Int SpdTrq mode << Select if the limitation of the delivered torque is active and in which way.Torque setpoint mon>> Torque ref 1 mon << Torque ref 1 variable monitor>> Torque ref 2 mon << Torque ref 2 variable monitor>> Torque ref 3 mon << Torque ref 3 variable monitor>> Torque ref << Overall Torque ref variable monitor>> SpdTrq ctrl stat << SpdTrq control state monitor>> SpdTrq mode mon << SpdTrq mod monitorTorque curr lim cfgTcurr lim sel Selection of the Current limit typeTcurr lim + Positive current limit or MotorTcurr lim - Negative current limit or GeneratorTorque curr lim monInuse Tcurr lim+ Monitor for the positive current limit in useInuse Tcurr lim- Monitor for the negative current limit in useTcurr lim state Reached, not reached current limit stateZero torque cmd src>> Zero trq cmd src << Zero torque command sourceZero torque cmd mon>> Zero torque mon << Zero torque command monitor

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 114: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————114Ch.1

1.9.2 DC Link Voltage Control (VdcCtrl Reg - Max Regen Power)

The Function is available only with a Sensorless and Field Oriented regulation mode. The Block allows thecontrol:

· of the DC link voltage during regenerating (ex. deceleration), to avoid the Overvoltage alarm trip.

or

· the control of the power recovered on the DC link during regenerating.

The two functions are activated by setting the following parameters respectively in the Trq curr lim cfg / Tcrr limsel of the Torque Setpoint Block:

T lim Vdc ctrl for a control of the DC link voltage

T lim gen power for a control of the recovered power

During such phases the VdcCtrl P gain and VdcCtrl I gain parameters (gains) allow the tuning, if required, ofthe DC link control.

Description:

TORQUE CONFIG VdcCtrl reg

>> VdcCtrl P gain <<

>> VdcCtrl I gain <<

Max regen power

>> Max regen power <<

TORQUE CONFIG SAVE PARAMETERS

VdcCtrl P gain Proportional gain

VdcCtrl I gain Integral gain

Max regen power Regenerating power limit. It is valid in case the Tlim Gen Power mode is active.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 115: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1115

1.10 FLUX CURRENT CONFIGURATIONS (FLUX CONFIG)

1.10.1 Control of the Flux Current Maximum Limit (Flux Max Limit)

This Function allows the user to control the maximum value of the Flux current. The function is linked to thecontrol of the voltage loop. In a condition where the Flux is = 0, the voltage regulator prevails by controlling themotor. It means that it is only possible to further limit the requirement of the voltage loop.

In case the Drive is active in the constant torque area, it is possible to set an overflux up to 115% of the rated flux.This is possible, obviously, only if the motor/drive combination is in a position to supply a sufficient magnetizingcurrent.

The Flux max lim src source allows to select the function control signal. In the standard configuration thesource is connected to Int flx maxlim, a parameter which can be set in cfg.

NOTE! The Function is active only in a Sensorless and Field oriented mode.

The input is: · Flux max lim src

Description:

FLUX CONFIG Flux max limit

Flux max lim src

Flux max lim src

Flux max lim cfg

Int flx maxlim

Flux max lim mon

In use flx max lim

FLUX CONFIG SAVE PARAMETERS

Flux max lim src Selection of the Flux max lim source

Int flx maxlim Internal value of Flux max limit

In use flx max lim Flux limit value in use

1.10.2 Control of the Magnetizing Current (Magnetiz Config)

The Function is active only in a Sensorless and Field oriented mode and is useful for undesidered motor shaftrotation. It allows to lock the Flux position, Lock flux, and to set a Ramp time of the magnetizing current Magnramp time.

In the configurations it is possible to start the Lock flux function. Via the Lock flux pos parameter, it is possibleto lock the flux position when the following selected condition is satisfied:

· Off non-active function

· At magnetization to the magnetizing current

· At Spd=0 with a Speed 0

· At magn & Spd=0 to the magnetizing current and with a Speed 0

· At magn and Ref=0 magnetizing current and Ref 0

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 116: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————116Ch.1

NOTE! In order to use the Catch on Fly function, it is necessary to set Lock Flux pos = Off.

Furthermore, in Magn ramp time it is possible to set the magnetizing current ramp time in seconds, which can beused:

· To slow down the temporary magnetizing period and avoid a rotation of the motor shaft due to the stator-rotoralignment.

· To speed up the magnetizing phase.

Description:

FLUX CONFIG Magnetiz config

Magn ramp time

Lock flux pos

FLUX CONFIG SAVE PARAMETERS

Magn ramp time Ramp time of the magnetizing current

Lock flux pos It states if and when the flux position lock has to be enabled.

1.10.3 Output Voltage Control (Output Vlt Ref)

The Function allows the regulation of the flux in the constant power area where a voltage margin must beavailable for the regulation. This value is usually equal to 2% of the maximum output voltage.

A higher value allows a faster response of the voltage regulator but with a lower amount of available voltage onthe output. A lower value allows a higher output voltage with a decrease of the dynamic performances.

The Outvlt lim src source allows to select the function control signal.

In the standard configuration the source is connected to Int Outvlt lim, internal value.

Via the Int Outvlt lim parameter, which can be set in the configurations, it is also possible to control the maximumvalue of the output voltage and to state, therefore, the starting voltage of the discharge point (380V standard).

This value can not be higher than the one stated by Available Outvlt.

The available voltage margin is stated via the Dyn vlt margin parameter, which can be set in the configurations.

As for the normalized value see paragraph 1.1.3 Normalizations Signal.

NOTE! The Function is active only in a Sensorless and Field oriented mode.

Description:

FLUX CONFIG Output vlt refOut vlt ref src

Outvlt lim srcOut vlt ref cfg

Dyn vlt marginInt Outvlt lim

Out vlt ref monAvailable OutvltIn use Outvlt ref

FLUX CONFIG SAVE PARAMETERS

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 117: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1117

Output vlt ref srcOutvlt lim src Signal selection of the Output volt lim sourceOutput vlt ref cfgDyn vlt margin Voltage margin for the flux regulationInt Outvlt lim Limit of the output voltageOutput vlt ref 0monAvailable Outvlt Monitor for the maximum available output voltage. It is calculated directly starting

from the DC link voltage.In use Outvlt ref Limit in use on the output voltage

The limit in use on the output voltage is calculated as follows:- The starting point is the Available Outvlt;

- This is limited by the Int Outvlt lim;

- The Dyn vlt margin is applied on the resulting value.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 118: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————118Ch.1

1.11 STOP OPTION CONTROL (STOP OPTION)

1.11.1 Direct Current Braking Control - DC Braking

The Function allows to stop the motor with a direct current braking.

The current injection can be activated via an external command, via the DCbrake cmd src source or automati-cally via an internal command when the stop command is performed. Such command can be activated by settingDCbrake mode = “at stop”.

It is possible to have simultaneously both the internal and the external command. They both work on a OR logic.

Furthermore, the function is made of:

- a waiting phase between the command emission and the duration of the programmable injection

- a direct current injection phase, whose intensity and duration can be programmed.

Via DCBrake delay it is possible to set the waiting phase between the command and the injection duration.

NOTE! If the external command is a pulse shorter than the programmed injection time, the injectionphase lasts for the programmed time. If the external command is a pulse longer than theprogrammed injection time, the injection phase lasts till the end of the external command.

With DCBrake duration it is possible to set the current injection duration while DCBrake current allows to setthe current intensity.

Description:

STOP OPTION DC braking

DCbrake mode

DCbrake delay

DCbrake duration

DCbrake current

DCbrake cmd src

Dcbrake state

STOP OPTION SAVE PERAMETERS

DCbrake mode Off - At Stop: internal command (standard Off).

DCbrake delay delay between the injection command and the injection of the current itself (standard 0.5sec).

DCbrake duration duration of the current injection. See the note about the external command

DCbrake current braking current as a percentage of Drive continuos current (standard 50%)

DCbrake cmd src external command source (standard NULL)

DCbrake state DC Brake state . Active, non-active.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 119: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1119

1.11.2 Power Loss Control (Power Loss Ctrl)

The Function allows to control a power loss or a break of the Mains voltage.In the configurations, via the PL function sel parameter, it is possible to set several methods to control a possiblepower loss:

PL Off the function is not activePL ridethru with this setting it is possible to let the motor shaft rotate as long as possible during some

Mains holes. The DC link voltage is controlled in order to be kept slightly higher than theUndervoltage threshold, thus minimizing the losses. In this case the Mains hole is consid-ered to be temporary and a crossing attempt is performedThe control variable is an additional reference for the torque current (negative).

PL stop it is a controlled stop during which, through the energy recovered from the load, themotor is constantly controlled. The DC link voltage is controlled in order to be keptclosed to the PLS Vdc ref reference (internal value, it is usually closed to the Overvolt-age voltage - standard 648V).In this case the aim is to try to perform a controlled stop of the machine.The control variable is the torque current limit.

A signal, PL Next factor, supplies the ratio between the motor speed and the speed reference. By connecting itto the speed ratio of the slave drive, it is possible to obtain the line synchronism.The settings of Powerloss ridethru and Powerloss stop can be performed in the specific submenus (see thefollowing paragraphs).

NOTE! This function is not active in case of a functioning condition with a 230V main voltage.Description:

STOP OPTION Power loss ctrlPwrloss ctrl cfg

PL function selPL accelerationPL deceleration

Pwrloss ctrl monPL next activePL next factor

STOP OPTION SAVE PERAMETERS

The following functions are common to the functionalities. The specific sections are described on the following pages.Power loss ctrl cfg

PL function sel It allows to make a selection among the PL stop, PL ridethru and Off function.This function has to be enabled only on the line Master drive.

PL acceleration setting of the acceleration time when the powerloss stop function is active. (standard 100 rpm/s).PL deceleration A gradual deceleration allows to avoid sudden torque changes when the powerloss

stop function is active. The ramp, anyway, must be so fast as to allow the intervention of the function itself.(standard 10000 rpm/s).

PL next active It states that the slave motor speed is equal to the master motor speed.PL next factor Relationship between Ramp ref / Speed ref and Motor speed. It is the slave

reference in order to decrease the speed, in a linear way, according to themaster drive speed.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 120: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————120Ch.1

1.11.2.1 Power Loss Ridethru (Pwrloss Ridethru)

When the DC link voltage reaches the starting threshold, the function gets active.

The DC link setpoint is set with a value higher than 12% as compared to the Undervoltage threshold.

The PI regulator controls a negative torque current (recovery) in order to keep the DC link at a constant level.When the Mains voltage is restored, the system allows a delay on the line speed with the set acceleration time.

Description:STOP OPTION Power loss ctrlPOWER LOSS CTRL

Pwrloss ridethru

Pwrloss ride cfg

PLR P Gain

PLR I Gain

Pwrloss ride mon

PLR active

STOP OPTION SAVE PERAMETERS

Pwrloss ridethru cfg

PLR P Gain Proportional gain in A/V

PLR I Gain Integral gain in A/V/s

Pwrloss ridethru mon

PLR active It states the function state

1.11.2.2 Power Loss Stop (Pwrloss Stop)

Through the PSL mains st src source, the function allows the selection of the command signal, which can statethe Mains recovery (for example via a programmed digital input). The aim is to restart the motor before it reachesa Speed 0. In the configurations it is possible to set the gain of the internal PI regulator, the DC link referencethreshold with PLS Vdc ref, the torque current limit with PLS curr lim and with PLS timeout a maximum periodafter which no automatic restart is possible.

Description:STOP OPTION Power loss ctrl

Pwrloss stopPwrloss stop src

PLS mains st src

Pwrloss stop cfgPLS P gainPLS I gainPLS Vdc refPLS curr limPLS timeout

Pwrloss stop mon PLS active

STOP OPTION SAVE PERAMETERS

Pwr loss stop src

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 121: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1121

PLS mains st src The drive is informed about the restore of the Mains voltage in order to restart themotor before it reaches the zero speed. The command can be given via the keypad, aprogrammable digital input, the serial line or the Bus (standard NULL).

Pwr loss stop cfg

PLS P gain Proportional gain in A/V of the PI regulator for the power loss stop function.

PLS I gain Integral gain in A/V/s of the PI regulator for the power loss stop function

PLS Vdc ref Reference for the DC link voltage during the activity period of the power loss stopfunction. If the braking unit is used to obtain shorter stopping times, the parametersetting has then to be higher than the value of the ON threshold on the brakingunit. The value (standard 648V), in any case, has not to be higher than the threshold ofthe Overvoltage alarm.

PLS cur lim Setting of the torque current limit used during the activity period of the power loss stopfunction. When the function is active, the parameter has the priority on T curr lim.

PLS timeout Periodo oltre il quale non è più possibile un riavvio automatico.

Pwr loss stop mon

PLS active Period of time after which no automatic restart is possible.

When the PLS timeout has expired, a PLS timeout act alarm is given. Its reset allows the system to restart.

Pwrloss stop function APPLICATIONS

When the DC link voltage goes under the power loss detection threshold, the Powerloss stop function getsactive. The power loss detection threshold is internally selected in order to be higher than the undervoltage level.The Drive has a Speed 0 reference with a ramp defined by the PL deceleration parameter (it can be set inPwrloss ctrl cfg) .

During this phase, a PI regulator (which can be set via PLS P gain and PLS I gain) tends to keep the DC linkvoltage with the PLS Vdc ref value. The control variable is given by the current limit together with the limit setin the parameter.

PLS curr limit . The deceleration depends therefore on the recovery current and on the load inertia (Higherinertia equal to longer stopping times).

The deceleration time is used to make the transition to the function activation smoother.

The DC link voltage is regulated according to the value set by the PLS Vdc ref parameter. Its default setting islower than 5% as compared to the intervention threshold of the braking unit.

With applications requiring the use of the braking unit, the PLS Vdc ref parameter can be set by hand at a higherlevel as compared to the braking threshold.

The device takes advantage of the intervention of the braking unit thus reaching a stop condition in a specificperiod of time. Also the current limit defined by the PLS curr limit parameter has to be set in order to meet therequirements of the braking period.

It is possible to monitor the activity of the power loss stop function on a digital output programmed as PLS active.

If the Mains Voltage is restored within the period set by the PLS timeout parameter, the motor, after reachingthe Speed 0, is automatically brought by the Drive to function again with its starting speed and with a rampacceleration time defined by PL acceleration.

If the Mains Voltage is restored but PLS timeout expires before the motor reaches the zero speed, it is neces-sary to give to the Drive the PL time-out ack digital command in order to start the system again and go back tothe starting speed.

The PLS timeout elapsing time can be monitored on a programmable digital output set as PL time-out sig.

During the power loss period, it is possible to restart the system before the motor has reached the Speed 0 whenthe Drive receives a signal stating the Mains Voltage recovery. The signal must be connected to PL mains stsrc. Such signal can be supplied, for example, by SR-32 or SM-32 line converters.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 122: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————122Ch.1

In a configuration with a multiple drive/motor, where a coordinated stop is usually required, the master Drive musthave, together with the Enable Mst and Enable Slv programming, an analog output set as PL next factor.

The PL next factor signal sets the ratio between the line speed and the present speed.

It must be connected to the Speed ratio. When the power loss is detected, the master speed decreases accord-ing to the ratio calculated between Speed ref and Motor speed.

Such ratio states the reference for the slave, in order to decrease the speed in a linear way according to the speedof the master Drive. The motor functioning at a speed controlled by the master can be monitored on a digitaloutput of the master drive programmed as PL next active.

With a configuration for a multiple motor, such function can be performed only with the Drives connected oncommon DC buses.

PI regulator

Speed ratio

calculator

To Analog input set

as "Speed ratio" of

Next Drive

PI regulator

Current Limit

Power Loss Stop

Current Limit

Power Ride Thru

DC link voltage

PLS I gain23.28984 A/V/s

PLS P gain0.349347 A/V

PLS Vdc ref736,307 V

Norm Speed

Speed ref

PLS active

PL next active

PL next factor

DC link voltage

PLR I gain15.6817 A/V/s

PLR P gain0.235225 A/V

PL function selOff

PLS mains st srcNULL

Figure 1.11.2.1: Power Loss Control Function

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 123: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1123

AC Mains voltage

100 %

100 %

DC link voltage

PL Timer

Speed ref

Actual speed

Torque current

+100 %

-100 %

Power loss detection

UV level detection

timeDC link voltage

PLS Vdc ref736.307 V

Norm Speed

PLS timeout10 s

PL deceleration10000 rpm/s

PL acceleration100 rpm/s

Speed ref

PLS curr lim27.8825 A

Figure 1.11.2.2: Power Loss Stop

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 124: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————124Ch.1

1.12 ALARM BLOCK CONFIGURATIONS (ALARM CONFIG)

This chapter describes how to control the several Drive alarms.

1.12.1 Alarms

The word “alarms” refers to two different error families. They are:

· Errors due to a wrong setting of the Drive parameters

· Intervention of the Drive protection systems

The former occur during the drive configuration phase and state, for example, the presence of parameter setswhich can not be combined or which overcome the Drive limits.

The solution is checking the entered parameters and resetting them if possible.

The latter are indications about the intervention of protection systems, which could cause the Drive stop. In thiscase the alarm cause has to be found and reset.

1.12.2 Alarm State

The alarm cause can be: · Active

· Non-active

The alarms have displayed via the Alarm List . It shows all the occurred alarms, both if they are due to protec-tions and to errors on the overcome limit values.

In order to disappear from the alarm list they have to be recognized. The recognition is possible only if the alarmis no more active. The alarms are automatically recognized after two minutes.

The drive State Machine, controls the drive running and starting, accounting for protection & alarming, commandsequence, and reset status.

The waiting phase for the State Machine reset is showed in the Alarm List as Sequencer.

The table below displays various operation states by Sequencer status number:

Sequencer status State

1 Magnetization running

2 Magnetization completed, Stop

3 Start

4 Fast stop, Stop

5 Fast stop, Start

9 No alarm, drive is ready to accept all commands

10 Magnetization running and Start command already present

12 Alarm active

16 Alarm not active, waiting for reset

TAV3i020

Sequencer status : 6..8, 11,13..15 and 17..21 = for internal use.

The Sequencer status of the State Machine are showed in the “STATUS/Advanced status” menu, throughSequencer status parameter.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 125: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1125

1.12.3 Alarm List and Alarm Recognition

When a new regulation alarm is active, the Red led “Alarm” blinks on the display.

By pressing Shift + Alarm it is possible to reach the “Alarm list” page, which lists the intervened and not yetrecognized but also the recognized and still active alarms.

In case a regulation alarm intervenes with Restart=Off (that is without an automatic restart after the alarm hasbeen reset), also the Sequencer (State machine) alarm gets active.

The alarm recognition can be performed by reaching the “Alarm list”, selecting the alarm to be recognized andpressing Enter. If the alarm is recognized and inactive, it is cancelled from the list.

When all the alarms have been recognized, the Red led “Alarm” on the display is lighted (the Sequencer alarm ofthe State Machine remains active).

The Red led is lighted till all the alarms become inactive and the user resets the State Machine (such command canbe given, for example, via the keypad with the “red” stop button).

If all the alarms on the drive have been recognized (the Red led is lighted) and a new regulation alarm intervenes,such condition is reported with the blinking of the Red led on the display.

NOTE! It is possible to reset the regulation alarms without recognizing them. In this case the Drive isactive and the Red led blinks (no action in the alarm list has to be performed).

1.12.4 Alarm Log

This is the historic register Log, stating what happened on the Drive. It records those Drive alarms considered tobe significant. The alarm register is in the STATUS menu. It has 30 entry.

1.12.5 Alarm Configurations

In the Alarm config menu it is possible to configure the different alarms (xxx) on the following points:

xxx activity Activity to be performed in case an alarm occurs

xxx restart Restart enabling

xxx restart time Restart time

xxx hold off Hold off time

Paragraph 2.9.6 states the possible settings referring to each alarm type.

1.12.5.1 Hold Off Time

With this parameter it is possible to set the period of time, in which a specific situation has to remain active (it hasto persist) in order to be considered an alarm situation. It is possible to set a millisecond period of time, in whichthe Drive does not recognize the alarm state. Therefore, the alarm is recognized only if it persists for a periodlonger than the set Hold off time.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 126: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————126Ch.1

1.12.5.2 Activity

With this parameter it is possible to set the action to be performed after the alarm intervention.

0 => Only msg alarmq Actions: msg

1 => Ignore Actions: none

2 => Disable drive Actions: msg – commands for SM – Status.

3 => Stop Actions: msg – commands for SM – Status.

4 => Fast stop Actions: msg – commands for SM – Status.

5 => Curr limstop Actions: msg – commands for SM – Status.

6 => Warning Actions: msg – Status

7 => Not allowed Actions: msg – Status

msg : The message has been sent to the alarm list and to the alarm config list.

State Machine commands : A change in the drive state has been forced (alarm intervention).

Status: The active alarm signal is immediately set; it is reset when the alarm isnmore present and the state machine is not in an alarm condition.

1.12.5.3 Restart

With this parameter it is possible to enable the automatic start after the alarm cause has been removed.

0 => Off

1 => On

1.12.5.4 Restart Time

With this parameter it is possible to set a period of time, within which the alarm state has to be removed, inorder to perform an automatic start.

1.12.6 Regulation Alarm Reset

When a regulation alarm intervenes, the Drive reaches the alarm state. Such alarm state can be reset when thealarms are no more active and the user performs a “Reset Alarm” command Transition 0=>1.

By using the Fault reset src source, it is possible to select the origin of the “reset” command signal (for examplea command via the terminal strip through a digital Input).

How to perform a “Reset Alarm” command:

Via the keypad: by pressing the Red key.

Via the terminal strip: connect the “Fault reset src” Pin to a digital input. Transition 0=>1.

Via Digital (Serial – Bus – Dgfc) : connect the “Fault reset src” Pin to a bit of the decomposed word andset the decomposed word. Transition 0=>1.

NOTE! if the “Fault reset src” Pin is connected to a digital input, such input has to be kept at a low logicstate. If such state is high, the first “Fault reset” command via the Red key has no effect.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 127: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1127

Description:

ALARM CONFIG Fault reset

Fault reset src

Undervoltage

UV restart

UV restart time

Overvoltage

OV restart

OV restart time

IGBT desaturat

DS restart

DS restart time

Inst overcurrent

IOC restart

IOC restart time

Ground fault

GF activity

GF threshold

External fault

EF src

EF activity

EF restart

EF restart time

EF hold off

Motor OT

MOT activity

MOT restart

MOT restart time

MOT hold off

Heatsink S OT

HTS activity

HTS restart

HTS restart time

HTS hold off

Regulation S OT

RGS activity

RGS restart

RGS restart time

RGS hold off

Intake air S OT

IAS activity

IAS restart

IAS restart time

IAS hold off

ISBus fault

ISB activity

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 128: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————128Ch.1

ISB restart

ISB restart time

Comm card fault

CCF activity

CCF restart

CCF restart time

Appl card fault

ACF activity

Drive overload

DOL activity

Motor overload

MOL activity

BU overload

BUOL activity

Fwd Rev Ctrl

FRC activity

FRC hold off

Overspeed

OS activity

OS threshold

OS hold off

Spd fbk loss

SFL activity

UV repetitive

UVR attempts

UVR delay

Hw fault

Hw fault mon

ALARM CONFIG Alarm status

Alm status cfg

Mask W1 S1

Mask W2 S1

Mask W3 S1

Mask W1 S2

Mask W2 S2

Mask W3 S2

Alm status mon

Alm W1 S1

Alm W2 S1

Alm W3 S1

Alm W1 S2

Alm W2 S2

Alm W3 S2

ALARM CONFIG SAVE PARAMETERS

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 129: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1129

1.12.7 Alarm Status on a Digital Variable

The alarm state can be reported via three Words.

Each bit determines an alarm state. It is therefore possible to determine the state of 48 alarms.

Each single bit can be controlled if the corresponding bit of a specific mask is set with 1, otherwise their setting isalways 0.

When an alarm becomes active, the word corresponding bit is set with 1. Its setting remains equal to 1 until the alarmbecomes inactive and the “State Machine or Sequencer” is not in an alarm condition (see the previous paragraphs).

If the state of a single alarm has to be controlled via an output, then only the mask needed bit has to be set with 1.

If the state of several alarms has to be controlled via an output, then the mask corresponding bits have to be set with 1.

The alarms have to be controlled by the Word itself.

Ex: the state of the External fault alarm has to be read.

Mask W1 S1 = 0x0100 => 0000 0001 0000 0000

Mask W2 S1 = 0x0000 => 0000 0000 0000 0000

Mask W3 S1 = 0x0000 => 0000 0000 0000 0000

DO 0 src = Select ipa Alm W1 S1.The state of the Undervoltage and Overvoltage alarm has to be read.

Mask W1 S1 = 0x0100 => 0000 0000 0000 0110

Mask W2 S1 = 0x0000 => 0000 0000 0000 0000

Mask W3 S1 = 0x0000 => 0000 0000 0000 0000

DO 0 src = Select ipa Alm W1 S1.The state of the External fault and F_R_C alarm has to be read.

Mask W1 S1 = 0x0100 => 0000 0001 0000 0000

Mask W2 S1 = 0x0000 => 0000 0000 1000 0000

DO 0 src = Select ipa Alm W1 S1.DO 1 src = Select ipa Alm W2 S1.

See “Alarm List” table in the next page

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 130: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————130Ch.1

Table 1.12.1: Alarm List

ALARM NAME

BIT position

in the alarm

Word

Description (Cause of fault)Drive activity

after AlarmHOLD OFF Restart Restart time

Acknowledgment

requestMsg ad alarmq DigOut

Failure supply 1 Failure of power supply Disable drive No No No Yes Yes Yes

Undervoltage 2 Vdc Link< UV Thr Disable drive NoYes. logic on

n° timesYes Yes Yes Yes

Overvoltage 3 Vdc Link> OV Thr Disable drive No Yes Yes Yes Yes Yes

IGBT desaturat 4 Too many current on output bridge Disable drive No

Yes. logic on

2 alarms in 30

second

Yes Yes Yes Yes

Inst overcurrent 5 Too many current on output bridge Disable drive No

Yes. logic on

2 alarms in 30

second

Yes Yes Yes Yes

Ground fault 6 Output Phase discharge to ground Programmable No No No Yes Yes Yes

Curr fbk loss 7Loose of the reading of the current

sensorDisable drive No No No Yes Yes Yes

External fault 8 Input pin. Programmable ProgrammableYes.

ProgrammableYes

Yes.

ProgrammableYes Yes Yes

Spd fbk loss 9Loose of the reading of the speed

sensorProgrammable No No No Yes Yes Yes

Module OT 10Only for size <= 15Kw Module

OvertemperatureDisable drive

Yes Fixed 10

msecNo No Yes Yes Yes

Heatsink OT 11Only for size > 15Kw Heatsink

OvertemperatureDisable drive

Yes Fixed 1000

msecYes Yes Yes

Motor OT 12 Input Motor Overtemperature ProgrammableYes.

ProgrammableYes

Yes.

ProgrammableYes Yes Yes

Heatsink S OT 13 Heatsink Overtemperature ProgrammableYes.

ProgrammableYes

Yes.

ProgrammableYes Yes Yes

Regulation S OT 14 Regulation Overtemperature ProgrammableYes.

ProgrammableYes

Yes.

ProgrammableYes Yes Yes

Intake air S OT 15Only > 15Kw Intake air

overtemperatureProgrammable

Yes.

ProgrammableYes

Yes.

ProgrammableYes Yes Yes

ISBus fault 16 Isbus card Programmable No YesYes.

ProgrammableYes Yes Yes

Comm card fault 17 Sbi Card Programmable No YesYes.

ProgrammableYes Yes Yes

Appl card fault 18 Dgfc card Disable drive No No No Yes Yes Yes

Drive overload 19 Reached Drive Ovld limit Programmable No No No Yes Yes Yes

Motor overload 20 Reached Motor Ovld limit Programmable No No No Yes Yes Yes

BU overload 21 Reached BU Ovld limit Programmable No No No Yes Yes Yes

Data lost 22 Eeprom error Disable drive No No No Yes Yes Yes

Fwd Rev Ctrl 23 Fwd and Rev both high Programmable No No No Yes Yes Yes

Max time 24 Exceeded max CPU time Disable drive No No No Yes Yes Yes

Sequencer 25 State machine error Disable drive No No No Yes Yes No

PLS timeout 26 Power loss Stop Disable drive No No No Yes Yes Yes

Overspeed 27Actual speed > theshold with drive

running.ProgrammableProgrammable

Yes.

ProgrammableNo No Yes Yes Yes

UV repetitive 28

In 5 minutes xx UV fault occoured.

Xx progammable. If xx is set equal to

the maximun the alarm is disable.

Disable drive No No No Yes Yes Yes

IOC repetitive 29 2 UC fault in 30 second Disable drive No No No Yes Yes Yes

IGBTdesat repet 30 2 DES fault in 30 second Disable drive No No No Yes Yes Yes

WatchDog user 31 User Watchdog not refreshed Disable drive No No No Yes Yes Yes

Hw fail 32Loose of sincronization with

expansion or peripheralsDisable drive No No No Yes Yes Yes

Alarms table

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 131: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1131

1.12.8 Fault Pin

The state of those alarms having an activity different from Ignore and Only msg alarm is stated on this variable.

No active alarm => 0x0000

One active alarm => Number of the corresponding pin

Several active alarms => Last intervened alarm

Reset alarms => Last intervened alarm. Set with 0x0000 the

“alarm Reset” command.

The variable can be read via the serial line, field bus and Dgfc.

ALARM Name Bit position in the alarm Word Code in the alarm LISTFailure supply 1 21

Undervoltage 2 22

Overvoltage 3 23

IGBT desaturat 4 24

Inst overcurrent 5 25

Ground fault 6 26

Curr fbk loss 7 27

External fault 8 28

Spd fbk loss 9 29

Module OT 10 30

Heatsink OT 11 31

Motor OT 12 32

Heatsink S OT 13 33

Regulation S OT 14 34

Intake Air S OT 15 35

ISBus fault 16 36

Comm card fault 17 37

Appl card fault 18 38

Drv overload 19 39

Mot overload 20 40

BU overload 21 41

Data lost 22 42

Fwd Rev Ctrl 23 43

Max time 24 44

Sequencer 25 45

PLS timeout 26 46

Overspeed 27 47

UV repetitive 28 48

IOC repetitive 29 49

IGBTdesat repet 30 50

WatchDog user 31 51

Hw fail 32 52

Fault pin table

Table 1.12.8.1: Fault Pin List

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 132: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————132Ch.1

1.13 SERIAL COMMUNICATIONS (COMMUNICATION)

1.13.1 Communication via the RS485 Serial Port (RS485)

The used communication protocol, called Slink4, allows a multipoint network.

See the specific manual for further details.

The Drive address can be defined via the Slink4 address parameter.

The address change is performed by writing the 105 parameter, SLink4 address, and by saving the new value.The address becomes active after the Drive has been switched off and on.

Via the S_link4 command a temporary address change is also possible.

The RS485 serial line is a Half-Duplex line, where the data can not be transmitted and received simultaneously.

It happens sometimes that during the transmission to reception switching phase the Master (PC or PLC)reaches the reception condition after the Drive has already started to send its data package. As a conse-quence, the package received by the Master is not correct.

In order to avoid such an inconvenience, it is possible to use the SLink4 res time parameter, through which it ispossible to set a delay time on the Drive response in case of problems during the Tx to Rx switching on theMaster.

Description:

COMMUNICATION RS485

SLink4 address

SLink4 res time Response delay (in milliseconds, msec)

1.13.2 Communication via the SBI Bus Field Card (SBI)

The communication with the SBI Bus field option cards (Serial Bus Interface) is performed via two channels:

· Synchronous or Process channel (PDC Process Data Channel) for a cyclical value interchange.

· Asynchronous or Configuration channel for a low priority access to all the Drive parameters.

As for the data exchange modes between the SBI card and the Network see the SBI card documentation.

The process data exchange between the Drive and the SBI has the following structure:

The interface is made of six writing Words and six reading Words.

The source Drive parameter has to be defined for the six Words ‘Drv -> SBI word’

transmitting the data from the Drive to the SBI.

Six Words move the data from the SBI to the Drive. ‘SBI -> Drv word’

These can be found in the source selection lists.

For more information to see the following documents for related information on SBI:

GEI 100422 for S6KCV301PDP33 card

GEI 100435 for S6KCV301DNET

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 133: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1133

Description:

COMMUNICATION SBI

SBI config

SBI enable

SBI monitor

Last SBI error

Drv->SBI word

Drv->SBI W src

Drv SBI W0 src

Drv SBI W1 src

Drv SBI W2 src

Drv SBI W3 src

Drv SBI W4 src

Drv SBI W5 src

Drv->SBI W cfg

Int Drv SBI W0

Int Drv SBI W1

Int Drv SBI W2

Int Drv SBI W3

Int Drv SBI W4

Int Drv SBI W5

Drv->SBI W mon

Drv SBI W0 mon

Drv SBI W1 mon

Drv SBI W2 mon

Drv SBI W3 mon

Drv SBI W4 mon

Drv SBI W5 mon

SBI->Drv word

SBI->Drv W mon

SBI Drv W0 mon

SBI Drv W1 mon

SBI Drv W2 mon

SBI Drv W3 mon

SBI Drv W4 mon

SBI Drv W5 mon

COMMUNICATION SAVE PARAMETER

COMMUNICATION SBI

SBI Config

SBI enable It enables the communication initialization with the SBI when theDrive is started. If the SBI card is not found, the communication isdisabled and the Comm card fault alarm gets active.

SBI Monitor

Last SBI error It defines the last found error: 0 = OK, 1 = Hw fault, 2 = Bus Loss

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 134: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————134Ch.1

Drv->SBI Word

Drv->SBI W src

Drv SBI W0 src Word 0 channel source of the PCD channel on the Drive output

............ ............

Drv SBI W5 src Word 5 channel source of the PCD channel on the Drive output

Drv->SBI word

Drv->SBI W cfg

Int Drv SBI W0 Internal value configuration (standard connected on W0 src)

............ ............

Int Drv SBI W5 Internal value configuration (standard connected on W5 src)

Drv->SBI word

Drv->SBI W mon

Drv SBI W0 mon Word 0 monitor of the PDC channel on the Drive output

............ ............

Drv SBI W5 mon Word 5 monitor of the PDC channel on the Drive output

SBI->Drv word

SBI->Drv W mon

SBI Drv W0 mon Word 0 monitor of the PDC channel on the Drive input

............ .............

SBI Drv W5 mon Word 5 monitor of the PDC channel on the Drive input

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 135: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————135Ch.1

1.14 APPLICATION CARD CONFIGURATION (APPL CARD CONFIG)

1.14.1 Configuration of the DGFC Option Card (DGFC)

The communication between the Drive and the DGFC is performed via two channels for each direction.

· Drive -> DGFC: Drv->DGFCS 5 writing Words - Drv->DGFCA 10 writing Words

As for the Words sending the data from the Drive to the DGFC it is necessary to define the Drive sourceparameter.

· DGFC-> Drive: DGFCS->Drv 5 reading Words- DGFCA->Drv 10 reading Words

The Words move the data from the DGFC to the Drive. They can be found in the source selecting lists.

The communication channels are synchronous.

(they are divided into synchronous and asynchronous if the previous software version is taken into consider-ation. Synchronous channels with 4mS and Asynchronous channels with 16 mS).

DGFC enabling:

DGFC enable it enables the communication initialization of the card at its starting.

If the Drive does not find the DGFC, the “Appl card fault” alarm gets active and

the regulation execution is not started.

For more information to see the following document for related information on DGFC:

USER MANUAL for S6KCV301DGF card

Description:APPL CARD CONFIG DGFC

DGFC config

DGFC enable

DGFC menu

DGFC sync Ch

Drv->DGFCS W src

Drv DGFC-S W0src

Drv DGFC-S W1src

Drv DGFC-S W2src

Drv DGFC-S W3src

Drv DGFC-S W4src

Drv->DGFCS W cfg

Int DrvDGFC-S W0

Int DrvDGFC-S W1

Int DrvDGFC-S W2

Int DrvDGFC-S W3

Int DrvDGFC-S W4

Drv->DGFCS W mon

Drv DGFC-S W0mon

Drv DGFC-S W1mon

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 136: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1136

Drv DGFC-S W2mon

Drv DGFC-S W3mon

Drv DGFC-S W4mon

DGFCS->Drv W mon

DGFC-S Drv W0mon

DGFC-S Drv W1mon

DGFC-S Drv W2mon

DGFC-S Drv W3mon

DGFC-S Drv W4mon

DGFC async Ch

Drv->DGFCA W src

Drv DGFC-A W0src

Drv DGFC-A W1src

Drv DGFC-A W2src

Drv DGFC-A W3src

Drv DGFC-A W4src

Drv DGFC-A W5src

Drv DGFC-A W6src

Drv DGFC-A W7src

Drv DGFC-A W8src

Drv DGFC-A W9srcDrv->DGFCA W cfg

Int DrvDGFC-A W0Int DrvDGFC-A W1Int DrvDGFC-A W2Int DrvDGFC-A W3Int DrvDGFC-A W4Int DrvDGFC-A W5Int DrvDGFC-A W6Int DrvDGFC-A W7Int DrvDGFC-A W8Int DrvDGFC-A W9

Drv->DGFCA W monDrv DGFC-A W0monDrv DGFC-A W1monDrv DGFC-A W2monDrv DGFC-A W3monDrv DGFC-A W4monDrv DGFC-A W5monDrv DGFC-A W6monDrv DGFC-A W7monDrv DGFC-A W8monDrv DGFC-A W9mon

DGFCA->Drv W monDGFC-A Drv W0monDGFC-A Drv W1mon

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 137: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————137Ch.1

DGFC-A Drv W2monDGFC-A Drv W3monDGFC-A Drv W4monDGFC-A Drv W5monDGFC-A Drv W6monDGFC-A Drv W7monDGFC-A Drv W8monDGFC-A Drv W9mon

APPL CARD CONFIG SAVE PARAMETERS

DGFC sync chDrv->DGFCS W srcDrv DGFC-S W0src Source of the Word 0 channel on the Drive output............ ............Drv DGFC-S W4src Source of the Word 4 channel on the Drive outputDrv->DGFCS W cfg

Int DrvDGFC-S W0 Internal value configuration (standard connected to W0 src)............ ............

Int DrvDGFC-S W4 Internal value configuration (standard connected to W4 src)Drv->DGFCS W mon

Drv DGFC-S W0mon W0 monitor on the Drive output............ ............

Drv DGFC-S W4mon W4 monitor on the DriveoutputDGFCS->Drv W mon

DGFC-S Drv W0mon W0 monitor on the Drive input............ ............

DGFC-S Drv W4mon W4 monitor on the DriveinputDGFC async ch

Drv->DGFCA W src

Drv DGFC-A W0src Source of the Word 0 channel on the Drive output............ ............

Drv DGFC-A W9src Source of the Word 9 channel on the Drive outputDrv->DGFCA W cfg

Int DrvDGFC-A W0 Internal value configuration (standard connected to W0 src)............ ............

Int DrvDGFC-A W9 Internal value configuration (standard connected to W9 src)Drv->DGFCA W mon

Drv DGFC-A W0mon W0 monitor on the Drive output............ ............

Drv DGFC-A W9mon W9 monitor on the Drive outputDGFCA->Drv W mon

DGFC-A Drv W0mon W0 monitor on the Drive input............ ............

DGFC-A Drv W9mon W9 monitor on the Drive input

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 138: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1138

1.15 PID CONTROL (APPL FUNCTION)

The PID control is a free standing generic regulator inside the drive software.

It has the flexibility to tie the regulation of any process variable to drive speed or torque control, internal to thedrive.

Common applications of PID regulation are:

Nip roll with dancer or load cell

Winder with dancer or load cell

Unwinder with dancer or load cell

L

Pumps:

line pressure, tank level

Fan: static pressure, airflow

F

fuel pumps: line pressure, flow

P

Extruders:

head pressure, temperature

Parameters for the PID feature are found under the APPL FUNCTION menu.

NOTE! The PID function cannot be used at the same time as the Power Loss control feature

The PID application examples fall under two categories:

1. process control - The process regulator is dynamic straightforward adjustment of the speed or torque setpointof the drive to maintain the pressure, position, flow, temperature, etc.as needed by the process.

Examples follow in sections 1.16.1, 1.16.2, 1.16.6 and 1.16.7

2. winder & unwinder control - The process regulator serves to scale a linespeed reference to account formaterial build up/ build down, proportional to the material diameter change.

· The PID control allows the preset of the PID starting point for unwinding/winding rolls of varying sizes.

· The diameter calculator feature, is a command to use the motor rotation and dancer position change tocalculate material diameter before running the drive. This is a diameter preset feature without the need forexternal diameter sensing devices.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 139: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————139Ch.1

· The PID control provides the flexibility to reset the PID starting point for winding from the same startingsize (empty core, mandrel, etc).

· Overwind/underwind control is provided by detecting the direction of speed reference and inverting thePID correction automatically.

· A diameter hold , using PID enable, can be commanded when transient conditions are known to disrupt thePID regulator, or the feedback is suspected to be incorrect. An example of this would be on a web break,where a dancer or load cell would lose contact with the material.

· Regulator gains can be programmed to be dependent on speed, drive variables, or other external means.This is important to account for varying torque requirements at a speed point where the roll may have nomaterial buildup or a lot of material inertia.

· The PI and PD parts of the PID regulator are capable of being separately enabled.

Examples follow in sections 1.16.3, 1.16.4, 1.16.5 and 1.16.8.

Sections 1.15.1 -1.15.7 describe the PID regulator details

1.15.1 PID Control Enabling (Pid Function)

The Function enables the running of the different Blocks connected to the PID function.

Description:APPL FUNCTION PID

PID functionPID enable

APPL FUNCTION SAVE PARAMETERS

1.15.2 Feed Forward signal - PID Feed-Forward

The Block Function allows to state, if required, the Feed-Forward signal.

The PID inp FF src source selects the reference signal origin on the Block input.

In the configurations, the feed-forward gain factor is stated via PID inp FF gain.

It is possible to select on the source an internal reference signal. Such value is defined by Int PID inp FF.Description:

APPL FUNCTION PIDPID feed-forward

PID FF srcPID inp FF src

PID FF cfgInt PID inp FFPID inp FF gain

PID FF monPID inp FF monPID FF mon

APPL FUNCTION SAVE PARAMETERS

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 140: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1140

The Feed-Forward Block is shown in the figure below.

PID FF mon

Int PID inp FF

PID inp FF gain

XPID inp FF src

PID FF src

PID inp FF src Definition of the feed-forward signal source

PID FF cfg

Int PID inp FF Feed-forward internal reference

PID inp FF gain Gain on the feed-forward signal

PID FF mon

PID inp FF mon Monitor for the feed-forward input value

PID FF mon Monitor for the feed-forward output value

1.15.3 PID Input Block (PID Input)

The Block calculates the error value of the PID Block.

Two input references are selected via an internal selector.

On the selected reference it is possible to set a Ramp and to add an additional reference, Pid Draw.

It is also possible to limit the output error value at the machine start and to select a command for the reactionof the PID section.

The PID set 0 src and PID set 1 src sources select the signal origin of the two input references:

PID seloff 0 src selects the command of the internal selector, PID draw src selects the additional referencesignal and PID fbk src selects the reaction command of the PID section.

In the configurations it is possible to set the variable internal values, with PID gain draw to adapt the error gain,with PID acc time and PID dec time to set the reference ramp and with PID clamp top and PID clamp bot to setthe upper and lower limit (see the paragraph “Dynamic Clamp”).

The inputs are: · PID fbk src

· PID draw src

· PID set 0 src

· PID set 1 src

· PID seloff 0 src

Description:APPL FUNCTION PID

PID input

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 141: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————141Ch.1

PID input srcPID fbk srcPID draw srcPID set 0 srcPID set 1 srcPID seloff 0 src

PID input cfgInt PID fbkInt PID drawInt PID set 0Int PID set 1PID gain drawPID acc timePID dec timePID clamp botPID clamp top

PID input monPID fbk monPID draw monPID set 0 monPID set 1 monPID input

APPL FUNCTION SAVE PARAMETERS

The PID Input Block is shown in the figure below.

PID set 0 src

PID input

PID fbk src

PID draw src

PID set 1 src

PID sel off 0 src

PID acc time PID dec time PID clamp top

PID gain draw

PID set 1 mon

PID set 0 mon

PID fbk mon

PID draw mon

X

+ +

+ +

PID clamp bot

PID input src

PID fbk src Source selection of the PID section reaction

PID draw src Source selection of the Draw (tension) reference

PID set 0 src Setpoint 0 (reference) source selection

PID set 1 src Setpoint 1 source selection

PID seloff 0 src Source selection of the Setpoint selector

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 142: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1142

PID input cfgInt PID fbk Internal value of the PID section reactionInt PID draw Draw internal valueInt PID set 0 Setpoint 0 internal valueInt PID set 1 Setpoint 1 internal valuePID gain draw Value of the Setpoint adapting gain (feedback)PID acc time Acceleration time from 0 to 16384 (Normalized internal value)PID dec time Deceleration time from 16384 to 0 (Normalized internal value)PID clamp bot Lower clamp value (see dynamic clamp)PID clamp top Upper clamp value (see dynamic clamp)PID input monPID fbk mon Monitor for the feedback value (reaction)PID draw mon Monitor for the active Draw valuePID set 0 mon Monitor for the Setpoint 0 valuePID set 1 mon Monitor for the Setpoint 1 valuePID input Monitor for the Block output value

1.15.3.1 Dynamic Clamp Function

The Clamp value is active only until the error value becomes lower than the set Clamp range. The function isuseful, for example, during starting with dancer which is completely sealed. In this case, the limiting of themaximum error limits the system reaction speed thus allowing a dancer smooth positioning. After positioningthe dancer, the Clamp stops being active allowing a normal system control.

1.15.4 Integer Proportional Control (PI control)

The Function of this Block is performed by three strictly combined different Blocks. In order to obtain a betterworking homogeneity, they have been grouped into the same menu.

The three Blocks are:

PI control block By starting from the line speed reference it states the error sign for the PI Block. It allows toinvert the line direction without performing any operation, controls the signals for thetemporary gain increase at the starting and controls the Integral section Block.

PI Gain scheduler It allows to adapt the PI section gains according, for example, to the coil Diameter.

PI section It is the Block where the PI regulator is performed. The feature of this regulator is asignal on the output oscillating between two values (Top and Bottom) which can be set.The output is multiplied by the Feed Forward value. In case of winders/unwinders, asstated before, the Top limit and Bot limit (Clamp) values are set in order to let thisoutput represent the Minimum_Ray/Present_Ray ratio.

The PID PI enab src and PID I freeze src sources allow to select the origin of the enabling signals (enable/disable) of the PI function and of the freezing signals of the regulator Integral section.

PIGP ref src selects the input signal of the gain Adaptive; the Block function allows to set a three-segment Profile.In the Block it is possible to select, via an internal selector, three starting multiplication values: Int PID Mtl PI1, Int PID Mtl PI 2, Int PID Mtl PI 3, internal values which can be set in the configurations.

The PID Mtl PI 3 src source connects standard the value of Int PID Mtl PI 3.

PID Mtl PI sel 0 and PID Mtl PI sel 1 are the sources selecting the command signals of the internal selector.According to their condition, it is possible to state a combination determining the equivalent output factor.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 143: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————143Ch.1

The following table lists the factors corresponding to each different combination:

0

1

2

3

TAVyS012

1 1

Int PID Mtl PI 1

Int PID Mtl PI 2

**

01

PID Mtl PI sel 1 PID Mtl PI sel 0

0

0

PID Mtl PI sel mon

*0

1

* Last value calculated by Integral part is keep in memory.

** Factor connected to PID Mtl PI 3 src source.

The inputs are: · PID PI enab src

· PID I freeze src

· PIGP ref src

· PID Mtl PI sel 0

· PID Mtl PI sel 1

· PID Mtl PI 3 src

Description:APPL FUNCTION PID

PI control

PI control src

PID PI enab src

PID I freeze src

PIGP ref src

PID Mlt PI sel 0

PID Mlt PI sel 1

PID Mlt PI 3 src

PI control cfg

PI steady delay

PI steady thr

PI P1 gain %

PI I1 gain %

PI P2 gain %

PI I2 gain %

PI P3 gain %

PI I3 gain %

PIGP tran21 hthr

PIGP tran32 lthr

PIGP tran21 band

PIGP tran32 band

PI Pinit gain

PI Iinit gain

PI clamp top

PI clamp bot

Int PID Mlt PI 1

Int PID Mlt PI 2

Int PID Mlt PI 3

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 144: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1144

PI control mon

PID PI lock mon

PIGP ref mon

PI Pnorm gain

PI Inorm gain

PID PI out mon

PID Mlt PI 0 mon

PID Mlt PI 3 mon

PID MltPI selmon

APPL FUNCTION SAVE PARAMETERS

The PI Control Block is shown in the figures below

PID Mlt PI 3 src

PID Mlt PI sel out

PID Mlt PI sel 0

PID Mlt PI 1

Int PID Mlt PI 2

Int PID Mlt PI 3

Int PID Mlt PI 0

Int PID Mlt PI 1

PID MtlPI selmon

PID I freeze src

PID FF mon

PID PI enab src

PID PI out mon

PI steady thr

PI Iinit gain

PI steady delay

PI Pinit gain

PI clamp bot

PI clamp top

PID PI Iock mon

PI I notm gain

PI P notm gain

X

+

+

PI P3 gain %

PI P2 gain %

PI P1 gain %

PI I3 gain %

PI I2 gain %

PI I1 gain %

P

I

REF

(REF)

PIGP tran21 band PIGP tran32 band

PIGP tran21 h thr PIGP tran32 l thr

PID FF mon

PI enable

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 145: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————145Ch.1

PI control src

PID PI enab src Source of the PI section enable signalPID I freeze src Source of the PI section Freezing signalPIGP ref src Source of the gain adaptive signalPID Mlt PI sel 0 Source of the selector 0 signal of the starting multiplierPID Mlt PI sel 1 Source of the selector 1 signal of the starting multiplierPID Mlt PI 3 src Source of the multiplier 3 signal (ex. diameter sensor)PI control cfg

PI steady delay Period of time, during which the P and I init gain gains are kept active after thePI steady thr threshold has been overcome by the PID FF mon reference.

PI steady thr Steady State detecting thresholdPI P1 gain % PI gain segment 1PI I1 gain % ............

PI P2 gain % PI gain segment 2PI I2 gain % ............

PI P3 gain % PI gain segment 3PI I3 gain % ............

PIGP tran21 h thr Segment transition point from 1 to 2PIGP tran32 l thr Segment transition point from 2 to 3PIGP tran21 band Width of the transition band from 1 to 2PIGP tran32 band Width of the transition band from 2 to 3PI Pinit gain P starting gain PI sectionPI Iinit gain I starting gain PI sectionPI clamp top PI upper conversion valuePI clamp bot PI lower conversion valueInt PID Mlt PI 1 Initialization value of the Multiplier 1Int PID Mlt PI 2 Initialization value of the Multiplier 2Int PID Mlt PI 3 Initialization value of the Multiplier 3PI control mon

PID PI lock mon Monitor lock PI sectionPIGP ref mon Reference monitor of the gain adaptivePI Pnorm gain

PI Inorm gain

PID PI out mon Monitor of the PI Block outputPID Mlt PI 0 mon Monitor of the multiplier 0 valuePID Mlt PI 3 mon Monitor of the multiplier 3 valuePID MltPI selmon Monitor of the selected multiplier

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 146: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1146

1.15.4.1 Setting of the Starting Diameter

By selecting PID MltPI sel mon = 0, when the PI Block is disabled (PID PI enab = 0), the last value of thecalculated integral component is kept into memory. Such integral component is displayed in PID PI out mon (itcorresponds to the winder diameter). When the Block is enabled again, the regulation starts from the calculatedvalue. The same function is foreseen also in case the Drive stops.

This operative method can be used, when, by controlling, for example, a winder, it is necessary to stop themachine, to disable the Drive or to disconnect the switchboard.

By selecting PID MltPI selmon = 1-2-3, when the PI Block is disabled, the value of the PID PI out mon outputis the same as the one of the set parameter. When the Drive is stopped and then started again, the previouslystated value is automatically reset only if , during the power supply, the digital input, set as Enable PI PID, isalready at a high level.

1.15.4.2 Gain Increase at the Starting

When PID FF mon is lower than PI steady thr, the integral regulation is frozen and the proportional gain getsthe value set in PI P init gain.

When PID FF mon overcomes the threshold, the integral regulation is enabled with the gain set in PI I init gain.

The PI Block keeps the PI P init gain and PI I init gain gains for the time set via PI steady delay. After thistime, the gain values are brought respectively to those generated by the gain adaptive.

1.15.4.3 PI Clamp Top and Bottom Setting

As previously stated, PID PI out mon is used as a multiplicative factor of the feed-forward in order to obtainthe motor angular speed reference; in case the PID function is used to control a winder/unwinder, its value isinversely proportional to the winder diameter.

By winding with a constant peripheral speed, it is possible to write that: ωωωωω0ΦΦΦΦΦ0=ωωωωω1ΦΦΦΦΦ1

where:

ωωωωω0 = angular speed with a minimum diameter

ΦΦΦΦΦ0 = minimum diameter

ωωωωω1 = angular speed with the present diameter

ΦΦΦΦΦ1 = present diameter

w1 = w

0 x (ΦΦΦΦΦ0

/ΦΦΦΦΦ1)

By tuning the Drive properly, ω ω ω ω ω0 corresponds to a wrong feed-forward, therefore PID PI out mon depends on(ΦΦΦΦΦ0/ΦΦΦΦΦ1).

It is possible to write that: PID PI out mon = (ΦΦΦΦΦ0/ΦΦΦΦΦ1)

This formula can be used to check the right tuning execution when the system is active or during the procedurefor the calculation of the starting diameter.

1.15.5 Proportional Derivative Control (PD Control)

This Block performs the Proportional Derivative regulation.

The PD Block has on the input the PID Input value (output value of the PID Input Block), which usually statesan error. The output of the Block is added to the other corrections in the PID output Block.

The PID PD enab src source allows to enable the PD function.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 147: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————147Ch.1

The gains can be adjusted according to the variable selected on the PDGP ref src source.

The Block allows to set a Profile on three segments.

The inputs are: · PID PI enab src· PID Mtl PI 3 src

Description:APPL FUNCTION PID

PD controlPD control src

PID PD enab srcPDGP ref src

PD control cfgPD P1 gain %PD D1 gain %PD P2 gain %PD D2 gain %PD P3 gain %PD D3 gain %PDGP tran21 hthrPDGP tran32 lthrPDGP tran21 bandPDGP tran32 bandInt PDGP refPD der filter

PD control monPID PD out monPD P gain monPD D gain monPDGP ref mon

APPL FUNCTION SAVE PARAMETERS

The PD control Block is shown in the figure below.

PDGP ref src

PD P3 gain %

P

D

REF

(REF)

PDGP tran21 band

PDGP tran21 hthr

PID input

PID PD enab src

PD PD out mon

PD P gain mon

+

+

PD der filterPD D gain mon

PDGP tran32 Ithr PDGP ref mon

PD P2 gain %

PD P1 gain %

PD P3 gain %

PD P2 gain %

PD P1 gain %

PDGP tran32 band

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 148: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1148

PD control srcPID PD enab src PD section enabling sourcePDGP ref src Gain adaptive sourcePD control cfgPD P1 gain % P gain segment 1PD D1 gain % D gain segment 1PD P2 gain % P gain segment 2PD D2 gain % D gain segment 2PD P3 gain % P gain segment 3PD D3 gain % D gain segment 3PDGP tran21 hthr Segment transition point from 1 to 2PDGP tran32 lthr Segment transition point from 2 to 3PDGP tran21 band Width of the transition band from 1 to 2PDGP tran32 band Width of the transition band from 2 to 3Int PDGP ref Adaptive signal. Internal valuePD der filter Derivative filterPD control monPID PD out mon Output correction valuePD P gain mon Monitor for the P gain in usePD D gain mon Monitor for the D gain in usePDGP ref mon Value of the present adaptive signal

1.15.6 PID Output Block (PID Output)

This Block gathers the following signals:

· Feed forward

· PI block output

· PD block output

As stated before, the FeedForward signal is multiplied by the PI Block output. It is possible to obtain differenteffects according to this signal configuration.

The signal of the PD Block, on the contrary, is subtracted. In the Block configurations it is possible to select theoutput as Bipolar or Multipolar (only for positive values) via an internal selector. On the Block output it ispossible to find a direct output, PID out, and an output with a configurable gain, PID outs.

The Block outputs are: · PID out mon

· PID outs monDescription:

APPL FUNCTION PID

PID output

PID output cfg

PID out sign

PID out gain

PID output mon

PID out mon

PID outS mon

APPL FUNCTION SAVE PARAMETERS

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 149: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————149Ch.1

The PID Output Block is shown in the figure below.

PID FF mon

PID PI out mon

PID PD out mon

PID out mon

PID outS mon

PID out gainPID out sign

+

X

X

-

PID output cfg

PID out sign Output selection: Monopolar/Bipolar

PID out gain Scale factor (output gain)

PID output mon

PID out mon Direct output displaying

PID outS mon Displaying of an output with a scale factor (gain setting)

1.15.7 Diameter Calculation (Diameter Calc)

This Function allows to perform a preliminary calculation of a coil diameter before starting the line. It allows toavoid undesired mechanical sealings of the dancer.

The calculation is based on the moving of the dancer from the lower limit switch position to a central position ascompared to the winder angular moving during the initial phase.

The function is only available with a dancer reaction. The calculation result initializes the PI Block output.

Description:APPL FUNCTION PID

Diameter calc

Settings

Max deviation

Positioning spd

Gear box ratio

Dancer constant

Minimum diameter

DiaClc start src

Start ?

Press I key

Results

Diameter

Diacal PIO

DCDelta error

DCDelta pos

APPL FUNCTION SAVE PARAMETERS

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 150: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1150

The Diameter Calculation Block is shown in the figure below.

PID MtlPI sel mon

DiaClc start src Diacal PIO

Max deviation

Positioning spd

Gear box ratio

Dancer constant

Diameter

DCDelta error DCDalta pos

Diameter calc SettingsMax deviation Position of maximum mechanical sealing for the dancerPositioning spd Positioning speedGear box ratio Reduction ratio between motor and winder (<=1)Dancer constant Measurement of the total material accumulationMinimum diameter Value of the winder minimum diameterDiaClc start src Source of the start Diameter Calculation commandDiameter calc Start ?Diameter calc Press I keyDiameter calc ResultsDiameter Calculated diameterDiacal PIO PI initialization valueDCDelta error Dancer movementDCDelta pos Winder movement (encoder pulses)

Dancer constant = ( ∆x x2) 2LM

Gear box ratio

Dancer constant = ( ∆L x x2) 4

DancerWinder/Unwinder

∆L

electrical 0

Central positionof working

DancerUpper limitswitch = +1000 count

Lower limitswitch = -1000 count

∆L

electrical 0

Central positionof working

Upper limitswitch = +1000 count

Lower limitswitch = -1000 count

Two pitches dancerOne pitch dancer

Figure 1.15.7.1: Diameter Calculation

1.15.7.1 Dancer Constant Measurement

With the dancer placed in a lower limit switch position, perform the self-tuning of the analog input connected to PID fbk src.

Set the Drive keypad on the PID fbk mon parameter.

Measure and multiply by 2 the distance in mm between the lower mechanical limit switch and the dancerposition, where the PID fbk mon parameter has a 0 value (electric 0 position).

Multiply the calculated value by 2 if the dancer is made of a single pitch, by 4 if it is made of two pitches etc. etc.as per the above figure.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 151: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————151Ch.1

1.15.7.2 Procedure for the Calculation of the Starting Diameter

Such calculation is based on the measurement of the dancer moving from its lower limit switch position to itscentral working position, and on the measurement of the winder angular moving during the initial phase.

For this reason during such period the dragging at the unwinder end or at the winder beginning must be in aposition to keep the material blocked. To this purpose it is necessary to enable the dragging Drive regulationwith a speed reference = 0.

If also the line nip rolls are controlled by dancers or loading cells, it is necessary to carry out first the diametercalculation with the following winder and unwinder initial phase and afterwards the dragging initial phase.

The PID MlpPI sel parameter must always be equal to 0 in order to avoid that PID PI out mon is set with apredefined value.

By setting the source of DiaClc start src to one and if the Drive is enabled, the procedure is started.

During this phase the parameters and the PI and PD regulators are disabled.

The regulation checks the signal coming from the dancer potentiometer.

If this value is higher than the one set in Max deviation, the motor starts rotating with the speed reference set inPositioning spd in order to wind the material on the winder and to bring the dancer into its central workingposition.

If the regulation checks that the signal coming from the dancer potentiometer is lower than the value set in Maxdeviation, the motor starts rotating with the speed reference set in Positioning spd in order to unwind thematerial and to bring the dancer to the point identified by Max deviation.

At this point the reference is inverted until bringing the dancer in its central working position.

When the dancer has reached its central position, the PID PI out parameter is initialized with the value of themeasured diameter.

The Diacalc active variable brings to a high logic level the Diameter calc st digital output, stating the end of thediameter calculation phase.

Now, if the PI and/or PD blocks are enabled, the system reaches automatically the regulation mode.

To this purpose the digital inputs programmed as DiaClc start for the PI and PD enable are brought simulta-neously to a high logic level.

The Diacalc active output signal can be used to reset the DiaClc start command (such command is activated onthe climbing leading edge of the digital input; for this reason it has to be brought to a high level after powersupplying the Drive regulation section and it has to be reset when the starting calculation phase is over).

The value of PID PI out is calculated via the following formula:

PID PI out = (Minimum diameter x PI clamp top) / value of the calculated diameter

The PI clamp top and PI clamp bot parameters of the PI controls menu have to be set according to themaximum and minimum winder diameter.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 152: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1152

1.16 APPLICATIONS EXAMPLES FOR THE PID FUNCTION

1.16.1 Control of Nip Rolls with Dancer

M ME E-10V

+10V

+10V

-10V

Feed-forward

Feed-back

5Kohm

Dancer Forward

Reverse

Line speedreference

Forward

Reverse

(Internal rampmaster drive)

DRIVE DRIVE

Master Nip-roll

Figure 1.16.1.1: Control of Nip Rolls with Dancer

1.16.1.1 Machine Data

Rated speed of the Slave motor Vn = 3000rpm

Slave motor speed corresponding to the max. line speed = 85% Vn = 2550rpm

Maximum dancer correction = +/- 15% of the line speed = +/- 382.5rpm

The Drive of the Slave nip roll has to receive the analog signals referring to the line speed and to the Dancerposition (whose potentiometer will be power supplied at its ends with values included between –10V…+ 10V)and the digital commands referring to the PID control enabling.

The output of the PID regulator is sent to the speed 1 reference.

1.16.1.2 Input/Output

Drive settings: (only those referring to the PID function are described)

Connect to the analog input 1 the dancer cursor.

Select PID fbk src = An inp 1 output

Connect to the analog input 2 the line speed reference (feed- forward).

Select PID inp FF src = An inp 2 output

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 153: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————153Ch.1

Connect to the Digital input 1 the input enabling the PID PI Block

Select PID PI enab src = DI 1 monitor

Connect to the Digital input 2 the input enabling the PID PD Block

Select PID PD enab src = DI 2 monitor

In case just one contact is required to enable the PI and PD section, it is possible to connect also PID PD enabsrc on the digital input 1 as described below.

Select PID PD enab src = DI 1 monitor

Connect to the speed 1 reference the PID output

Select Speed ref 1 src = PID out mon

Set Ramp out enable = Disable

1.16.1.3 Parameters

Set Full scale spd equal to the motor speed corresponding to 100% of the line speed.

Full scale spd = 2550 rpm

Connect

Mlt PI sel 0 = Null

Mlt PI sel 1 = One The selection of the PID Mlt PI sel 1 multiplier is therefore active.

Set

PID Mlt PI sel 1 = 1 The starting value is 1

In case the regulator PI Block has performed no correction, the line speed reference (Feed-Forward) has to bemultiplied by 1 and sent directly to the Drive regulator speed.

With this application, the regulator usually carries out a proportional control. The correction is stated as apercentage of the line speed, from 0 to the maximum value.

Set PI clamp top and PI clamp bot so that, with a maximum mechanical sealing of the dancer (maximum valueof the analog input 1 connected to the dancer reaction), and by setting the proportional gain of the PI block to15%, a corresponding proportional correction of the feed-forward is obtained.

Set therefore:

PI clamp top= 10

PI clamp bot= 0.1

Programmare PI P1 gain % = 15% 1 o 3 vedi errore durante test

Programmare PI I1 gain % = 0%

With such a configuration and having a proportional correction of the line speed, the PI Block can not positionthe dancer when the machine is stopped. In order to carry out the initial phase when the machine is stopped, it isnecessary to act on the PD block.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 154: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1154

Set PD P1 gain % with a value allowing to position the dancer without big dynamic stresses. For example:

PD P1 gain % = 1%

Use the derivative component as a system “damping” element by setting for example:

PD D1 gain % = 1 %

PD der filter = 20 ms

If it is not needed, leave these parameters = 0.

In case a series of cascade references has to be performed for another possible Drive, set PID out mon on ananalog output, for example:

An out 1 src = PID out mon

1.16.2 Control of Nip Rolls with Loading Cell

M ME E

0....+10V

+10V

-10V

Feed-forward

Feed-back

-10V

Set

Load cell

Reverse

Forward

Tension set

Forward

Reverse

Line speedreference

(Internal rampmaster drive)

DRIVE DRIVE

Line speedMaster Nip-roll

Figure 1.16.2.1: Control of Nip Rolls with Loading Cell

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 155: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————155Ch.1

1.16.2.1 Machine Data

Rated speed of the Slave motor Vn = 3000rpm

Slave motor speed corresponding to the max. line speed = 85% Vn = 2550rpm

Maximum correction of the loading cell = +/- 20% of the line speed = +/- 510rpm

The drive of the Slave nip roll must receive the analog signals referring to the line speed, to the loading cell(0....+10V) and to the tension (0....-10V), plus the digital commands referring to the PID control enabling.

The regulator output is sent to the speed 1 reference.

1.16.2.2 Input/Output

Drive settings: (only those referring to the PID function are described)

Connect to the analog input 1 the Dancer cursor.

Select PID fbk src = An inp 1 output

Connect to the analog input 2 the line speed reference (feed- forward).

Select PID inp FF src = An inp 2 output

Connect to the analog input 3 the tension reference.

Select PID draw src = An inp 3 output

Connect to the Digital input 1 the input enabling the PID PI Block

Select PID PI enab src = DI 1 monitor

Connect to the Digital input 2 the input enabling the PID PD Block

Select PID PD enab src = DI 2 monitor

In case just one contact is needed to enable the PI and PD section, it is possible to connect also PID PD enab srcon the digital input 1 as described below.

Select PID PD enab src = DI 1 monitor

Connect to the speed 1 reference the PID output

Select Speed ref 1 src = PID out mon

Set Ramp out enable = Disable

1.16.2.3 Parameters

Set Full scale spd equal to the motor speed corresponding to 100% of the line speed.

Full scale spd = 2550 rpm

Connect :

Mlt PI sel 0 = Null

Mlt PI sel 1 = One The selection of the PID Mlt PI sel 1 selector is therefore active

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 156: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1156

Set:

PID Mlt PI sel 1 = 1 The starting value is 1

Without a correction performed by the regulator PI Block, the line speed reference (Feed-Forward) must bemultiplied by 1 and must be sent directly to the Drive speed regulator. The regulator usually carries out aProportional-Integral control. The correction is stated as a percentage of the line speed, from 0 to the maximumvalue.

Set :

PI lim top and PI lim bot in order to obtain a maximum correction of the PI Block equal to 20% of the line speed.

The PI lim top and PI lim bot parameters can be considered, respectively, as the maximum and minimummultiplicative factor of the feed-forward.

2550rpm of the motor (max. feed-forward) correspond to the max. line speed.

Maximum correction = 2550 x 20% = 510rpm

2550 + 510 = 3060rpm ——> PI lim top = 3060 / 2550 = 1.2

2550 - 510 = 2040rpm ——> PI lim bot = 2040 / 2550 = 0.80

With such a configuration and with a proportional correction of the line speed, the PI block is not in a positionto carry out the initial phase when the machine is stopped; it is therefore necessary to act also on the PD Block.

The gains of the different components have to be set, experimentally, with a loaded machine; such tests can bestarted with the values stated below (default values):

Set PI P1 gain % = 2%

Set PI I1 gain % = 2%

Set PD P1 gain % = 1%

Use the derivative component as a system “damping” element, by setting for example:

PD D1 gain % = 1%

PD der filter = 20ms

If it is not required, leave these parameters = 0.

In case a series of cascade references has to be performed for another possible Drive, set PID out mon on ananalog output, for example:

An out 1 src = PID out mon

NOTE! See the “Generic PID” paragraph in case it is necessary to have a system with an integralregulation enabled also with feed-forward = 0 and in a position to carry out the system initialphase without errors even with a stopped machine.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 157: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————157Ch.1

1.16.3 Control of Winders/Unwinders with Dancer

M M E-10V

+10V

Feed-forward

Feed-back

5Kohm

+10V

-10V

E

R

(Internal rampmaster drive)

Line speedreference

Forward

Reverse

DRIVE DRIVE

Winder/unwinder

Dancer Forward

ReverseNip-roll

Figura 1.16.3.1: Control of Winders/Unwinders with Dancer

1.16.3.1 Machine Data

Maximum line speed =400m/min

Rated speed of the winder motor Vn = 3000rpm

Winder maximum diameter = 700mm

Winder minimum diameter = 100mm

Motor-winder reduction ratio = 0.5

One-pitch dancer

Dancer stroke from the lower limit switch to the electric 0 position = 160mm

The winder/unwinder Drive must receive the analog signals referring to the line speed and to the dancer position(whose potentiometer is power supplied at its ends with values included between -10... +10V) and the digitalcommands referring to the PID control enabling.

The regulator output is sent to the speed 1 reference.

1.16.3.2 Input/Output

Drive settings: (only those referring to the PID function are described)

Connect to the analog input 1 the Dancer cursor.

Select PID fbk src = An inp 1 output

Connect to the analog input 2 the line speed reference (feed- forward).

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 158: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1158

Select PID inp FF src = An inp 2 output

Connect to the speed 1 reference the PID output

Select Speed ref 1 src = PID out mon

Set Ramp out enable = Disable

Connect to the Digital input 1 the input enabling the PID PI Block

Select PID PI enab src = DI 1 monitor

Connect to the Digital input 2 the input enabling the PID PD Block.

Select PID PD enab src = DI 2 monitor

In case just one contact is needed to enable the PI and PD section, it is possible to connect also PID PD enab srcon the digital input 1 as described below.

Select PID PD enab src = DI 1 monitor

Connect to the Digital input 3 the input enabling the diameter calculation Block

Select DiaClc start src = DI 3 monitor

Connect to the digital output 0 the signal stating the end of the diameter calculation

Select DO 0 src = Diacalc active

1.16.3.3 Parameters

Set Full scale spd equal to the motor speed corresponding to 100% of the line speed with a minimum winderdiameter (core). Full scale spd = 2550 rpm

Calculation of the motor speed according to the above stated conditions:

Vp = π x Φmin x ω x R

where:

Vp = winder peripheral speed = line speed

Φmin = winder minimum diameter [m]

ω = motor angular speed [rpm]

R = motor-winder reduction ratio

w = Vp / p x Φmin x R = 400 / (π x 0.1 x 0.5) = 2546rpm = about 2550rpm

Connect

Mlt PI sel 0 = Null

Mlt PI sel 1 = Null

With this configuration it is possible to carry out, via a suitable procedure, the calculation of the starting diam-eter. Furthermore the last calculated diameter value is kept into memory both if the machine is stopped and if theswitchboard is switched off.

As previously stated, the procedure determines the theoretic multiplicative factor (PI output PID) of the feed-forward as compared to the calculated diameter, in order to send to the Drive the right value of the angular speed.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 159: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————159Ch.1

NOTE! When PID MltPI selmon = 0 and the PI Block is disabled, the system keeps into memory the lastcalculated value of PID out mon. In case the machine is switched off, such value is automaticallyreset. In case the value of this parameter has to be set in order to have on the output a wrongreference equal to the feed-forward, it is possible to configure a digital input as a correction reset.

It is therefore necessary to:

select Mlt PI sel 0 = DI 4 monitor

set PID Mlt PI sel 1 = 1

By bringing the digital input to a high logic level, the value of PID out mon is set at 1.

Set PI lim top and PI lim bot according to the winder diameter ratio.

The PI lim top and PI lim bot parameters can be considered, respectively, as a maximum and minimum multi-plicative factor of the feed-forward.

Considering that the motor angular speed, and therefore the reference, are inversely proportional to the winding/unwinding diameter, set:

PI lim top = 1

PI lim bot = Fmin / Fmax = 100 / 700 = 0.14

Here following is a description of the above statements.

Calculation of the motor angular speed:

ω max. = Vl / (Φ x Fmin x R)

e

ω min = Vl / (Φ x Fmax. x R)

where:

ω max. = motor angular speed with a minimum diameter [rpm]

ω min = motor angular speed with a maximum diameter [rpm]

Vl = line speed

Φmin = winder minimum diameter [m]

Φmax. = winder maximum diameter [m]

R = motor-winder reduction ratio

Therefore: ω max. / ω min = Φmax. / Φmin

where

ω min = (Φmin / Φmax) x ω max.

Consider that the PI lim top and PI lim bot parameters can be considered, respectively, as a maximum andminimum multiplicative factor of the feed-forward.

Multiply the feed-forward by PI lim top = 1, the result is the maximum speed reference referring to the mini-mum diameter.

Multiply the feed-forward by PI lim bot = 0.14, the result is the minimum speed reference referring to themaximum diameter.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 160: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1160

Such application requires a proportional-integral regulation on the side of the system.

The gains of the different components have to be set, experimentally, with a loaded machine; such tests can bestarted with the values stated below:

Set PI P1 gain % = 2%

Set PI I1 gain % = 2%

Set PD P1 gain % = 1%

Use the derivative component as a system “damping” element, by setting for example:

PD D1 gain % = 1%

PD der filter = 20ms

In case a series of cascade references has to be performed for another possible Drive, set PID out mon on ananalog output, for example:

An out 1 src = PID out mon

1.16.4 Parameters Referring to the Function for the Calculation of the Starting Diameter

This function is always necessary when an unwinder has to be controlled or when the starting diameter is unknown.

Set Positioning spd with the rpm value required to perform the dancer starting positioning.

For example:

Positioning spd = 15rpm

The polarity of the reference assigned to Positioning speed is equal (both with a winder or unwinder) to the onefunctioning as a winder. If for example an unwinder has to be controlled and the functioning speed reference ispositive, set Positioning spd with a negative value.

Set Max deviation with a value slightly lower than the one corresponding to the position of the maximummechanical sealing allowed by the dancer.

During the commissioning it is always necessary to perform the self-tuning of the drive analog inputs; in particu-lar by self-tuning the analog input 1 with a dancer in a lower limit switch position, this position is automaticallyset with a 100% value. Therefore, in order to grant a precise calculation, the value to be set is:

Max deviation = 90 %

Set Gear box ratio equal to the reduction ratio between the motor and the winder:

Gear box ratio = 0.5

Set Dancer constant with a value in mm corresponding to the total accumulation of the material in the Dancer:

Dancer constant = ( L x x = (160 x 2) x 2 = 640mm

M

Gear box ratio

L = 160mm

WInder/Unwinder Dancer

L

Electrical 0

Central positionof working

One pitch dancer

Upper limitswitch = +1000 count

Lower limitswitch = -1000 count

Figure 1.16.4.1: Outlining of the Dancer Constant Measurement

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 161: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————161Ch.1

Dancer constant measurement:

Set the Drive keypad on the PID feed-back parameter.

Measure and multiply by 2 the distance in mm between the lower mechanical limit switch and the Dancer positionso that the value 0 (electric 0 position) is displayed on the PID feed-back parameter. Being that the Dancer ismade of a single pitch, multiply by 2 the above calculated value.

In our case set:

Dancer constant = 640mm

Set Minimum diameter equal to the value of the winder minimum diameter [cm]:

Minimum diameter = 10cm

1.16.5 Use of the Diameter Sensor

Dancer

Winder/Unwinder

M

Feed-forward

Feed-back

-10V

+10V

5Kohm

E

R

Sensor diameter

0 - 10V

Nip-roll

M E

DRIVEDRIVE

Figure 1.16.5.1: Winder/Unwinder Control with Diameter Sensor

The diameter sensor can be used in case of systems with automatic changing unwinders. In such conditions it isnecessary to know the value of the starting diameter in order to calculate the reference of the motor angularspeed before carrying out the coil new winding procedure.

The transducer has to be set in order to supply a voltage signal proportional to the winder diameter.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 162: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1162

V

90 900

1V

10V

min max

450

5V

Figure 1.16.5.2: Relationship Between the Transducer Signal and the Winder Diameter

Example:

Φmin = 90 mm transducer output = 1V

Φmax = 900 mm transducer output = 10V

Φ = 450 mm transducer output = 5V

The analog input, which the sensor is connected to, has to be set as a source of PID Mlt PI 3 src.

The multiplier selector must point to 3, that is:

Mlt PI sel 0 = One

Mlt PI sel 1 = One The selection of the PID Mlt PI sel 3 multiplier is therefore active.

When PID PI enab = disable, the value of PID Mlt PI 3 is written in PID PI out mon and used as amultiplicative factor of the feed-forward.

As already stated, the setting of PI output PID depends on the diameter ratio, therefore the proportional voltagesignal towards the diameter is automatically calculated again via the formula:

PID Mlt PI 3 = (Φ

0 / Φ

1)

where: Φ0 = winder minimum diameter

Φ1 = winder present diameter

NOTE! During the commissioning, it is necessary to check that the signal coming from the sensor isproportional to the diameter and that 10V corresponds to its maximum value.

(the analog input self-tuning has to be performed anyway).

Check also that PI clam top and PI clamp bot have been programmed according to the diameter ratio as statedin the previous examples.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 163: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————163Ch.1

1.16.6 Pressure Control for Pumps and Extruders

M

Extruder

Speed reference

E

DRIVE

-10V

+10V

Feed-back

Pressuresetting

Pressuretransducer

Set

Feed-fwd

0... +10V

Figure 1.16.6.1: Pressure Control for Pumps and Extruders

1.16.6.1 Machine Data

Rated speed of the extruder motor Vn = 3000rpm

Pressure transducer 0... +10V

The Drive of the Slave extruder must receive the analog signals referring to the speed reference, to the pressuretransducer and to the potentiometer for the pressure setting (power supplied at its ends with values includedbetween 0V... -10V) and the digital signals referring to the PID control enabling.

The regulator output is sent to the speed 1 reference.

1.16.6.2 Input/Output

Drive settings: (only those referring to the PID function are described)

Connect to the analog input 1 the pressure transducer.

Select PID fbk src = An inp 1 output

Connect to the analog input 2 the signal for the ramp stage. The output of the ramp stage has to be used as a speedreference (feed- forward).

Select Ramp ref 1 src = An inp 2 output

Connect as feed- forward the ramp output.

Select PID inp FF src = Ramp out mon

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 164: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1164

Connect to the speed reference 1 the PID output

Select Speed ref 1 src = PID out mon

Set Ramp out enable = Disable

Connect to the analog input 3 the tension reference.

Select PID draw src = An inp 3 output

Connect to the Digital input 1 the input enabling the PID PI Block

Select PID PI enab src = DI 1 monitor

Connect to the Digital input 2 the input enabling the PID PD Block

Select PID PD enab src = DI 2 monitor

In case just one contact is needed to enable the PI and PD section, it is possible to connect also PID PD enab srcon the digital input 1 as described below.

Select PID PD enab src = DI 1 monitor

1.16.6.3 Parameters

Set Full scale spd equal to the motor maximum speed.

Full scale spd = 3000 rpm

Connect

Mlt PI sel 0 = Null

Mlt PI sel 1 = One The selection of the PID Mlt PI sel 1 multiplier is therefore active.

Set

PID Mlt PI sel 1 = 1 The starting value is 1

Without any correction on the side of the regulator PI Block, the reference of the line speed (Feed-forward) hasto be multiplied by 1 and sent directly to the Drive speed regulator.

Set PI lim top and PI lim bot in order to obtain a maximum correction of the PI Block equal to 100% of the line speed.

The PI lim top and PI lim bot parameters can be considered, respectively, as a maximum and minimum multi-plicative factor of the feed-forward.

PI lim top = 1

PI lim bot = 0

With this application the regulator carries out a proportional-integral control.

The gains of the different components have to be set, experimentally, with a loaded machine; such tests can bestarted with the values below (default values):

Set PI P1 gain % = 4%

Set PI I1 gain % = 4%

Set PD P1 gain % = 1%

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 165: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————165Ch.1

Use the derivative component as a system “damping” element, by setting for example:

PD D1 gain % = 1%

PD der filter = 20ms

If it is not required, leave the parameters = 0.

1.16.7 Generic PID

Drive settings: (only those referring to the PID function are described)Connect to the analog input 1 the reaction signal.Select PID fbk src = An inp 1 output

Connect to the analog input 2 the reference.Select PID draw src = An inp 2 output

Connect the feed forward signal to its internal reference.Select PID inp FF src = Int PID inp FFSet Int PID inp FF to 100%

Connect to the Digital input 1 the input enabling the PID PI BlockSelect PID PI enab src = DI 1 monitor

Connect to the Digital input 2 the input enabling the PID PD BlockSelect PID PD enab src = DI 2 monitor

In case just one contact is needed to enable the PI and PD section, it is possible to connect also PID PD enab srcon the digital input 1 as described below.Select PID PD enab src = DI 1 monitor

Connect to the control variable (Torque, Speed, etc.) the PID output

Select xxxxxxxx src (Torque ref 1 src, Speed ref 1 src, etc.) = PID out s mon; the scale factor of PID out s moncan be set via the PID Out gain parameter according to the different needs. See chapter 1.1.3, “Normalizationssignals”.

1.16.7.1 Parameters

Set Full scale spd equal to the motor speed corresponding to 100% of the line speed.

Full scale spd = 2550 rpm

Connect

Mlt PI sel 0 = Null

Mlt PI sel 1 = One The selection of the PID Mlt PI sel 1 multiplier is therefore active.

Set PID Mlt PI sel 1 = 1 The starting value is 1

Set PI lim top e PI lim bot in order to obtain a maximum correction of the PI Block equal to +/- 100% of thecontrol variable.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 166: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1166

The PI lim top and PI lim bot parameters can be considered, respectively, as a maximum and minimummultiplicative factor of the feed-forward.

PI lim top = 1

PI lim bot = -1

1.16.8 Application Note: Dynamic Change of the PI Block Integral Gain

The higher the diameter ratio of the controlled winder, the lower the value at which the PID integral gain isusually set. A too high value allows a good regulation with low diameters but causes strong system coggingswhen higher diameters are present.

On the contrary, too low values of the integral gain could cause, with a minimum diameter, a movement of the dancerposition, as compared to the electric 0 position, directly proportional to the line speed. It happens because the integralcomponent charge or discharge is performed in a period of time shorter than the diameter changing time.

PIIgain

PID

100

1000

PIoutp

utP

ID

40%

4%

max

20%

PI I gain PID = ( att x KI)

[KI = 40%]

o

100 1000200 500

8%

500

200

Figure 1.16.8.1: Example with a Small and Big Diameter

In case of high diameter ratios, it could be necessary to change dynamically the values of the PI P and Iparameters according to the present diameter.

As the output of the PI Block is inversely proportional to the diameter, it must be connected as the abscissa of thePI gain adaptive.

PIGP ref src = PID PI out mon

The thresholds and gains have to be set in order to obtain a gain Profile equal to the one shown in the followingfigure.

Consider to control a winder with a 1/10 diameter ratio.

The regulator integral component must be inversely proportional to the diameter.

The value of the PI output PID parameter is already in compliance with this rule, as it changes according to the ratio

φφφφφ0 / φφφφφatt.

Where: φ0 = winder minimum diameter

φatt

= winder present diameter

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 167: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————167Ch.1

V

90 900

1V

10V

min max

450

5V

Figure 1.16.8.2: PI I Gain PID and PI I Output PID ratio

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 168: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1168

1.17 CUSTOMER FUNCTIONS (CUSTOM FUNCTIONS)

1.17.1 Signal Comparator (Compare)

The Block supplies two signal Comparators, Compare 1 and Compare 2, with the same features.

Each Comparator is in a position to compare two or three input signals (INP0, INP1, INP2).

They both have 3 sources, Cmp x inp 0 src - Cmp x inp 1 src - Cmp x inp 2 src, through which it is possibleto select, on the input, the origin of the signals to be compared (“ x ” stays for 1 or 2).

Each source is standard connected to an internal variable, Cmp x inp 0 - Cmp x inp 1 - Cmp x inp 2, which canbe set with a count value in the configurations, where, through Cmp x function it is possible to select the com-parison to be performed.

Some comparisons allow to set via Cmp x window a window, in count, stating an acceptable range among the signals.

Example:

_INP0 and INP1 have to be compared as “INP0 = INP1”

INP0 = +1000count

INP1 = +1000count

Window = 100count

_in this case the equality is true for a maximum overall variation of INP1 between 1100 and 900 counts.

Possible variations:

None none

I0 == I1 INP0-window INP1 INP0+window

I0 != I1 INP1 lower INP0-window, or,

INP1 higher INP0+window

I0 < I1 INP0 lower INP1

I0 > I1 INP0 higher INP1

I0 < I1 > I2 INP0<INP1<INP2 (INP1 included between..)

|I0| == |I1| |INP0| -window £ |INP1| £ |INP0| +window

|I0| != |I1| |INP1| lower |INP0| -window, or

|INP1| higher |INP0| +window

|I0| < |I1| |INP0| lower |INP1|

|I0| > |I1| |INP0| higher |INP1|

|I0| < |I1| < |I2| |INP0| < |INP1| < |INP2| (|INP1|

TAV3i013

|INP|x : signal module.

In the configurations it is also possible to set:

with Cmp x delay a delay in seconds on the comparison transition;

with Cmp x inversion an inversion of the signal state.

The monitor function displays via Compare x output the state of the chosen function:

_if Compare function is TRUE the output is 1

_if Compare function is FALSE the output is 0

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 169: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————169Ch.1

Description:CUSTOM FUNCTIONS Compare

Compare 1Compare 1 src

Cmp 1 inp 0 srcCmp 1 inp 1 srcCmp 1 inp 2 src

Compare 1 cfgCmp 1 inp 0Cmp 1 inp 1Cmp 1 inp 2Cmp 1 functionCmp 1 windowCmp 1 delayCmp 1 inversion

Compare 1 monCompare 1 output

Compare 2Compare 2 src

Cmp 2 inp 0 srcCmp 2 inp 1 srcCmp 2 inp 2 src

Compare 2 cfgCmp 2 inp 0Cmp 2 inp 1Cmp 2 inp 2Cmp 2 functionCmp 2 windowCmp 2 delayCmp 2 inversion

Compare 2 monCompare 2 output

CUSTOM FUNCTIONS SAVE PARAMETERS

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 170: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Function Description —————— Ch.1170

1.17.2 Use Variables (Pad Parameters)

The use variables, “Pads”, are used for the data exchange with the option cards.

Description:CUSTOM FUNCTIONS Pad parameters

Pad param wordPad 0Pad 1Pad 2Pad 3Pad 4Pad 5Pad 6Pad 7Pad 8Pad 9Pad 10Pad 11Pad 12Pad 13Pad 14Pad 15

Pad param bitDig pad 0Dig pad 1Dig pad 2Dig pad 3Dig pad 4Dig pad 5Dig pad 6Dig pad 7Dig pad 8Dig pad 9Dig pad 10Dig pad 11Dig pad 12Dig pad 13Dig pad 14Dig pad 15

CUSTOM FUNCTIONS SAVE PARAMETERS

Pad 0 analog pad, to be set in count............ ..............Pad 15 analog pad, to be set in count

Dig pad 0 digital pad............ ............Dig pad 15 digital pad

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 171: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Function Description ——————171Ch.1

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 172: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Block Diagrams —————— Ch.2172

Chapter 2 - BLOCK DIAGRAMS

AD10

AC

flu

x v

ecto

r D

rive

File

nam

e:

Issu

ed D

ate

Initi

als:

Revi

sion

Dat

e

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

roprieta

ryIn

form

ation

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

03/0

2/0

0--

RN

C

Overv

iew

V.v

sd

Sta

tus

V/f

Dri

ve

Feed

backs

&S

tatu

s

Co

ntr

ol

V/f

Co

ntr

ol

IOInp

ut

-O

utp

ut

Co

mm

an

ds

Co

mm

an

ds

PIDPID

Fu

ncti

on

Sp

dZ

ero

Sp

ee

dZ

ero

Lo

gic

Overl

oad

Overl

oad

Se

ttin

gs

Cu

sto

m

Cu

sto

m

Fu

nc

tio

ns

DC

Bra

kin

g

DC

Bra

kin

g

Ou

tpu

tfr

eq

ue

ncy

DC

link

vo

lta

ge

Ra

mp

ref

Ou

tpu

tp

ow

er

Drive

OK

Ra

mp

acc

sta

te

Sp

ee

dlim

sta

teR

am

pd

ec

sta

te

Tcu

rrlim

sta

te

Sp

ee

dre

f

Ou

tpu

tvo

lta

ge

No

rmS

pe

ed

RG

se

nso

rte

mp

HT

se

nso

rte

mp

Ou

tpu

tcu

rre

nt

Re

fis

ze

ro

Sp

dis

ze

ro

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 173: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Block Diagrams ——————173Ch.2

AD10

AC

flu

x v

ec

tor

Dri

ve

File

nam

e:

Issu

ed D

ate

Initi

als:

Revi

sion

Dat

e

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

roprieta

ryIn

form

ation

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

I J

KL

Ov

erv

iew

F.v

sd

Sta

tus

Fie

ldO

rie

nte

dC

on

tro

l

Dri

ve

Feed

backs

&S

tatu

s

Co

ntr

ol

FO

CC

on

tro

l

IOInp

ut

-O

utp

ut

Co

mm

an

ds

Co

mm

an

ds

PIDPID

Fu

nc

tio

n

Sp

dZ

ero

Sp

ee

dZ

ero

Lo

gic

Ov

erl

oa

d

Ov

erl

oa

d

Se

ttin

gs

Cu

sto

m

Cu

sto

m

Fu

nc

tio

ns

DC

Bra

kin

g

DC

Bra

kin

g

To

rqu

ere

fO

utp

ut

fre

qu

en

cy

DC

link

vo

lta

ge

Ra

mp

ref

Ou

tpu

tp

ow

er

Drive

OK

Ra

mp

acc

sta

te

Sp

ee

dlim

sta

teR

am

pd

ec

sta

te

Exp

en

cfa

ilTcu

rrlim

sta

te

Flu

x

Sp

ee

dre

f

Ou

tpu

tvo

lta

ge

No

rmS

pe

ed

RG

se

nso

rte

mp

HT

se

nso

rte

mp

Ou

tpu

tcu

rre

nt

Re

fis

ze

ro

Sp

dis

ze

ro

Std

en

cfa

il

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 174: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Block Diagrams —————— Ch.2174

AD10

AC

flu

x v

ec

tor

Dri

ve

10

/15

/99

--R

M

File

nam

e:

Issu

ed D

ate

Initi

als:

Revi

sion

Dat

e

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

roprieta

ryIn

form

ation

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

03

/02

/00

--R

NC

Ov

erv

iew

S.v

sd

Sta

tus

Se

ns

orl

es

s

Dri

ve

Feed

backs

&S

tatu

s

IOInp

ut

-O

utp

ut

Co

mm

an

ds

Co

mm

an

ds

PIDPID

Fu

nc

tio

n

Sp

dZ

ero

Sp

ee

dZ

ero

Lo

gic

Ov

erl

oa

d

Ov

erl

oa

d

Se

ttin

gs

Cu

sto

m

Cu

sto

m

Fu

nc

tio

ns

Co

ntr

ol

SL

SC

on

tro

l

DC

Bra

kin

g

DC

Bra

kin

g

To

rqu

ere

fO

utp

ut

fre

qu

en

cy

DC

link

vo

lta

ge

Ra

mp

ref

Ou

tpu

tp

ow

er

Drive

OK

Ra

mp

acc

sta

te

Sp

ee

dlim

sta

teR

am

pd

ec

sta

te

Sp

dis

ze

ro

Tcu

rrlim

sta

te

Flu

x

Sp

ee

dre

f

Ou

tpu

tvo

lta

ge

No

rmS

pe

ed

RG

se

nso

rte

mp

HT

se

nso

rte

mp

Ou

tpu

tcu

rre

nt

Re

fis

ze

ro

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 175: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Block Diagrams ——————175Ch.2

Co

ntr

olV

.vsd

AD10

AC

flu

x v

ecto

r D

rive

File

na

me

:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

teIn

itia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

rop

rie

tary

Info

rma

tio

n

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

V/f

CO

NT

RO

L

Mo

tor

Co

ntr

ol

Ram

pS

pG

en

Sp

eed

Ref

Gen

era

tio

n

05/0

2/0

0--

RN

C

Pw

r_lo

ss_ctr

l

Po

wer

Lo

ss

Sto

p

Rid

eth

rou

gh

V

f

V/f

sh

ap

e

Vo

ltag

eB

oo

st

Slip

Co

mp

en

sati

on

To

rqu

e

Sp

eed

V/f

Ca

tch

on

fly

Cu

rren

tlim

itre

gu

lato

r

Vo

ut

f

En

erg

ysave

Overv

iew

Go

To

Ind

ex

NA

VIG

AT

ION

ma

rke

dp

ara

me

ters

be

lon

gto

STA

RT

UP

me

nu

,d

on

otm

od

ify

the

min

this

pa

ge

DC

link

vo

lta

ge

Sp

ee

dre

f

V/f

vo

lta

ge

46

0V

V/f

fre

qu

en

cy

60

Hz

V/f

sh

ap

e

V=

fre

q^1

.0

Vo

lta

ge

bo

ost 1,7

39

5%

Slip

co

mp

27

rpm

Slip

com

pfilter

1s

An

tio

scill

ga

in

0%

Sp

dse

arc

htim

e

10

s

Vlt

se

arc

htim

e

1s

Ca

tch

init

sp

ee

d

18

00

rpm

Ca

tch

de

ma

gd

ly

3s

Ca

tch

retr

yd

ly

3s

V/f

ca

tch

cm

d

NU

LL

Vlt

se

arc

hsta

te

V/f

ILim

Ig

ain

80

31

,02

rpm

/A/s

V/f

ILim

Pg

ain

51

,39

85

rpm

/A

Ou

tpu

tfr

eq

ue

ncy

Ou

tpu

tvo

lta

ge

SE

flx

ram

ptim

e1

0s

Int

SE

flx

leve

l

10

0%

SE

cm

dsrc

NU

LL

Int

SE

flx

leve

l

10

0%

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 176: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Block Diagrams —————— Ch.2176

Co

ntr

olF

.vsd

AD10

AC

flu

x v

ecto

r D

rive

File

na

me

:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

teIn

itia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

roprieta

ryIn

form

ation

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

FIE

LD

OR

IEN

TE

DC

ON

TR

OL

Inco

mp

Inert

ia

Co

mp

en

sati

on

Dro

op

Dro

op

To

rqu

eC

urr

en

t

Pro

cessin

g

IQR

EF

Flu

xL

imit

Mo

tor

Co

ntr

ol

Ram

pS

pG

en

Sp

eed

Ref

Gen

era

tio

n

++

+ +

+ -

+

-

++

SP

RE

G

Sp

eed

Reg

ula

tor

Sp

eed

Up

Sp

Du

p

05/0

2/0

0--

RN

C

Pw

r_lo

ss_ctr

l

Po

wer

Lo

ss

Sto

p

Rid

eth

rou

gh

Sp

eed

Feed

back

Sp

d_F

bk

Mo

torC

trl

Overv

iew

Go

To

Ind

ex

NA

VIG

AT

ION

Sp

dA

dp

Sp

eed

Ad

ap

tive

Dro

op

com

p

0N

m

Intflx

maxlim

10

0%

Torq

ue

ref

Norm

Std

enc

spd

Norm

Exp

enc

spd

Speed

ref

DC

link

voltage

Flu

x

Flu

xre

f

Speed

Norm

Speed

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 177: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Block Diagrams ——————177Ch.2

Co

ntr

olS

.vsd

AD10

AC

flu

x v

ecto

r D

rive

File

na

me

:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

teIn

itia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

roprieta

ryIn

form

ation

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

SE

NS

OR

LE

SS

VE

CT

OR

CO

NT

RO

L

Inco

mp

Inert

ia

Co

mp

en

sati

on

Dro

op

Dro

op

To

rqu

eC

urr

en

tP

rocessin

g

IQR

EF

Flu

xL

imit

Mo

tor

Co

ntr

ol

Ram

pS

pG

en

Sp

eed

Ref

Gen

era

tio

n

+

+

+ +

+ -

+

-

++

SP

RE

G

Sp

eed

Reg

ula

tor

Sp

eed

Up

Sp

Du

p

26/0

3/01

Overv

iew

Go

To

Ind

ex

NA

VIG

AT

ION

Sp

dA

dp

Sp

eed

Ad

ap

tive

Mo

torC

trl

Pw

r_lo

ss_ctr

l

Po

wer

Lo

ss

Sto

p

Rid

eth

rou

gh

Dro

op

com

p

0N

m

Intflx

maxlim

100

%

Torq

ue

ref

Norm

Std

enc

spd

Speed

ref

Speed

DC

link

voltage

Flu

x

Flu

xre

f

Norm

Speed

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 178: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Block Diagrams —————— Ch.2178

InC

om

p.v

sd

AD10

AC

flu

x v

ec

tor

Dri

ve

File

na

me

:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

teIn

itia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

rop

rie

tary

Info

rma

tio

nD

oN

ot

Co

py

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

INE

RT

IAC

OM

PE

NS

AT

ION

Z-1

+ +

+

-

Co

ntr

ol

Ba

ck

NA

VIG

AT

ION

Ze

ro

26/0

3/01

....

....

T

Ine

rtia

src

Int

Ine

rtia

Int

Frictio

n0

Nm

Sp

ee

dre

f

Int

Ine

rtia

0kg

*m2

Ine

rtia

cp

flt

30

ms

I/F

cp

mo

n

I/F

cp

en

src

NU

LL

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 179: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Block Diagrams ——————179Ch.2

Dro

op

.vs

dAD

10 A

C f

lux

ve

cto

r D

riv

eF

ilen

am

e:

Issu

ed

Da

te

Initia

ls:

Re

vis

ion

Da

te

Initia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

rop

rie

tary

Info

rma

tio

nD

oN

ot

Co

py

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

DR

OO

P

....

+

-

Co

ntr

ol

Ba

ck

NA

VIG

AT

ION

....

T

Ze

ro

Dro

op

ga

in0

%

Dro

op

limit

50

rpm

To

rqu

ere

f

Dro

op

co

mp

0N

m

Dro

op

co

mp

src

Dro

op

co

mp

Dro

op

ou

t

Dro

op

filte

r2

0m

s

Dro

op

en

src

NU

LL

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 180: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Block Diagrams —————— Ch.2180

Sp

dU

p.v

sd

AD10

AC

flu

x v

ec

tor

Dri

ve

File

na

me

:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

teIn

itia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

rop

rie

tary

Info

rma

tio

nD

oN

ot

Co

py

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

SP

EE

DF

EE

DB

AC

KD

ER

IVA

TIV

E

Z-1

Sp

ee

dF

ee

db

ac

k

De

riv

ati

ve

Ou

tpu

tF

+

-

Ze

ro

Co

ntr

ol

Ba

ck

NA

VIG

AT

ION

26/0

3/01

Sfb

kd

er

ga

in

0%

Sfb

kd

er

en

ab

le

Sfb

kd

er

filte

r

5m

s

Sp

ee

d

Sfb

kd

er

ba

se

10

00

ms

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 181: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Block Diagrams ——————181Ch.2

Sp

reg

.vsd

AD10

AC

flu

x v

ecto

r D

rive

File

na

me

:

Issued

Date

Initia

ls:

Re

vis

ion

Da

teIn

itia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

roprieta

ryIn

form

ation

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

SP

EE

DR

EG

UL

AT

OR

+ +

+ +

Sp

eed

Up

Ou

t

+ +

+

-

Z-1

Co

ntr

ol

Back

NA

VIG

AT

ION

+ +

Sp

eed

Reg

Ou

t

26/0

3/01

Dro

op

out

InU

se

SpdP

gain

%

InU

se

SpdIgain

%

Speed

Pro

pfilter

0,2

ms

Speed

setp

oin

t

SpdP

1gain

%

10

%

SpdI1

gain

%

10

%

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 182: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Block Diagrams —————— Ch.2182

Iqre

f.v

sd

AD 1

0 AC

flu

x ve

ctor

Driv

eF

ilenam

e:

Issued

Date

Initia

ls:

Revis

ion

Date

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

rop

rie

tary

Info

rma

tio

nD

oN

ot

Co

py

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

SP

EE

D/T

OR

QU

E

CO

NT

RO

L

sig

nP

ID

....

Inert

iaC

om

p.O

ut

Sp

eed

Reg

Ou

t

....

SP

D/T

RQ

LO

GIC

AD

P

+ +

Po

wer

Rid

eth

rou

gh

ou

tpu

t

Co

ntr

ol

Back

NA

VIG

AT

ION

Zero

+ +

++

....

26/0

3/01

To

rqu

ecu

rrre

gu

lato

r

Cu

rrre

gb

as

ev

alu

e

....

....

++

Torq

ue

ref3

src

Intto

rque

ref3

Torq

ue

ref3

mon

Intto

rque

ref3

0N

m

Torq

ue

ref2

src

Intto

rque

ref2

Torq

ue

ref2

mon

Intto

rque

ref2

0N

m

SpdT

rqctr

lsta

t

IntS

pdT

rqm

ode

Off

Torq

ue

ref

Inuse

Tcurr

lim+

Inuse

Tcurr

lim-

Flu

xre

f

Zero

torq

ue

mon

Torq

ue

ref1

src

Intto

rque

ref1

Torq

ue

ref1

mon

Intto

rque

ref1

0N

m

SpdT

rqm

ode

mon

Torq

ue

curr

ref

Curr

Pgain

%

10

%

Curr

Igain

%10

%

Cu

rrP

ba

se

va

lue

2640,6

7V

/A

Curr

Ibase

valu

e231780

V/A

/s

Zero

torq

ue

src

NU

LL

SpdT

rqm

ode

src

IntS

pdT

rqm

ode

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 183: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Block Diagrams ——————183Ch.2

Ram

pS

pG

en

.vsd

AD10

AC

flu

x v

ecto

r D

rive

File

nam

e:

Issu

ed D

ate

Initi

als:

Revi

sion

Dat

eIn

itial

s:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

roprieta

ryIn

form

ation

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

Sp

eed

Refe

ren

ce

gen

era

tio

n

Mp

ot

Ram

p

t

Sp

eed

0 7

Msp

d

RS

et

Mlt

Ram

p

MU

LT

IRA

MP

SS

etS

peed

Set

Po

int

+ -

Jo

g+

Jo

g-

Jo

g

Ram

p

Set

Po

int

Co

ntr

ol

Back

NA

VIG

AT

ION

26/0

3/01

Ram

pre

f1

mon

Mlt

spd

outm

on

Mpotoutp

utm

on

Ram

pre

f2

mon

Ram

psetp

oin

t

Jog

outp

ut

Speed

ref1

mon

Speed

ratio

mon

Speed

ref2

mon

Ram

poutm

on

Speed

setp

oin

t

Ram

pre

f3

mon

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 184: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Block Diagrams —————— Ch.2184

Ms

pd

.vs

dAD

10 A

C f

lux

vect

or D

rive

File

na

me

:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

te

Initia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

roprieta

ryIn

form

ation

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

Mu

lti

sp

ee

d

.... ....

Encoding

.... ....

Ra

mp

Sp

Ge

n

Ba

ck

NA

VIG

AT

ION

7M

lt

Sp

ee

d7

6M

lt

Sp

ee

d6

5M

lt

Sp

ee

d5

4M

lt

Sp

ee

d4

3M

lt

Sp

ee

d3

2M

lt

Sp

ee

d2

1M

lt

Sp

ee

d1

0M

lt

Sp

ee

d0

26/0

3/01

Mlt

sp

ds

0src

NU

LL

Mlt

sp

ds

1src

NU

LL

Mlt

sp

dse

lm

on

Mlt

sp

ds

2src

NU

LL

Mlt

sp

d0

src

Mlt

sp

d0

Mlt

sp

d0

0rp

m

Mlt

sp

do

ut

mo

n

Mlt

sp

d7

0rp

m

Mlt

sp

d6

0rp

m

Mlt

sp

d5

0rp

m

Mlt

sp

d4

0rp

m

Mlt

sp

d3

0rp

m

Mlt

sp

d2

0rp

m

Mlt

sp

d1

0rp

m

Mlt

sp

d0

mo

n

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 185: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Block Diagrams ——————185Ch.2

Mp

ot.

vsd

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issued

Date

Initia

ls:

Re

vis

ion

Da

te

Initia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

roprieta

ryIn

form

ation

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

Mo

tor

po

ten

tio

mete

r +Jo

g

_

.... .... .... ....

Ram

pS

pG

en

Back

NA

VIG

AT

ION

26/0

3/01

Mpotpre

setcfg

None

Mpotin

itcfg

Zero

Mpotupper

lim 1000

rpm

Mpotlo

wer

lim

0rp

m

Mpotacc

dlt

spd

1000

rpm

Mpotacc

dlt

tim

10

s

Mpotdec

dlt

spd

1000

rpm

Mpotdec

dlt

tim

10

s

Mpotoutp

utm

on

Mpotcm

dm

on

Mpotup

src

NU

LL

Mpotdow

nsrc

NU

LL

Mpotin

vers

src

NU

LL

Mpotpre

setsrc

NU

LL

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 186: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Block Diagrams —————— Ch.2186

RS

et.

vsd

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

te

Initia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

rop

rie

tary

Info

rma

tio

nD

oN

ot

Co

py

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

RA

MP

SE

TP

OIN

T

+

+

+ +

-1+1

....

Ram

pS

pG

en

Back

NA

VIG

AT

ION

F

....

26/0

3/01

........

21

1.S

witch

isclo

sed

ifR

am

poutenable

=E

nable

d&

Sta

rt

Sw

itch

isopened

ifR

am

poutenable

=E

nable

d&

Sto

p

2.S

witch

isclo

sed

ifR

am

poutenable

=E

nable

d&

(!F

aststo

p)

Sw

itch

isopened

ifR

am

poutenable

=E

nable

d&

Faststo

p

Both

sw

itches

are

clo

sed

ifR

am

poutenable

=D

isable

d

Ra

mp

ref

1src

An

inp

1o

utp

ut

Int

ram

pre

f1

0rp

m

Ra

mp

se

tpo

int

Ra

mp

ref

1m

on

Ra

mp

ref

inv

src

NU

LL

Int

ram

pre

f2

0rp

m

Ra

mp

ref

2src

Int

ram

pre

f2

Ra

mp

ref

2m

on

Ra

mp

ref

3src

Mp

ot

ou

tpu

tm

on

Int

ram

pre

f3

0rp

m

Ra

mp

ref

3m

on

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 187: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Block Diagrams ——————187Ch.2

MLT

Ram

p.v

sd

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issued

Date

Initia

ls:

Re

vis

ion

Da

teIn

itia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

roprieta

ryIn

form

ation

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

MU

LT

IRA

MP

CT

RL

.... ....

SET0

Acc

Filte

r

Dec

Slo

pe

Acc

Slo

pe

Dec

Filte

r

SET1 SET2 SET3

Ram

pS

pG

en

Back

NA

VIG

AT

ION

26/0

3/01

Encoding

Mlt

ram

ps0

src

NU

LL

Mlt

ram

ps1

src

NU

LL

MR

0dec

dlt

spd

1000

rpm

MR

0acc

dlt

tim

e10

s

MR

0dec

dlt

tim

e10

s

MR

0acc

dlt

spd

1000

rpm

MR

0fd

ec

dlt

spd

10000

rpm

MR

0fd

ec

dlttim

e10

s

MR

0acc

Scurv

e 0,1

s

MR

0dec

Scurv

e 0,1

s

MR

1dec

dlt

spd

1000

rpm

MR

1acc

dlt

tim

e10

s

MR

1dec

dlt

tim

e10

s

MR

1acc

dlt

spd

1000

rpm

MR

1fd

ec

dlt

spd

10000

rpm

MR

1fd

ec

dlttim

e10

s

MR

1acc

Scurv

e 0,1

s

MR

1dec

Scurv

e 0,1

s

MR

2dec

dlt

spd

1000

rpm

MR

2acc

dlt

tim

e10

s

MR

2dec

dlt

tim

e10

s

MR

2acc

dlt

spd

1000

rpm

MR

2fd

ec

dlt

spd

10000

rpm

MR

2fd

ec

dlttim

e10

s

MR

2acc

Scurv

e 0,1

s

MR

2dec

Scurv

e 0,1

s

MR

3dec

dlt

spd

1000

rpm

MR

3acc

dlt

tim

e10

s

MR

3dec

dlt

tim

e10

s

MR

3acc

dlt

spd

1000

rpm

MR

3fd

ec

dlt

spd

10000

rpm

MR

3fd

ec

dlttim

e10

s

MR

3acc

Scurv

e 0,1

s

MR

3dec

Scurv

e 0,1

s

Mlt

ram

pselm

on

FastS

top

SM

mon

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 188: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Block Diagrams —————— Ch.2188

Ra

mp

.vs

dAD

10 A

C f

lux

vect

or D

rive

File

na

me

:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

teIn

itia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

rop

rie

tary

Info

rma

tio

nD

oN

ot

Co

py

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

RA

MP

....

....

....

Ra

mp

Sp

Ge

n

Ba

ck

NA

VIG

AT

ION

26/0

3/01

Ra

mp

sh

ap

eL

ine

ar

Ra

mp

se

tpo

int

Ra

mp

inp

ut=

0

NU

LL

Ra

mp

ou

tpu

t=0

NU

LL

Ra

mp

fre

eze

NU

LL

Ra

mp

de

csta

te

Ra

mp

cm

ds

mo

n

Ra

mp

acc

sta

te

Ra

mp

ou

tm

on

Ra

mp

ou

t!=

0

Rh

yste

resis

thr 3

rpm

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 189: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Block Diagrams ——————189Ch.2

Jo

g.v

sd

AD10

AC

flu

x ve

ctor

Drive

File

na

me

:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

te

Initia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

rop

rie

tary

Info

rma

tio

nD

oN

ot

Co

py

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

JO

G

.... ....

Encoding

.... ....

Ra

mp

Sp

Ge

n

Ba

ck

NA

VIG

AT

ION

+ -

Jo

g+

Jo

g-

3

....

Jo

g3

2J

og

2

1J

og

1

0J

og

0

mo

n

26/0

3/01

Jo

gse

l0

src

NU

LL

Jo

gse

l1

src

NU

LL

Jo

gse

lm

on

Jo

gin

ve

rssrc

NU

LL

Jo

gcm

dsrc

NU

LL

Jo

gsta

te

Jo

ga

cc

dlt

sp

d

10

00

0rp

m

Jo

ga

cc

dlt

tim

e

10

s

Jo

gd

ec

dlt

sp

d

10

00

0rp

m

Jo

gd

ec

dlt

tim

e

10

s

Jo

go

utp

ut

Jo

g3

0rp

m

Jo

g0

src

Jo

g0

Jo

g0

10

0rp

m

Jo

g2

0rp

m

Jo

g1

0rp

m

Jo

g0

mo

n

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 190: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Block Diagrams —————— Ch.2190

SS

et.

vsd

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issued

Date

Initia

ls:

Re

vis

ion

Da

te

Initia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

roprieta

ryIn

form

ation

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

SP

EE

DS

ET

PO

INT

+

+

+ +

sig

nP

ID

+ +

.... .... ....

+1

-1

F

Ram

pS

pG

en

Back

NA

VIG

AT

ION

Zero

....

F

26/0

3/01

1.

Sw

itch

isclo

se

dif

Ra

mp

ou

te

na

ble

=D

isa

ble

d&

Sta

rt

Sw

itch

iso

pe

ne

dif

Ra

mp

ou

te

na

ble

=D

isa

ble

d&

Sto

p

2.

Sw

itch

isclo

se

dif

Ra

mp

ou

te

na

ble

=D

isa

ble

d&

(!F

ast

sto

p)

Sw

itch

iso

pe

ne

dif

Ra

mp

ou

te

na

ble

=D

isa

ble

d&

Fa

st

sto

p

Bo

thsw

itch

es

are

clo

se

dif

Ra

mp

ou

te

na

ble

=E

na

ble

d

12

Speed

ref1

src

Intspeed

ref1

Speed

ratio

src

Intspeed

ratio

Speed

ref2

src

Intspeed

ref2

Speed

top

1980

rpm

Speed

bottom -1980

rpm

Speed

ref1

mon

Intspeed

ref1

0rp

m

Ram

poutenable

Speed

ratio

mon

Intspeed

ratio

100

%

Intspeed

ref2

0rp

mS

peed

ref2

mon

Speed

limsta

te

Ram

poutm

on

Speed

dra

wout

Jog

outp

ut

Speed

setp

oin

t

Speedre

fin

vsrc

NU

LL

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 191: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Block Diagrams ——————191Ch.2

Mo

torC

trl.

vs

dAD

10 A

C f

lux

vect

or D

rive

File

na

me

:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

te

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

roprieta

ryIn

form

ation

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

I J

KL

26

/03/

01

Co

ntr

ol

Ba

ck

NA

VIG

AT

ION

Mo

tor

co

ntr

ol

Flu

xre

gu

lato

rV

olt

ag

ere

gu

lato

r

RE

GU

LA

TIO

N

Flu

xm

od

el

++

+

AC

Mo

tor

En

co

der

(op

tio

n)

Vo

ltag

ere

gb

ase

valu

eF

lux

reg

base

valu

e

Flu

xm

ax

(ra

mp

ed

)

Flu

xm

in

Fro

mS

pe

ed

/To

rqu

e

reg

ula

tor

PW

M

Ma

gn

eti

za

tio

nlo

gic

Flu

xm

ax

(ra

mp

ed

)

Flu

xc

urr

en

tlim

it

P/I

reg

ula

tors

inc

lud

ea

nti

-win

du

plo

gic

....

....

Flu

xc

urr

reg

ula

tor

-

DC

link

voltage

Intflx

ma

xlim

100

%

Flu

x

Outp

utvoltage

VltP

ga

in%

0%

VltIg

ain

%

10

%

Flx

Pgain

%10

%

Flx

Igain

%10

%

VltP

base

valu

e 0W

b/V

VltIbase

valu

e

0,1

06412

Wb/V

/s

Flx

Pbase

valu

e

37,5

679

A/W

b

Flx

Ibase

valu

e

201,1

17

A/W

b/s

Flu

xre

f

Torq

ue

curr

Ou

tvlt

limsrc

IntO

utv

ltlim

IntO

utv

ltlim

460

V

Inuse

Outv

ltre

f

Availa

ble

Outv

lt

Dyn

vlt

marg

in

2%

Flu

xle

velsrc

Intflx

ma

xlim In

use

flx

maxlim

Magn

curr

ref

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 192: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Block Diagrams —————— Ch.2192

Sp

d_F

bk.v

sd

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

te

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

rop

rie

tary

Info

rma

tio

nD

oN

ot

Co

py

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

I J

KL

26

/03/

01

Sp

eed

Feed

back

Mo

tor

En

co

de

rS

etu

p

Exp

En

co

der

Ind

ex

Sto

rin

g

OP

TIO

N

XE

1co

nn

ecto

r

En

co

der

1

65 18 43

A+

A-

B+

B-

C+

C-

0V

5V

97 65 18 43

A+

A-

B+

B-

C+

C-

0V

+V

2/97

XF

Ico

nn

ecto

r

En

co

der

2

Co

ntr

ol

Back

NA

VIG

AT

ION

En

co

der

Rep

eate

rO

pti

on

T

....

....

Std

En

co

der

all

para

mete

rsvis

ualiz

ed

belo

ng

toS

TA

RT

UP

menu,do

notm

odify

them

inth

ispage

Exp

en

cty

pe

Dig

ita

l

Std

en

cp

uls

es 10

24

pp

r

Exp

en

cp

uls

es 1

02

4p

prStd

dig

en

cm

od

e

FP

mo

de

Ind

ex

sto

rin

ge

n

Off

Sp

ee

d

Std

sin

en

cV

p

0,5

V

Std

en

csu

pp

ly

5.4

1V

Int

ISctr

l

0

ISctr

lsrc

Int

ISctr

l

Re

p/S

ime

nc

se

l

Re

pe

at

std

en

c

Sp

dfb

kse

lsrc

Int

sp

dfb

kse

l

Intsp

dfb

kse

l

Std

en

co

de

r

Std

en

cty

pe

Dig

ita

l

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 193: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Block Diagrams ——————193Ch.2

Sp

dA

dp

.vsd

AD10

AC

flu

x ve

ctor

Dri

ve

File

na

me

:

Issu

ed

Da

te

Initia

ls:

Re

vis

ion

Da

teIn

itia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

roprieta

ryIn

form

ation

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

Sp

dG

ain

pro

file

.

.

.

.

Co

ntr

ol

Back

NA

VIG

AT

ION

26/0

3/01

Ref

Ref

SG

Pre

fsrc In

tS

GP

ref

Int

SG

Pre

f

0cn

t

Sp

dI2

ga

in%

10

%

Sp

dP

2g

ain

%1

0%

SG

Ptr

an

32

lth

r

0%

SG

Ptr

an

21

hth

r

0%

SG

Ptr

an

32

ba

nd 0

%

SG

Ptr

an

21

ba

nd

0%

InU

se

Sp

dP

ga

in%

InU

se

Sp

dI

ga

in%

SG

Pb

ase

va

lue

16

38

4cn

t

SG

Pre

fm

on

Sp

dP

3g

ain

%1

0%

Sp

dP

1g

ain

%

10

%

Sp

dI1

ga

in%

10

%

Sp

dI3

ga

in%

10

%

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 194: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Block Diagrams —————— Ch.2194

AD10

AC

flu

x ve

ctor

Driv

eF

ilenam

e:

Issued

Date

Initia

ls:

Revis

ion

Date

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

rop

rie

tary

Info

rma

tio

nD

oN

ot

Co

py

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

Co

ntr

ol

Back

NA

VIG

AT

ION

26/0

3/01

Po

we

rlo

ss

sto

p/

Rid

eth

rou

gh

co

ntr

ol

AC

Main

svo

ltag

e

100

%

100

%

DC

lin

kvo

ltag

e

PL

Tim

er

Sp

eed

ref

Actu

alsp

eed

To

rqu

ecu

rren

t

+100

%

-100

%

Po

wer

loss

dete

cti

on

UV

leveld

ete

cti

on

PIre

gu

lato

rti

me

Sp

ee

dra

tio

ca

lcu

lato

r

To

An

alo

gin

pu

tset

as

"S

peed

rati

o"

of

Ne

xt

Dri

ve

Pw

r_lo

ss

_c

trl.

vs

d

PIre

gu

lato

r

P2280

P2270

Cu

rre

nt

Lim

it

Po

we

rL

os

sC

trl

To

rqu

ecu

rrre

f

Po

we

rR

ide

Th

ru

Sto

p

Sto

p

Sto

p

Rid

eth

rou

gh

Rid

eth

rou

gh

Rid

eth

rou

gh

Rid

eth

rou

gh

DC

link

voltage

PLS

Vdc

ref 7

36,3

07

V

Norm

Speed

PLS

tim

eout

10

s

PL

decele

ration

10000

rpm

/sP

Laccele

ration

100

rpm

/s

Speed

ref

PLS

curr

lim 0,8

96209

A

DC

link

voltage

PLS

Igain

3,2

8381

A/V

/s

PLS

Pgain

0,0

492572

A/V

PLS

Vdc

ref 7

36,3

07

V

Norm

Speed

Speed

ref

PLS

active

PL

nextactive

PL

nextfa

cto

r

DC

link

voltage

PLS

main

sstsrc

NU

LL

PL

function

sel

Off

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 195: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Block Diagrams ——————195Ch.2

Co

mm

an

ds.v

sd

AD10

AC

flu

x ve

ctor

Driv

eFi

le n

ame:

Issu

ed D

ate

Initi

als:

Revi

sion

Dat

eIn

itial

s:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

roprieta

ryIn

form

ation

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

CO

MM

AN

DS

Overv

iew

Back

NA

VIG

AT

ION

26/0

3/01

AN

D

AN

D

AN

D

AN

D

AN

D

COMMANDSMANAGEMENT

Pre

ss

O

for

2sec

tod

isab

le

IOK

eys

Term

inals

Term

inals

Dig

ital

Dig

ital

IO

Keys

IO

Keys

EG

DE

SE

LE

CT

ION

-In

puts

are

pro

cessed

with

Edge

sensitiv

elo

gic

LE

VE

LS

ELE

CT

ION

-In

puts

are

pro

cessed

with

Levelsensitiv

elo

gic

IO

KE

YS

-D

I0&

Term

Str

Stp

src

are

required=

1to

run

DIG

ITA

LE

DG

E-

Term

inals

src

inputs

are

levelsensitiv

eru

nin

terlocks

DIG

ITA

LLE

VE

L-

All

sig

nals

are

leveltr

iggere

d,te

rmin

als

are

run

inte

rlocks

TO

OL

BO

X

IO

KE

YS

Dig

En

ab

lesrc

NU

LL

Te

rmS

trS

tpsrc

DI

1m

on

ito

r

Te

rmS

tart

src

NU

LL

Dig

Str

Stp

src

NU

LL

Te

rmS

top

src

NU

LL

En

ab

lecm

dm

on

Fa

stS

top

cm

dm

on

Fa

stS

top

src

NU

LL

Sta

rtcm

dm

on

En

/Dis

ab

lem

od

eS

top

/FS

Sp

d=

0

Sp

d0

dis

dly

10

00

ms

DI

0E

na

ble

mo

n

Co

mm

an

ds

se

lect

IO

ke

ys

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 196: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Block Diagrams —————— Ch.2196

DC

Bra

kin

g.v

sd

AD10

AC

flu

x ve

ctor

Driv

eFi

le n

ame:

Issu

ed D

ate

Initi

als:

Revi

sion

Dat

eIn

itial

s:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

rop

rie

tary

Info

rma

tio

n

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

DC

BR

AK

ING

Ov

erv

iew

Ba

ck

NA

VIG

AT

ION

26/0

3/01

DC

bra

ke

du

ratio

n 1s

DC

bra

ke

de

lay0

,5s

DC

bra

ke

cu

rre

nt 50

%

DC

bra

ke

cm

dsrc

NU

LL

DC

bra

ke

mo

de

Off

DC

bra

ke

sta

te

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 197: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Block Diagrams ——————197Ch.2

Sp

dZ

ero

.vs

dAD

10 A

C f

lux

vect

orD

riv

e

File

nam

e:

Issu

ed D

ate

Initi

als:

Revi

sion

Dat

eIn

itial

s:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

roprieta

ryIn

form

ation

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

Sp

ee

dZ

ero

blo

ck

Ov

erv

iew

Ba

ck

NA

VIG

AT

ION

26/0

3/01

....

Sp

ee

d0

Ga

ins

No

rma

l

Ga

ins

Re

f<

>0

Sp

ee

d=

0

&R

ef

=0

Sp

d0

ref

src R

am

pre

f

Sp

dis

ze

ro

Int

sp

d0

ref

0cn

t

Sp

d0

en

ab

le Dis

ab

led

Sp

d0

ref

thr

20

rpm

Sp

d0

sp

dd

ela

y5

00

ms

Sp

d0

sp

ee

dth

r2

0rp

m

Sp

d0

Ig

ain

%1

0%

Sp

d0

Pg

ain

%1

0%

Sp

d0

ref

de

lay

10

00

ms

Re

fis

ze

ro

Sp

dis

ze

rod

ly

Re

fis

ze

rod

ly

InU

se

Sp

dP

ga

in%

InU

se

Sp

dI

ga

in%

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 198: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Block Diagrams —————— Ch.2198

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

te

Initia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

rop

rie

tary

Info

rma

tio

nD

oN

ot

Co

py

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

CU

ST

OM

FU

NC

TIO

NS

Ov

erv

iew

Ba

ck

NA

VIG

AT

ION

.... ....

....

Co

mp

ara

tor

1

+1 -1

F

.... ....

....

Co

mp

ara

tor

2

+1 -1

F

Cu

sto

m.v

sd

26/0

3/01

Cm

p1

inp

0src

Cm

p1

inp

0

Cm

p1

inp

0

0

Co

mp

are

1o

utp

ut

Cm

p1

inp

1src

Cm

p1

inp

1

Cm

p1

inp

10

Cm

p1

inp

2src

Cm

p1

inp

2

Cm

p1

inp

2

0

Cm

p1

fun

ctio

nN

on

e

Cm

p1

win

do

w0

cn

t

Cm

p1

de

lay

0s

Cm

p1

inve

rsio

n

Cm

p2

inp

0src

Cm

p2

inp

0

Cm

p2

inp

00

Co

mp

are

2o

utp

ut

Cm

p2

inp

1src

Cm

p2

inp

1

Cm

p2

inp

1

0

Cm

p2

inp

2src

Cm

p2

inp

2

Cm

p2

inp

2

0

Cm

p2

fun

ctio

n

No

ne

Cm

p2

win

do

w

0cn

t

Cm

p2

de

lay

0s

Cm

p2

inve

rsio

n

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 199: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Block Diagrams ——————199Ch.2

IO.v

sd

AD10

AC

flu

x ve

ctor

Driv

eFi

le n

ame:

Issu

ed D

ate

Initi

als:

Revi

sion

Dat

eIn

itial

s:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

roprieta

ryIn

form

ation

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

INP

UT

/O

UT

PU

T,A

PP

LC

AR

DC

ON

FIG

,

CO

MM

UN

ICA

TIO

N,

FW

D-R

EV

CO

NT

RO

LO

ve

rvie

w

Ba

ck

NA

VIG

AT

ION

26/0

3/01

An

Inp

1

An

Inp

1

An

Inp

2

An

Inp

2

An

Inp

3

An

Inp

3

An

Inp

1&

2X

An

Inp

1-2

x

Std

An

alo

g

Ou

tpu

ts

Std

AO

Exp

An

alo

g

Ou

tpu

ts

Ex

pA

O

Std

Dig

ital

Inp

uts

Std

DI

Exp

Dig

ital

Inp

uts

Ex

pD

I

Std

+E

xp

Dig

ital

Ou

tpu

ts

Std

Ex

pD

O

Bit

sto

Wo

rd

Bit

To

Wo

rd

Dg

fcS

low

Ch

an

nels

Dg

fcS

low

Ch

Cfg

Dg

fcF

ast

Ch

an

nels

Dg

fcF

as

tCh

Cfg

Sb

i

Co

nfi

g

Sb

iCo

nfi

g

ISB

us

Co

nfi

g

ISB

us

Co

nfi

g

Wo

rdto

Bit

s

Wo

rdTo

Bit

Fw

d-R

ev

Co

ntr

ol

Frc

Term

inal

Bo

ard

Layo

ut

Dra

win

g

TB

_L

ay

ou

t

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 200: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Block Diagrams —————— Ch.2200

TERMINAL BOARD LAYOUT DRAWINGIO

Back

NAVIGATION

TB_Layout.vsdAD10 AC flux vector DriveFile name:

Issued DateInitials:

Revision Date

SaftronicsProprietary Information

Do Not Copy

PRODUCT:

26/03/01

A B C D E F G H I J K L M N O P

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

A B C D E F G H

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

1

2

3

4

5

6

7

8

9

12

13

14

15

16

18

19

Strip X1 Function max

Programmable/configurable analog differential input. Signal: terminal 1.

Reference point: terminal 2. Default setting: Ramp ref 1±10V

Programmable/configurable analog differential input. Signal: terminal 3. 0.25mA

Reference point: terminal 4. Default setting: none (20mA when

Programmable/configurable analog differential input. Signal: terminal 5.current loop

input)

Reference point: terminal 6. Default setting: none. (1)

+10V Reference voltage +10V; Reference point: terminal 9 +10V/10mA

-10V Reference voltage -10V; Reference point: terminal 9 -10V/10mA

0V Internal 0V and reference point for±10V -

Enable/

Digital input 0 +30V

3.2mA @ 15V

5mA @ 24VProgrammable inputs,Default=none

6.4mA @ 30V

COM D I/O Reference point for digital inputs and outputs,term.12...15, 36...39, 41...42 -

0 V 24 Reference point for + 24V OUT supply, terminal 19 -

+24V OUT +24V supply output. Reference point: terminal 18 or 27 or 28+22 28V

120mA @ 24V

Analog input 1

Analog input 2

Analog input 3

Analog output

1 Program.analog output; def.setting: none ±10V/5mA

0V Internal 0V and reference point for terminals 21 and 23 -

Analog output

2 Program.analog output; def.setting: none ±10V/5mA

BU comm.

output VeCon controlled BU-32 braking units command. Ref. point: term.27. +28V/15mA

0 V 24 Reference point for BU-32 command, terminal 26 -

RESERVED -

Digital input 4 +30V

Digital input 5 3.2mA @ 15V

Digital input 6 5mA @ 24V

Digital input 7 6.4mA @ 30V

Digital output2

+30V/40mADigital output

3

Supply D O Supply input for digital outputs on terminals 41/42. Ref. point: term.16. +30V/80mA

Motor PTC 1.5mA

Programmable digital outputs; default setting: none

Motor PTC sensing for overtemperature (cutoff R1k if used)

Programmable digital inputs; default setting: none

21

22

23

26

27

28

29

36

37

38

39

41

42

46

78

79

Strip X2 Function Max.

250V AC1 A

250V AC1 A

Digital output 0

RelayPotential- free relay contact, programmable output,Default=Drive OK when closed

80

82

83

85

RESERVED

Digital output 1

Relay

Potential- free relay contact, programmable output,Default=Speed is zero when closed

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 201: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Block Diagrams ——————201Ch.2

An

Inp

1.v

sd

AD10

AC

flu

x ve

ctor

Driv

eF

ilenam

e:

Issued

Date

Initia

ls:

Revis

ion

Date

Initia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

rop

rie

tary

Info

rma

tio

nD

oN

ot

Co

py

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

INP

UT

-O

UT

PU

T

AN

INP

1IO

Back

NA

VIG

AT

ION

....

+1 -1

+

+F

....

F

26/0

3/01

AI1

sgn

src

NU

LL

An

inp

1outp

ut

An

inp

1ty

pe

-10V

...+

10V

An

inp

1filte

r 0,0

064

s

An

inp

1offset

0cnt

An

inp

1th

r

3277

cnt

An

inp

1scale

1

An

inp

1gain

1

An

inp

1<

thr

An

inp

1hilim 1

6383

cnt

An

inp

1lo

lim -16384

cnt

AI1

alt

selsrc

NU

LL

AI1

alt

valu

e

0cnt

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 202: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Block Diagrams —————— Ch.2202

An

Inp

2.v

sd

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

te

Initia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

rop

rie

tary

Info

rma

tio

nD

oN

ot

Co

py

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

INP

UT

-O

UT

PU

T

AN

INP

2IO

Back

NA

VIG

AT

ION

....

+1 -1

+

+

....

FF

26/0

3/01

AI

2sg

nsrc

NU

LL

An

inp

2o

utp

ut

An

inp

2ty

pe

-10

V..

.+

10

V

An

inp

2filte

r 0,0

06

4s

An

inp

2o

ffse

t

0cn

t

An

inp

2th

r

32

77

cn

t

An

inp

2sca

le1

An

inp

2g

ain

1

An

inp

2<

thr

An

inp

2h

ilim 1

63

83

cn

t

An

inp

2lo

lim -16

38

4cn

t

AI

2alt

se

lsrc

NU

LL

AI

2a

ltva

lue

0cn

t

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 203: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Block Diagrams ——————203Ch.2

An

Inp

3.v

sd

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

te

Initia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

rop

rie

tary

Info

rma

tio

nD

oN

ot

Co

py

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

INP

UT

-O

UT

PU

TA

NIN

P3

IO

Ba

ck

NA

VIG

AT

ION

....

+1 -1

+

+

....

FF

26/0

3/01

AI

3sg

nsrc

NU

LL

An

inp

3o

utp

ut

An

inp

3ty

pe

-10

V..

.+

10

V

An

inp

3filter 0

,00

64

s

An

inp

3o

ffse

t

0cn

t

An

inp

3th

r3

27

7cn

t

An

inp

3sca

le1

An

inp

3g

ain

1

An

inp

3<

thr

An

inp

3h

ilim 1

63

83

cn

t

An

inp

3lo

lim -16

38

4cn

t

AI

3a

ltse

lsrc

NU

LL

AI

3a

ltva

lue

0cn

t

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 204: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Block Diagrams —————— Ch.2204

An

Inp

1-2

X.v

sd

AD10

AC

flu

x ve

ctor

Driv

eF

ilenam

e:

Issued

Date

Initia

ls:

Revis

ion

Date

Initia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

rop

rie

tary

Info

rma

tio

nD

oN

ot

Co

py

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

INP

UT

-A

NIN

P1

-2

XIO

Back

NA

VIG

AT

ION

....

+1 -1

+

+

An

Inp

1x

Val

F

....

+1 -1

+

+

An

Inp

2x

Val

F

26/0

3/01

AI1X

sgn

src

NU

LL

An

inp

1X

outp

ut

An

inp

1X

type

-10V

...+

10V

An

inp

1X

offset

0cnt

An

inp

1X

thr 3

277

cnt

An

inp

1X

scale

1

An

inp

1X

gain

1

An

inp

1X

<th

r

An

inp

1X

hilim

16383

cnt

An

inp

1X

lolim

-16384

cnt

AI2X

sgn

src

NU

LL

An

inp

2X

outp

ut

An

inp

2X

type

-10V

...+

10V

An

inp

2X

offset

0cnt

An

inp

2X

thr 3

277

cnt

An

inp

2X

scale

1

An

inp

2X

gain

1

An

inp

2X

<th

r

An

inp

2X

hilim 16383

cnt

An

inp

2X

lolim

-16384

cnt

Exp

ana

inp

en Dis

able

d

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 205: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Block Diagrams ——————205Ch.2

Std

AO

.vsd

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

teIn

itia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

roprieta

ryIn

form

ation

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

INP

UT

OU

TP

UT

-S

tan

da

rdA

na

log

Ou

tpu

ts

....

....

IO

Back

NA

VIG

AT

ION

26/0

3/01

An

out1

scale

1

An

out1

hilim 1

6383

cnt

An

out1

lolim -1

6384

cnt

An

out1

src

NU

LL

An

out1

mon

An

out2

scale

1

An

out2

hilim 1

6383

cnt

An

out2

lolim -1

6384

cnt

An

out2

src

NU

LL

An

out2

mon

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 206: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Block Diagrams —————— Ch.2206

Exp

AO

.vsd

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

te

Initia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

rop

rie

tary

Info

rma

tio

nD

oN

ot

Co

py

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

INP

UT

OU

TP

UT

-E

xp

an

sio

nA

nalo

gO

utp

uts

.... ....

.... ....

IO

Back

NA

VIG

AT

ION

26/0

3/01

An

ou

t1

Xsca

le1

An

ou

t1

Xh

ilim 16

38

3cn

t

An

ou

t1

Xlo

lim

-16

38

4cn

t

An

ou

t1

Xsrc

NU

LL

An

ou

t1

Xm

on

An

ou

t2

Xsca

le

1

An

ou

t2

Xh

ilim

16

38

3cn

t

An

ou

t2

Xlo

lim

-16

38

4cn

t

An

ou

t2

Xsrc

NU

LL

An

ou

t2

Xm

on

An

ou

t3

Xsca

le

1

An

ou

t3

Xh

ilim 16

36

3cn

t

An

ou

t3

Xlo

lim0

cn

t

An

ou

t3

Xsrc

NU

LL

An

ou

t3

Xm

on

An

ou

t4

Xsca

le

1

An

ou

t4

Xh

ilim

16

38

3cn

t

An

ou

t4

Xlo

lim0

cn

t

An

ou

t4

Xsrc

NU

LL

An

ou

t4

Xm

on

An

ou

t3

xty

pe 0

..2

0m

A

An

ou

t4

xty

pe

0..

20

mA

Exp

an

ao

ut

en

Dis

ab

led

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 207: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Block Diagrams ——————207Ch.2

Std

DI.vsd

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

teIn

itia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

rop

rie

tary

Info

rma

tio

nD

oN

ot

Co

py

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

INP

UT

OU

TP

UT

-S

tan

dard

Dig

italIn

pu

ts

F

Hw

Dri

ve

En

ab

le

En

/D

I0

IO

Back

NA

VIG

AT

ION

Di1

26/0

3/01

DI

2in

ve

rsio

n

No

tin

ve

rte

dD

I2

mo

nito

r

DI

0E

na

ble

mo

n

DI

3in

ve

rsio

n

No

tin

ve

rte

d

DI

4in

ve

rsio

n

No

tin

ve

rte

d

DI

5in

ve

rsio

n

No

tin

ve

rte

d

DI

6in

ve

rsio

nN

ot

inve

rte

d

DI

7in

ve

rsio

n

No

tin

ve

rte

d

DI

3m

on

ito

r

DI

4m

on

ito

r

DI

5m

on

ito

r

DI

6m

on

ito

r

DI

7m

on

ito

r

DI

1in

ve

rsio

n

DI

1m

on

ito

r

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 208: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Block Diagrams —————— Ch.2208

Exp

DI.vsd

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

te

Initia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

rop

rie

tary

Info

rma

tio

nD

oN

ot

Co

py

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

INP

UT

OU

TP

UT

-E

xp

an

sio

nD

igit

alIn

pu

ts

F

IO

Back

NA

VIG

AT

ION

DI0x

26/0

3/01

DI

1X

inve

rsio

n

No

tin

ve

rte

d

DI

0X

inve

rsio

n

DI

0X

mo

nito

r

DI

2X

inve

rsio

n

No

tin

ve

rte

d

DI

3X

inve

rsio

n

No

tin

ve

rte

d

DI

4X

inve

rsio

n

No

tin

ve

rte

d

DI

5X

inve

rsio

n

No

tin

ve

rte

d

DI

6X

inve

rsio

n

No

tin

ve

rte

d

DI

7X

inve

rsio

n

No

tin

ve

rte

d

DI

8X

inve

rsio

n

No

tin

ve

rte

d

DI

9X

inve

rsio

n

No

tin

ve

rte

d

DI

10

Xin

ve

rsio

n

No

tin

ve

rte

d

DI

11

Xin

ve

rsio

n

No

tin

ve

rte

d

DI

1X

mo

nito

r

DI

2X

mo

nito

r

DI

3X

mo

nito

r

DI

4X

mo

nito

r

DI

5X

mo

nito

r

DI

7X

mo

nito

r

DI

6X

mo

nito

r

DI

8X

mo

nito

r

DI

9X

mo

nito

r

DI

10

Xm

on

ito

r

DI

11

Xm

on

ito

r

Exp

dig

inp

en D

isa

ble

d

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 209: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Block Diagrams ——————209Ch.2

Std

Exp

DO

.vsd

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

teIn

itia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

rop

rie

tary

Info

rma

tio

nD

oN

ot

Co

py

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

INP

UT

OU

TP

UT

-S

tan

dard

+E

xp

an

sio

nD

igit

al

Ou

tpu

ts

F

....D

O0

IO

Back

NA

VIG

AT

ION

26/0

3/01

DO

1src S

pd

isze

rod

ly

DO

0in

ve

rsio

n

DO

2src

NU

LL

DO

3src

NU

LL

DO

0X

src

NU

LL

DO

1X

src

NU

LL

DO

2X

src

NU

LL

DO

3X

src

NU

LL

DO

4X

src

NU

LL

DO

5X

src

NU

LL

DO

6X

src

NU

LL

DO

7X

src

NU

LL

DO

0src

Drive

OK

DO

1in

ve

rsio

n

No

tin

ve

rte

d

DO

2in

ve

rsio

nN

ot

inve

rte

d

DO

3in

ve

rsio

nN

ot

inve

rte

d

DO

0X

inve

rsio

n

No

tin

ve

rte

d

DO

1X

inve

rsio

nN

ot

inve

rte

d

DO

2X

inve

rsio

nN

ot

inve

rte

d

DO

3X

inve

rsio

nN

ot

inve

rte

d

DO

4X

inve

rsio

nN

ot

inve

rte

d

DO

5X

inve

rsio

nN

ot

inve

rte

d

DO

6X

inve

rsio

nN

ot

inve

rte

d

DO

7X

inve

rsio

nN

ot

inve

rte

d

Exp

dig

ou

te

n Dis

ab

led

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 210: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Block Diagrams —————— Ch.2210

Bit

To

Wo

rd.v

sd

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

te

Initia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

roprieta

ryIn

form

ation

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

Bit

toW

ord

IO

Back

NA

VIG

AT

ION

26/0

3/01

Bit

toW

ord

0B

itto

Wo

rd1

W0

com

pout

Word

0B

3src

NU

LL

Word

0B

14

src

NU

LL

Word

0B

13

src

NU

LL

Word

0B

12

src

NU

LL

Word

0B

11

src

NU

LL

Word

0B

10

src

NU

LL

Word

0B

9src

NU

LL

Word

0B

0src

NU

LL

Word

0B

1src

NU

LL

Word

0B

2src

NU

LL

Word

0B

8src

NU

LL

Word

0B

7src

NU

LL

Word

0B

6src

NU

LL

Word

0B

5src

NU

LL

Word

0B

4src

NU

LL

Word

0B

15

src

NU

LL

W1

com

pout

Word

1B

3src

NU

LL

Word

1B

14

src

NU

LL

Word

1B

13

src

NU

LL

Word

1B

12

src

NU

LL

Word

1B

11

src

NU

LL

Word

1B

10

src

NU

LL

Word

1B

9src

NU

LL

Word

1B

0src

NU

LL

Word

1B

1src

NU

LL

Word

1B

2src

NU

LL

Word

1B

8src

NU

LL

Word

1B

7src

NU

LL

Word

1B

6src

NU

LL

Word

1B

5src

NU

LL

Word

1B

4src

NU

LL

Word

1B

15

src

NU

LL

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 211: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Block Diagrams ——————211Ch.2

Wo

rdTo

Bit

.vsd

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

te

Initia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

rop

rie

tary

Info

rma

tio

nD

oN

ot

Co

py

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

Wo

rdto

Bit

IO

Back

NA

VIG

AT

ION

26/0

3/01

Wo

rd0

toB

its ....

Wo

rd0

toB

its ....

W0

de

co

mp

mo

n

W0

de

co

mp

src

W0

de

co

mp

inp

W0

de

co

mp

inp

0

W1

de

co

mp

mo

n

W1

de

co

mp

src

W1

de

co

mp

inp

W1

de

co

mp

inp

0

B0

W0

de

co

mp

B1

W0

de

co

mp

B2

W0

de

co

mp

B3

W0

de

co

mp

B4

W0

de

co

mp

B5

W0

de

co

mp

B6

W0

de

co

mp

B7

W0

de

co

mp

B8

W0

de

co

mp

B9

W0

de

co

mp

B1

0W

0d

eco

mp

B11

W0

de

co

mp

B1

2W

0d

eco

mp

B1

3W

0d

eco

mp

B1

4W

0d

eco

mp

B1

5W

0d

eco

mp

B0

W1

de

co

mp

B1

W1

de

co

mp

B2

W1

de

co

mp

B3

W1

de

co

mp

B4

W1

de

co

mp

B5

W1

de

co

mp

B6

W1

de

co

mp

B7

W1

de

co

mp

B8

W1

de

co

mp

B9

W1

de

co

mp

B10

W1

decom

p

B11

W1

de

co

mp

B12

W1

decom

p

B13

W1

decom

p

B14

W1

decom

p

B15

W1

decom

p

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 212: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Block Diagrams —————— Ch.2212

Mo

nit

or

Co

nfi

gu

rati

on

ISB

usC

on

fig

.vsd

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

te

Initia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

rop

rie

tary

Info

rma

tio

nD

oN

ot

Co

py

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

ISB

us

Co

nfi

gu

rati

on

IO

Back

NA

VIG

AT

ION

26/0

3/01

.... ............ ....

Dri

ve

toIS

Bu

sIS

Bu

sto

Dri

ve

.... .... ....

Drv

ISB

us

W0

mo

n

Drv

ISB

us

W0

src

Int

Drv

ISB

us

W0

Int

Drv

ISB

us

W0

0

Drv

ISB

us

W4

mo

n

Drv

ISB

us

W4

src

Int

Drv

ISB

us

W4

Int

Drv

ISB

us

W4

0

Drv

ISB

us

W2

mo

n

Drv

ISB

us

W2

src

Int

Drv

ISB

us

W2

Int

Drv

ISB

us

W2

0

Drv

ISB

us

W1

mo

n

Drv

ISB

us

W1

src

Int

Drv

ISB

us

W1

Int

Drv

ISB

us

W1

0

Drv

ISB

us

W3

mo

n

Drv

ISB

us

W3

src

Int

Drv

ISB

us

W3

Int

Drv

ISB

us

W3

0

ISB

us

Drv

W0

mo

n

ISB

us

Drv

W4

mo

n

ISB

us

Drv

W2

mo

n

ISB

us

Drv

W5

mo

n

ISB

us

Drv

W1

mo

n

ISB

us

Drv

W3

mo

n

ISB

us

en

ab

le Dis

ab

led

ISB

Ca

rdsta

tus

Drv

ISB

us

W5

mo

n

Drv

ISB

us

W5

src

Int

Drv

ISB

us

W5

Int

Drv

ISB

us

W5

0

Drv

ISB

us

W6

mo

n

Drv

ISB

us

W6

src

Int

Drv

ISB

us

W6

Int

Drv

ISB

us

W6

0IS

Bu

sD

rvW

6m

on

ISB

us

No

de

ID1

He

art

be

at

tim

e0

ms

La

st

ISB

err

or

ISB

FA

ULT

me

mo

ISB

FA

ULT

cn

t

Drv

ISB

us

W7

mo

n

Drv

ISB

us

W7

src

Int

Drv

ISB

us

W7

Int

Drv

ISB

us

W7

0IS

Bus

Drv

W7

mon

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 213: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Block Diagrams ——————213Ch.2

Sb

iCo

nfi

g.v

sd

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

te

Initia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

roprieta

ryIn

form

ation

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

Sb

iC

on

fig

ura

tio

n

IO

Back

NA

VIG

AT

ION

26/0

3/01

.... ........ ........ ....

Dri

ve

toS

bi

Sb

ito

Dri

ve

Mo

nit

or

Co

nfi

gu

rati

on

Drv

SB

IW

0m

on

Drv

SB

IW

0src

IntD

rvS

BIW

0

IntD

rvS

BIW

0

0

Drv

SB

IW

4m

on

Drv

SB

IW

4src

IntD

rvS

BIW

4

IntD

rvS

BIW

4

0

Drv

SB

IW

2m

on

Drv

SB

IW

2src

IntD

rvS

BIW

2

IntD

rvS

BIW

2

0

Drv

SB

IW

5m

on

Drv

SB

IW

5src

IntD

rvS

BIW

5

IntD

rvS

BIW

5

0

Drv

SB

IW

1m

on

Drv

SB

IW

1src

IntD

rvS

BIW

1

IntD

rvS

BIW

1

0

Drv

SB

IW

3m

on

Drv

SB

IW

3src

IntD

rvS

BIW

3

IntD

rvS

BIW

3

0

SB

ID

rvW

0m

on

SB

ID

rvW

4m

on

SB

ID

rvW

2m

on

SB

ID

rvW

5m

on

SB

ID

rvW

1m

on

SB

ID

rvW

3m

on

LastS

BIerr

or

SB

Ienable

Dis

able

d

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 214: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Block Diagrams —————— Ch.2214

Co

nfi

gu

rati

on

Dg

fcF

astC

hC

fg.v

sd

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

te

Initia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

roprieta

ryIn

form

ation

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

Dg

fcF

as

t(s

yn

c)

Ch

an

ne

lsC

on

fig

ura

tio

n

IO

Back

NA

VIG

AT

ION

26/0

3/01

.... ............ ....

Dri

ve

toD

gfc

Dg

fcto

Dri

ve

Drv

DG

FC

-SW

0m

on

Drv

DG

FC

-SW

0src

IntD

rvD

GF

C-S

W0

IntD

rvD

GF

C-S

W0

0

Drv

DG

FC

-SW

4m

on

Drv

DG

FC

-SW

4src

IntD

rvD

GF

C-S

W4

IntD

rvD

GF

C-S

W4

0

Drv

DG

FC

-SW

2m

on

Drv

DG

FC

-SW

2src

IntD

rvD

GF

C-S

W2

IntD

rvD

GF

C-S

W2

0

Drv

DG

FC

-SW

1m

on

Drv

DG

FC

-SW

1src

IntD

rvD

GF

C-S

W1

IntD

rvD

GF

C-S

W1

0

Drv

DG

FC

-SW

3m

on

Drv

DG

FC

-SW

3src

IntD

rvD

GF

C-S

W3

IntD

rvD

GF

C-S

W3

0

DG

FC

-SD

rvW

0m

on

DG

FC

-SD

rvW

4m

on

DG

FC

-SD

rvW

2m

on

DG

FC

-SD

rvW

1m

on

DG

FC

-SD

rvW

3m

on

DG

FC

enable D

isable

d

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 215: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Block Diagrams ——————215Ch.2

Dg

fcS

low

Ch

Cfg

.vsd

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

te

Initia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

rop

rie

tary

Info

rma

tio

nD

oN

ot

Co

py

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

Dg

fcS

low

(asyn

c)

Ch

an

nels

Co

nfi

gu

rati

on

IO

Back

NA

VIG

AT

ION

26/0

3/01

.... ............ ....

Dri

ve

toD

gfc

Dg

fcto

Dri

ve

.... ............ ....

Co

nfi

gu

rati

on

Drv

DG

FC

-AW

0m

on

Drv

DG

FC

-AW

0src

Int

Drv

DG

FC

-AW

0

Int

Drv

DG

FC

-AW

0

0

Drv

DG

FC

-AW

4m

on

Drv

DG

FC

-AW

4src

Int

Drv

DG

FC

-AW

4

Int

Drv

DG

FC

-AW

4

0

Drv

DG

FC

-AW

2m

on

Drv

DG

FC

-AW

2src

Int

Drv

DG

FC

-AW

2

Int

Drv

DG

FC

-AW

2

0

Drv

DG

FC

-AW

1m

on

Drv

DG

FC

-AW

1src

Int

Drv

DG

FC

-AW

1

Int

Drv

DG

FC

-AW

1

0

Drv

DG

FC

-AW

3m

on

Drv

DG

FC

-AW

3src

Int

Drv

DG

FC

-AW

3

Int

Drv

DG

FC

-AW

30

DG

FC

-AD

rvW

1m

on

DG

FC

-AD

rvW

9m

on

DG

FC

-AD

rvW

5m

on

DG

FC

-AD

rvW

3m

on

DG

FC

-AD

rvW

7m

on

Drv

DG

FC

-AW

5m

on

Drv

DG

FC

-AW

5src

Int

Drv

DG

FC

-AW

5

Int

Drv

DG

FC

-AW

5

0

Drv

DG

FC

-AW

9m

on

Drv

DG

FC

-AW

9src

Int

Drv

DG

FC

-AW

9

Int

Drv

DG

FC

-AW

9

0

Drv

DG

FC

-AW

7m

on

Drv

DG

FC

-AW

7src

Int

Drv

DG

FC

-AW

7

Int

Drv

DG

FC

-AW

7

0

Drv

DG

FC

-AW

6m

on

Drv

DG

FC

-AW

6src

Int

Drv

DG

FC

-AW

6

Int

Drv

DG

FC

-AW

6

0

Drv

DG

FC

-AW

8m

on

Drv

DG

FC

-AW

8src

Int

Drv

DG

FC

-AW

8

Int

Drv

DG

FC

-AW

8

0

DG

FC

-AD

rvW

0m

on

DG

FC

-AD

rvW

8m

on

DG

FC

-AD

rvW

4m

on

DG

FC

-AD

rvW

2m

on

DG

FC

-AD

rvW

6m

on

DG

FC

en

ab

le Dis

ab

led

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 216: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Block Diagrams —————— Ch.2216

Frc

.vsd

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

te

Initia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

roprieta

ryIn

form

ation

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

FO

RW

AR

DR

EV

ER

SE

CO

NT

RO

LB

LO

CK

IO

Back

NA

VIG

AT

ION

26/0

3/01

Fw

dR

ew

Ctr

l

Forw

ard

src

ON

E

Revers

esrc

NU

LL

FR

Cin

vers

ion

FR

Cala

rm

FR

Ccm

dm

on

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 217: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Block Diagrams ——————217Ch.2

PID

.vsd

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

teIn

itia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

roprieta

ryIn

form

ation

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

PID

Fu

nc

tio

nO

verv

iew

Back

NA

VIG

AT

ION

PID

OU

T

Ou

tpu

t

PD

GS

CH

PD

Gain

Sch

ed

ule

r

PD

PA

RT

PD

PA

RT

DIA

CA

L

Init

ialD

iam

ete

r

Calc

ula

tor

PID

INPInp

ut

PIP

AR

T

PIP

AR

T

PIG

SC

H

PIG

ain

Sch

ed

ule

r

FF

PIC

Feed

Fo

rward

PIC

on

tro

l

Se

tpo

int

Fe

ed

Ba

ck

Fe

ed

Fo

rwa

rd

26/0

3/01

MLT

INP

Init

Dia

mete

r

Sett

ing

PID

enable

Dis

able

d

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 218: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Block Diagrams —————— Ch.2218

PID

Inp

.vs

dAD

10 A

C f

lux

vect

or D

rive

File

nam

e:

Issued

Date

Initia

ls:

Revis

ion

Date

Initia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

rop

rie

tary

Info

rma

tio

nD

oN

ot

Co

py

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

PID

FU

NC

TIO

N-

INP

UT

PID

Back

NA

VIG

AT

ION

.... ........

+

+

+

+F

26/0

3/01

....

....

PID

set0

src

IntP

IDset0

PID

set1

src

IntP

IDset1

PID

selo

ff0

src

NU

LL

PID

set0

mon

PID

acc

tim

e1

s

PID

dec

tim

e1

s

PID

set1

mon

PID

input

PID

gain

dra

w

1

PID

cla

mp

top

200

%

PID

cla

mp

bot

-200

%

IntP

IDset0

0%

IntP

IDset1

0%

PID

fbk

src In

tP

IDfb

k

IntP

IDfb

k0

%P

IDfb

km

on

PID

dra

wsrc

IntP

IDdra

w

PID

dra

wm

on

IntP

IDdra

w

0%

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 219: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Block Diagrams ——————219Ch.2

FfP

ic.v

sd

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

teIn

itia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

roprieta

ryIn

form

ation

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

PID

FU

NC

TIO

N-

FE

ED

FO

RW

AR

D

PID

Back

NA

VIG

AT

ION

.... ........

Int

Fre

eze

PIS

tead

yS

tate

Sig

nC

on

tro

l

26/0

3/01

PID

PI

en

ab

src

NU

LL

PID

Ifr

ee

ze

src

NU

LL

PID

inp

FF

src

Int

PID

inp

FF

Int

PID

inp

FF

0%

PID

inp

FF

mo

nP

IDF

Fm

on

PID

inp

FF

ga

in1

PI

ste

ad

yd

ela

y1

s

PI

ste

ad

yth

r

0%

PID

PI

lock

mo

n

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 220: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Block Diagrams —————— Ch.2220

MLT

Inp

.vsd

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

teIn

itia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

roprieta

ryIn

form

ation

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

3

PID

FU

NC

TIO

N-

Init

Dia

me

ter

Se

ttin

gP

ID

Back

NA

VIG

AT

ION

.... ....

Encoding

....

2 1 0

PIin

itvalu

eO

utp

ut

26/0

3/01

PID

Mlt

PIsel0

NU

LL

PID

Mlt

PIsel1

NU

LL

PID

MltP

Iselm

on

PID

Mlt

PI3

src

IntP

IDM

ltP

I3

IntP

IDM

ltP

I3

0

IntP

IDM

ltP

I2

0

IntP

IDM

ltP

I1

0

PID

Mlt

PI3

mon

PID

Mlt

PI0

mon

LastP

Iout

0

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 221: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Block Diagrams ——————221Ch.2

Dia

cal.vsd

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

te

Initia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

roprieta

ryIn

form

ation

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

PID

FU

NC

TIO

N-

Init

ialD

iam

ete

rC

alc

ula

tor

INIT

IAL

DIA

ME

TE

R

CA

LC

UL

AT

OR

....

Sta

nd

ard

En

co

der

Lo

ad

CM

D

Lo

ad

VA

LTo

PiP

art

PiP

art

PID

Back

NA

VIG

AT

ION

26/0

3/01

PID

fbk

mon

Max

devia

tion

90

%

Positio

nin

gspd

0%

Gear

box

ratio

1

Dancer

consta

nt

1m

m

Min

imum

dia

mete

r 1m

m

Dia

calactive

Dia

Clc

sta

rtsrc

NU

LL

Dia

mete

r

1m

m

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 222: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Block Diagrams —————— Ch.2222

PIP

art

.vsd

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

te

Initia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

rop

rie

tary

Info

rma

tio

nD

oN

ot

Co

py

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

PID

FU

NC

TIO

N-

PIP

AR

T

sign

PID

+ +

ME

MO

RY

Sig

nC

on

tro

l

Int

Ifr

ee

ze

PI

Ste

ad

yS

tate

Lo

ad

CM

D

Lo

ad

VA

L

Fro

mD

iam

Ca

lc

Dia

ca

l

Ze

ro

PID

Ba

ck

NA

VIG

AT

ION

26/0

3/01

PID

inp

ut

PI

Pin

itg

ain

10

%

PI

Pn

orm

ga

in

PI

Iin

itg

ain

10

%

PI

Ino

rmg

ain

PI

cla

mp

top

1

PI

cla

mp

bo

t-1

PID

PI

ou

tm

on

PID

inp

ut

La

st

PI

ou

t0

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 223: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Block Diagrams ——————223Ch.2

PIG

sch

.vsd

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

teIn

itia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

roprieta

ryIn

form

ation

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

PID

FU

NC

TIO

N-

PIG

AIN

SC

HE

DU

LE

R

....R

ef

Ref

PID

Back

NA

VIG

AT

ION

26/0

3/01

PIG

Pre

fsrc IntP

IGP

ref

IntP

IGP

ref

0%

PII1

gain

%

10

%

PII2

gain

%

10

%

PII3

gain

%

10

%

PIG

Ptr

an21

hth

r

0%

PIG

Ptr

an32

lthr

0%

PIP

1gain

%

10

%P

IP

2gain

%

10

%

PIP

3gain

%

10

%

PIG

Ptr

an21

band 5

%

PIG

Ptr

an32

band 5

%

PIG

Pre

fm

on

PIP

norm

gain

PIIn

orm

gain

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 224: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Block Diagrams —————— Ch.2224

PD

Part

.vsd

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

teIn

itia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

rop

rie

tary

Info

rma

tio

nD

oN

ot

Co

py

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

PID

FU

NC

TIO

N-

PD

PA

RT

sign

PID

+ +

....

Zero

PID

Back

NA

VIG

AT

ION

F

26/0

3/01

PID

inp

ut

PD

Pg

ain

mo

n

PD

Dg

ain

mo

n

PID

PD

en

ab

src

NU

LL

PID

PD

ou

tm

on

PD

de

rfilte

r

5m

s

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 225: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Block Diagrams ——————225Ch.2

PD

Gsch

.vsd

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

te

Initia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

roprieta

ryIn

form

ation

Do

No

tC

op

y

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

PID

FU

NC

TIO

N-

PD

GA

INS

CH

ED

UL

ER

....R

ef

Ref

PID

Back

NA

VIG

AT

ION

26/0

3/01

PD

GP

refsrc

IntP

DG

Pre

f

IntP

DG

Pre

f

0%

PD

D1

gain

%

10

%

PD

D2

gain

%

10

%

PD

D3

gain

%10

%

PD

GP

tran21

hth

r 0%

PD

GP

tran32

lthr

0%

PD

P1

gain

%

10

%

PD

P2

gain

%

10

%

PD

P3

gain

%

10

%

PD

GP

tran21

band 5

%

PD

GP

tran32

band 5

%

PD

GP

refm

on

PD

Pgain

mon

PD

Dgain

mon

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 226: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Block Diagrams —————— Ch.2226

PID

Ou

t.v

sd

AD10

AC

flu

x ve

ctor

Driv

eF

ilen

am

e:

Issu

ed

Da

teIn

itia

ls:

Re

vis

ion

Da

teIn

itia

ls:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

rop

rie

tary

Info

rma

tio

nD

oN

ot

Co

py

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

PID

FU

NC

TIO

N-

OU

TP

UT

+

-

F

PID

Ba

ck

NA

VIG

AT

ION

26/0

3/01

PID

FF

mo

n

PID

PI

ou

tm

on

PID

PD

ou

tm

on

PID

ou

tsig

n

PID

ou

tm

on

PID

ou

tSm

on

PID

ou

tg

ain

1

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 227: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Block Diagrams ——————227Ch.2

Overl

oad

.vs d

AD10

AC

flu

x ve

ctor

Driv

eF

ile n

am

e:

Issued

Date

Initia

ls:

Revis

ion

Date

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

Saftr

onic

sP

rop

rie

tary

Info

rma

tio

nD

oN

ot

Co

py

PR

OD

UC

T:

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

AB

CD

EF

GH

IJ

KL

MN

OP

QR

ST

U

AB

CD

EF

GH

IJ

KL

OV

ER

LO

AD

SE

TT

ING

SO

verv

iew

Back

NA

VIG

AT

ION

26/0

3/01

OV

ER

LO

AD

Co

ntr

ol

I2t

DR

IVE

MO

TO

R

BU

mark

ed

para

mete

rbelo

ng

toS

TA

RT

UP

menu,do

notm

odify

them

inth

ispage

Drv

OL

accum

%

Serv

ice

facto

r

1

Moto

rO

Lfa

cto

r

1,5

MotO

Laccum

%

Drv

OL

trip

Drv

OL

warn

ing

MotO

Ltr

ip

Moto

rO

Ltim

e

60

s

BU

contr

ol

Off

BU

res

OL

tim

e2,9

8s

BU

OL

accum

%

BU

OL

trip

BU

res

contpw

r 0,5

kW

BU

resis

tance 1

00

ohm

BU

res

OL

facto

r13,5

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 228: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

BUSINESS REPLY MAILFIRST CLASS MAIL PERMIT NO. 648 FT. MYERS, FL

POSTAGE WILL BE PAID BY ADDRESSEE

SAFTRONICS INCWARRANTY DEPARTMENT5580 ENTERPRISE PKWYFORT MYERS FL 33905-9977

CARD 4/30/01 9:21 AM Page 1efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 229: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

Warranty Registration

Company Name ____________________

Address __________________________

________________________________

________________________________

________________________________

Phone ____________________________

Fax ______________________________

Your Name ________________________

Title _____________________________

E-Mail ____________________________

Start-Up Date ______________________

Bought From ______________________

Application ________________________

________________________________

________________________________

Comments ________________________

________________________________

Omit my name from mailing list

Serial Number _____________________

Model Number _____________________

(keep copy for your records)

CARD 4/30/01 9:21 AM Page 2efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 230: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3228

Chapter 3 - PARAMETERS & PICK LISTS3.1 MENU WITH PARAMETER NUMBERS

3.1.1 Menu Legend

Pick-list V/F FOC SLS

Regulation mode

Select new mode

100 Regulation mode

Startup config

Enter setup mode [c]

Load setup [c]

Select setup ?

Full scale speed

1885 Full scale speed

Encoders config

Speed feedback

1940 Int spd fbk sel N/A

7058 Spd fbk sel src List 22 N/A N/A

1925 Std enc type

1890 Std enc pulses

1931 Std dig enc mode

1927 Std enc supply

1902 Std sin enc Vp N/A

1926 Exp enc type N/A

1900 Exp enc pulses N/A

Rep/Sim encoder

1962 Rep/Sim enc sel N/A

1952 Sim enc pulses N/A N/A N/A

Index storing

9550 Index storing en N/A N/A

9551 Int IS ctrl N/A N/A

9557 IS ctrl src List 39 N/A N/A

1936 Motor pp/sens pp N/A N/A N/A

STARTUP

Menu

1 level menust

2 level menu (could be a cmd)nd

Pick - list number source

Regulation mode ofthe drive:

= V/f=field oriented

=Sensorless

V/FFOC

SLS

3 level menurd

4 level menuth

Number and parameter name

Number list referenceN/A=Not Available

=Available

NOTE! Pick lists are showed in section 3.1.3.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 231: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————229Ch.3

3.1.2 MenuPick-list V/F FOC SLS

3060 Output voltage

3070 Output current

3090 Output power

2450 Torque ref N/A

3080 Output frequency

3221 Norm Speed

3210 Speed ref

3200 Ramp ref

162 Enable SM mon

163 Start SM mon

164 FastStop SM mon

I/O status

4028 DI 7654321E

4064 DO 3210

4057 DIX BA9876543210

4078 DOX 76543210

Advanced Status

3100 DC link voltage

3110 Magnetizing curr

3120 Torque curr

3130 Magn curr ref N/A

3140 Torque curr ref N/A

3180 Flux ref N/A

3190 Flux N/A

1670 Mot OL accum %

1781 BU OL accum %

1540 Drv OL accum %

3222 Norm Std enc spd

3223 Norm Exp enc spd N/A

9553 Std enc position N/A N/A

9554 Exp enc position N/A N/A

9555 Std sin enc mod N/A N/A

9072 HT sensor temp

9073 RG sensor temp

9095 IA sensor temp

9090 Sequencer status

3230 CPU1 runtime

3240 CPU2 runtime

Drive ID status

1460 Drive cont curr

114 Drive size

300 Drive type

115 Drive name

810 Actual setup

Software version V .

110 Software type

111 Software status

99 Life time

98 Sys time-ddmmyy

Alarm log N/A N/A N/A

Pick-list V/F FOC SLS

Regulation mode

Select new mode

100 Regulation mode

Startup config

Enter setup mode [c] -> The drive will reboot to SETUP MODE (see chapter 3.1.2.1)

Load setup

Select setup ?

Full scale speed

1885 Full scale speed

Encoders config

Speed feedback

1940 Int spd fbk sel N/A

7058 Spd fbk sel src List 22 N/A N/A

1925 Std enc type

1890 Std enc pulses

1931 Std dig enc mode

1927 Std enc supply

STATUS

STARTUP

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 232: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3230

Pick-list V/F FOC SLS

1902 Std sin enc Vp N/A

1926 Exp enc type N/A

1900 Exp enc pulses N/A

Rep/Sim encoder

1962 Rep/Sim enc sel N/A

1952 Sim enc pulses N/A N/A N/A

Index storing

9550 Index storing en N/A N/A

9551 Int IS ctrl N/A N/A

9557 IS ctrl src List 39 N/A N/A

1936 Motor pp/sens pp N/A N/A N/A

SpdReg gain calc

2048 Calc method N/A

2610 Calc Inertia N/A

2049 Bandwidth N/A

V/f config

3420 V/f voltage N/A N/A

3430 V/f frequency N/A N/A

3410 V/f shape N/A N/A

Motor protection

1611 Service factor

1610 Motor OL factor

1650 Motor OL time

BU protection

1700 BU control

1740 BU resistance

1710 BU res cont pwr

1720 BU res OL time

1730 BU res OL factor

Load default ?

Abort ?

Import recipe

Select recipe:

Export recipe

Select recipe:

Save config ?

Pick-list V/F FOC SLS

Spd regulator

Percent values

3700 SpdP1 gain % N/A

3701 SpdI1 gain % N/A

Base values

2075 SpdP base value N/A

2077 SpdI base value N/A

In use values

2063 InUse SpdP gain% N/A

2065 InUse SpdI gain% N/A

SpdReg autotune

9500 Test torque ref N/A

Start ?

Waiting start...

Results

9501 Measured Inertia N/A

9502 Measured Frict N/A

Curr regulator

Percent values

1999 CurrP gain %

2000 CurrI gain %

Base values

2005 CurrP base value

2007 CurrI base value

Flux regulator

Percent values

2013 FlxP gain % N/A

2015 FlxI gain % N/A

Base values

2021 FlxP base value N/A

Vlt regulator 2023 FlxI base value N/A

Percent values

REGULATION PARAM

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 233: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————231Ch.3

Pick-list V/F FOC SLS

2031 VltP gain % N/A

2033 VltI gain % N/A

Base values

2039 VltP base value N/A

2041 VltI base value N/A

Dead time comp

530 Dead time limit

540 Dead time slope

V/f reg param

V/f control

3400 Voltage boost N/A N/A

3531 Slip comp N/A N/A

3541 Slip comp filter N/A N/A

3585 Antioscill gain N/A N/A

3520 V/f ILim P gain N/A N/A

3530 V/f ILim I gain N/A N/A

V/f save energy

Save energy src

3538 SE cmd src List 3 N/A N/A

3539 SE flx level src List 23 N/A N/A

Save energy cfg

3536 Int SE flx level N/A N/A

3537 SE flx ramp time N/A N/A

V/f catch on fly

V/f catch src

3582 V/f catch cmd List 3 N/A N/A

V/f catch cfg

3545 Spd search time N/A N/A

3550 Vlt search time N/A N/A

3555 Catch init speed N/A N/A

3560 Catch demag dly N/A N/A

3565 Catch retry dly N/A N/A

V/f catch mon

3572 Vlt search state N/A N/A

Sls SpdFbk gains

Motoring gains

1090 Sls mot HPgain N/A N/A

1091 Sls mot HIgain N/A N/A

1092 Sls mot MPgain N/A N/A

1093 Sls mot MIgain N/A N/A

1094 Sls mot LPgain N/A N/A

1095 Sls mot LIgain N/A N/A

Regen gains

1101 Sls regen HPgain N/A N/A

1102 Sls regen HIgain N/A N/A

1103 Sls regen MPgain N/A N/A

1104 Sls regen MIgain N/A N/A

1105 Sls regen LPgain N/A N/A

1106 Sls regen LIgain N/A N/A

Gain transitions

1096 Sls H/M tran level N/A N/A

1097 Sls M/L tran level N/A N/A

1098 Sls H/M tran bnd N/A N/A

1099 Sls M/L tran bnd N/A N/A

1107 Sls 0 tran bnd N/A N/A

1111 Observer filter N/A N/A

Gain monitor

1085 Inuse Sls P gain N/A N/A

1086 Inuse Sls I gain N/A N/A

1112 Observer ref mon N/A N/A

Test generator

Test gen mode

2756 Test gen mode

Select new mode

Test gen cfg

2745 Gen Hi ref

2750 Gen Low ref

2755 Gen Period

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 234: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3232

Pick-list V/F FOC SLS

Test gen mon

2760 Gen output

SAVE PARAMETERS

Pick-list V/F FOC SLS

Commands

Commands src

153 Term StrStp src List 16

9210 Term Start src List 16

9211 Term Stop src List 16

156 Dig Enable src List 17

157 Dig StrStp src List 17

154 FastStop src List 18

Commands cfg

4002 Commands select

4004 En/Disable mode

4006 Spd 0 dis dly

Commands mon

150 Enable cmd mon

151 Start cmd mon

152 FastStop cmd mon

Analog inputs

Std analog inps

Analog input 1

An inp 1 src

5011 AI 1 sgn src List 3

5012 AI 1 alt sel src List 3

An inp 1 cfg

5000 An inp 1 type

5002 AI 1 alt value

5003 An inp 1 thr

5004 An inp 1 scale

5006 An inp 1 filter

5007 An inp 1 low lim

5008 An inp 1 hi lim

AI 1 offs tune Start ?

AI 1 gain tune Start ?

An inp 1 mon

5009 An inp 1 output

5010 An inp 1 < thr

5001 An inp 1 offset

5005 An inp 1 gain

Analog input 2

An inp 2 src

5031 AI 2 sgn src List 3

5032 AI 2 alt sel src List 3

An inp 2 cfg

5020 An inp 2 type

5022 AI 2 alt value

5023 An inp 2 thr

5024 An inp 2 scale

5026 An inp 2 filter

5027 An inp 2 lo lim

5028 An inp 2 hi lim

AI 2 offs tune Start ?

AI 2 gain tune Start ?

An inp 2 mon

5029 An inp 2 output

5030 An inp 2 < thr

5021 An inp 2 offset

5025 An inp 2 gain

Analog input 3

An inp 3 src

5051 AI 3 sgn src List 3

5052 AI 3 alt sel src List 3

An inp 3 cfg

5040 An inp 3 type

5042 AI 3 alt value

I/O CONFIG

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 235: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————233Ch.3

Pick-list V/F FOC SLS

5043 An inp 3 thr

5044 An inp 3 scale

5046 An inp 3 filter

5047 An inp 3 lo lim

5048 An inp 3 hi lim

AI 3 offs tune Start ?

AI 3 gain tune Start ?

An inp 3 mon

5049 An inp 3 output

5050 An inp 3 < thr

5041 An inp 3 offset

5045 An inp 3 gain

Exp analog inps

Analog input 1X

An inp 1X src

5069 AI 1X sgn src List 3

An inp 1X cfg

5060 An inp 1X type

5062 An inp 1X thr

5063 An inp 1X scale

5065 An inp 1X lo lim

5066 An inp 1X hi lim

AI 1X offs tune Start ?

AI 1X gain tune Start ?

An inp 1X mon

5067 An inp 1X output

5068 An inp 1X < thr

5061 An inp 1X offset

5064 An inp 1X gain

Analog input 2X

An inp 2X src

5089 AI 2X sgn src List 3

An inp 2X cfg

5080 An inp 2X type

5082 An inp 2X thr

5083 An inp 2X scale

5085 An inp 2X lo lim

5086 An inp 2X hi lim

AI 2X offs tune Start ?

AI 2X gain tune Start ?

An inp 2X mon

5087 An inp 2X output

5088 An inp 2X < thr

5081 An inp 2X offset

5084 An inp 2X gain

Exp ana inp en

3900 Exp ana inp en

Analog outputs

Std analog outs

Analog output 1

An out 1 src

3570 An out 1 src List 2

An out 1 cfg

6012 An out 1 scale

6010 An out 1 hi lim

6011 An out 1 lo lim

An out 1 mon

6013 An out 1 mon

Analog output 2

An out 2 src

3580 An out 2 src List 2

An out 2 cfg

6017 An out 2 scale

6015 An out 2 hi lim

6016 An out 2 lo lim

An out 2 mon

6018 An out 2 mon

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 236: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3234

Pick-list V/F FOC SLS

Exp analog outs

Analog output 1X

An out 1X src

4090 An out 1X src List 2

An out 1X cfg

6022 An out 1X scale

6020 An out 1X hi lim

6021 An out 1X lo lim

An out 1X mon

6023 An out 1X mon

Analog output 2X

An out 2X src

4091 An out 2X src List 2

An out 2X cfg

6027 An out 2X scale

6025 An out 2X hi lim

6026 An out 2X lo lim

An out 2X mon

6028 An out 2X mon

Analog output 3X

An out 3X src

4092 An out 3X src List 2

An out 3X cfg

6034 An out 3x type

6032 An out 3X scale

6030 An out 3X hi lim

6031 An out 3X lo lim

An out 3X mon

6033 An out 3X mon

Analog output 4X

An out 4X src

4093 An out 4X src List 2

An out 4X cfg

6039 An out 4x type

6037 An out 4X scale

6035 An out 4X hi lim

6036 An out 4X lo lim

An out 4X mon

6038 An out 4X mon

Exp ana out en

3901 Exp ana out en

Digital inputs

Std digital inps

Std dig inp cfg

4011 DI 1 inversion

4012 DI 2 inversion

4013 DI 3 inversion

4014 DI 4 inversion

4015 DI 5 inversion

4016 DI 6 inversion

4017 DI 7 inversion

Std dig inp mon

4020 DI 0 Enable mon

4021 DI 1 monitor

4022 DI 2 monitor

4023 DI 3 monitor

4024 DI 4 monitor

4025 DI 5 monitor

4026 DI 6 monitor

4027 DI 7 monitor

4028 DI 7654321E

Exp digital inps

Exp dig inp cfg

4030 DI 0X inversion

4031 DI 1X inversion

4032 DI 2X inversion

4033 DI 3X inversion

4034 DI 4X inversion

4035 DI 5X inversion

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 237: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————235Ch.3

Pick-list V/F FOC SLS

4036 DI 6X inversion

4037 DI 7X inversion

4038 DI 8X inversion

4039 DI 9X inversion

4040 DI 10X inversion

4041 DI 11X inversion

Exp dig inp mon

4045 DI 0X monitor

4046 DI 1X monitor

4047 DI 2X monitor

4048 DI 3X monitor

4049 DI 4X monitor

4050 DI 5X monitor

4051 DI 6X monitor

4052 DI 7X monitor

4053 DI 8X monitor

4054 DI 9X monitor

4055 DI 10X monitor

4056 DI 11X monitor

4057 DIX BA9876543210

Exp dig inp en

3902 Exp dig inp en

Digital outputs

Std digital outs

Std dig out src

4065 DO 0 src List 1

4066 DO 1 src List 1

4067 DO 2 src List 1

4068 DO 3 src List 1

Std dig out cfg

4060 DO 0 inversion

4061 DO 1 inversion

4062 DO 2 inversion

4063 DO 3 inversion

Std dig out mon

4064 DO 3210

Exp digital outs

Exp dig out src

4080 DO 0X src List 1

4081 DO 1X src List 1

4082 DO 2X src List 1

4083 DO 3X src List 1

4084 DO 4X src List 1

4085 DO 5X src List 1

4086 DO 6X src List 1

4087 DO 7X src List 1

Exp dig out cfg

4070 DO 0X inversion

4071 DO 1X inversion

4072 DO 2X inversion

4073 DO 3X inversion

4074 DO 4X inversion

4075 DO 5X inversion

4076 DO 6X inversion

4077 DO 7X inversion

Exp dig out mon

4078 DOX 76543210

Exp dig out en

3903 Exp dig out en

Bits->Word

Bits->Word0 src

2100 Word0 B0 src List 1

2101 Word0 B1 src List 1

2102 Word0 B2 src List 1

2103 Word0 B3 src List 1

2104 Word0 B4 src List 1

2105 Word0 B5 src List 1

2106 Word0 B6 src List 1

2107 Word0 B7 src List 1

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 238: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3236

Pick-list V/F FOC SLS

2108 Word0 B8 src List 1

2109 Word0 B9 src List 1

2110 Word0 B10 src List 1

2111 Word0 B11 src List 1

2112 Word0 B12 src List 1

2113 Word0 B13 src List 1

2114 Word0 B14 src List 1

2115 Word0 B15 src List 1

Bits->Word0 mon

2116 W0 comp out

Bits->Word1 src

9340 Word1 B0 src List 1

9341 Word1 B1 src List 1

9342 Word1 B2 src List 1

9343 Word1 B3 src List 1

9344 Word1 B4 src List 1

9345 Word1 B5 src List 1

9346 Word1 B6 src List 1

9347 Word1 B7 src List 1

9348 Word1 B8 src List 1

9349 Word1 B9 src List 1

9350 Word1 B10 src List 1

9351 Word1 B11 src List 1

9352 Word1 B12 src List 1

9353 Word1 B13 src List 1

9354 Word1 B14 src List 1

9355 Word1 B15 src List 1

Bits->Word1 mon

9356 W1 comp out

Word->Bits

Word0->Bits src

2120 W0 decomp src List 26

Word0->Bits cfg

2121 W0 decomp inp

Word0->Bits mon

2122 W0 decomp mon

2123 B0 W0 decomp

2124 B1 W0 decomp

2125 B2 W0 decomp

2126 B3 W0 decomp

2127 B4 W0 decomp

2128 B5 W0 decomp

2129 B6 W0 decomp

2130 B7 W0 decomp

2131 B8 W0 decomp

2132 B9 W0 decomp

2133 B10 W0 decomp

2134 B11 W0 decomp

2135 B12 W0 decomp

2136 B13 W0 decomp

2137 B14 W0 decomp

2138 B15 W0 decomp

Word1->Bits src

9361 W1 decomp src List 27

Word1->Bits cfg

9360 W1 decomp inp

Word1->Bits mon

9362 W1 decomp mon

9363 B0 W1 decomp

9364 B1 W1 decomp

9365 B2 W1 decomp

9366 B3 W1 decomp

9367 B4 W1 decomp

9368 B5 W1 decomp

9369 B6 W1 decomp

9370 B7 W1 decomp

9371 B8 W1 decomp

9372 B9 W1 decomp

9373 B10 W1 decomp

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 239: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————237Ch.3

Pick-list V/F FOC SLS

9374 B11 W1 decomp

9375 B12 W1 decomp

9376 B13 W1 decomp

9377 B14 W1 decomp

9378 B15 W1 decomp

Fwd Rev Ctrl

Fwd Rev Ctrl src

8083 Forward src List 3

8084 Reverse src List 3

Fwd Rev Ctrl mon

8080 FRC cmd mon

8081 FRC invers

8082 FRC alarm

SAVE PARAMETERS

Pick-list V/F FOC SLS

Ramp setpoint

Ramp ref src

7035 Ramp ref 1 src List 7

7036 Ramp ref 2 src List 8

7029 Ramp ref 3 src List 45

7037 Ramp ref inv src List 3

Ramp ref cfg

7030 Int ramp ref 1

7031 Int ramp ref 2

7038 Int ramp ref 3

Ramp ref mon

7032 Ramp ref 1 mon

7033 Ramp ref 2 mon

7039 Ramp ref 3 mon

7034 Ramp setpoint

Multi ramp Multi ramp src

8090 Mlt ramp s0 src List 3

8091 Mlt ramp s1 src List 3

Multi ramp cfg

Multi ramp set 0

RAMP Acc set 0

8040 MR0 acc dlt spd

8041 MR0 acc dlt time

RAMP Dec set 0

8042 MR0 dec dlt spd

8043 MR0 dec dlt time

RAMP Dec FS set 0

8044 MR0 fdec dlt spd

8045 MR0 fdec dlttime

RAMPScurve time set0

8046 MR0 acc S curve

8047 MR0 dec S curve

Multi ramp set 1

RAMP Acc set 1

8050 MR1 acc dlt spd

8051 MR1 acc dlt time

RAMP Dec set 1

8052 MR1 dec dlt spd

8053 MR1 dec dlt time

RAMP Dec FS set 1

8054 MR1 fdec dlt spd

8055 MR1 fdec dlttime

RAMPScurve time set1

8056 MR1 acc S curve

8057 MR1 dec S curve

Multi ramp set 2

RAMP Acc set 2

8060 MR2 acc dlt spd

8061 MR2 acc dlt time

RAMP Dec set 2

8062 MR2 dec dlt spd

8063 MR2 dec dlt time

RAMP Dec FS set 2

8064 MR2 fdec dlt spd

RAMP CONFIG

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 240: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3238

Pick-list V/F FOC SLS

8065 MR2 fdec dlttime

RAMPScurve time set2

8066 MR2 acc S curve

8067 MR2 dec S curve

Multi ramp set 3

RAMP Acc set 3

8070 MR3 acc dlt spd

8071 MR3 acc dlt time

RAMP Dec set 3

8072 MR3 dec dlt spd

8073 MR3 dec dlt time

RAMP Dec FS set 3

8074 MR3 fdec dlt spd

8075 MR3 fdec dlttime

RAMPScurve time set3

8076 MR3 acc S curve

8077 MR3 dec S curve

Multi ramp mon

8078 Mlt ramp sel mon

Ramp function

Ramp funct src

8027 Ramp input=0 List 3

8028 Ramp output=0 List 3

8029 Ramp freeze List 3

Ramp funct cfg

8031 Ramp out enable

8021 Ramp shape

Ramp funct mon

8022 Ramp out mon

8023 Ramp acc state

8024 Ramp dec state

8025 Ramp out != 0

8026 Ramp cmds mon

SAVE PARAMETERS

Pick-list V/F FOC SLS

Speed setpoint

Speed ref src

7050 Speed ref 1 src List 9

7051 Speed ref 2 src List 10

7052 Speed ratio src List 13

7053 Speedref inv src List 3

Speed ref cfg

7040 Int speed ref 1

7041 Int speed ref 2

7042 Speed top

7043 Speed bottom

Speed ref mon

8022 Ramp out mon

7045 Speed ref 1 mon

7046 Speed ref 2 mon

8012 Jog output

7099 Speed draw out

7049 Speed lim state

7047 Speed setpoint

Spd reg function

Spd reg func src

7054 Spd I=0 src List 3 N/A

7056 Spd PI=0 src List 3 N/A

Spd reg func cfg

7059 Spd reg enable

Spd reg func mon

7055 Spd I=0 mon N/A

7057 Spd PI=0 mon N/A

Jog

Jog src

8014 Jog 0 src List 12

8015 Jog cmd src List 3

8016 Jog sel 0 src List 3

SPEED CONFIG

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 241: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————239Ch.3

Pick-list V/F FOC SLS

8017 Jog sel 1 src List 3

8018 Jog invers src List 3

Jog cfg

8000 Jog 0

8001 Jog 1

8002 Jog 2

8003 Jog 3

8004 Jog acc dlt spd

8005 Jog acc dlt time

8006 Jog dec dlt spd

8007 Jog dec dlt time

Jog mon

8010 Jog 0 mon

8011 Jog sel mon

8012 Jog output

8013 Jog state

Multi speed

Multi speed src

7071 Mlt spd 0 src List11

7072 Mlt spd s 0 src List 3

7073 Mlt spd s 1 src List 3

7074 Mlt spd s 2 src List 3

Multi speed cfg

7060 Mlt spd 0

7061 Mlt spd 1

7062 Mlt spd 2

7063 Mlt spd 3

7064 Mlt spd 4

7065 Mlt spd 5

7066 Mlt spd 6

7067 Mlt spd 7

Multi speed mon

7068 Mlt spd 0 mon

7069 Mlt spd sel mon

7070 Mlt spd out mon

Moto pot

Moto pot src

7091 Mpot up src List 3

7092 Mpot down src List 3

7093 Mpot invers src List 3

7094 Mpot preset src List 3

Moto pot cfg

7080 Mpot lower lim

7081 Mpot upper lim

7082 Mpot acc dlt spd

7083 Mpot acc dlt tim

7084 Mpot dec dlt spd

7085 Mpot dec dlt tim

7086 Mpot init cfg

7087 Mpot preset cfg

Moto pot mon

7089 Mpot cmd mon

7090 Mpot output mon

Speed ratio

Speed ratio src

7052 Speed ratio src List 13

Speed ratio cfg

7044 Int speed ratio

Speed ratio mon

7048 Speed ratio mon

Spd 0 logic

Spd 0 logic src

3732 Spd 0 ref src List 20

Spd 0 logic cfg

3720 Spd 0 enable

3721 Int spd 0 ref

3722 Spd 0 P gain % N/A

3723 Spd 0 I gain % N/A

3724 Spd 0 speed thr

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 242: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3240

Pick-list V/F FOC SLS

3725 Spd 0 spd delay

3726 Spd 0 ref thr

3727 Spd 0 ref delay

Spd 0 logic mon

3728 Spd is zero

3729 Ref is zero

3730 Spd is zero dly

3731 Ref is zero dly

2063 InUse SpdP gain% N/A

2065 InUse SpdI gain% N/A

Spd gain profile

SGP src

3713 SGP ref src List 19 N/A

SGP cfg

3700 SpdP1 gain % N/A

3701 SpdI1 gain % N/A

3702 SpdP2 gain % N/A

3703 SpdI2 gain % N/A

3704 SpdP3 gain % N/A

3705 SpdI3 gain % N/A

3706 SGP tran21 h thr N/A

3707 SGP tran32 l thr N/A

3708 SGP tran21 band N/A

3709 SGP tran32 band N/A

3710 Int SGP ref N/A

3711 SGP base value N/A

SGP mon

3712 SGP ref mon N/A

2063 InUse SpdP gain% N/A

2065 InUse SpdI gain% N/A

Speed droop

Speed droop src

2470 Droop en src List 3 N/A

2475 Droop comp src List 21 N/A

Speed droop cfg

2480 Droop gain N/A

2490 Droop filter N/A

2500 Droop limit N/A

2510 Droop comp N/A

Speed droop mon

2515 Droop out N/A

Spd fbk deriv

Sfbk deriv cfg

2530 Sfbk der enable N/A

2540 Sfbk der gain N/A

2550 Sfbk der base N/A

2560 Sfbk der filter N/A

Inertia/Frict cp

I/F cp src

2580 I/F cp en src List 03 N/A

2605 Inertia src List 25 N/A

I/F cp cfg

2054 Int Inertia N/A

2052 Int Friction N/A

2590 Inertia cp flt N/A

I/F cp mon

2625 I/F cp mon N/A

SAVE PARAMETERS

Pick-list V/F FOC SLS

Torque setpoint

T setpoint src

2431 Torque ref 1 src List 14 N/A

2441 Torque ref 2 src List 15 N/A

2449 Torque ref 3 src List 44 N/A

2385 SpdTrq mode src List 43 N/A

T setpoint cfg

2430 Int torque ref 1 N/A

2440 Int torque ref 2 N/A

2447 Int torque ref 3 N/A

TORQUE CONFIG

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 243: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————241Ch.3

Pick-list V/F FOC SLS

2380 Prop filter N/A

2390 Int SpdTrq mode

T setpoint mon

2432 Torque ref 1 mon N/A

2442 Torque ref 2 mon N/A

2443 Torque ref 3 mon N/A

2450 Torque ref N/A

2446 SpdTrq ctrl stat N/A

2448 SpdTrq mode mon

Torque curr lim

Trq curr lim cfg

1190 Tcurr lim sel

1210 Tcurr lim +

1220 Tcurr lim -

Trq curr lim mon

1250 Inuse Tcurr lim+

1260 Inuse Tcurr lim-

2445 Tcurr lim state

Zero torque cmd

Zero trq cmd src

2451 Zero torque src List 3 N/A

Zero trq cmd mon

2452 Zero torque mon N/A

VdcCtrl reg

2295 VdcCtrl P gain N/A

2296 VdcCtrl I gain N/A

Max regen power

1310 Max regen power N/A

SAVE PARAMETERS

Pick-list V/F FOC SLS

Flux max limit

Flux max lim src

1121 Flux level src List 24 N/A

Flux max lim cfg

1120 Int flx maxlim N/A

Flux max lim mon

1150 Inuse flx maxlim N/A

Magnetiz config

1810 Magn ramp time N/A

1815 Lock flux pos

Output vlt ref

Out vlt ref src

1141 Outvlt lim src N/A

Out vlt ref cfg

1130 Dyn vlt margin N/A

1140 Int Outvlt lim N/A

Out vlt ref mon

1170 Available Outvlt N/A

1180 Inuse Outvlt ref N/A

SAVE PARAMETERS

Pick-list V/F FOC SLS

DC braking

DC braking src

1836 DCbrake cmd src List 3

DC braking cfg

1832 DCbrake mode

1833 DCbrake delay

1834 DCbrake duration

1835 DCbrake current

DC braking mon

1837 DCbrake state

Power loss ctrl

Pwrloss ctrl cfg

2300 PL function sel

2302 PL acceleration

2304 PL deceleration

Pwrloss ctrl mon

2283 PL next active

2282 PL next factor

Pwrloss ridethru

FLUX CONFIG

STOP OPTION

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 244: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3242

Pick-list V/F FOC SLS

Pwrloss ride cfg

2270 PLR P gain N/A

2280 PLR I gain N/A

Pwrloss ride mon

2284 PLR active N/A

Pwrloss stop

Pwrloss stop src

2312 PLS mains st src List 3

Pwrloss stop cfg

2360 PLS P gain

2370 PLS I gain

2340 PLS Vdc ref

2330 PLS curr lim

2320 PLS timeout

Pwrloss stop mon

2275 PLS active

SAVE PARAMETERS

Pick-list V/F FOC SLS

Fault reset

9076 Fault reset src List 3

Undervoltage

9050 UV restart

9051 UV restart time

Overvoltage

9052 OV restart

9053 OV restart time

IGBT desaturat

9046 DS restart

9047 DS restart time

Inst overcurrent

9063 IOC restart

9064 IOC restart time

Ground fault

9640 GF activity

9641 GF threshold

External fault

9075 EF src

9060 EF activity

9061 EF restart

9062 EF restart time

9600 EF hold off

Motor OT

9065 MOT activity

9066 MOT restart

9067 MOT restart time

9603 MOT hold off

Heatsink S OT

9054 HTS activity

9055 HTS restart

9056 HTS restart time

9604 HTS hold off

Regulation S OT

9057 RGS activity

9058 RGS restart

9059 RGS restart time

9605 RGS hold off

Intake air S OT

9087 IAS activity

9088 IAS restart

9089 IAS restart time

9606 IAS hold off

ISBus fault

9068 ISB activity

9069 ISB restart

9070 ISB restart time

Comm card fault

9074 CCF activity

4200 CCF restart

4201 CCF restart time

ALARM CONFIG

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 245: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————243Ch.3

Pick-list V/F FOC SLS

Appl card fault

9049 ACF activity

Drive overload

9040 DOL activity

Motor overload

9041 MOL activity

BU overload

9071 BUOL activity

Fwd Rev Ctrl

9086 FRC activity

9607 FRC hold off

Overspeed

9220 OS activity

9221 OS threshold

9608 OS hold off

Spd fbk loss

9042 SFL activity

UV repetitive

9043 UVR attempts

9044 UVR delay

Hw fault

4202 Hw fault mon

Alarm status

Alm status cfg

9610 Mask W1 S1

9611 Mask W2 S1

9612 Mask W3 S1

9614 Mask W1 S2

9615 Mask W2 S2

9616 Mask W3 S2

Alm status mon

9630 Alm W1 S1

9631 Alm W2 S1

9632 Alm W3 S1

9634 Alm W1 S2

9635 Alm W2 S2

9636 Alm W3 S2

SAVE PARAMETERS

Pick-list V/F FOC SLS

RS485

105 SLink4 address

106 SLink4 res time

SBI

SBI config

8999 SBI enable

SBI monitor

8998 Last SBI error

SBI menu

Drv->SBI word

Drv->SBI W src

9010 Drv SBI W0 src List 40

9011 Drv SBI W1 src List 40

9012 Drv SBI W2 src List 40

9013 Drv SBI W3 src List 40

9014 Drv SBI W4 src List 40

9015 Drv SBI W5 src List 40

Drv->SBI W cfg

9020 Int Drv SBI W0

9021 Int Drv SBI W1

9022 Int Drv SBI W2

9023 Int Drv SBI W3

9024 Int Drv SBI W4

9025 Int Drv SBI W5

Drv->SBI W mon

9030 Drv SBI W0 mon

9031 Drv SBI W1 mon

9032 Drv SBI W2 mon

9033 Drv SBI W3 mon

9034 Drv SBI W4 mon

COMMUNICATION

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 246: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3244

Pick-list V/F FOC SLS

9035 Drv SBI W5 mon

SBI->Drv word

SBI->Drv W mon

9000 SBI Drv W0 mon

9001 SBI Drv W1 mon

9002 SBI Drv W2 mon

9003 SBI Drv W3 mon

9004 SBI Drv W4 mon

9005 SBI Drv W5 mon

ISBus

ISBus config

4225 ISBus enable

4226 ISBus Node ID

4241 Heartbeat time

ISBus monitor

4227 ISB Card status

4228 Last ISB error

4229 ISB FAULT memo

4240 ISB FAULT cnt

Drv->ISBus word

Drv->ISBus W src

4230 Drv ISBus W0src List 28

4231 Drv ISBus W1src List 28

4232 Drv ISBus W2src List 28

4233 Drv ISBus W3src List 28

4234 Drv ISBus W4src List 28

4235 Drv ISBus W5src List 28

4236 Drv ISBus W6src List 28

4237 Drv ISBus W7src List 28

Drv->ISBus W cfg

9320 Int Drv ISBus W0

9321 Int Drv ISBus W1

9322 Int Drv ISBus W2

9323 Int Drv ISBus W3

9324 Int Drv ISBus W4

9325 Int Drv ISBus W5

9326 Int Drv ISBus W6

9327 Int Drv ISBus W7

Drv->ISBus W mon

4216 Drv ISBus W0mon

4217 Drv ISBus W1mon

4218 Drv ISBus W2mon

4219 Drv ISBus W3mon

4220 Drv ISBus W4mon

4221 Drv ISBus W5mon

4222 Drv ISBus W6mon

4223 Drv ISBus W7mon

ISBus->Drv word

ISBus->Drv W mon

9300 ISBus Drv W0 mon

9301 ISBus Drv W1 mon

9302 ISBus Drv W2 mon

9303 ISBus Drv W3 mon

9304 ISBus Drv W4 mon

9305 ISBus Drv W5 mon

9306 ISBus Drv W6 mon

9307 ISBus Drv W7 mon

SAVE PARAMETERS

Pick-list V/F FOC SLS

DGFC

DGFC config

4129 DGFC enable

DGFC menu

DGFC sync Ch

Drv->DGFCS W src

4100 Drv DGFC-S W0src List 29

4101 Drv DGFC-S W1src List 29

APPL CARD CONFIG

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 247: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————245Ch.3

Pick-list V/F FOC SLS

4102 Drv DGFC-S W2src List 29

4103 Drv DGFC-S W3src List 29

4104 Drv DGFC-S W4src List 29

Drv->DGFCS W cfg

4105 Int DrvDGFC-S W0

4106 Int DrvDGFC-S W1

4107 Int DrvDGFC-S W2

4108 Int DrvDGFC-S W3

4109 Int DrvDGFC-S W4

Drv->DGFCS W mon

4110 Drv DGFC-S W0mon

4111 Drv DGFC-S W1mon

4112 Drv DGFC-S W2mon

4113 Drv DGFC-S W3mon

4114 Drv DGFC-S W4mon

DGFCS->Drv W mon

4120 DGFC-S Drv W0mon

4121 DGFC-S Drv W1mon

4122 DGFC-S Drv W2mon

4123 DGFC-S Drv W3mon

4124 DGFC-S Drv W4mon

DGFC async Ch

Drv->DGFCA W src

4130 Drv DGFC-A W0src List 30

4131 Drv DGFC-A W1src List 30

4132 Drv DGFC-A W2src List 30

4133 Drv DGFC-A W3src List 30

4134 Drv DGFC-A W4src List 30

4135 Drv DGFC-A W5src List 30

4136 Drv DGFC-A W6src List 30

4137 Drv DGFC-A W7src List 30

4138 Drv DGFC-A W8src List 30

4139 Drv DGFC-A W9src List 30

Drv->DGFCA W cfg

4140 Int DrvDGFC-A W0

4141 Int DrvDGFC-A W1

4142 Int DrvDGFC-A W2

4143 Int DrvDGFC-A W3

4144 Int DrvDGFC-A W4

4145 Int DrvDGFC-A W5

4146 Int DrvDGFC-A W6

4147 Int DrvDGFC-A W7

4148 Int DrvDGFC-A W8

4149 Int DrvDGFC-A W9

Drv->DGFCA W mon

4150 Drv DGFC-A W0mon

4151 Drv DGFC-A W1mon

4152 Drv DGFC-A W2mon

4153 Drv DGFC-A W3mon

4154 Drv DGFC-A W4mon

4155 Drv DGFC-A W5mon

4156 Drv DGFC-A W6mon

4157 Drv DGFC-A W7mon

4158 Drv DGFC-A W8mon

4159 Drv DGFC-A W9mon

DGFCA->Drv W mon

4160 DGFC-A Drv W0mon

4161 DGFC-A Drv W1mon

4162 DGFC-A Drv W2mon

4163 DGFC-A Drv W3mon

4164 DGFC-A Drv W4mon

4165 DGFC-A Drv W5mon

4166 DGFC-A Drv W6mon

4167 DGFC-A Drv W7mon

4168 DGFC-A Drv W8mon

4169 DGFC-A Drv W9mon

SAVE PARAMETERS

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 248: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3246

Pick-list V/F FOC SLS

PID

PID function

7201 PID enable

PID feed-forward

PID FF src

7210 PID inp FF src List 31

PID FF cfg

7211 Int PID inp FF

7212 PID inp FF gain

PID FF mon

7216 PID inp FF mon

7217 PID FF mon

PID input

PID input src

7220 PID fbk src List 32

7221 PID draw src List 33

7222 PID set 0 src List 34

7223 PID set 1 src List 35

7226 PID seloff 0 src List 3

PID input cfg

7230 Int PID fbk

7231 Int PID draw

7232 Int PID set 0

7233 Int PID set 1

7236 PID gain draw

7237 PID acc time

7238 PID dec time

7239 PID clamp bot

7240 PID clamp top

PID input mon

7250 PID fbk mon

7251 PID draw mon

7252 PID set 0 mon

7253 PID set 1 mon

7256 PID input

PI control

PI control src

7260 PID PI enab src List 3

7261 PID I freeze src List 3

7280 PIGP ref src List 36

7320 PID Mlt PI sel 0 List 3

7321 PID Mlt PI sel 1 List 3

7322 PID Mlt PI 3 src List 38

PI control cfg

7263 PI steady delay

7264 PI steady thr

7270 PI P1 gain %

7271 PI I1 gain %

7272 PI P2 gain %

7273 PI I2 gain %

7274 PI P3 gain %

7275 PI I3 gain %

7276 PIGP tran21 hthr

7277 PIGP tran32 lthr

7278 PIGP tran21 band

7279 PIGP tran32 band

7290 PI Pinit gain

7291 PI Iinit gain

7292 PI clamp top

7293 PI clamp bot

7324 Int PID Mlt PI 1

7325 Int PID Mlt PI 2

7326 Int PID Mlt PI 3

PI control mon

7265 PID PI lock mon

7282 PIGP ref mon

7283 PI Pnorm gain

7284 PI Inorm gain

7294 PID PI out mon

APPL FUNCTION

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 249: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————247Ch.3

Pick-list V/F FOC SLS

7327 PID Mlt PI 0 mon

7328 PID Mlt PI 3 mon

7329 PID MltPI selmon

PD control

PD control src

7340 PID PD enab src List 3

7310 PDGP ref src List 37

PD control cfg

7300 PD P1 gain %

7301 PD D1 gain %

7302 PD P2 gain %

7303 PD D2 gain %

7304 PD P3 gain %

7305 PD D3 gain %

7306 PDGP tran21 hthr

7307 PDGP tran32 lthr

7308 PDGP tran21 band

7309 PDGP tran32 band

7311 Int PDGP ref

7342 PD der filter

PD control mon

7343 PID PD out mon

7312 PD P gain mon

7313 PD D gain mon

7314 PDGP ref mon

PID output

PID output cfg

7350 PID out sign

7351 PID out gain

PID output mon

7352 PID out mon

7353 PID outS mon

Diameter calc

Diameter calc Diameter calc Settings

7360 Max deviation

7361 Positioning spd

7362 Gear box ratio

7363 Dancer constant

7364 Minimum diameter

7402 DiaClc start src List 3

Diameter calc Start ?

Diameter calc Press I key

Diameter calc Results

7365 Diameter

7366 Diacal PI out

7370 DCDelta error

7371 DCDelta pos

SAVE PARAMETERS

Pick-list V/F FOC SLS

Compare

Compare 1

Compare 1 src

6049 Cmp 1 inp 0 src List 5

6050 Cmp 1 inp 1 src List 5

6051 Cmp 1 inp 2 src List 5

Compare 1 cfg

6041 Cmp 1 inp 0

6042 Cmp 1 inp 1

6043 Cmp 1 inp 2

6044 Cmp 1 function

6045 Cmp 1 window

6046 Cmp 1 delay

6047 Cmp 1 inversion

Compare 1 mon

6048 Compare 1 output

Compare 2

Compare 2 src

6064 Cmp 2 inp 0 src List 6

6065 Cmp 2 inp 1 src List 6

CUSTOM FUNCTIONS

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 250: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3248

Pick-list V/F FOC SLS

6066 Cmp 2 inp 2 src List 6

Compare 2 cfg

6056 Cmp 2 inp 0

6057 Cmp 2 inp 1

6058 Cmp 2 inp 2

6059 Cmp 2 function

6060 Cmp 2 window

6061 Cmp 2 delay

6062 Cmp 2 inversion

Compare 2 mon

6063 Compare 2 output

Pad parameters

Pad param word

9100 Pad 0

9101 Pad 1

9102 Pad 2

9103 Pad 3

9104 Pad 4

9105 Pad 5

9106 Pad 6

9107 Pad 7

9108 Pad 8

9109 Pad 9

9110 Pad 10

9111 Pad 11

9112 Pad 12

9113 Pad 13

9114 Pad 14

9115 Pad 15

Pad param bit

9116 Dig pad 0

9117 Dig pad 1

9118 Dig pad 2

9119 Dig pad 3

9120 Dig pad 4

9121 Dig pad 5

9122 Dig pad 6

9123 Dig pad 7

9124 Dig pad 8

9125 Dig pad 9

9126 Dig pad 10

9127 Dig pad 11

9128 Dig pad 12

9129 Dig pad 13

9130 Dig pad 14

9131 Dig pad 15

SAVE PARAMETERS

Insert password

Insert password

Check password

SERVICE

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 251: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————249Ch.3

3.1.3.1 Setup Mode Menu

Following menu will be activated by: STARTUP / Startup config / Enter setup mode

Startup config

Enter setup mode [c] the drive will reboot to SETUP MODE

Drive data > Drive parameters

Mains voltage > Main voltage

Ambient temp > Ambient temp

Switching freq > PWM switching

Spd ref/fbk res > Speed resolution

Motor data > Motor parameters

Rated voltage

Rated frequency

Rated current

Rated speed

Rated power

Cosfi > Motor cosphi

Efficiency > Motor efficiency

Load default mot > Load default motor

Standard 400V

Standard 460V

CurrReg autotune > CurrentRegulator measurament

Start ? > Enable procedure

Results > Measurament results

Measured Rs > Stator resistance

Measured Rr > Rotor resistance

Measured Rr2 > Rotor resistance2

Measured DTs > Dead time limit

Measured DTL > Dead time slope

Measured LsSigma > Statoric inductance

FluxReg autotune > FluxRegulator measurament

Shaft rotating > with moving Rotor

Start ? > Enable procedure

Results > Measurament results

Measured P1 flux > P1 coeff. of flux curve

Measured P2 flux > P2 coeff. of flux curve

Measured P3 flux > P3 coeff. of flux curve

Measured ImNom > value of the Rated magn. Curr.

Measured ImMax > value of the Max magn. Curr.

Measured FluxNom > value of the Rated Flux

Measured FluxMax > value of the Max Flux

At standstill > with stopped Rotor

Start ?

Save setup > Save of the set and detected data

Save as? > allows to select 4 files where 4 different motor setups can be saved

Setup 0 > motor setup File0

Setup 1 > motor setup File1

Setup 2 > motor setup File2

Setup 3 > motor setup File3

Review setup > Recall saved setup files command

Exit setup mode > Exit Setup Mode command the drive will reboot to STATUS menu

STARTUP

SETUP MODE

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 252: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3250

V/F FOC SLS V/F FOC SLS V/F FOC SLSPick List 1

NULL 4000 v v v ONE 4001 v v v Vlt search state 3572 v N/A N/A Drive ready 161 v v v Enable SM mon 162 v v v Start SM mon 163 v v v FastStop SM mon 164 v v v ALM Sequencer 9096 v v v Drive OK 9097 v v v Jog state 8013 v v v Enable cmd mon 150 v v v Start cmd mon 151 v v v FastStop cmd mon 152 v v v An inp 1 < thr 5010 v v v An inp 2 < thr 5030 v v v An inp 3 < thr 5050 v v v An inp 1X < thr 5068 v v v An inp 2X < thr 5088 v v v DI 0 Enable mon 4020 v v v DI 1 monitor 4021 v v v DI 2 monitor 4022 v v v DI 3 monitor 4023 v v v DI 4 monitor 4024 v v v DI 5 monitor 4025 v v v DI 6 monitor 4026 v v v DI 7 monitor 4027 v v v DI 0X monitor 4045 v v v DI 1X monitor 4046 v v v DI 2X monitor 4047 v v v DI 3X monitor 4048 v v v DI 4X monitor 4049 v v v DI 5X monitor 4050 v v v DI 6X monitor 4051 v v v DI 7X monitor 4052 v v v DI 8X monitor 4053 v v v DI 9X monitor 4054 v v v DI 10X monitor 4055 v v v DI 11X monitor 4056 v v v B2 W0 decomp 2125 v v v B3 W0 decomp 2126 v v v B4 W0 decomp 2127 v v v B5 W0 decomp 2128 v v v B6 W0 decomp 2129 v v v B7 W0 decomp 2130 v v v B8 W0 decomp 2131 v v v B9 W0 decomp 2132 v v v B10 W0 decomp 2133 v v v B11 W0 decomp 2134 v v v B12 W0 decomp 2135 v v v B13 W0 decomp 2136 v v v B14 W0 decomp 2137 v v v B15 W0 decomp 2138 v v v B0 W1 decomp 9363 v v v B1 W1 decomp 9364 v v v B2 W1 decomp 9365 v v v B3 W1 decomp 9366 v v v B4 W1 decomp 9367 v v v B5 W1 decomp 9368 v v v B6 W1 decomp 9369 v v v B7 W1 decomp 9370 v v v B8 W1 decomp 9371 v v v B9 W1 decomp 9372 v v v B10 W1 decomp 9373 v v v B11 W1 decomp 9374 v v v B12 W1 decomp 9375 v v v B13 W1 decomp 9376 v v v B14 W1 decomp 9377 v v v B15 W1 decomp 9378 v v v FRC inversion 8081 v v v Ramp acc state 8023 v v v Ramp dec state 8024 v v v

Ramp out != 0 8025 v v v Speed lim state 7049 v v v Spd is zero 3728 v v v Ref is zero 3729 v v v Spd is zero dly 3730 v v v Ref is zero dly 3731 v v v Tcurr lim state 2445 v v v SpdTrq ctrl stat 2446 N/A v v DCbrake state 1837 v v v PL next active 2283 v v v PLR active 2284 N/A v v PLS active 2275 v v v PLS timeout act 2276 v v v Drv OL trip 1570 v v v Drv OL warning 1580 v v v Mot OL trip 1680 v v v BU OL trip 1782 v v v Act spd fbk sel 1941 N/A v N/A Std enc fail 3224 N/A v N/A Exp enc fail 3225 N/A v N/A Alm W1 S1 9630 v v v Alm W2 S1 9631 v v v Alm W3 S1 9632 v v v Alm W1 S2 9634 v v v Alm W2 S2 9635 v v v Alm W3 S2 9636 v v v Diacal active 7367 v v v Compare 1 output 6048 v v v Compare 2 output 6063 v v v Dig pad 0 9116 v v v Dig pad 1 9117 v v v Dig pad 2 9118 v v v Dig pad 3 9119 v v v Dig pad 4 9120 v v v Dig pad 5 9121 v v v Dig pad 6 9122 v v v Dig pad 7 9123 v v v Dig pad 8 9124 v v v Dig pad 9 9125 v v v Dig pad 10 9126 v v v Dig pad 11 9127 v v v Dig pad 12 9128 v v v Dig pad 13 9129 v v v Dig pad 14 9130 v v v Dig pad 15 9131 v v v

Pick List 2 NULL 4000 v v v ONE 4001 v v v Output voltage 3060 v v v Output current 3070 v v v Output frequency 3080 v v v Output power 3090 v v v DC link voltage 3100 v v v Magnetizing curr 3110 v v v Torque curr 3120 v v v Magn curr ref 3130 N/A v v Torque curr ref 3140 N/A v v Current phase U 3150 v v v Current phase V 3160 v v v Current phase W 3170 v v v Flux ref 3180 N/A v v Flux 3190 N/A v v Ramp ref 3200 v v v Speed ref 3210 v v v Speed 3220 v v v Norm Speed 3221 v v v Fault Pin 9098 v v v Norm Std enc spd 3222 v v v Norm Exp enc spd 3223 v v v Drv OL accum % 1540 v v N/A

Mot OL accum % 1670 v v v BU OL accum % 1781 v v v Drive ready 161 v v v Enable SM mon 162 v v v Start SM mon 163 v v v FastStop SM mon 164 v v v ALM Sequencer 9096 v v v Drive OK 9097 v v v Jog state 8013 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v Ramp out mon 8022 v v v Speed draw out 7099 v v v Jog output 8012 v v v Mlt spd out mon 7070 v v v Mpot output mon 7090 v v v I/F cp mon 2625 N/A v v Torque ref 2450 N/A v v Tcurr lim + 1210 v v v Tcurr lim - 1220 v v v Inuse Tcurr lim+ 1250 v v v Inuse Tcurr lim- 1260 v v v Inuse Outvlt ref 1180 N/A v v PL next factor 2282 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v

3.1.3 Pick lists

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 253: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————251Ch.3

V/F FOC SLS V/F FOC SLS V/F FOC SLS Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v Std enc position 9553 N/A v v Exp enc position 9554 N/A v v H Index register 9555 N/A v v L Index register 9556 N/A v v

Pick List 3NULL 4000 v v v ONE 4001 v v v DI 0 Enable mon 4020 v v v DI 1 monitor 4021 v v v DI 2 monitor 4022 v v v DI 3 monitor 4023 v v v DI 4 monitor 4024 v v v DI 5 monitor 4025 v v v DI 6 monitor 4026 v v v DI 7 monitor 4027 v v v DI 0X monitor 4045 v v v DI 1X monitor 4046 v v v DI 2X monitor 4047 v v v DI 3X monitor 4048 v v v DI 4X monitor 4049 v v v DI 5X monitor 4050 v v v DI 6X monitor 4051 v v v DI 7X monitor 4052 v v v DI 8X monitor 4053 v v v DI 9X monitor 4054 v v v DI 10X monitor 4055 v v v DI 11X monitor 4056 v v v B0 W0 decomp 2123 v v v B1 W0 decomp 2124 v v v B2 W0 decomp 2125 v v v B3 W0 decomp 2126 v v v B4 W0 decomp 2127 v v v B5 W0 decomp 2128 v v v B6 W0 decomp 2129 v v v B7 W0 decomp 2130 v v v B8 W0 decomp 2131 v v v B9 W0 decomp 2132 v v v B10 W0 decomp 2133 v v v B11 W0 decomp 2134 v v v B12 W0 decomp 2135 v v v B13 W0 decomp 2136 v v v B14 W0 decomp 2137 v v v B15 W0 decomp 2138 v v v B0 W1 decomp 9363 v v v B1 W1 decomp 9364 v v v B2 W1 decomp 9365 v v v B3 W1 decomp 9366 v v v B4 W1 decomp 9367 v v v B5 W1 decomp 9368 v v v B6 W1 decomp 9369 v v v B7 W1 decomp 9370 v v v B8 W1 decomp 9371 v v v B9 W1 decomp 9372 v v v B10 W1 decomp 9373 v v v B11 W1 decomp 9374 v v v B12 W1 decomp 9375 v v v B13 W1 decomp 9376 v v v B14 W1 decomp 9377 v v v B15 W1 decomp 9378 v v v FRC inversion 8081 v v v

SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v Dig pad 0 9116 v v v Dig pad 1 9117 v v v Dig pad 2 9118 v v v Dig pad 3 9119 v v v Dig pad 4 9120 v v v Dig pad 5 9121 v v v Dig pad 6 9122 v v v Dig pad 7 9123 v v v Dig pad 8 9124 v v v Dig pad 9 9125 v v v Dig pad 10 9126 v v v Dig pad 11 9127 v v v Dig pad 12 9128 v v v Dig pad 13 9129 v v v Dig pad 14 9130 v v v Dig pad 15 9131 v v v

Pick List 4NULL 4000 v v v ONE 4001 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v

DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v

Pick List 5 Cmp 1 inp 0 6041 v v v Cmp 1 inp 1 6042 v v v Cmp 1 inp 2 6043 v v v NULL 4000 v v v ONE 4001 v v v Output voltage 3060 v v v Output current 3070 v v v Output frequency 3080 v v v Output power 3090 v v v DC link voltage 3100 v v v Magnetizing curr 3110 v v v Torque curr 3120 v v v Magn curr ref 3130 N/A v v Torque curr ref 3140 N/A v v Current phase U 3150 v v v Current phase V 3160 v v v Current phase W 3170 v v v Flux ref 3180 N/A v v Flux 3190 N/A v v Ramp ref 3200 v v v Speed ref 3210 v v v Speed 3220 v v v Norm Speed 3221 v v v Fault Pin 9098 v v v Norm Std enc spd 3222 v v v Norm Exp enc spd 3223 v v N/A Drv OL accum % 1540 v v v Mot OL accum % 1670 v v v BU OL accum % 1781 v v v Drive ready 161 v v v Enable SM mon 162 v v v

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 254: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3252

V/F FOC SLS V/F FOC SLS V/F FOC SLS Start SM mon 163 v v v FastStop SM mon 164 v v v ALM Sequencer 9096 v v v Drive OK 9097 v v v Jog state 8013 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v Ramp out mon 8022 v v v Speed draw out 7099 v v v Jog output 8012 v v v Mlt spd out mon 7070 v v v Mpot output mon 7090 v v v I/F cp mon 2625 N/A v v Torque ref 2450 N/A v v Tcurr lim + 1210 v v v Tcurr lim - 1220 v v v Inuse Tcurr lim+ 1250 v v v Inuse Tcurr lim- 1260 v v v Inuse Outvlt ref 1180 N/A v v PL next factor 2282 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v

Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v Std enc position 9553 N/A v v Exp enc position 9554 N/A v v H Index register 9555 N/A v v L Index register 9556 N/A v v

Pick List 6 Cmp 2 inp 0 6041 v v v Cmp 2 inp 1 6042 v v v Cmp 2 inp 2 6043 v v v NULL 4000 v v v ONE 4001 v v v Output voltage 3060 v v v Output current 3070 v v v Output frequency 3080 v v v Output power 3090 v v v DC link voltage 3100 v v v Magnetizing curr 3110 v v v Torque curr 3120 v v v Magn curr ref 3130 N/A v v Torque curr ref 3140 N/A v v Current phase U 3150 v v v Current phase V 3160 v v v Current phase W 3170 v v v Flux ref 3180 N/A v v Flux 3190 N/A v v Ramp ref 3200 v v v Speed ref 3210 v v v Speed 3220 v v v Norm Speed 3221 v v v Fault Pin 9098 v v v Norm Std enc spd 3222 v v v Norm Exp enc spd 3223 v v N/A Drv OL accum % 1540 v v v Mot OL accum % 1670 v v v BU OL accum % 1781 v v v Drive ready 161 v v v Enable SM mon 162 v v v Start SM mon 163 v v v FastStop SM mon 164 v v v ALM Sequencer 9096 v v v Drive OK 9097 v v v Jog state 8013 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v Ramp out mon 8022 v v v Speed draw out 7099 v v v Jog output 8012 v v v Mlt spd out mon 7070 v v v Mpot output mon 7090 v v v I/F cp mon 2625 N/A v v Torque ref 2450 N/A v v Tcurr lim + 1210 v v v Tcurr lim - 1220 v v v Inuse Tcurr lim+ 1250 v v v Inuse Tcurr lim- 1260 v v v Inuse Outvlt ref 1180 N/A v v PL next factor 2282 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v

SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v Std enc position 9553 N/A v v Exp enc position 9554 N/A v v H Index register 9555 N/A v v L Index register 9556 N/A v v

Pick List 7 Int ramp ref 1 7030 v v v NULL 4000 v v v ONE 4001 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 255: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————253Ch.3

V/F FOC SLS V/F FOC SLS V/F FOC SLS SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v Norm Std enc spd 3222 v v v Norm Exp enc spd 3223 v v N/A Mlt spd output 7070 v v v Mpot output mon 7090 v v v

Pick List 8 Int ramp ref 2 7031 v v v NULL 4000 v v v ONE 4001 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v

ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v Norm Std enc spd 3222 v v v Norm Exp enc spd 3223 v v N/A Mlt spd output 7070 v v v Mpot output mon 7090 v v v

Pick List 9 Int speed ref 1 7040 v v v NULL 4000 v v v ONE 4001 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v

ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v Norm Std enc spd 3222 v v v Norm Exp enc spd 3223 v v N/A Mlt spd output 7070 v v v Mpot output mon 7090 v v v

Pick List 10 Int speed ref 2 7041 v v v NULL 4000 v v v ONE 4001 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 256: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3254

V/F FOC SLS V/F FOC SLS V/F FOC SLS ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v Mlt spd output 7070 v v v Mpot output mon 7090 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v Norm Std enc spd 3222 v v v Norm Exp enc spd 3223 v v N/A

Pick List 11 Mlt spd 0 7060 v v v NULL 4000 v v v ONE 4001 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v

ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v Mlt spd output 7070 v v v Mpot output mon 7090 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v Norm Std enc spd 3222 v v v Norm Exp enc spd 3223 v v N/A

Pick List 12 Jog 0 8000 v v v NULL 4000 v v v ONE 4001 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v

DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v Norm Std enc spd 3222 v v v Norm Exp enc spd 3223 v v N/A Mlt spd output 7070 v v v Mpot output mon 7090 v v v

Pick List 13 Int speed ratio 7044 v v v NULL 4000 v v v ONE 4001 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 257: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————255Ch.3

V/F FOC SLS V/F FOC SLS V/F FOC SLS DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v

Pick List 14 Int torque ref 1 2430 v v v NULL 4000 v v v ONE 4001 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v I/F cp mon 2625 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v

DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v

Pick List 15 Int torque ref 2 2440 v v v NULL 4000 v v v ONE 4001 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v I/F cp mon 2625 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v

DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v

Pick List 16 NULL 4000 v v v ONE 4001 v v v DI 0 Enable mon 4020 v v v DI 1 monitor 4021 v v v DI 2 monitor 4022 v v v DI 3 monitor 4023 v v v DI 4 monitor 4024 v v v DI 5 monitor 4025 v v v DI 6 monitor 4026 v v v DI 7 monitor 4027 v v v DI 0X monitor 4045 v v v DI 1X monitor 4046 v v v DI 2X monitor 4047 v v v DI 3X monitor 4048 v v v DI 4X monitor 4049 v v v DI 5X monitor 4050 v v v DI 6X monitor 4051 v v v DI 7X monitor 4052 v v v DI 8X monitor 4053 v v v DI 9X monitor 4054 v v v DI 10X monitor 4055 v v v DI 11X monitor 4056 v v v

Pick List 17 NULL 4000 v v v ONE 4001 v v v B0 W0 decomp 2123 v v v B1 W0 decomp 2124 v v v B2 W0 decomp 2125 v v v B3 W0 decomp 2126 v v v B4 W0 decomp 2127 v v v B5 W0 decomp 2128 v v v B6 W0 decomp 2129 v v v B7 W0 decomp 2130 v v v B8 W0 decomp 2131 v v v B9 W0 decomp 2132 v v v B10 W0 decomp 2133 v v v B11 W0 decomp 2134 v v v B12 W0 decomp 2135 v v v B13 W0 decomp 2136 v v v B14 W0 decomp 2137 v v v B15 W0 decomp 2138 v v v

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 258: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3256

V/F FOC SLS V/F FOC SLS V/F FOC SLS B0 W1 decomp 9363 v v v B1 W1 decomp 9364 v v v B2 W1 decomp 9365 v v v B3 W1 decomp 9366 v v v B4 W1 decomp 9367 v v v B5 W1 decomp 9368 v v v B6 W1 decomp 9369 v v v B7 W1 decomp 9370 v v v B8 W1 decomp 9371 v v v B9 W1 decomp 9372 v v v B10 W1 decomp 9373 v v v B11 W1 decomp 9374 v v v B12 W1 decomp 9375 v v v B13 W1 decomp 9376 v v v B14 W1 decomp 9377 v v v B15 W1 decomp 9378 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v Diacal active 7367 v v v Dig pad 0 9116 v v v Dig pad 1 9117 v v v Dig pad 2 9118 v v v Dig pad 3 9119 v v v Dig pad 4 9120 v v v Dig pad 5 9121 v v v Dig pad 6 9122 v v v Dig pad 7 9123 v v v Dig pad 8 9124 v v v Dig pad 9 9125 v v v Dig pad 10 9126 v v v Dig pad 11 9127 v v v Dig pad 12 9128 v v v Dig pad 13 9129 v v v Dig pad 14 9130 v v v Dig pad 15 9131 v v v

Pick List 18 NULL 4000 v v v ONE 4001 v v v DI 0 Enable mon 4020 v v v DI 1 monitor 4021 v v v DI 2 monitor 4022 v v v DI 3 monitor 4023 v v v DI 4 monitor 4024 v v v

DI 5 monitor 4025 v v v DI 6 monitor 4026 v v v DI 7 monitor 4027 v v v DI 0X monitor 4045 v v v DI 1X monitor 4046 v v v DI 2X monitor 4047 v v v DI 3X monitor 4048 v v v DI 4X monitor 4049 v v v DI 5X monitor 4050 v v v DI 6X monitor 4051 v v v DI 7X monitor 4052 v v v DI 8X monitor 4053 v v v DI 9X monitor 4054 v v v DI 10X monitor 4055 v v v DI 11X monitor 4056 v v v B0 W0 decomp 2123 v v v B1 W0 decomp 2124 v v v B2 W0 decomp 2125 v v v B3 W0 decomp 2126 v v v B4 W0 decomp 2127 v v v B5 W0 decomp 2128 v v v B6 W0 decomp 2129 v v v B7 W0 decomp 2130 v v v B8 W0 decomp 2131 v v v B9 W0 decomp 2132 v v v B10 W0 decomp 2133 v v v B11 W0 decomp 2134 v v v B12 W0 decomp 2135 v v v B13 W0 decomp 2136 v v v B14 W0 decomp 2137 v v v B15 W0 decomp 2138 v v v B0 W1 decomp 9363 v v v B1 W1 decomp 9364 v v v B2 W1 decomp 9365 v v v B3 W1 decomp 9366 v v v B4 W1 decomp 9367 v v v B5 W1 decomp 9368 v v v B6 W1 decomp 9369 v v v B7 W1 decomp 9370 v v v B8 W1 decomp 9371 v v v B9 W1 decomp 9372 v v v B10 W1 decomp 9373 v v v B11 W1 decomp 9374 v v v B12 W1 decomp 9375 v v v B13 W1 decomp 9376 v v v B14 W1 decomp 9377 v v v B15 W1 decomp 9378 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v

DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v Diacal active 7367 v v v Dig pad 0 9116 v v v Dig pad 1 9117 v v v Dig pad 2 9118 v v v Dig pad 3 9119 v v v Dig pad 4 9120 v v v Dig pad 5 9121 v v v Dig pad 6 9122 v v v Dig pad 7 9123 v v v Dig pad 8 9124 v v v Dig pad 9 9125 v v v Dig pad 10 9126 v v v Dig pad 11 9127 v v v Dig pad 12 9128 v v v Dig pad 13 9129 v v v Dig pad 14 9130 v v v Dig pad 15 9131 v v v

Pick List 19 Int SGP ref 3710 v v v Ramp ref 3200 v v v Speed ref 3210 v v v NULL 4000 v v v ONE 4001 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 259: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————257Ch.3

V/F FOC SLS V/F FOC SLS V/F FOC SLS PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v

Pick List 20 Int spd 0 ref 3721 v v v NULL 4000 v v v Ramp ref 3200 v v v Speed ref 3210 v v v

Pick List 21 Droop comp 2510 v v v NULL 4000 v v v ONE 4001 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v

PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v

Pick List 22 Int spd fbk sel 1940 v v v NULL 4000 v v v ONE 4001 v v v DI 0 Enable mon 4020 v v v DI 1 monitor 4021 v v v DI 2 monitor 4022 v v v DI 3 monitor 4023 v v v DI 4 monitor 4024 v v v DI 5 monitor 4025 v v v DI 6 monitor 4026 v v v DI 7 monitor 4027 v v v DI 0X monitor 4045 v v v DI 1X monitor 4046 v v v DI 2X monitor 4047 v v v DI 3X monitor 4048 v v v DI 4X monitor 4049 v v v DI 5X monitor 4050 v v v DI 6X monitor 4051 v v v DI 7X monitor 4052 v v v DI 8X monitor 4053 v v v DI 9X monitor 4054 v v v DI 10X monitor 4055 v v v DI 11X monitor 4056 v v v B0 W0 decomp 2123 v v v B1 W0 decomp 2124 v v v B2 W0 decomp 2125 v v v B3 W0 decomp 2126 v v v B4 W0 decomp 2127 v v v B5 W0 decomp 2128 v v v B6 W0 decomp 2129 v v v B7 W0 decomp 2130 v v v B8 W0 decomp 2131 v v v B9 W0 decomp 2132 v v v B10 W0 decomp 2133 v v v B11 W0 decomp 2134 v v v B12 W0 decomp 2135 v v v B13 W0 decomp 2136 v v v B14 W0 decomp 2137 v v v B15 W0 decomp 2138 v v v B0 W1 decomp 9363 v v v B1 W1 decomp 9364 v v v B2 W1 decomp 9365 v v v B3 W1 decomp 9366 v v v B4 W1 decomp 9367 v v v B5 W1 decomp 9368 v v v B6 W1 decomp 9369 v v v B7 W1 decomp 9370 v v v B8 W1 decomp 9371 v v v B9 W1 decomp 9372 v v v B10 W1 decomp 9373 v v v B11 W1 decomp 9374 v v v

B12 W1 decomp 9375 v v v B13 W1 decomp 9376 v v v B14 W1 decomp 9377 v v v B15 W1 decomp 9378 v v v FRC inversion 8081 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v Dig pad 0 9116 v v v Dig pad 1 9117 v v v Dig pad 2 9118 v v v Dig pad 3 9119 v v v Dig pad 4 9120 v v v Dig pad 5 9121 v v v Dig pad 6 9122 v v v Dig pad 7 9123 v v v Dig pad 8 9124 v v v Dig pad 9 9125 v v v Dig pad 10 9126 v v v Dig pad 11 9127 v v v Dig pad 12 9128 v v v Dig pad 13 9129 v v v Dig pad 14 9130 v v v Dig pad 15 9131 v v v

Pick List 23 Int SE flx level 3536 v v v NULL 4000 v v v ONE 4001 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 260: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3258

V/F FOC SLS V/F FOC SLS V/F FOC SLS ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v

Pick List 24 Int flx maxlim 1120 v v v NULL 4000 v v v ONE 4001 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v

DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v

Pick List 25 Int Inertia 2054 v v v NULL 4000 v v v ONE 4001 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v

DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v

Pick List 26 W0 decomp inp 2121 v v v NULL 4000 v v v ONE 4001 v v v Output voltage 3060 v v v Output current 3070 v v v Output frequency 3080 v v v Output power 3090 v v v DC link voltage 3100 v v v Magnetizing curr 3110 v v v Torque curr 3120 v v v Magn curr ref 3130 N/A v v Torque curr ref 3140 N/A v v Current phase U 3150 v v v Current phase V 3160 v v v Current phase W 3170 v v v Flux ref 3180 N/A v v Flux 3190 N/A v v Ramp ref 3200 v v v Speed ref 3210 v v v Speed 3220 v v v Norm Speed 3221 v v v Fault Pin 9098 v v v Norm Std enc spd 3222 v v v Norm Exp enc spd 3223 v v N/A Drv OL accum % 1540 v v v Mot OL accum % 1670 v v v BU OL accum % 1781 v v v Drive ready 161 v v v Enable SM mon 162 v v v Start SM mon 163 v v v FastStop SM mon 164 v v v ALM Sequencer 9096 v v v Drive OK 9097 v v v Jog state 8013 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 261: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————259Ch.3

V/F FOC SLS V/F FOC SLS V/F FOC SLS An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v Ramp out mon 8022 v v v Speed draw out 7099 v v v Jog output 8012 v v v Mlt spd out mon 7070 v v v Mpot output mon 7090 v v v I/F cp mon 2625 N/A v v Torque ref 2450 N/A v v Tcurr lim + 1210 v v v Tcurr lim - 1220 v v v Inuse Tcurr lim+ 1250 v v v Inuse Tcurr lim- 1260 v v v Inuse Outvlt ref 1180 N/A v v PL next factor 2282 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v Std enc position 9553 N/A v N/A Exp enc position 9554 N/A v N/A

H Index register 9555 N/A v N/A L Index register 9556 N/A v N/A

Pick List 27 W1 decomp inp 2121 v v v NULL 4000 v v v ONE 4001 v v v Output voltage 3060 v v v Output current 3070 v v v Output frequency 3080 v v v Output power 3090 v v v DC link voltage 3100 v v v Magnetizing curr 3110 v v v Torque curr 3120 v v v Magn curr ref 3130 N/A v v Torque curr ref 3140 N/A v v Current phase U 3150 v v v Current phase V 3160 v v v Current phase W 3170 v v v Flux ref 3180 N/A v v Flux 3190 N/A v v Ramp ref 3200 v v v Speed ref 3210 v v v Speed 3220 v v v Norm Speed 3221 v v v Fault Pin 9098 v v v Norm Std enc spd 3222 v v v Norm Exp enc spd 3223 v v N/A Drv OL accum % 1540 v v v Mot OL accum % 1670 v v v BU OL accum % 1781 v v v Drive ready 161 v v v Enable SM mon 162 v v v Start SM mon 163 v v v FastStop SM mon 164 v v v ALM Sequencer 9096 v v v Drive OK 9097 v v v Jog state 8013 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v Ramp out mon 8022 v v v Speed draw out 7099 v v v Jog output 8012 v v v Mlt spd out mon 7070 v v v Mpot output mon 7090 v v v I/F cp mon 2625 N/A v v Torque ref 2450 N/A v v Tcurr lim + 1210 v v v Tcurr lim - 1220 v v v Inuse Tcurr lim+ 1250 v v v Inuse Tcurr lim- 1260 v v v Inuse Outvlt ref 1180 N/A v v PL next factor 2282 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v

ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v Std enc position 9553 N/A v N/A Exp enc position 9554 N/A v N/A H Index register 9555 N/A v N/A L Index register 9556 N/A v N/A

Pick List 28 Int Drv ISBus W0 9320 v v v Int Drv ISBus W1 9321 v v v Int Drv ISBus W2 9322 v v v Int Drv ISBus W3 9323 v v v Int Drv ISBus W4 9324 v v v Int Drv ISBus W5 9325 v v v Int Drv ISBus W6 9326 v v v Int Drv ISBus W7 9327 v v v NULL 4000 v v v ONE 4001 v v v Output voltage 3060 v v v Output current 3070 v v v Output frequency 3080 v v v Output power 3090 v v v DC link voltage 3100 v v v Magnetizing curr 3110 v v v Torque curr 3120 v v v Magn curr ref 3130 N/A v v Torque curr ref 3140 N/A v v Current phase U 3150 v v v Current phase V 3160 v v v Current phase W 3170 v v v Flux ref 3180 N/A v v Flux 3190 N/A v v Ramp ref 3200 v v v

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 262: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3260

V/F FOC SLS V/F FOC SLS V/F FOC SLS Speed ref 3210 v v v Speed 3220 v v v Norm Speed 3221 v v v Fault Pin 9098 v v v Norm Std enc spd 3222 v v v Norm Exp enc spd 3223 v v N/A Drv OL accum % 1540 v v v Mot OL accum % 1670 v v v BU OL accum % 1781 v v v Drive ready 161 v v v Enable SM mon 162 v v v Start SM mon 163 v v v FastStop SM mon 164 v v v ALM Sequencer 9096 v v v Drive OK 9097 v v v Jog state 8013 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v Ramp out mon 8022 v v v Speed draw out 7099 v v v Jog output 8012 v v v Mlt spd out mon 7070 v v v Mpot output mon 7090 v v v I/F cp mon 2625 N/A v v Torque ref 2450 N/A v v Tcurr lim + 1210 v v v Tcurr lim - 1220 v v v Inuse Tcurr lim+ 1250 v v v Inuse Tcurr lim- 1260 v v v Inuse Outvlt ref 1180 N/A v v PL next factor 2282 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v

PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v Std enc position 9553 N/A v N/A Exp enc position 9554 N/A v N/A H Index register 9555 N/A v N/A L Index register 9556 N/A v N/A

Pick List 29 Int DrvDGFC-S W0 4105 v v v Int DrvDGFC-S W1 4106 v v v Int DrvDGFC-S W2 4107 v v v Int DrvDGFC-S W3 4108 v v v Int DrvDGFC-S W4 4109 v v v NULL 4000 v v v ONE 4001 v v v Output voltage 3060 v v v Output current 3070 v v v Output frequency 3080 v v v Output power 3090 v v v DC link voltage 3100 v v v Magnetizing curr 3110 v v v Torque curr 3120 v v v Magn curr ref 3130 N/A v v Torque curr ref 3140 N/A v v Current phase U 3150 v v v Current phase V 3160 v v v Current phase W 3170 v v v Flux ref 3180 N/A v v Flux 3190 N/A v v Ramp ref 3200 v v v Speed ref 3210 v v v Speed 3220 v v v Norm Speed 3221 v v v Fault Pin 9098 v v v Norm Std enc spd 3222 v v v Norm Exp enc spd 3223 v v N/A Drv OL accum % 1540 v v v Mot OL accum % 1670 v v v BU OL accum % 1781 v v v Drive ready 161 v v v Enable SM mon 162 v v v Start SM mon 163 v v v FastStop SM mon 164 v v v ALM Sequencer 9096 v v v Drive OK 9097 v v v Jog state 8013 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v Ramp out mon 8022 v v v Speed draw out 7099 v v v

Jog output 8012 v v v Mlt spd out mon 7070 v v v Mpot output mon 7090 v v v I/F cp mon 2625 N/A v v Torque ref 2450 N/A v v Tcurr lim + 1210 v v v Tcurr lim - 1220 v v v Inuse Tcurr lim+ 1250 v v v Inuse Tcurr lim- 1260 v v v Inuse Outvlt ref 1180 N/A v v PL next factor 2282 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v Std enc position 9553 N/A v N/A Exp enc position 9554 N/A v N/A H Index register 9555 N/A v N/A L Index register 9556 N/A v N/A

Pick List 30 Int DrvDGFC-A W0 4140 v v v Int DrvDGFC-A W1 4141 v v v

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 263: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————261Ch.3

V/F FOC SLS V/F FOC SLS V/F FOC SLS Int DrvDGFC-A W2 4142 v v v Int DrvDGFC-A W3 4143 v v v Int DrvDGFC-A W4 4144 v v v Int DrvDGFC-A W5 4145 v v v Int DrvDGFC-A W6 4146 v v v Int DrvDGFC-A W7 4147 v v v Int DrvDGFC-A W8 4148 v v v Int DrvDGFC-A W9 4149 v v v NULL 4000 v v v ONE 4001 v v v Output voltage 3060 v v v Output current 3070 v v v Output frequency 3080 v v v Output power 3090 v v v DC link voltage 3100 v v v Magnetizing curr 3110 v v v Torque curr 3120 v v v Magn curr ref 3130 N/A v v Torque curr ref 3140 N/A v v Current phase U 3150 v v v Current phase V 3160 v v v Current phase W 3170 v v v Flux ref 3180 N/A v v Flux 3190 N/A v v Ramp ref 3200 v v v Speed ref 3210 v v v Speed 3220 v v v Norm Speed 3221 v v v Fault Pin 9098 v v v Norm Std enc spd 3222 v v v Norm Exp enc spd 3223 v v N/A Drv OL accum % 1540 v v v Mot OL accum % 1670 v v v BU OL accum % 1781 v v v Drive ready 161 v v v Enable SM mon 162 v v v Start SM mon 163 v v v FastStop SM mon 164 v v v ALM Sequencer 9096 v v v Drive OK 9097 v v v Jog state 8013 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v Ramp out mon 8022 v v v Speed draw out 7099 v v v Jog output 8012 v v v Mlt spd out mon 7070 v v v Mpot output mon 7090 v v v I/F cp mon 2625 N/A v v Torque ref 2450 N/A v v Tcurr lim + 1210 v v v Tcurr lim - 1220 v v v Inuse Tcurr lim+ 1250 v v v Inuse Tcurr lim- 1260 v v v Inuse Outvlt ref 1180 N/A v v PL next factor 2282 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v

ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v Std enc position 9553 N/A v N/A Exp enc position 9554 N/A v N/A H Index register 9555 N/A v N/A L Index register 9556 N/A v N/A

Pick List 31 Int PID inp FF 7211 v v v Output voltage 3060 v v v Output current 3070 v v v Output frequency 3080 v v v Output power 3090 v v v DC link voltage 3100 v v v Magnetizing curr 3110 v v v Torque curr 3120 v v v Magn curr ref 3130 N/A v v Torque curr ref 3140 N/A v v Current phase U 3150 v v v Current phase V 3160 v v v Current phase W 3170 v v v Flux ref 3180 N/A v v Flux 3190 N/A v v Ramp ref 3200 v v v Speed ref 3210 v v v Speed 3220 v v v Norm Speed 3221 v v v Fault Pin 9098 v v v Norm Std enc spd 3222 v v v Norm Exp enc spd 3223 v v N/A Drv OL accum % 1540 v v v

Mot OL accum % 1670 v v v BU OL accum % 1781 v v v NULL 4000 v v v ONE 4001 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v

Pick List 32 Int PID fbk 7230 v v v Output voltage 3060 v v v Output current 3070 v v v Output frequency 3080 v v v Output power 3090 v v v

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 264: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3262

V/F FOC SLS V/F FOC SLS V/F FOC SLS DC link voltage 3100 v v v Magnetizing curr 3110 v v v Torque curr 3120 v v v Magn curr ref 3130 N/A v v Torque curr ref 3140 N/A v v Current phase U 3150 v v v Current phase V 3160 v v v Current phase W 3170 v v v Flux ref 3180 N/A v v Flux 3190 N/A v v Ramp ref 3200 v v v Speed ref 3210 v v v Speed 3220 v v v Norm Speed 3221 v v v Fault Pin 9098 v v v Norm Std enc spd 3222 v v v Norm Exp enc spd 3223 v v N/A Drv OL accum % 1540 v v v Mot OL accum % 1670 v v v BU OL accum % 1781 v v v NULL 4000 v v v ONE 4001 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v

Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v

Pick List 33 Int PID draw 7231 v v v Output voltage 3060 v v v Output current 3070 v v v Output frequency 3080 v v v Output power 3090 v v v DC link voltage 3100 v v v Magnetizing curr 3110 v v v Torque curr 3120 v v v Magn curr ref 3130 N/A v v Torque curr ref 3140 N/A v v Current phase U 3150 v v v Current phase V 3160 v v v Current phase W 3170 v v v Flux ref 3180 N/A v v Flux 3190 N/A v v Ramp ref 3200 v v v Speed ref 3210 v v v Speed 3220 v v v Norm Speed 3221 v v v Fault Pin 9098 v v v Norm Std enc spd 3222 v v v Norm Exp enc spd 3223 v v N/A Drv OL accum % 1540 v v v Mot OL accum % 1670 v v v BU OL accum % 1781 v v v NULL 4000 v v v ONE 4001 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v

DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v

Pick List 34 Int PID set 0 7232 v v v Output voltage 3060 v v v Output current 3070 v v v Output frequency 3080 v v v Output power 3090 v v v DC link voltage 3100 v v v Magnetizing curr 3110 v v v Torque curr 3120 v v v Magn curr ref 3130 N/A v v Torque curr ref 3140 N/A v v Current phase U 3150 v v v Current phase V 3160 v v v Current phase W 3170 v v v Flux ref 3180 N/A v v Flux 3190 N/A v v Ramp ref 3200 v v v Speed ref 3210 v v v Speed 3220 v v v Norm Speed 3221 v v v Fault Pin 9098 v v v Norm Std enc spd 3222 v v v Norm Exp enc spd 3223 v v N/A Drv OL accum % 1540 v v v Mot OL accum % 1670 v v v BU OL accum % 1781 v v v NULL 4000 v v v ONE 4001 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 265: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————263Ch.3

V/F FOC SLS V/F FOC SLS V/F FOC SLS ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v

Pick List 35 Int PID set 1 7232 v v v Output voltage 3060 v v v Output current 3070 v v v Output frequency 3080 v v v Output power 3090 v v v DC link voltage 3100 v v v Magnetizing curr 3110 v v v Torque curr 3120 v v v Magn curr ref 3130 N/A v v Torque curr ref 3140 N/A v v Current phase U 3150 v v v Current phase V 3160 v v v Current phase W 3170 v v v Flux ref 3180 N/A v v Flux 3190 N/A v v Ramp ref 3200 v v v Speed ref 3210 v v v Speed 3220 v v v Norm Speed 3221 v v v Fault Pin 9098 v v v Norm Std enc spd 3222 v v v Norm Exp enc spd 3223 v v N/A Drv OL accum % 1540 v v v

Mot OL accum % 1670 v v v BU OL accum % 1781 v v v NULL 4000 v v v ONE 4001 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v

Pick List 36 Int PIGP ref 7281 v v v Ramp ref 3200 v v v Speed ref 3210 v v v NULL 4000 v v v ONE 4001 v v v

Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v

Pick List 37 Int PDGP ref 7311 v v v Ramp ref 3200 v v v Speed ref 3210 v v v NULL 4000 v v v ONE 4001 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 266: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3264

V/F FOC SLS V/F FOC SLS V/F FOC SLS An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v

Pick List 38 Int PID Mlt PI 3 7326 v v v Output voltage 3060 v v v Output current 3070 v v v Output frequency 3080 v v v Output power 3090 v v v DC link voltage 3100 v v v Magnetizing curr 3110 v v v Torque curr 3120 v v v Magn curr ref 3130 N/A v v Torque curr ref 3140 N/A v v Current phase U 3150 v v v Current phase V 3160 v v v Current phase W 3170 v v v

Flux ref 3180 N/A v N/A Flux 3190 N/A v N/A Ramp ref 3200 v v v Speed ref 3210 v v v Speed 3220 v v v Norm Speed 3221 v v v Fault Pin 9098 v v v Norm Std enc spd 3222 v v v Norm Exp enc spd 3223 v v v Drv OL accum % 1540 v v v Mot OL accum % 1670 v v v BU OL accum % 1781 v v v NULL 4000 v v v ONE 4001 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v

Pad 14 9114 v v v Pad 15 9115 v v v

Pick List 39 Int IS ctrl 9551 v v v NULL 4000 v v v ONE 4001 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v

Pick List 40 Int Drv SBI W0 9020 v v v

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 267: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————265Ch.3

V/F FOC SLS V/F FOC SLS V/F FOC SLS Int Drv SBI W1 9021 v v v Int Drv SBI W2 9022 v N/A N/A Int Drv SBI W3 9023 v v v Int Drv SBI W4 9024 v v v Int Drv SBI W5 9025 v v v NULL 4000 v v v ONE 4001 v v v Output voltage 3060 v v v Output current 3070 v v v Output frequency 3080 v v v Output power 3090 v v v DC link voltage 3100 v v v Magnetizing curr 3110 v v v Torque curr 3120 v v v Magn curr ref 3130 N/A v v Torque curr ref 3140 N/A v v Current phase U 3150 v v v Current phase V 3160 v v v Current phase W 3170 v v v Flux ref 3180 N/A v v Flux 3190 N/A v v Ramp ref 3200 v v v Speed ref 3210 v v v Speed 3220 v v v Norm Speed 3221 v v v Fault Pin 9098 v v v Norm Std enc spd 3222 v v v Norm Exp enc spd 3223 v v N/A Drv OL accum % 1540 v v v Mot OL accum % 1670 v v v BU OL accum % 1781 v v v Drive ready 161 v v v Enable SM mon 162 v v v Start SM mon 163 v v v FastStop SM mon 164 v v v ALM Sequencer 9096 v v v Drive OK 9097 v v v Jog state 8013 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v Ramp out mon 8022 v v v Speed draw out 7099 v v v Jog output 8012 v v v Mlt spd out mon 7070 v v v Mpot output mon 7090 v v v I/F cp mon 2625 N/A v v Torque ref 2450 N/A v v Tcurr lim + 1210 v v v Tcurr lim - 1220 v v v Inuse Tcurr lim+ 1250 v v v Inuse Tcurr lim- 1260 v v v Inuse Outvlt ref 1180 N/A v v PL next factor 2282 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v

ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v Std enc position 9553 N/A v N/A Exp enc position 9554 N/A v N/A H Index register 9555 N/A v N/A L Index register 9556 N/A v N/A

Pick List 42 Int Outvlt lim 1140 v v v NULL 4000 v v v ONE 4001 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v

DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v

Pick List 43 Int SpdTrq mode 2390 v v v NULL 4000 v v v ONE 4001 v v v Output voltage 3060 v v v Output current 3070 v v v Output frequency 3080 v v v Output power 3090 v v v DC link voltage 3100 v v v Magnetizing curr 3110 v v v Torque curr 3120 v v v Magn curr ref 3130 N/A v v Torque curr ref 3140 N/A v v Current phase U 3150 v v v Current phase V 3160 v v v Current phase W 3170 v v v Flux ref 3180 N/A v v Flux 3190 N/A v v Ramp ref 3200 v v v Speed ref 3210 v v v Speed 3220 v v v Norm Speed 3221 v v v Fault Pin 9098 v v v Norm Std enc spd 3222 v v v Norm Exp enc spd 3223 v v N/A Drv OL accum % 1540 v v v Mot OL accum % 1670 v v v BU OL accum % 1781 v v v Drive ready 161 v v v Enable SM mon 162 v v v Start SM mon 163 v v v FastStop SM mon 164 v v v ALM Sequencer 9096 v v v

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 268: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3266

V/F FOC SLS V/F FOC SLS V/F FOC SLS Drive OK 9097 v v v Jog state 8013 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v Ramp out mon 8022 v v v Speed draw out 7099 v v v Jog output 8012 v v v Mlt spd out mon 7070 v v v Mpot output mon 7090 v v v I/F cp mon 2625 N/A v v Torque ref 2450 N/A v v Tcurr lim + 1210 v v v Tcurr lim - 1220 v v v Inuse Tcurr lim+ 1250 v v v Inuse Tcurr lim- 1260 v v v Inuse Outvlt ref 1180 N/A v v PL next factor 2282 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v

Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v Std enc position 9553 N/A v N/A Exp enc position 9554 N/A v N/A H Index register 9555 N/A v N/A L Index register 9556 N/A v N/A

Pick List 44 Int torque ref 3 2447 v v v NULL 4000 v v v ONE 4001 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v I/F cp mon 2625 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v

Pad 14 9114 v v v Pad 15 9115 v v v

Pick List 45 Int ramp ref 3 7038 v v v NULL 4000 v v v ONE 4001 v v v Gen output 2760 v v v An inp 1 output 5009 v v v An inp 2 output 5029 v v v An inp 3 output 5049 v v v An inp 1X output 5067 v v v An inp 2X output 5087 v v v W0 comp out 2116 v v v W1 comp out 9356 v v v SBI Drv W0 mon 9000 v v v SBI Drv W1 mon 9001 v v v SBI Drv W2 mon 9002 v v v SBI Drv W3 mon 9003 v v v SBI Drv W4 mon 9004 v v v SBI Drv W5 mon 9005 v v v ISBus Drv W0 mon 9300 v v v ISBus Drv W1 mon 9301 v v v ISBus Drv W2 mon 9302 v v v ISBus Drv W3 mon 9303 v v v ISBus Drv W4 mon 9304 v v v ISBus Drv W5 mon 9305 v v v ISBus Drv W6 mon 9306 v v v ISBus Drv W7 mon 9307 v v v DGFC-S Drv W0mon 4120 v v v DGFC-S Drv W1mon 4121 v v v DGFC-S Drv W2mon 4122 v v v DGFC-S Drv W3mon 4123 v v v DGFC-S Drv W4mon 4124 v v v DGFC-A Drv W0mon 4160 v v v DGFC-A Drv W1mon 4161 v v v DGFC-A Drv W2mon 4162 v v v DGFC-A Drv W3mon 4163 v v v DGFC-A Drv W4mon 4164 v v v DGFC-A Drv W5mon 4165 v v v DGFC-A Drv W6mon 4166 v v v DGFC-A Drv W7mon 4167 v v v DGFC-A Drv W8mon 4168 v v v DGFC-A Drv W9mon 4169 v v v PID FF mon 7217 v v v PID input 7256 v v v PID PI out mon 7294 v v v Last PI out 7295 v v v PID PD out mon 7343 v v v PID out mon 7352 v v v PID outS mon 7353 v v v Pad 0 9100 v v v Pad 1 9101 v v v Pad 2 9102 v v v Pad 3 9103 v v v Pad 4 9104 v v v Pad 5 9105 v v v Pad 6 9106 v v v Pad 7 9107 v v v Pad 8 9108 v v v Pad 9 9109 v v v Pad 10 9110 v v v Pad 11 9111 v v v Pad 12 9112 v v v Pad 13 9113 v v v Pad 14 9114 v v v Pad 15 9115 v v v Norm Std enc spd 3222 v v v Norm Exp enc spd 3223 v v N/A Mlt spd output 7070 v v v Mpot output mon 7090 v v v

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 269: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————267Ch.3

3.2 NUMERIC ORDER PARAMETERS LIST

3.2.1 Numeric Order Parameter List Caption

Ipa Parameter number.

Index used to enter the parameter via the serial line or the option cards.

Point type It states the point type.

The format is the following: $AB or $pin

$AB

$ internal identification key

A can to be > P float type

> D digital type (Integer with 16 bits)

B can to be > P parameter

> V variable

> K constant

$PIN

the parameter type is enumerative. It has, therefore, a list of pos-sible values (for example it is a source).

Validity DB It states the regulation mode in which the parameter is valid.

The reading keys are:

F Field oriented

S Sensorless

V V/f

A Autotuning (Setup mode)

B internal use

Description Description of the parameter shown on the display.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 270: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3268

fs unit (physic unit) Parameter unit of measure.

If N/A appears, it means that the parameter is directly stated with its internal value.

Access mode It shows how the data can be entered

R Read (reading)

W Write (writing)

S Saved in flash

Z it can be entered only when the drive is disabled

Default* Parameter default value.

Min Parameter minimum value*

Minimum value to be set

Max Parameter maximum value*

Maximum value to be set

(*) If a writing is displayed instead of a value, it means that the value dependson the size or on other configuration parameters.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 271: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————269Ch.3

3.2.2 Numeric Order Parameter ListIpa Point type Vality DB Description fs unit Access mode Default Min Max

98 $PV FSVABT Sys time-ddmmyy hrs/min/sec R___

99 $PV FSVABT Life time hrs R___ 0.00F 0.00F 0.00F

100 $DK F_____ Regulation mode N/A R___ 2 0 0

100 $DK _S____ Regulation mode N/A R___ 3 0 0

100 $DK _____T Regulation mode N/A R___ 6 0 0

100 $DK ____B_ Regulation mode N/A R___ 5 0 0

100 $DK ___A__ Regulation mode N/A R___ 4 0 0

100 $DK __V___ Regulation mode N/A R___ 1 0 0

105 $DK FSVABT SLink4 address N/A RWS_ 1 0 255

105 $DK FSVABT SLink4 address N/A RWS_ 1 0 255

106 $DK FSVABT SLink4 res time N/A RWS_ 0 0 255

110 $DV FSVABT Software type N/A R___ DVER 0 0

111 $DV FSVABT Software status N/A R___ DVER 0 0

114 $DK FSVABT Drive size N/A R___ DSIZE 0 20

115 $FK FSVABT Drive name NULL RWS_ 0.00F 0.00F 0.00F

115 $FK FSVABT Drive name NULL RWS_ 0.00F 0.00F 0.00F

150 $DV FSV_B_ Enable cmd mon N/A R___ 0 0 1

151 $DV FSV_B_ Start cmd mon N/A R___ 0 0 1

152 $DV FSV_B_ FastStop cmd mon N/A R___ 1 0 1

153 $PIN FSV_B_ Term StrStp src N/A RWS_ 4021 LST_016

154 $PIN FSV_B_ FastStop src N/A RWS_ 4000 LST_018

156 $PIN FSV_B_ Dig Enable src N/A RWS_ 4000 LST_017

157 $PIN FSV_B_ Dig StrStp src N/A RWS_ 4000 LST_018

162 $DV FSVABT Enable SM mon N/A R___ 0 0 1

163 $DV FSV_B_ Start SM mon N/A R___ 0 0 1

164 $DV FSV_B_ FastStop SM mon N/A R___ 0 0 1

170 $DK FSVABT Switching freq N/A RW__ DSIZE 0 3

300 $DK FSVABT Drive type N/A R___ 288 0 0

380 $DK FSVABT Mains voltage N/A RW__ 2 0 5

530 $PP FSVABT Dead time limit V RWS_ SIZE 0.00F 50.00F

540 $PP FSVABT Dead time slope V_A RWS_ SIZE 0.00F 100.00F

560 $PP FSVABT Hw deadtime comp us RWS_ SIZE 0.00F 20.00F

570 $DP FSVABT Hw deadtime mode N/A RWS_ 0 0 3

670 $FK FSVABT Rated voltage V RW__ MOTR CALC CALC

680 $FK FSVABT Rated frequency Hz RW__ MOTR 5.00F CALC

690 $FK FSVABT Rated current A RW__ MOTR CALC CALC

700 $FK FSVABT Rated speed rpm RW__ MOTR 10.00F CALC

710 $FK FSVABT Rated power kW RW__ MOTR 0.00F CALC

720 $FK FSVA__ Cosfi NULL RW__ MOTR 0.50F 0.99F

730 $FK FSVA__ Efficiency % RW__ MOTR 50.00F 99.00F

810 $DK FSVABT Actual setup N/A R___ 0 0 0

950 $PP FS____ Rotor resistance Ohm RW__ CALC 0.00F 0.00F

950 $FK __VA__ Rotor resistance Ohm RW__ CALC 0.00F 0.00F

970 $PP _S____ Stator resist Ohm RW__ CALC 0.00F 0.00F

970 $FK F_VABT Stator resist Ohm RW__ 0.00F 0.00F 0.00F

1085 $PV _S____ Inuse Sls P gain % R___ 0.00F 0.00F 0.00F

1086 $PV _S____ Inuse Sls I gain % R___ 0.00F 0.00F 0.00F

1090 $PP _S____ Sls mot HPgain % RWS_ 5.00F 0.00F 100.00F

1091 $PP _S____ Sls mot HIgain % RWS_ 5.00F 0.00F CALC

1092 $PP _S____ Sls mot MPgain % RWS_ 5.00F 0.00F 100.00F

1093 $PP _S____ Sls mot MIgain % RWS_ 5.00F 0.00F CALC

1094 $PP _S____ Sls mot LPgain % RWS_ 1.00F 0.00F 100.00F

1095 $PP _S____ Sls mot LIgain % RWS_ 0.00F 0.00F CALC

1096 $PP _S____ Sls H/M tran lev rpm RWS_ CALC 0.00F CALC

1097 $PP _S____ Sls M/L tran lev rpm RWS_ CALC 0.00F CALC

1098 $PP _S____ Sls H/M tran bnd rpm RWS_ CALC 0.00F CALC

1099 $PP _S____ Sls M/L tran bnd rpm RWS_ CALC 0.00F CALC

1101 $PP _S____ Sls regen HPgain % RWS_ 5.00F 0.00F 100.00F

1102 $PP _S____ Sls regen HIgain % RWS_ 5.00F 0.00F CALC

1103 $PP _S____ Sls regen MPgain % RWS_ 5.00F 0.00F 100.00F

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 272: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3270

Ipa Point type Vality DB Description fs unit Access mode Default Min Max

1104 $PP _S____ Sls regen MIgain % RWS_ 5.00F 0.00F CALC

1105 $PP _S____ Sls regen LPgain % RWS_ 1.00F 0.00F 100.00F

1106 $PP _S____ Sls regen LIgain % RWS_ 0.00F 0.00F CALC

1107 $PP _S____ Sls 0 tran bnd rpm RWS_ CALC 0.00F CALC

1111 $PP _S____ Observer filter ms RWS_ 100.00F CALC CALC

1112 $PP _S____ Observer ref mon rpm R___ 0.00F 0.00F 0.00F

1120 $PV FS____ Int flx maxlim % RWS_ 100.00F 60.00F CALC

1120 $PV ____B_ Int flx maxlim % RWS_ 0.00F 0.00F 0.00F

1121 $PIN FS__B_ Flux level src N/A RWS_ 1120 LST_024

1130 $PV FS__B_ Dyn vlt margin % RWS_ 2.00F 1.00F 10.00F

1140 $PV FS__B_ Int Outvlt lim V RWS_ CALC CALC CALC

1141 $PIN FS__B_ Outvlt lim src N/A RWS_ 1140 LST_042

1150 $PV FS____ Inuse flx maxlim % R___ 0.00F 0.00F 0.00F

1170 $PV FS__B_ Available Outvlt V R___ 0.00F 0.00F 0.00F

1180 $PV FS__B_ Inuse Outvlt ref V R___ 0.00F 0.00F 0.00F

1190 $DV FS__B_ Tcurr lim sel N/A RWS_ 0 0 4

1190 $DV __V___ Tcurr lim sel N/A RWS_ 0 0 2

1210 $PV FSV_B_ Tcurr lim + A RWS_ CALC 0.00F CALC

1220 $PV FSV_B_ Tcurr lim - A RWS_ CALC 0.00F CALC

1250 $PV FSV_B_ Inuse Tcurr lim+ A R___ 0.00F 0.00F 0.00F

1260 $PV FSV_B_ Inuse Tcurr lim- A R___ 0.00F 0.00F 0.00F

1310 $PV FS__B_ Max regen power kW RWS_ CALC 0.00F CALC

1350 $DK FSVABT Ambient temp N/A RW__ 0 0 1

1460 $FK ___A_T Drive cont curr A RW__ CALC 0.00F 0.00F

1460 $PP FSV_B_ Drive cont curr A RW__ CALC 0.00F 0.00F

1540 $PV FSV_B_ Drv OL accum % % R___ 0.00F 0.00F 0.00F

1610 $FK FSV_B_ Motor OL factor NULL RW__ 1.50F 1.20F 5.00F

1611 $FK FSV_B_ Service factor NULL RW__ 1.00F 0.50F 1.50F

1650 $FK FSV_B_ Motor OL time s RW__ 60.00F 10.00F CALC

1670 $PV FSV_B_ Mot OL accum % % R___ 0.00F 0.00F 0.00F

1700 $DP FSV_B_ BU control N/A RW__ 0 0 2

1710 $FK FSV_B_ BU res cont pwr kW RW__ SIZE 0.00F 0.00F

1720 $FK FSV_B_ BU res OL time s RW__ SIZE 1.00F 1000.00F

1730 $FK FSV_B_ BU res OL factor NULL RW__ SIZE 1.20F 20.00F

1740 $FK FSV_B_ BU resistance Ohm RW__ SIZE CALC 10000.0F

1781 $PV FSV_B_ BU OL accum % % R___ 0.00F 0.00F 0.00F

1810 $PP FS____ Magn ramp time s RWS_ SIZE 0.01F 5.00F

1815 $DP ____B_ Lock flux pos N/A WS_Z 0 0 0

1815 $DP _S____ Lock flux pos N/A WS_Z 1 0 3

1815 $DP F_V___ Lock flux pos N/A WS_Z 0 0 3

1832 $DP FSV___ DCbrake mode N/A WS_Z 0 0 1

1832 $DK ____B_ DCbrake mode N/A W__Z 0 0 0

1833 $PP FSV___ DCbrake delay s RWS_ 0.50F 0.02F 30.00F

1834 $PP FSV___ DCbrake duration s RWS_ 1.00F 0.02F 30.00F

1835 $PP FSV___ DCbrake current % RWS_ 50.00F 0.00F 100.00F

1836 $DK ____B_ DCbrake cmd src N/A RW__ 0 0 0

1836 $PIN FSV___ DCbrake cmd src N/A RWS_ 4000 LST_003

1837 $DV FSV___ DCbrake state N/A R___ 0 0 1

1840 $DP FS____ VoltageFwdEnable N/A RWS_ 1 0 1

1862 $DP F___B_ InvDecEnable N/A RWS_ 0 0 1

1880 $DK FSVABT Spd ref/fbk res N/A RW__ 1 0 2

1885 $PV FSV_B_ Full scale speed rpm RW__ CSD CALC CALC

1885 $PV FSV_B_ Full scale speed rpm RW__ CSD CALC CALC

1890 $FK FSV_B_ Std enc pulses ppr RW__ 1024.00F CALC CALC

1900 $FK F_V_B_ Exp enc pulses ppr RW__ 1024.00F CALC CALC

1902 $FK F_V_B_ Std sin enc Vp V RW__ 0.50F 0.00F 1.50F

1925 $DK FSV___ Std enc type N/A RW__ 0 0 2

1925 $DK ____B_ Std enc type N/A RW__ 3 3 9

1926 $DK F_V_B_ Exp enc type N/A RW__ 1 1 2

1927 $DP FSV_B_ Std enc supply N/A RW__ 0 0 3

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 273: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————271Ch.3

Ipa Point type Vality DB Description fs unit Access mode Default Min Max

1931 $DP FSV_B_ Std dig enc mode N/A RW__ 0 0 1

1936 $PP ____B_ Motor pp/sens pp NULL RW__ CALC CALC 32.00F

1940 $DV F_V_B_ Int spd fbk sel N/A RW__ 0 0 1

1952 $PP ____B_ Sim enc pulses ppr RW__ 1024.00F 1.00F CALC

1962 $DK F_V___ Rep/Sim enc sel N/A RW__ 0 0 1

1962 $DK ____B_ Rep/Sim enc sel N/A RW__ 0 0 2

1999 $PP FSVABT CurrP gain % % RWS_ CALC 0.00F 100.00F

2000 $PP FSVABT CurrI gain % % RWS_ CALC 0.00F 100.00F

2005 $FK FSVABT CurrP base value V_A RWS_ CALC 0.00F CALC

2007 $FK FSVABT CurrI base value V_A_s RWS_ CALC 0.00F CALC

2013 $PP FS____ FlxP gain % % RWS_ CALC 0.00F 100.00F

2015 $PP FS____ FlxI gain % % RWS_ CALC 0.00F 100.00F

2021 $FK FS____ FlxP base value A_Wb RWS_ CALC 0.00F CALC

2023 $FK FS____ FlxI base value A_Wb_s RWS_ CALC 0.00F CALC

2031 $PP FS__B_ VltP gain % % RWS_ CALC 0.00F 100.00F

2033 $PP FS__B_ VltI gain % % RWS_ CALC 0.00F 100.00F

2039 $FK ____B_ VltP base value A/V RWS_ CALC 0.00F 0.00F

2039 $FK FS____ VltP base value Wb_V RWS_ CALC 0.00F 0.00F

2041 $FK ____B_ VltI base value A_V_s RWS_ CALC 0.00F 0.00F

2041 $FK FS____ VltI base value Wb_V_s RWS_ CALC 0.00F 0.00F

2048 $DK FS__B_ Calc method RW__ 0 0 1

2049 $FK FS__B_ Bandwidth rad/s RW__ 50.00F 1.00F 300.00F

2052 $PV FS__B_ Int Friction Nm RWS__ 0.00F 0.00F CALC

2054 $PV FS__B_ Int Inertia kgm2 RWS__ 0.00F 0.00F CALC

2063 $PV FS__B_ InUse SpdP gain% % R___ 10.00F 0.00F 100.00F

2065 $PV FS__B_ InUse SpdI gain% % R___ 10.00F 0.00F 100.00F

2075 $FK FS__B_ SpdP base value A_rpm RWS_ CALC 0.00F 0.00F

2077 $FK FS__B_ SpdI base value A_rpm_ RWS_ CALC 0.00F CALC

2100 $PIN ____B_ Word0 B0 src N/A RWS_ 4000 LST_001_B

2100 $PIN __V___ Word0 B0 src N/A RWS_ 4000 LST_001_V

2100 $PIN F_____ Word0 B0 src N/A RWS_ 4000 LST_001_F

2100 $PIN _S____ Word0 B0 src N/A RWS_ 4000 LST_001_S

2101 $PIN __V___ Word0 B1 src N/A RWS_ 4000 LST_001_V

2101 $PIN ____B_ Word0 B1 src N/A RWS_ 4000 LST_001_B

2101 $PIN F_____ Word0 B1 src N/A RWS_ 4000 LST_001_F

2101 $PIN _S____ Word0 B1 src N/A RWS_ 4000 LST_001_S

2102 $PIN F_____ Word0 B2 src N/A RWS_ 4000 LST_001_F

2102 $PIN __V___ Word0 B2 src N/A RWS_ 4000 LST_001_V

2102 $PIN ____B_ Word0 B2 src N/A RWS_ 4000 LST_001_B

2102 $PIN _S____ Word0 B2 src N/A RWS_ 4000 LST_001_S

2103 $PIN __V___ Word0 B3 src N/A RWS_ 4000 LST_001_V

2103 $PIN _S____ Word0 B3 src N/A RWS_ 4000 LST_001_S

2103 $PIN F_____ Word0 B3 src N/A RWS_ 4000 LST_001_F

2103 $PIN ____B_ Word0 B3 src N/A RWS_ 4000 LST_001_B

2104 $PIN ____B_ Word0 B4 src N/A RWS_ 4000 LST_001_B

2104 $PIN _S____ Word0 B4 src N/A RWS_ 4000 LST_001_S

2104 $PIN F_____ Word0 B4 src N/A RWS_ 4000 LST_001_F

2104 $PIN __V___ Word0 B4 src N/A RWS_ 4000 LST_001_V

2105 $PIN ____B_ Word0 B5 src N/A RWS_ 4000 LST_001_B

2105 $PIN __V___ Word0 B5 src N/A RWS_ 4000 LST_001_V

2105 $PIN _S____ Word0 B5 src N/A RWS_ 4000 LST_001_S

2105 $PIN F_____ Word0 B5 src N/A RWS_ 4000 LST_001_F

2106 $PIN __V___ Word0 B6 src N/A RWS_ 4000 LST_001_V

2106 $PIN F_____ Word0 B6 src N/A RWS_ 4000 LST_001_F

2106 $PIN _S____ Word0 B6 src N/A RWS_ 4000 LST_001_S

2106 $PIN ____B_ Word0 B6 src N/A RWS_ 4000 LST_001_B

2107 $PIN _S____ Word0 B7 src N/A RWS_ 4000 LST_001_S

2107 $PIN __V___ Word0 B7 src N/A RWS_ 4000 LST_001_V

2107 $PIN ____B_ Word0 B7 src N/A RWS_ 4000 LST_001_B

2107 $PIN F_____ Word0 B7 src N/A RWS_ 4000 LST_001_F

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 274: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3272

Ipa Point type Vality DB Description fs unit Access mode Default Min Max

2108 $PIN ____B_ Word0 B8 src N/A RWS_ 4000 LST_001_B

2108 $PIN F_____ Word0 B8 src N/A RWS_ 4000 LST_001_F

2108 $PIN _S____ Word0 B8 src N/A RWS_ 4000 LST_001_S

2108 $PIN __V___ Word0 B8 src N/A RWS_ 4000 LST_001_V

2109 $PIN ____B_ Word0 B9 src N/A RWS_ 4000 LST_001_B

2109 $PIN __V___ Word0 B9 src N/A RWS_ 4000 LST_001_V

2109 $PIN _S____ Word0 B9 src N/A RWS_ 4000 LST_001_S

2109 $PIN F_____ Word0 B9 src N/A RWS_ 4000 LST_001_F

2110 $PIN _S____ Word0 B10 src N/A RWS_ 4000 LST_001_S

2110 $PIN F_____ Word0 B10 src N/A RWS_ 4000 LST_001_F

2110 $PIN ____B_ Word0 B10 src N/A RWS_ 4000 LST_001_B

2110 $PIN __V___ Word0 B10 src N/A RWS_ 4000 LST_001_V

2111 $PIN ____B_ Word0 B11 src N/A RWS_ 4000 LST_001_B

2111 $PIN F_____ Word0 B11 src N/A RWS_ 4000 LST_001_F

2111 $PIN _S____ Word0 B11 src N/A RWS_ 4000 LST_001_S

2111 $PIN __V___ Word0 B11 src N/A RWS_ 4000 LST_001_V

2112 $PIN ____B_ Word0 B12 src N/A RWS_ 4000 LST_001_B

2112 $PIN __V___ Word0 B12 src N/A RWS_ 4000 LST_001_V

2112 $PIN F_____ Word0 B12 src N/A RWS_ 4000 LST_001_F

2112 $PIN _S____ Word0 B12 src N/A RWS_ 4000 LST_001_S

2113 $PIN _S____ Word0 B13 src N/A RWS_ 4000 LST_001_S

2113 $PIN F_____ Word0 B13 src N/A RWS_ 4000 LST_001_F

2113 $PIN __V___ Word0 B13 src N/A RWS_ 4000 LST_001_V

2113 $PIN ____B_ Word0 B13 src N/A RWS_ 4000 LST_001_B

2114 $PIN F_____ Word0 B14 src N/A RWS_ 4000 LST_001_F

2114 $PIN _S____ Word0 B14 src N/A RWS_ 4000 LST_001_S

2114 $PIN __V___ Word0 B14 src N/A RWS_ 4000 LST_001_V

2114 $PIN ____B_ Word0 B14 src N/A RWS_ 4000 LST_001_B

2115 $PIN ____B_ Word0 B15 src N/A RWS_ 4000 LST_001_B

2115 $PIN __V___ Word0 B15 src N/A RWS_ 4000 LST_001_V

2115 $PIN F_____ Word0 B15 src N/A RWS_ 4000 LST_001_F

2115 $PIN _S____ Word0 B15 src N/A RWS_ 4000 LST_001_S

2116 $DV FSV_B_ W0 comp out N/A R___ 0 0 0xffff

2120 $PIN F_____ W0 decomp src N/A RWS_ 2121 LST_026_F

2120 $PIN _S____ W0 decomp src N/A RWS_ 2121 LST_026_S

2120 $PIN __V___ W0 decomp src N/A RWS_ 2121 LST_026_V

2120 $PIN ____B_ W0 decomp src N/A RWS_ 2121 LST_026_B

2121 $DV FSV_B_ W0 decomp inp N/A RWS_ 0 0 0xffff

2122 $DP FSV_B_ W0 decomp mon N/A R___ 0 0 0xffff

2123 $DV FSV_B_ B0 W0 decomp N/A R___ 0 0 1

2124 $DV FSV_B_ B1 W0 decomp N/A R___ 0 0 1

2125 $DV FSV_B_ B2 W0 decomp N/A R___ 0 0 1

2126 $DV FSV_B_ B3 W0 decomp N/A R___ 0 0 1

2127 $DV FSV_B_ B4 W0 decomp N/A R___ 0 0 1

2128 $DV FSV_B_ B5 W0 decomp N/A R___ 0 0 1

2129 $DV FSV_B_ B6 W0 decomp N/A R___ 0 0 1

2130 $DV FSV_B_ B7 W0 decomp N/A R___ 0 0 1

2131 $DV FSV_B_ B8 W0 decomp N/A R___ 0 0 1

2132 $DV FSV_B_ B9 W0 decomp N/A R___ 0 0 1

2133 $DV FSV_B_ B10 W0 decomp N/A R___ 0 0 1

2134 $DV FSV_B_ B11 W0 decomp N/A R___ 0 0 1

2135 $DV FSV_B_ B12 W0 decomp N/A R___ 0 0 1

2136 $DV FSV_B_ B13 W0 decomp N/A R___ 0 0 1

2137 $DV FSV_B_ B14 W0 decomp N/A R___ 0 0 1

2138 $DV FSV_B_ B15 W0 decomp N/A R___ 0 0 1

2270 $PP FS__B_ PLR P gain A/V RWS_ CALC 0.00F CALC

2275 $DV FSV_B_ PLS active N/A R___ 0 0 1

2280 $PP FS__B_ PLR I gain A_V_s RWS_ CALC 0.00F CALC

2282 $PV FSV_B_ PL next factor % R___ 0.00F 0.00F 0.00F

2283 $DV FSV_B_ PL next active N/A R___ 0 0 0

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 275: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————273Ch.3

Ipa Point type Vality DB Description fs unit Access mode Default Min Max

2284 $DV FS__B_ PLR active N/A R___ 0 0 1

2295 $PP FS__B_ VdcCtrl P gain A/V RWS_ CALC 0.00F CALC

2296 $PP FS__B_ VdcCtrl I gain A_V_s RWS_ CALC 0.00F CALC

2300 $DV __V___ PL function sel N/A WS_Z 0 0 1

2300 $DV FS__B_ PL function sel N/A WS_Z 0 0 2

2302 $PV FSV_B_ PL acceleration rpm_s RWS_ 100.00F 1.00F CALC

2304 $PV FSV_B_ PL deceleration rpm_s RWS_ 10000.00F 1.00F CALC

2312 $PIN FSV_B_ PLS mains st src N/A RWS_ 4000 LST_003

2320 $PP FSV_B_ PLS timeout s RWS_ 10.00F 0.00F 1000.00F

2330 $PV FSV_B_ PLS curr lim A RWS_ CALC 0.00F 0.00F

2340 $PP FSV_B_ PLS Vdc ref V RWS_ CALC 0.00F 820.00F

2360 $PP FSV_B_ PLS P gain A/V RWS_ CALC 0.00F CALC

2370 $PP FSV_B_ PLS I gain A_V_s RWS_ CALC 0.00F CALC

2380 $PP FS__B_ Prop filter ms RWS_ 0.20F 0.15F 1000.00F

2385 $PIN FS__B_ SpdTrq mode src N/A RWS_ 2390 LST_043

2390 $DV FS__B_ Int SpdTrq mode N/A RWS_ 0 0 5

2430 $PV FS__B_ Int torque ref 1 Nm RWS_ 0.00F CALC CALC

2431 $PIN FS__B_ Torque ref 1 src N/A RWS_ 2430 LST_014

2432 $PP FS__B_ Torque ref 1 mon Nm R___ 0.00F 0.00F 0.00F

2440 $PV FS__B_ Int torque ref 2 Nm RWS_ 0.00F CALC CALC

2441 $PIN FS__B_ Torque ref 2 src N/A RWS_ 2440 LST_015

2442 $PP FS__B_ Torque ref 2 mon Nm R___ 0.00F 0.00F 0.00F

2445 $DV FSV_B_ Tcurr lim state N/A R___ 0 0 1

2446 $DV FS__B_ SpdTrq ctrl stat N/A R___ 0 0 1

2447 $PV FS__B_ Int torque ref 3 Nm RWS_ 0.00F CALC CALC

2448 $DP FS__B_ SpdTrq mode mon N/A R___ 0 0 0

2449 $PIN FS__B_ Torque ref 3 src N/A RWS_ 2447 LST_044

2450 $PV FS__B_ Torque ref Nm R___ 0.00F 0.00F 0.00F

2451 $PIN FS__B_ Zero torque src N/A RWS_ 4000 LST_003

2452 $DV FS__B_ Zero torque mon N/A R___ 0 0 1

2470 $PIN FS__B_ Droop en src N/A RWS_ 4000 LST_003

2475 $PIN FS__B_ Droop comp src N/A RWS_ 2510 LST_021

2480 $PV FS__B_ Droop gain % RWS_ 0.00F 0.00F 100.00F

2490 $PP FS__B_ Droop filter ms RWS_ 20.00F CALC 1000.00F

2500 $PV FS__B_ Droop limit rpm RWS_ 50.00F 0.00F CALC

2510 $PV FS__B_ Droop comp Nm RWS_ 0.00F 0.00F 0.00F

2515 $PV FS__B_ Droop out rpm R___ 0.00F 0.00F 0.00F

2530 $DV FS__B_ Sfbk der enable N/A WS_Z 0 0 1

2540 $PV FS__B_ Sfbk der gain % RWS_ 0.00F -100.00F 100.00F

2550 $FK FS__B_ Sfbk der base ms RWS_ 10000.00F 0.00F 10000.0F

2560 $PP FS__B_ Sfbk der filter ms RWS_ 5.00F 0.00F 1000.00F

2580 $PIN FS__B_ I/F cp en src N/A RWS_ 4000 LST_003

2590 $PP FS__B_ Inertia cp flt ms RWS_ 30.00F 0.00F 1000.00F

2600 $FK FS__B_ Calc Frict Nm RW__ SIZE 0.00F 0.00F

2605 $PIN FS__B_ Inertia src N/A RWS_ 2610 LST_025

2610 $FK FS__B_ Calc Inertia kgm2 RW__ SIZE 0.00F 0.00F

2625 $PV FS__B_ I/F cp mon Nm R___ 0.00F 0.00F 0.00F

2745 $PV FSV_B_ Gen Hi ref cnt RWS_ 0.0F INT_MIN INT_MAX

2750 $PV FSV_B_ Gen Low ref cnt RWS_ 0.0F INT_MIN INT_MAX

2755 $PV FSV_B_ Gen Period s RWS_ 10.00F 0.00F 10000.0F

2756 $DK FSV_B_ Test gen mode N/A RWS_ 0 0 0

2760 $PV FSV_B_ Gen output cnt R___ 0.00F 0.00F 0.00F

2780 $FK FSVABT Measured Rs Ohm RW__ CALC CALC CALC

2790 $FK FSVABT Measured DTL V RW__ CALC 0.00F 50.00F

2800 $FK FSVABT Measured DTS Ohm RW__ CALC 0.00F 100.00F

2810 $FK FSVABT Measured LsSigma H RW__ CALC CALC CALC

2820 $FK FSVA__ Measured Rr Ohm RW__ CALC CALC CALC

2830 $FK FSVA__ Measured Rr2 Ohm RW__ CALC CALC CALC

2840 $FK FSVA__ Measured P1 flux NULL RW__ CALC 0.00F 1.00F

2850 $FK FSVA__ Measured P2 flux NULL RW__ CALC 3.00F 18.00F

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 276: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3274

Ipa Point type Vality DB Description fs unit Access mode Default Min Max

2860 $FK FSVA__ Measured P3 flux NULL RW__ CALC 0.00F 1.00F

2870 $FK FSVA__ Measured ImNom A RW__ CALC 0.00F 0.00F

2880 $FK FSVA__ Measured ImMax A RW__ CALC 0.00F 0.00F

2890 $FK FSVA__ Measured FluxNom Wb RW__ CALC 0.00F 0.00F

2900 $FK FSVA__ Measured FluxMax Wb RW__ CALC 0.00F 0.00F

3060 $PV FSVABT Output voltage V R___ 0.00F 0.00F 0.00F

3070 $PV FSVABT Output current A R___ 0.00F 0.00F 0.00F

3080 $PV FSV_B_ Output frequency Hz R___ 0.00F 0.00F 0.00F

3090 $PV FS____ Output power kW R___ 0.00F 0.00F 0.00F

3090 $PV __V_B_ Output power kVA R___ 0.00F 0.00F 0.00F

3100 $PV FSVABT DC link voltage V R___ 0.00F 0.00F 0.00F

3110 $PV FSVABT Magnetizing curr A R___ 0.00F 0.00F 0.00F

3120 $PV FSVABT Torque curr A R___ 0.00F 0.00F 0.00F

3130 $PV FS_ABT Magn curr ref A RW__ 0.00F 0.00F 0.00F

3140 $PV FS__B_ Torque curr ref A R___ 0.00F 0.00F 0.00F

3180 $PV FS____ Flux ref Wb R___ 0.00F 0.00F 0.00F

3190 $PV FS____ Flux Wb R___ 0.00F 0.00F 0.00F

3200 $PV FSV_B_ Ramp ref rpm R___ 0.00F 0.00F 0.00F

3210 $PV FSVAB_ Speed ref rpm RW__ 0.00F 0.00F 0.00F

3220 $PV FSV_B_ Speed rpm R___ 0.00F 0.00F 0.00F

3222 $PV FSV_B_ Norm Std enc spd rpm R___ 0.00F 0.00F 0.00F

3223 $PV F_V_B_ Norm Exp enc spd rpm R___ 0.00F 0.00F 0.00F

3230 $PV FSVABT CPU1 runtime % R___ 0.00F 0.00F 0.00F

3240 $PP FSVABT CPU2 runtime % R___ 0.00F 0.00F 0.00F

3400 $PV __V___ Voltage boost % RWS_ CALC 0.00F 0.00F

3410 $DP __V___ V/f shape N/A RW__ 0 0 3

3420 $FK __V___ V/f voltage V RW__ MOTR CALC CALC

3430 $FK __V___ V/f frequency Hz RW__ MOTR 5.00F CALC

3520 $PP __V___ V/f ILim P gain rpm_A RWS_ CALC CALC CALC

3530 $PP __V___ V/f ILim I gain rpm_A_ RWS_ CALC CALC CALC

3531 $PV __V___ Slip comp rpm RWS_ CALC 0.00F CALC

3536 $PV __V___ Int SE flx level % RWS_ 100.00F 10.00F 100.00F

3537 $PP __V___ SE flx ramp time s RWS_ 10.00F 0.00F 100.00F

3538 $PIN __V___ SE cmd src N/A RWS_ 4000 LST_003

3539 $PIN __V___ SE flx level src N/A RWS_ 3536 LST_023

3541 $PP __V___ Slip comp filter s RWS_ 1.00F CALC 10.00F

3545 $PP __V___ Spd search time s RWS_ 10.00F 0.01F 30.00F

3550 $PP __V___ Vlt search time s RWS_ 1.00F 0.01F 20.00F

3555 $PP __V___ Catch init speed rpm RWS_ CALC 0.00F 0.00F

3560 $PP __V___ Catch demag dly s RWS_ 3.00F 0.00F 10.00F

3565 $PP __V___ Catch retry dly s RWS_ 3.00F 0.00F 10.00F

3570 $PIN __V___ An out 1 src N/A RWS_ 4000 LST_002_V

3570 $PIN _S____ An out 1 src N/A RWS_ 4000 LST_002_S

3570 $PIN ___A__ An out 1 src N/A RWS_ 4000 LST_002_A

3570 $PIN F_____ An out 1 src N/A RWS_ 4000 LST_002_F

3570 $PIN ____B_ An out 1 src N/A RWS_ 4000 LST_002_B

3570 $PIN _____T An out 1 src N/A RWS_ 4000 LST_002_T

3572 $DV __V___ Vlt search state N/A R___ 0 0 3

3580 $PIN F_____ An out 2 src N/A RWS_ 4000 LST_002_F

3580 $PIN ____B_ An out 2 src N/A RWS_ 4000 LST_002_B

3580 $PIN _S____ An out 2 src N/A RWS_ 4000 LST_002_S

3580 $PIN _____T An out 2 src N/A RWS_ 4000 LST_002_T

3580 $PIN ___A__ An out 2 src N/A RWS_ 4000 LST_002_A

3580 $PIN __V___ An out 2 src N/A RWS_ 4000 LST_002_V

3582 $PIN __V___ V/f catch cmd N/A RWS_ 4000 LST_003

3585 $PP __V___ Antioscill gain % RWS_ 0.00F 0.00F 100.00F

3630 $DK ____B_ Adapt enable N/A RWS_ 0 0 0

3630 $DP F_____ Adapt enable N/A RWS_ 1 0 1

3630 $DP _S____ Adapt enable N/A RWS_ 0 0 1

3640 $PP F_____ Rr init value Ohm RWS_ CALC 0.00F 0.00F

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 277: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————275Ch.3

Ipa Point type Vality DB Description fs unit Access mode Default Min Max

3640 $PP _S____ Rr init value Ohm RWS_ CALC 0.00F 0.00F

3645 $PP _S____ Rs init value Ohm RWS_ CALC 0.00F 0.00F

3650 $PP F_____ Adapt gain Rr cnt RWS_ 60.00F 0.00F 0.00F

3650 $PP _S____ Adapt gain Rr cnt RWS_ 120.00F 0.00F 0.00F

3652 $PP _S____ Adapt gain Rs cnt RWS_ 120.00F 0.00F 0.00F

3680 $PP F_____ Power adapt on % RWS_ 10.00F 0.00F 100.00F

3682 $PP _S____ Itrq adapt on % RWS_ 30.00F 0.00F 100.00F

3684 $PP _S____ Speed adapt off rpm RWS_ CALC 0.00F 0.00F

3685 $PP F_____ Flx ref adapt on Wb R___ CALC 0.00F 0.00F

3700 $PP FS__B_ SpdP1 gain % % RWS_ CALC 0.00F 100.00F

3701 $PP FS__B_ SpdI1 gain % % RWS_ CALC 0.00F 100.00F

3702 $PP FS__B_ SpdP2 gain % % RWS_ CALC 0.00F 100.00F

3703 $PP FS__B_ SpdI2 gain % % RWS_ CALC 0.00F 100.00F

3704 $PP FS__B_ SpdP3 gain % % RWS_ CALC 0.00F 100.00F

3705 $PP FS__B_ SpdI3 gain % % RWS_ CALC 0.00F 100.00F

3706 $PP FS__B_ SGP tran21 h thr % RWS_ 0.00F 0.00F 100.00F

3707 $PP FS__B_ SGP tran32 l thr % RWS_ 0.00F 0.00F 100.00F

3708 $PP FS__B_ SGP tran21 band % RWS_ 0.00F 0.00F 100.00F

3709 $PP FS__B_ SGP tran32 band % RWS_ 0.00F 0.00F 100.00F

3710 $PV FS__B_ Int SGP ref cnt RWS_ 0.00F INT_MIN INT_MAX

3711 $PP FS__B_ SGP base value cnt RWS_ 16384.00F 0.00F 16384.0F

3712 $PP FS__B_ SGP ref mon cnt R___ 0.00F 0.00F 0.00F

3713 $PIN FS__B_ SGP ref src N/A RWS_ 3710 LST_019

3720 $DP FSV_B_ Spd 0 enable N/A RWS_ 0 0 1

3721 $PV FSV_B_ Int spd 0 ref cnt RWS_ 0.00F 0.00F 0.00F

3722 $PP FS__B_ Spd 0 P gain % % RWS_ CALC 0.00F 100.00F

3723 $PP FS__B_ Spd 0 I gain % % RWS_ CALC 0.00F 100.00F

3724 $PP FSV_B_ Spd 0 speed thr rpm RWS_ 20.00F 0.00F 0.00F

3725 $PP FSV_B_ Spd 0 spd delay ms RWS_ 500.00F 0.00F 30000.0F

3726 $PP FSV_B_ Spd 0 ref thr rpm RWS_ 20.00F 0.00F 0.00F

3727 $PP FSV_B_ Spd 0 ref delay ms RWS_ 1000.00F 0.00F 30000.0F

3728 $DV FSV_B_ Spd is zero N/A R___ 0 0 1

3729 $DV FSV_B_ Ref is zero N/A R___ 0 0 1

3730 $DV FSV_B_ Spd is zero dly N/A R___ 0 0 1

3731 $DV FSV_B_ Ref is zero dly N/A R___ 0 0 1

3732 $PIN FSV_B_ Spd 0 ref src N/A RWS_ 3200 LST_020

3900 $DV FSV_B_ Exp ana inp en N/A RWS_ 0 0 1

3901 $DV FSV_B_ Exp ana out en N/A RWS_ 0 0 1

3902 $DV FSV_B_ Exp dig inp en N/A RWS_ 0 0 1

3903 $DV FSV_B_ Exp dig out en N/A RWS_ 0 0 1

4002 $DV FSV_B_ Command select N/A RWS_ 4 0 4

4004 $DP ___A_T En/Disable mode N/A R___ 0 0 1

4004 $DP FSV_B_ En/Disable mode N/A RWS_ 1 0 1

4006 $PP FSV_B_ Spd 0 dis dly ms RWS_ 1000.00F 16.00F 4000.00F

4011 $DP FSV_B_ DI 1 inversion N/A RWS_ 0 0 1

4012 $DP FSV_B_ DI 2 inversion N/A RWS_ 0 0 1

4013 $DP FSV_B_ DI 3 inversion N/A RWS_ 0 0 1

4014 $DP FSV_B_ DI 4 inversion N/A RWS_ 0 0 1

4015 $DP FSV_B_ DI 5 inversion N/A RWS_ 0 0 1

4016 $DP FSV_B_ DI 6 inversion N/A RWS_ 0 0 1

4017 $DP FSV_B_ DI 7 inversion N/A RWS_ 0 0 1

4020 $DV FSVABT DI 0 Enable mon N/A R___ 0 0 1

4021 $DV FSV_B_ DI 1 monitor N/A R___ 0 0 1

4022 $DV FSV_B_ DI 2 monitor N/A R___ 0 0 1

4023 $DV FSV_B_ DI 3 monitor N/A R___ 0 0 1

4024 $DV FSV_B_ DI 4 monitor N/A R___ 0 0 1

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 278: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3276

Ipa Point type Vality DB Description fs unit Access mode Default Min Max

4025 $DV FSV_B_ DI 5 monitor N/A R___ 0 0 1

4026 $DV FSV_B_ DI 6 monitor N/A R___ 0 0 1

4027 $DV FSV_B_ DI 7 monitor N/A R___ 0 0 1

4028 $DP FSV_B_ DI 7654321E N/A R___ 0 0 0xffff

4030 $DP FSV_B_ DI 0X inversion N/A RWS_ 0 0 1

4031 $DP FSV_B_ DI 1X inversion N/A RWS_ 0 0 1

4032 $DP FSV_B_ DI 2X inversion N/A RWS_ 0 0 1

4033 $DP FSV_B_ DI 3X inversion N/A RWS_ 0 0 1

4034 $DP FSV_B_ DI 4X inversion N/A RWS_ 0 0 1

4035 $DP FSV_B_ DI 5X inversion N/A RWS_ 0 0 1

4036 $DP FSV_B_ DI 6X inversion N/A RWS_ 0 0 1

4037 $DP FSV_B_ DI 7X inversion N/A RWS_ 0 0 1

4038 $DP FSV_B_ DI 8X inversion N/A RWS_ 0 0 1

4039 $DP FSV_B_ DI 9X inversion N/A RWS_ 0 0 1

4040 $DP FSV_B_ DI 10X inversion N/A RWS_ 0 0 1

4041 $DP FSV_B_ DI 11X inversion N/A RWS_ 0 0 1

4045 $DV FSV_B_ DI 0X monitor N/A R___ 0 0 1

4046 $DV FSV_B_ DI 1X monitor N/A R___ 0 0 1

4047 $DV FSV_B_ DI 2X monitor N/A R___ 0 0 1

4048 $DV FSV_B_ DI 3X monitor N/A R___ 0 0 1

4049 $DV FSV_B_ DI 4X monitor N/A R___ 0 0 1

4050 $DV FSV_B_ DI 5X monitor N/A R___ 0 0 1

4051 $DV FSV_B_ DI 6X monitor N/A R___ 0 0 1

4052 $DV FSV_B_ DI 7X monitor N/A R___ 0 0 1

4053 $DV FSV_B_ DI 8X monitor N/A R___ 0 0 1

4054 $DV FSV_B_ DI 9X monitor N/A R___ 0 0 1

4055 $DV FSV_B_ DI 10X monitor N/A R___ 0 0 1

4056 $DV FSV_B_ DI 11X monitor N/A R___ 0 0 1

4057 $DP FSV_B_ DIX BA9876543210 N/A R___ 0 0 0xffff

4060 $DP FSV_B_ DO 0 inversion N/A RWS_ 0 0 1

4061 $DP FSV_B_ DO 1 inversion N/A RWS_ 0 0 1

4062 $DP FSV_B_ DO 2 inversion N/A RWS_ 0 0 1

4063 $DP FSV_B_ DO 3 inversion N/A RWS_ 0 0 1

4064 $DP FSV_B_ DO 3210 N/A R___ 0 0 0xffff

4065 $PIN ____B_ DO 0 src N/A RWS_ 9097 LST_001_B

4065 $PIN F_____ DO 0 src N/A RWS_ 9097 LST_001_F

4065 $PIN _S____ DO 0 src N/A RWS_ 9097 LST_001_S

4065 $PIN __V___ DO 0 src N/A RWS_ 9097 LST_001_V

4065 $PIN F_____ DO 0 src N/A RWS_ 9097 LST_001_F

4066 $PIN _S____ DO 1 src N/A RWS_ 3730 LST_001_S

4066 $PIN F_____ DO 1 src N/A RWS_ 3730 LST_001_F

4066 $PIN ____B_ DO 1 src N/A RWS_ 3730 LST_001_B

4066 $PIN __V___ DO 1 src N/A RWS_ 3730 LST_001_V

4067 $PIN F_____ DO 2 src N/A RWS_ 4000 LST_001_F

4067 $PIN _S____ DO 2 src N/A RWS_ 4000 LST_001_S

4067 $PIN __V___ DO 2 src N/A RWS_ 4000 LST_001_V

4067 $PIN ____B_ DO 2 src N/A RWS_ 4000 LST_001_B

4068 $PIN F_____ DO 3 src N/A RWS_ 4000 LST_001_F

4068 $PIN ____B_ DO 3 src N/A RWS_ 4000 LST_001_B

4068 $PIN _S____ DO 3 src N/A RWS_ 4000 LST_001_S

4068 $PIN __V___ DO 3 src N/A RWS_ 4000 LST_001_V

4070 $DP FSV_B_ DO 0X inversion N/A RWS_ 0 0 1

4071 $DP FSV_B_ DO 1X inversion N/A RWS_ 0 0 1

4072 $DP FSV_B_ DO 2X inversion N/A RWS_ 0 0 1

4073 $DP FSV_B_ DO 3X inversion N/A RWS_ 0 0 1

4074 $DP FSV_B_ DO 4X inversion N/A RWS_ 0 0 1

4075 $DP FSV_B_ DO 5X inversion N/A RWS_ 0 0 1

4076 $DP FSV_B_ DO 6X inversion N/A RWS_ 0 0 1

4077 $DP FSV_B_ DO 7X inversion N/A RWS_ 0 0 1

4078 $DP FSV_B_ DOX 76543210 N/A R___ 0 0 0xffff

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 279: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————277Ch.3

Ipa Point type Vality DB Description fs unit Access mode Default Min Max

4080 $PIN ____B_ DO 0X src N/A RWS_ 4000 LST_001_B

4080 $PIN __V___ DO 0X src N/A RWS_ 4000 LST_001_V

4080 $PIN _S____ DO 0X src N/A RWS_ 4000 LST_001_S

4080 $PIN F_____ DO 0X src N/A RWS_ 4000 LST_001_F

4081 $PIN _S____ DO 1X src N/A RWS_ 4000 LST_001_S

4081 $PIN F_____ DO 1X src N/A RWS_ 4000 LST_001_F

4081 $PIN ____B_ DO 1X src N/A RWS_ 4000 LST_001_B

4081 $PIN __V___ DO 1X src N/A RWS_ 4000 LST_001_V

4082 $PIN __V___ DO 2X src N/A RWS_ 4000 LST_001_V

4082 $PIN ____B_ DO 2X src N/A RWS_ 4000 LST_001_B

4082 $PIN _S____ DO 2X src N/A RWS_ 4000 LST_001_S

4082 $PIN F_____ DO 2X src N/A RWS_ 4000 LST_001_F

4083 $PIN _S____ DO 3X src N/A RWS_ 4000 LST_001_S

4083 $PIN __V___ DO 3X src N/A RWS_ 4000 LST_001_V

4083 $PIN ____B_ DO 3X src N/A RWS_ 4000 LST_001_B

4083 $PIN F_____ DO 3X src N/A RWS_ 4000 LST_001_F

4084 $PIN F_____ DO 4X src N/A RWS_ 4000 LST_001_F

4084 $PIN _S____ DO 4X src N/A RWS_ 4000 LST_001_S

4084 $PIN __V___ DO 4X src N/A RWS_ 4000 LST_001_V

4084 $PIN ____B_ DO 4X src N/A RWS_ 4000 LST_001_B

4085 $PIN F_____ DO 5X src N/A RWS_ 4000 LST_001_F

4085 $PIN _S____ DO 5X src N/A RWS_ 4000 LST_001_S

4085 $PIN __V___ DO 5X src N/A RWS_ 4000 LST_001_V

4085 $PIN ____B_ DO 5X src N/A RWS_ 4000 LST_001_B

4086 $PIN ____B_ DO 6X src N/A RWS_ 4000 LST_001_B

4086 $PIN __V___ DO 6X src N/A RWS_ 4000 LST_001_V

4086 $PIN F_____ DO 6X src N/A RWS_ 4000 LST_001_F

4086 $PIN _S____ DO 6X src N/A RWS_ 4000 LST_001_S

4087 $PIN F_____ DO 7X src N/A RWS_ 4000 LST_001_F

4087 $PIN _S____ DO 7X src N/A RWS_ 4000 LST_001_S

4087 $PIN __V___ DO 7X src N/A RWS_ 4000 LST_001_V

4087 $PIN ____B_ DO 7X src N/A RWS_ 4000 LST_001_B

4090 $PIN F_____ An out 1X src N/A RWS_ 4000 LST_002_F

4090 $PIN _S____ An out 1X src N/A RWS_ 4000 LST_002_S

4090 $PIN ____B_ An out 1X src N/A RWS_ 4000 LST_002_B

4090 $PIN __V___ An out 1X src N/A RWS_ 4000 LST_002_V

4091 $PIN ____B_ An out 2X src N/A RWS_ 4000 LST_002_B

4091 $PIN __V___ An out 2X src N/A RWS_ 4000 LST_002_V

4091 $PIN _S____ An out 2X src N/A RWS_ 4000 LST_002_S

4091 $PIN F_____ An out 2X src N/A RWS_ 4000 LST_002_F

4092 $PIN ____B_ An out 3X src N/A RWS_ 4000 LST_002_B

4092 $PIN __V___ An out 3X src N/A RWS_ 4000 LST_002_V

4092 $PIN _S____ An out 3X src N/A RWS_ 4000 LST_002_S

4092 $PIN F_____ An out 3X src N/A RWS_ 4000 LST_002_F

4093 $PIN __V___ An out 4X src N/A RWS_ 4000 LST_002_V

4093 $PIN _S____ An out 4X src N/A RWS_ 4000 LST_002_S

4093 $PIN F_____ An out 4X src N/A RWS_ 4000 LST_002_F

4093 $PIN ____B_ An out 4X src N/A RWS_ 4000 LST_002_B

4100 $PIN F_____ Drv DGFC-S W0src N/A RWS_ 4105 LST_029_F

4100 $PIN ____B_ Drv DGFC-S W0src N/A RWS_ 4105 LST_029_B

4100 $PIN _S____ Drv DGFC-S W0src N/A RWS_ 4105 LST_029_S

4100 $PIN __V___ Drv DGFC-S W0src N/A RWS_ 4105 LST_029_V

4101 $PIN F_____ Drv DGFC-S W1src N/A RWS_ 4106 LST_029_F

4101 $PIN _S____ Drv DGFC-S W1src N/A RWS_ 4106 LST_029_S

4101 $PIN __V___ Drv DGFC-S W1src N/A RWS_ 4106 LST_029_V

4101 $PIN ____B_ Drv DGFC-S W1src N/A RWS_ 4106 LST_029_B

4102 $PIN F_____ Drv DGFC-S W2src N/A RWS_ 4107 LST_029_F

4102 $PIN _S____ Drv DGFC-S W2src N/A RWS_ 4107 LST_029_S

4102 $PIN __V___ Drv DGFC-S W2src N/A RWS_ 4107 LST_029_V

4102 $PIN ____B_ Drv DGFC-S W2src N/A RWS_ 4107 LST_029_B

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 280: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3278

Ipa Point type Vality DB Description fs unit Access mode Default Min Max

4103 $PIN __V___ Drv DGFC-S W3src N/A RWS_ 4108 LST_029_V

4103 $PIN ____B_ Drv DGFC-S W3src N/A RWS_ 4108 LST_029_B

4103 $PIN F_____ Drv DGFC-S W3src N/A RWS_ 4108 LST_029_F

4103 $PIN _S____ Drv DGFC-S W3src N/A RWS_ 4108 LST_029_S

4104 $PIN F_____ Drv DGFC-S W4src N/A RWS_ 4109 LST_029_F

4104 $PIN __V___ Drv DGFC-S W4src N/A RWS_ 4109 LST_029_V

4104 $PIN ____B_ Drv DGFC-S W4src N/A RWS_ 4109 LST_029_B

4104 $PIN _S____ Drv DGFC-S W4src N/A RWS_ 4109 LST_029_S

4105 $PV FSV_B_ Int DrvDGFC-S W0 NULL RWS_ 0.00F INT_MIN INT_MAX

4106 $PV FSV_B_ Int DrvDGFC-S W1 NULL RWS_ 0.00F INT_MIN INT_MAX

4107 $PV FSV_B_ Int DrvDGFC-S W2 NULL RWS_ 0.00F INT_MIN INT_MAX

4108 $PV FSV_B_ Int DrvDGFC-S W3 NULL RWS_ 0.00F INT_MIN INT_MAX

4109 $PV FSV_B_ Int DrvDGFC-S W4 NULL RWS_ 0.00F INT_MIN INT_MAX

4110 $PP FSV_B_ Drv DGFC-S W0mon NULL R___ 0.00F INT_MIN INT_MAX

4111 $PP FSV_B_ Drv DGFC-S W1mon NULL R___ 0.00F INT_MIN INT_MAX

4112 $PP FSV_B_ Drv DGFC-S W2mon NULL R___ 0.00F INT_MIN INT_MAX

4113 $PP FSV_B_ Drv DGFC-S W3mon NULL R___ 0.00F INT_MIN INT_MAX

4114 $PP FSV_B_ Drv DGFC-S W4mon NULL R___ 0.00F INT_MIN INT_MAX

4120 $PV FSV_B_ DGFC-S Drv W0mon NULL R___ 0.00F INT_MIN INT_MAX

4121 $PV FSV_B_ DGFC-S Drv W1mon NULL R___ 0.00F INT_MIN INT_MAX

4122 $PV FSV_B_ DGFC-S Drv W2mon NULL R___ 0.00F INT_MIN INT_MAX

4123 $PV FSV_B_ DGFC-S Drv W3mon NULL R___ 0.00F INT_MIN INT_MAX

4124 $PV FSV_B_ DGFC-S Drv W4mon NULL R___ 0.00F INT_MIN INT_MAX

4130 $PIN ____B_ Drv DGFC-A W0src N/A RWS_ 4140 LST_030_B

4130 $PIN F_____ Drv DGFC-A W0src N/A RWS_ 4140 LST_030_F

4130 $PIN _S____ Drv DGFC-A W0src N/A RWS_ 4140 LST_030_S

4130 $PIN __V___ Drv DGFC-A W0src N/A RWS_ 4140 LST_030_V

4131 $PIN F_____ Drv DGFC-A W1src N/A RWS_ 4141 LST_030_F

4131 $PIN _S____ Drv DGFC-A W1src N/A RWS_ 4141 LST_030_S

4131 $PIN __V___ Drv DGFC-A W1src N/A RWS_ 4141 LST_030_V

4131 $PIN ____B_ Drv DGFC-A W1src N/A RWS_ 4141 LST_030_B

4132 $PIN ____B_ Drv DGFC-A W2src N/A RWS_ 4142 LST_030_B

4132 $PIN __V___ Drv DGFC-A W2src N/A RWS_ 4142 LST_030_V

4132 $PIN _S____ Drv DGFC-A W2src N/A RWS_ 4142 LST_030_S

4132 $PIN F_____ Drv DGFC-A W2src N/A RWS_ 4142 LST_030_F

4133 $PIN ____B_ Drv DGFC-A W3src N/A RWS_ 4143 LST_030_B

4133 $PIN __V___ Drv DGFC-A W3src N/A RWS_ 4143 LST_030_V

4133 $PIN F_____ Drv DGFC-A W3src N/A RWS_ 4143 LST_030_F

4133 $PIN _S____ Drv DGFC-A W3src N/A RWS_ 4143 LST_030_S

4134 $PIN _S____ Drv DGFC-A W4src N/A RWS_ 4144 LST_030_S

4134 $PIN __V___ Drv DGFC-A W4src N/A RWS_ 4144 LST_030_V

4134 $PIN F_____ Drv DGFC-A W4src N/A RWS_ 4144 LST_030_F

4134 $PIN ____B_ Drv DGFC-A W4src N/A RWS_ 4144 LST_030_B

4135 $PIN F_____ Drv DGFC-A W5src N/A RWS_ 4145 LST_030_F

4135 $PIN ____B_ Drv DGFC-A W5src N/A RWS_ 4145 LST_030_B

4135 $PIN __V___ Drv DGFC-A W5src N/A RWS_ 4145 LST_030_V

4135 $PIN _S____ Drv DGFC-A W5src N/A RWS_ 4145 LST_030_S

4136 $PIN ____B_ Drv DGFC-A W6src N/A RWS_ 4146 LST_030_B

4136 $PIN __V___ Drv DGFC-A W6src N/A RWS_ 4146 LST_030_V

4136 $PIN _S____ Drv DGFC-A W6src N/A RWS_ 4146 LST_030_S

4136 $PIN F_____ Drv DGFC-A W6src N/A RWS_ 4146 LST_030_F

4137 $PIN _S____ Drv DGFC-A W7src N/A RWS_ 4147 LST_030_S

4137 $PIN F_____ Drv DGFC-A W7src N/A RWS_ 4147 LST_030_F

4137 $PIN ____B_ Drv DGFC-A W7src N/A RWS_ 4147 LST_030_B

4137 $PIN __V___ Drv DGFC-A W7src N/A RWS_ 4147 LST_030_V

4138 $PIN _S____ Drv DGFC-A W8src N/A RWS_ 4148 LST_030_S

4138 $PIN ____B_ Drv DGFC-A W8src N/A RWS_ 4148 LST_030_B

4138 $PIN __V___ Drv DGFC-A W8src N/A RWS_ 4148 LST_030_V

4138 $PIN F_____ Drv DGFC-A W8src N/A RWS_ 4148 LST_030_F

4139 $PIN _S____ Drv DGFC-A W9src N/A RWS_ 4149 LST_030_S

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 281: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————279Ch.3

Ipa Point type Vality DB Description fs unit Access mode Default Min Max

4139 $PIN F_____ Drv DGFC-A W9src N/A RWS_ 4149 LST_030_F

4139 $PIN __V___ Drv DGFC-A W9src N/A RWS_ 4149 LST_030_V

4139 $PIN ____B_ Drv DGFC-A W9src N/A RWS_ 4149 LST_030_B

4140 $PV FSV_B_ Int DrvDGFC-A W0 NULL RWS_ 0.00F INT_MIN INT_MAX

4141 $PV FSV_B_ Int DrvDGFC-A W1 NULL RWS_ 0.00F INT_MIN INT_MAX

4142 $PV FSV_B_ Int DrvDGFC-A W2 NULL RWS_ 0.00F INT_MIN INT_MAX

4143 $PV FSV_B_ Int DrvDGFC-A W3 NULL RWS_ 0.00F INT_MIN INT_MAX

4144 $PV FSV_B_ Int DrvDGFC-A W4 NULL RWS_ 0.00F INT_MIN INT_MAX

4145 $PV FSV_B_ Int DrvDGFC-A W5 NULL RWS_ 0.00F INT_MIN INT_MAX

4146 $PV FSV_B_ Int DrvDGFC-A W6 NULL RWS_ 0.00F INT_MIN INT_MAX

4147 $PV FSV_B_ Int DrvDGFC-A W7 NULL RWS_ 0.00F INT_MIN INT_MAX

4148 $PV FSV_B_ Int DrvDGFC-A W8 NULL RWS_ 0.00F INT_MIN INT_MAX

4149 $PV FSV_B_ Int DrvDGFC-A W9 NULL RWS_ 0.00F INT_MIN INT_MAX

4150 $PP FSV_B_ Drv DGFC-A W0mon NULL R___ 0.00F INT_MIN INT_MAX

4151 $PP FSV_B_ Drv DGFC-A W1mon NULL R___ 0.00F INT_MIN INT_MAX

4152 $PP FSV_B_ Drv DGFC-A W2mon NULL R___ 0.00F INT_MIN INT_MAX

4153 $PP FSV_B_ Drv DGFC-A W3mon NULL R___ 0.00F INT_MIN INT_MAX

4154 $PP FSV_B_ Drv DGFC-A W4mon NULL R___ 0.00F INT_MIN INT_MAX

4155 $PP FSV_B_ Drv DGFC-A W5mon NULL R___ 0.00F INT_MIN INT_MAX

4156 $PP FSV_B_ Drv DGFC-A W6mon NULL R___ 0.00F INT_MIN INT_MAX

4157 $PP FSV_B_ Drv DGFC-A W7mon NULL R___ 0.00F INT_MIN INT_MAX

4158 $PP FSV_B_ Drv DGFC-A W8mon NULL R___ 0.00F INT_MIN INT_MAX

4159 $PP FSV_B_ Drv DGFC-A W9mon NULL R___ 0.00F INT_MIN INT_MAX

4160 $PV FSV_B_ DGFC-A Drv W0mon NULL R___ 0.00F INT_MIN INT_MAX

4161 $PV FSV_B_ DGFC-A Drv W1mon NULL R___ 0.00F INT_MIN INT_MAX

4162 $PV FSV_B_ DGFC-A Drv W2mon NULL R___ 0.00F INT_MIN INT_MAX

4163 $PV FSV_B_ DGFC-A Drv W3mon NULL R___ 0.00F INT_MIN INT_MAX

4164 $PV FSV_B_ DGFC-A Drv W4mon NULL R___ 0.00F INT_MIN INT_MAX

4165 $PV FSV_B_ DGFC-A Drv W5mon NULL R___ 0.00F INT_MIN INT_MAX

4166 $PV FSV_B_ DGFC-A Drv W6mon NULL R___ 0.00F INT_MIN INT_MAX

4167 $PV FSV_B_ DGFC-A Drv W7mon NULL R___ 0.00F INT_MIN INT_MAX

4168 $PV FSV_B_ DGFC-A Drv W8mon NULL R___ 0.00F INT_MIN INT_MAX

4169 $PV FSV_B_ DGFC-A Drv W9mon NULL R___ 0.00F INT_MIN INT_MAX

4200 $DP FSVABT CCF restart N/A RWS_ 0 0 1

4201 $PP FSVABT CCF restart time ms RWS_ 1000.00F 0.00F 30000.0F

4202 $DP FSVABT Hw fault mon N/A R___ 0 0 0

4216 $PP FSV_B_ Drv ISBus W0mon NULL R___ 0.00F INT_MIN INT_MAX

4217 $PP FSV_B_ Drv ISBus W1mon NULL R___ 0.00F INT_MIN INT_MAX

4218 $PP FSV_B_ Drv ISBus W2mon NULL R___ 0.00F INT_MIN INT_MAX

4219 $PP FSV_B_ Drv ISBus W3mon NULL R___ 0.00F INT_MIN INT_MAX

4220 $PP FSV_B_ Drv ISBus W4mon NULL R___ 0.00F INT_MIN INT_MAX

4221 $PP FSV_B_ Drv ISBus W5mon NULL R___ 0.00F INT_MIN INT_MAX

4222 $PP FSV_B_ Drv ISBus W6mon NULL R___ 0.00F INT_MIN INT_MAX

4223 $PP FSV_B_ Drv ISBus W7mon NULL R___ 0.00F INT_MIN INT_MAX

4230 $PIN __V___ Drv ISBus W0src N/A RWS_ 9320 LST_028_V

4230 $PIN _S____ Drv ISBus W0src N/A RWS_ 9320 LST_028_S

4230 $PIN F_____ Drv ISBus W0src N/A RWS_ 9320 LST_028_F

4230 $PIN ____B_ Drv ISBus W0src N/A RWS_ 9320 LST_028_B

4231 $PIN __V___ Drv ISBus W1src N/A RWS_ 9321 LST_028_V

4231 $PIN ____B_ Drv ISBus W1src N/A RWS_ 9321 LST_028_B

4231 $PIN _S____ Drv ISBus W1src N/A RWS_ 9321 LST_028_S

4231 $PIN F_____ Drv ISBus W1src N/A RWS_ 9321 LST_028_F

4232 $PIN ____B_ Drv ISBus W2src N/A RWS_ 9322 LST_028_B

4232 $PIN F_____ Drv ISBus W2src N/A RWS_ 9322 LST_028_F

4232 $PIN _S____ Drv ISBus W2src N/A RWS_ 9322 LST_028_S

4232 $PIN __V___ Drv ISBus W2src N/A RWS_ 9322 LST_028_V

4233 $PIN ____B_ Drv ISBus W3src N/A RWS_ 9323 LST_028_B

4233 $PIN __V___ Drv ISBus W3src N/A RWS_ 9323 LST_028_V

4233 $PIN _S____ Drv ISBus W3src N/A RWS_ 9323 LST_028_S

4233 $PIN F_____ Drv ISBus W3src N/A RWS_ 9323 LST_028_F

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 282: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3280

Ipa Point type Vality DB Description fs unit Access mode Default Min Max

4234 $PIN F_____ Drv ISBus W4src N/A RWS_ 9324 LST_028_F

4234 $PIN _S____ Drv ISBus W4src N/A RWS_ 9324 LST_028_S

4234 $PIN __V___ Drv ISBus W4src N/A RWS_ 9324 LST_028_V

4234 $PIN ____B_ Drv ISBus W4src N/A RWS_ 9324 LST_028_B

4235 $PIN _S____ Drv ISBus W5src N/A RWS_ 9325 LST_028_S

4235 $PIN __V___ Drv ISBus W5src N/A RWS_ 9325 LST_028_V

4235 $PIN ____B_ Drv ISBus W5src N/A RWS_ 9325 LST_028_B

4235 $PIN F_____ Drv ISBus W5src N/A RWS_ 9325 LST_028_F

4236 $PIN _S____ Drv ISBus W6src N/A RWS_ 9326 LST_028_S

4236 $PIN ____B_ Drv ISBus W6src N/A RWS_ 9326 LST_028_B

4236 $PIN __V___ Drv ISBus W6src N/A RWS_ 9326 LST_028_V

4236 $PIN F_____ Drv ISBus W6src N/A RWS_ 9326 LST_028_F

4237 $PIN F_____ Drv ISBus W7src N/A RWS_ 9327 LST_028_F

4237 $PIN _S____ Drv ISBus W7src N/A RWS_ 9327 LST_028_S

4237 $PIN __V___ Drv ISBus W7src N/A RWS_ 9327 LST_028_V

4237 $PIN ____B_ Drv ISBus W7src N/A RWS_ 9327 LST_028_B

5000 $DP FSV_B_ An inp 1 type N/A RWS_ 0 0 2

5001 $PP FSV_B_ An inp 1 offset cnt RWS_ 0.00F -16384.F 16383.F

5002 $PV FSV_B_ AI 1 alt value cnt RWS_ 0.00F INT_MIN INT_MAX

5003 $PP FSV_B_ An inp 1 thr cnt RWS_ 3277.00F -16384.F 16383.F

5004 $PP FSV_B_ An inp 1 scale NULL RWS_ 1.00F -16.00F 16.00F

5005 $PP FSV_B_ An inp 1 gain NULL RWS_ 1.00F -16.00F 16.00F

5006 $PP FSV_B_ An inp 1 filter s RWS_ 0.0064F CALC CALC

5007 $PP FSV_B_ An inp 1 lo lim cnt RWS_ -16384.00F INT_MIN INT_MAX

5008 $PP FSV_B_ An inp 1 hi lim cnt RWS_ 16383.00F INT_MIN INT_MAX

5009 $PV FSV_B_ An inp 1 output cnt R___ 0.00F INT_MIN INT_MAX

5010 $DV FSV_B_ An inp 1 < thr N/A R___ 0 0 1

5011 $PIN FSV_B_ AI 1 sgn src N/A RWS_ 4000 LST_003

5012 $PIN FSV_B_ AI 1 alt sel src N/A RWS_ 4000 LST_003

5020 $DP FSV_B_ An inp 2 type N/A RWS_ 0 0 2

5021 $PP FSV_B_ An inp 2 offset cnt RWS_ 0.00F -16384.F 16383.F

5022 $PV FSV_B_ AI 2 alt value cnt RWS_ 0.00F INT_MIN INT_MAX

5023 $PP FSV_B_ An inp 2 thr cnt RWS_ 3277.00F -16384.F 16383.F

5024 $PP FSV_B_ An inp 2 scale NULL RWS_ 1.00F -16.00F 16.00F

5025 $PP FSV_B_ An inp 2 gain NULL RWS_ 1.00F -16.00F 16.00F

5026 $PP FSV_B_ An inp 2 filter s RWS_ 0.0064F CALC CALC

5027 $PP FSV_B_ An inp 2 lo lim cnt RWS_ -16384.00F INT_MIN INT_MAX

5028 $PP FSV_B_ An inp 2 hi lim cnt RWS_ 16383.00F INT_MIN INT_MAX

5029 $PV FSV_B_ An inp 2 output cnt R___ 0.00F INT_MIN INT_MAX

5030 $DV FSV_B_ An inp 2 < thr N/A R___ 0 0 1

5031 $PIN FSV_B_ AI 2 sgn src N/A RWS_ 4000 LST_003

5032 $PIN FSV_B_ AI 2 alt sel src N/A RWS_ 4000 LST_003

5040 $DP FSV_B_ An inp 3 type N/A RWS_ 0 0 2

5041 $PP FSV_B_ An inp 3 offset cnt RWS_ 0.00F -16384.F 16383.F

5042 $PV FSV_B_ AI 3 alt value cnt RWS_ 0.00F INT_MIN INT_MAX

5043 $PP FSV_B_ An inp 3 thr cnt RWS_ 3277.00F -16384.F 16383.F

5044 $PP FSV_B_ An inp 3 scale NULL RWS_ 1.00F -16.00F 16.00F

5045 $PP FSV_B_ An inp 3 gain NULL RWS_ 1.00F -16.00F 16.00F

5046 $PP FSV_B_ An inp 3 filter s RWS_ 0.0064F CALC CALC

5047 $PP FSV_B_ An inp 3 lo lim cnt RWS_ -16384.00F INT_MIN INT_MAX

5048 $PP FSV_B_ An inp 3 hi lim cnt RWS_ 16383.00F INT_MIN INT_MAX

5049 $PV FSV_B_ An inp 3 output cnt R___ 0.00F INT_MIN INT_MAX

5050 $DV FSV_B_ An inp 3 < thr N/A R___ 0 0 1

5051 $PIN FSV_B_ AI 3 sgn src N/A RWS_ 4000 LST_003

5052 $PIN FSV_B_ AI 3 alt sel src N/A RWS_ 4000 LST_003

5060 $DP FSV_B_ An inp 1X type N/A RWS_ 0 0 2

5061 $PP FSV_B_ An inp 1X offset cnt RWS_ 0.00F -16384.F 16383.F

5062 $PP FSV_B_ An inp 1X thr cnt RWS_ 3277.00F -16384.F 16383.F

5063 $PP FSV_B_ An inp 1X scale NULL RWS_ 1.00F -16.00F 16.00F

5064 $PP FSV_B_ An inp 1X gain NULL RWS_ 1.00F -16.00F 16.00F

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 283: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————281Ch.3

Ipa Point type Vality DB Description fs unit Access mode Default Min Max

5065 $PP FSV_B_ An inp 1X lo lim cnt RWS_ -16384.00F INT_MIN INT_MAX

5066 $PP FSV_B_ An inp 1X hi lim cnt RWS_ 16383.00F INT_MIN INT_MAX

5067 $PV FSV_B_ An inp 1X output cnt R___ 0.00F INT_MIN INT_MAX

5068 $DV FSV_B_ An inp 1X < thr N/A R___ 0 0 1

5069 $PIN FSV_B_ AI 1X sgn src N/A RWS_ 4000 LST_0035080 $DP FSV_B_ An inp 2X type N/A RWS_ 0 0 2

5081 $PP FSV_B_ An inp 2X offset cnt RWS_ 0.00F -16384.F 16383.F

5082 $PP FSV_B_ An inp 2X thr cnt RWS_ 3277.00F -16384.F 16383.F

5083 $PP FSV_B_ An inp 2X scale NULL RWS_ 1.00F -16.00F 16.00F

5084 $PP FSV_B_ An inp 2X gain NULL RWS_ 1.00F -16.00F 16.00F

5085 $PP FSV_B_ An inp 2X lo lim cnt RWS_ -16384.00F INT_MIN INT_MAX

5086 $PP FSV_B_ An inp 2X hi lim cnt RWS_ 16383.00F INT_MIN INT_MAX

5087 $PV FSV_B_ An inp 2X output cnt R___ 0.00F INT_MIN INT_MAX

5088 $DV FSV_B_ An inp 2X < thr N/A R___ 0 0 1

5089 $PIN FSV_B_ AI 2X sgn src N/A RWS_ 4000 LST_003

6010 $PP FSVABT An out 1 hi lim cnt RWS_ 16383.00F 0.00F INT_MAX

6011 $PP FSVABT An out 1 lo lim cnt RWS_ -16384.00F INT_MIN 0.00F

6012 $PP FSVABT An out 1 scale NULL RWS_ 1.00F -10.00F 10.00F

6013 $PP FSVABT An out 1 mon cnt R___ 0.00F INT_MIN INT_MAX

6015 $PP FSVABT An out 2 hi lim cnt RWS_ 16383.00F 0.00F INT_MAX

6016 $PP FSVABT An out 2 lo lim cnt RWS_ -16384.00F INT_MIN 0.00F

6017 $PP FSVABT An out 2 scale NULL RWS_ 1.00F -10.00F 10.00F

6018 $PP FSVABT An out 2 mon cnt R___ 0.00F INT_MIN INT_MAX

6020 $PP FSV_B_ An out 1X hi lim cnt RWS_ 16383.00F 0.00F INT_MAX

6021 $PP FSV_B_ An out 1X lo lim cnt RWS_ -16384.00F INT_MIN 0.00F

6022 $PP FSV_B_ An out 1X scale NULL RWS_ 1.00F -10.00F 10.00F

6023 $PP FSV_B_ An out 1X mon cnt R___ 0.00F INT_MIN INT_MAX

6025 $PP FSV_B_ An out 2X hi lim cnt RWS_ 16383.00F 0.00F INT_MAX

6026 $PP FSV_B_ An out 2X lo lim cnt RWS_ -16384.00F INT_MIN 0.00F

6027 $PP FSV_B_ An out 2X scale NULL RWS_ 1.00F -10.00F 10.00F

6028 $PP FSV_B_ An out 2X mon cnt R___ 0.00F INT_MIN INT_MAX

6030 $PP FSV_B_ An out 3X hi lim cnt RWS_ 16363.00F 0.00F INT_MAX

6031 $PP FSV_B_ An out 3X lo lim cnt RWS_ 0.00F INT_MIN 0.00F

6032 $PP FSV_B_ An out 3X scale NULL RWS_ 1.00F -10.00F 10.00F

6033 $PP FSV_B_ An out 3X mon cnt R___ 0.00F INT_MIN INT_MAX

6034 $DP FSV_B_ An out 3x type N/A RWS_ 0 0 1

6035 $PP FSV_B_ An out 4X hi lim cnt RWS_ 16383.00F 0.00F INT_MAX

6036 $PP FSV_B_ An out 4X lo lim cnt RWS_ 0.00F INT_MIN 0.00F

6037 $PP FSV_B_ An out 4X scale NULL RWS_ 1.00F -10.00F 10.00F

6038 $PP FSV_B_ An out 4X mon cnt R___ 0.00F INT_MIN INT_MAX

6039 $DP FSV_B_ An out 4x type N/A RWS_ 0 0 1

6041 $PV FSV_B_ Cmp 1 inp 0 NULL RWS_ 0.00F INT_MIN INT_MAX

6042 $PV FSV_B_ Cmp 1 inp 1 NULL RWS_ 0.00F INT_MIN INT_MAX

6043 $PV FSV_B_ Cmp 1 inp 2 NULL RWS_ 0.00F INT_MIN INT_MAX

6044 $DP FSV_B_ Cmp 1 function N/A RWS_ 0 0 10

6045 $PP FSV_B_ Cmp 1 window cnt RWS_ 0.00F 0.00F INT_MAX

6046 $PP FSV_B_ Cmp 1 delay s RWS_ 0.00F 0.00F 30.00F

6047 $DP FSV_B_ Cmp 1 inversion N/A RWS_ 0 0 1

6048 $DV FSV_B_ Compare 1 output N/A R___ 0 0 1

6049 $PIN _S____ Cmp 1 inp 0 src N/A RWS_ 6041 LST_005_S

6049 $PIN __V___ Cmp 1 inp 0 src N/A RWS_ 6041 LST_005_V

6049 $PIN ____B_ Cmp 1 inp 0 src N/A RWS_ 6041 LST_005_B

6049 $PIN F_____ Cmp 1 inp 0 src N/A RWS_ 6041 LST_005_F

6050 $PIN __V___ Cmp 1 inp 1 src N/A RWS_ 6042 LST_005_V

6050 $PIN _S____ Cmp 1 inp 1 src N/A RWS_ 6042 LST_005_S

6050 $PIN F_____ Cmp 1 inp 1 src N/A RWS_ 6042 LST_005_F

6050 $PIN ____B_ Cmp 1 inp 1 src N/A RWS_ 6042 LST_005_B

6051 $PIN __V___ Cmp 1 inp 2 src N/A RWS_ 6043 LST_005_V

6051 $PIN F_____ Cmp 1 inp 2 src N/A RWS_ 6043 LST_005_F

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 284: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3282

Ipa Point type Vality DB Description fs unit Access mode Default Min Max

6051 $PIN ____B_ Cmp 1 inp 2 src N/A RWS_ 6043 LST_005_B

6051 $PIN _S____ Cmp 1 inp 2 src N/A RWS_ 6043 LST_005_S

6056 $PV FSV_B_ Cmp 2 inp 0 NULL RWS_ 0.00F INT_MIN INT_MAX

6057 $PV FSV_B_ Cmp 2 inp 1 NULL RWS_ 0.00F INT_MIN INT_MAX

6058 $PV FSV_B_ Cmp 2 inp 2 NULL RWS_ 0.00F INT_MIN INT_MAX

6059 $DP FSV_B_ Cmp 2 function N/A RWS_ 0 0 10

6060 $PP FSV_B_ Cmp 2 window cnt RWS_ 0.00F 0.00F INT_MAX

6061 $PP FSV_B_ Cmp 2 delay s RWS_ 0.00F 0.00F 30.00F

6062 $DP FSV_B_ Cmp 2 inversion N/A RWS_ 0 0 1

6063 $DV FSV_B_ Compare 2 output N/A R___ 0 0 1

6064 $PIN F_____ Cmp 2 inp 0 src N/A RWS_ 6056 LST_006_F

6064 $PIN _S____ Cmp 2 inp 0 src N/A RWS_ 6056 LST_006_S

6064 $PIN ____B_ Cmp 2 inp 0 src N/A RWS_ 6056 LST_006_B

6064 $PIN __V___ Cmp 2 inp 0 src N/A RWS_ 6056 LST_006_V

6065 $PIN F_____ Cmp 2 inp 1 src N/A RWS_ 6057 LST_006_F

6065 $PIN ____B_ Cmp 2 inp 1 src N/A RWS_ 6057 LST_006_B

6065 $PIN __V___ Cmp 2 inp 1 src N/A RWS_ 6057 LST_006_V

6065 $PIN _S____ Cmp 2 inp 1 src N/A RWS_ 6057 LST_006_S

6066 $PIN F_____ Cmp 2 inp 2 src N/A RWS_ 6058 LST_006_F

6066 $PIN __V___ Cmp 2 inp 2 src N/A RWS_ 6058 LST_006_V

6066 $PIN ____B_ Cmp 2 inp 2 src N/A RWS_ 6058 LST_006_B

6066 $PIN _S____ Cmp 2 inp 2 src N/A RWS_ 6058 LST_006_S

7029 $PIN _S____ Ramp ref 3 src N/A RWS_ 5009 LST_007_S

7030 $PV FSV_B_ Int ramp ref 1 rpm RWS_ 0.00F CALC CALC

7031 $PV FSV_B_ Int ramp ref 2 rpm RWS_ 0.00F CALC CALC

7032 $PP FSV_B_ Ramp ref 1 mon rpm R___ 0.00F 0.00F 0.00F

7033 $PP FSV_B_ Ramp ref 2 mon rpm R___ 0.00F 0.00F 0.00F

7034 $PV FSV_B_ Ramp setpoint rpm R___ 0.00F 0.00F 0.00F

7035 $PIN _S____ Ramp ref 1 src N/A RWS_ 5009 LST_007_S

7035 $PIN F_V_B_ Ramp ref 1 src N/A RWS_ 5009 LST_007_FVB

7036 $PIN F_V_B_ Ramp ref 2 src N/A RWS_ 7031 LST_008_FVB

7036 $PIN _S____ Ramp ref 2 src N/A RWS_ 7031 LST_008_S

7037 $PIN FSV_B_ Ramp ref inv src N/A RWS_ 4000 LST_003

7038 $PV FSV_B_ Int ramp ref 3 rpm RWS_ 0.00F CALC CALC

7032 $PP FSV_B_ Ramp ref 3 mon rpm R___ 0.00F 0.00F 0.00F

7040 $PV FSV_B_ Int speed ref 1 rpm RWS_ 0.00F CALC CALC

7041 $PV FSV_B_ Int speed ref 2 rpm RWS_ 0.00F CALC CALC

7042 $PV FSV_B_ Speed top rpm RWS_ 2000.00F CALC CALC

7043 $PV FSV_B_ Speed bottom rpm RWS_ -2000.00F CALC CALC

7044 $PV FSV_B_ Int speed ratio % RWS_ 100.00F 0.00F 200.00F

7045 $PP FSV_B_ Speed ref 1 mon rpm R___ 0.00F 0.00F 0.00F

7046 $PP FSV_B_ Speed ref 2 mon rpm R___ 0.00F 0.00F 0.00F

7047 $PV FSV_B_ Speed setpoint rpm R___ 0.00F 0.00F 0.00F

7048 $PP FSV_B_ Speed ratio mon % R___ 0.00F 0.00F 0.00F

7049 $DV FSV_B_ Speed lim state N/A R___ 0 0 1

7050 $PIN F_V_B_ Speed ref 1 src N/A RWS_ 7040 LST_009_FVB

7050 $PIN _S____ Speed ref 1 src N/A RWS_ 7040 LST_009_S

7051 $PIN F_V_B_ Speed ref 2 src N/A RWS_ 7041 LST_010_FVB

7051 $PIN _S____ Speed ref 2 src N/A RWS_ 7041 LST_010_S

7052 $PIN FSV_B_ Speed ratio src N/A RWS_ 7044 LST_013

7053 $PIN FSV_B_ Speedref inv src N/A RWS_ 4000 LST_003

7054 $PIN FS__B_ Spd I=0 src N/A RWS_ 4000 LST_003

7055 $DV FS__B_ Spd I=0 mon N/A R___ 0 0 1

7056 $PIN FS__B_ Spd PI=0 src N/A RWS_ 4000 LST_003

7057 $DP FS__B_ Spd PI=0 mon N/A R___ 0 0 1

7058 $PIN F___B_ Spd fbk sel src N/A RWS_ 1940 LST_022

7059 $DP FSV_B_ Spd reg enable N/A WS_Z 1 0 1

7060 $PV FSV_B_ Mlt spd 0 rpm RWS_ 0.00F CALC CALC

7061 $PP FSV_B_ Mlt spd 1 rpm RWS_ 0.00F CALC CALC

7062 $PP FSV_B_ Mlt spd 2 rpm RWS_ 0.00F CALC CALC

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 285: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————283Ch.3

Ipa Point type Vality DB Description fs unit Access mode Default Min Max

7063 $PP FSV_B_ Mlt spd 3 rpm RWS_ 0.00F CALC CALC

7064 $PP FSV_B_ Mlt spd 4 rpm RWS_ 0.00F CALC CALC

7065 $PP FSV_B_ Mlt spd 5 rpm RWS_ 0.00F CALC CALC

7066 $PP FSV_B_ Mlt spd 6 rpm RWS_ 0.00F CALC CALC

7067 $PP FSV_B_ Mlt spd 7 rpm RWS_ 0.00F CALC CALC

7068 $PP FSV_B_ Mlt spd 0 mon rpm R___ 0.00F 0.00F 0.00F

7069 $DP FSV_B_ Mlt spd sel mon N/A R___ 0 0 7

7070 $PV FSV_B_ Mlt spd out mon rpm R___ 0.00F 0.00F 0.00F

7071 $PIN _S____ Mlt spd 0 src N/A RWS_ 7060 LST_011_S

7071 $PIN F_V_B_ Mlt spd 0 src N/A RWS_ 7060 LST_011_FVB

7072 $PIN FSV_B_ Mlt spd s 0 src N/A RWS_ 4000 LST_003

7073 $PIN FSV_B_ Mlt spd s 1 src N/A RWS_ 4000 LST_003

7074 $PIN FSV_B_ Mlt spd s 2 src N/A RWS_ 4000 LST_003

7080 $PP FSV_B_ Mpot lower lim rpm RWS_ 0.00F CALC CALC

7081 $PP FSV_B_ Mpot upper lim rpm RWS_ 1000.00F CALC CALC

7082 $PV FSV_B_ Mpot acc dlt spd rpm RWS_ 1000.00F 1.00F CALC

7083 $PV FSV_B_ Mpot acc dlt tim s RWS_ 10.00F 0.50F 10000.0F

7084 $PV FSV_B_ Mpot dec dlt spd rpm RWS_ 1000.00F 1.00F CALC

7085 $PV FSV_B_ Mpot dec dlt tim s RWS_ 10.00F 0.50F 10000.0F

7086 $DP FSV_B_ Mpot init cfg N/A RWS_ 0 0 3

7087 $DP FSV_B_ Mpot preset cfg N/A RWS_ 0 0 11

7089 $DP FSV_B_ Mpot cmd mon N/A R___ 0 0 15

7090 $PV FSV_B_ Mpot output mon rpm R__U 0.00F 0.00F 0.00F

7091 $PIN FSV_B_ Mpot up src N/A RWS_ 4000 LST_003

7092 $PIN FSV_B_ Mpot down src N/A RWS_ 4000 LST_003

7093 $PIN FSV_B_ Mpot invers src N/A RWS_ 4000 LST_003

7094 $PIN FSV_B_ Mpot preset src N/A RWS_ 4000 LST_003

7099 $PV FSV_B_ Speed draw out rpm R___ 0.00F 0.00F 0.00F

7210 $PIN F_____ PID inp FF src N/A RWS_ 7211 LST_031_F

7210 $PIN _S____ PID inp FF src N/A RWS_ 7211 LST_031_S

7210 $PIN __V___ PID inp FF src N/A RWS_ 7211 LST_031_V

7210 $PIN ____B_ PID inp FF src N/A RWS_ 7211 LST_031_B

7211 $PV FSV_B_ Int PID inp FF % RWS_ 0.00F -200.00F 200.00F

7212 $PV FSV_B_ PID inp FF gain NULL RWS_ 1.00F -16.00F 16.00F

7216 $PP FSV_B_ PID inp FF mon % R___ 0.00F -200.00F 200.00F

7217 $PV FSV_B_ PID FF mon % R___ 0.00F -200.00F 200.00F

7220 $PIN _S____ PID fbk src N/A RWS_ 7230 LST_032_S

7220 $PIN ____B_ PID fbk src N/A RWS_ 7230 LST_032_B

7220 $PIN F_____ PID fbk src N/A RWS_ 7230 LST_032_F

7220 $PIN __V___ PID fbk src N/A RWS_ 7230 LST_032_V

7221 $PIN __V___ PID draw src N/A RWS_ 7231 LST_033_V

7221 $PIN F_____ PID draw src N/A RWS_ 7231 LST_033_F

7221 $PIN ____B_ PID draw src N/A RWS_ 7231 LST_033_B

7221 $PIN _S____ PID draw src N/A RWS_ 7231 LST_033_S

7222 $PIN ____B_ PID set 0 src N/A RWS_ 7232 LST_034_B

7222 $PIN _S____ PID set 0 src N/A RWS_ 7232 LST_034_S

7222 $PIN __V___ PID set 0 src N/A RWS_ 7232 LST_034_V

7222 $PIN F_____ PID set 0 src N/A RWS_ 7232 LST_034_F

7223 $PIN _S____ PID set 1 src N/A RWS_ 7233 LST_035_S

7223 $PIN __V___ PID set 1 src N/A RWS_ 7233 LST_035_V

7223 $PIN ____B_ PID set 1 src N/A RWS_ 7233 LST_035_B

7223 $PIN F_____ PID set 1 src N/A RWS_ 7233 LST_035_F

7226 $PIN FSV_B_ PID seloff 0 src N/A RWS_ 4000 LST_003

7230 $PV FSV_B_ Int PID fbk % RWS_ 0.00F -200.00F 200.00F

7231 $PV FSV_B_ Int PID draw % RWS_ 0.00F -200.00F 200.00F

7232 $PV FSV_B_ Int PID set 0 % RWS_ 0.00F -200.00F 200.00F

7233 $PV FSV_B_ Int PID set 1 % RWS_ 0.00F -200.00F 200.00F

7236 $PV FSV_B_ PID gain draw NULL RWS_ 1.00F -16.00F 16.00F

7237 $PP FSV_B_ PID acc time s RWS_ 1.00F CALC 900.00F

7238 $PP FSV_B_ PID dec time s RWS_ 1.00F CALC 900.00F

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 286: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3284

Ipa Point type Vality DB Description fs unit Access mode Default Min Max

7239 $PP FSV_B_ PID clamp bot % RWS_ -200.00F -200.00F 200.00F

7240 $PP FSV_B_ PID clamp top % RWS_ 200.00F -200.00F 200.00F

7250 $PP FSV_B_ PID fbk mon % R___ 0.00F -200.00F 200.00F

7251 $PP FSV_B_ PID draw mon % R___ 0.00F -200.00F 200.00F

7252 $PP FSV_B_ PID set 0 mon % R___ 0.00F -200.00F 200.00F

7253 $PP FSV_B_ PID set 1 mon % R___ 0.00F -200.00F 200.00F

7256 $PV FSV_B_ PID input % R___ 0.00F -200.00F 200.00F

7260 $PIN FSV_B_ PID PI enab src N/A RWS_ 4000 LST_003

7261 $PIN FSV_B_ PID I freeze src N/A RWS_ 4000 LST_003

7263 $PP FSV_B_ PI steady delay s RWS_ 1.00F CALC CALC

7264 $PP FSV_B_ PI steady thr % RWS_ 0.00F 0.00F 200.00F

7265 $DV FSV_B_ PID PI lock mon N/A R___ 0 0 1

7270 $PP FSV_B_ PI P1 gain % % RWS_ 10.00F 0.00F 100.00F

7271 $PP FSV_B_ PI I1 gain % % RWS_ 60.00F 0.00F 100.00F

7272 $PP FSV_B_ PI P2 gain % % RWS_ 20.00F 0.00F 100.00F

7273 $PP FSV_B_ PI I2 gain % % RWS_ 50.00F 0.00F 100.00F

7274 $PP FSV_B_ PI P3 gain % % RWS_ 30.00F 0.00F 100.00F

7275 $PP FSV_B_ PI I3 gain % % RWS_ 40.00F 0.00F 100.00F

7276 $PP FSV_B_ PIGP tran21 hthr % RWS_ 50.00F 0.00F 100.00F

7277 $PP FSV_B_ PIGP tran32 lthr % RWS_ 20.00F 0.00F 100.00F

7278 $PP FSV_B_ PIGP tran21 band % RWS_ 5.00F 0.00F 100.00F

7279 $PP FSV_B_ PIGP tran32 band % RWS_ 5.00F 0.00F 100.00F

7280 $PIN FSV_B_ PIGP ref src N/A RWS_ 7281 LST_036

7282 $PP FSV_B_ PIGP ref mon % R___ 0.00F -200.00F 200.00F

7283 $PV FSV_B_ PI Pnorm gain % R___ 0.00F 0.00F 100.00F

7284 $PV FSV_B_ PI Inorm gain % R___ 0.00F 0.00F 100.00F

7290 $PV FSV_B_ PI Pinit gain % RWS_ 10.00F 0.00F 100.00F

7291 $PV FSV_B_ PI Iinit gain % RWS_ 10.00F 0.00F 100.00F

7292 $PP FSV_B_ PI clamp top NULL RWS_ 1.00F -16.00F 16.00F

7293 $PP FSV_B_ PI clamp bot NULL RWS_ -1.00F -16.00F 16.00F

7294 $PV FSV_B_ PID PI out mon NULL R___ 0.00F -16.00F 16.00F

7300 $PP FSV_B_ PD P1 gain % % RWS_ 10.00F 0.00F 100.00F

7301 $PP FSV_B_ PD D1 gain % % RWS_ 60.00F 0.00F 100.00F

7302 $PP FSV_B_ PD P2 gain % % RWS_ 20.00F 0.00F 100.00F

7303 $PP FSV_B_ PD D2 gain % % RWS_ 50.00F 0.00F 100.00F

7304 $PP FSV_B_ PD P3 gain % % RWS_ 30.00F 0.00F 100.00F

7305 $PP FSV_B_ PD D3 gain % % RWS_ 40.00F 0.00F 100.00F

7306 $PP FSV_B_ PDGP tran21 hthr % RWS_ 50.00F 0.00F 100.00F

7307 $PP FSV_B_ PDGP tran32 lthr % RWS_ 20.00F 0.00F 100.00F

7308 $PP FSV_B_ PDGP tran21 band % RWS_ 5.00F 0.00F 100.00F

7309 $PP FSV_B_ PDGP tran32 band % RWS_ 5.00F 0.00F 100.00F

7310 $PIN FSV_B_ PDGP ref src N/A RWS_ 7311 LST_037

7311 $PV FSV_B_ Int PDGP ref % RWS_ 0.00F -200.00F 200.00F

7312 $PV FSV_B_ PD P gain mon % R___ 0.00F 0.00F 100.00F

7313 $PV FSV_B_ PD D gain mon % R___ 0.00F 0.00F 100.00F

7314 $PP FSV_B_ PDGP ref mon % R___ 0.00F -200.00F 200.00F

7320 $PIN FSV_B_ PID Mlt PI sel 0 N/A RWS_ 4000 LST_003

7321 $PIN FSV_B_ PID Mlt PI sel 1 N/A RWS_ 4000 LST_003

7322 $PIN __V___ PID Mlt PI 3 src N/A RWS_ 7326 LST_038_V

7322 $PIN _S____ PID Mlt PI 3 src N/A RWS_ 7326 LST_038_S

7322 $PIN F_____ PID Mlt PI 3 src N/A RWS_ 7326 LST_038_F

7322 $PIN ____B_ PID Mlt PI 3 src N/A RWS_ 7326 LST_038_B

7324 $PP FSV_B_ Int PID Mlt PI 1 NULL RWS_ 0.00F -16.00F 16.00F

7325 $PP FSV_B_ Int PID Mlt PI 2 NULL RWS_ 0.00F -16.00F 16.00F

7326 $PV FSV_B_ Int PID Mlt PI 3 NULL RWS_ 0.00F -16.00F 16.00F

7327 $PP FSV_B_ PID Mlt PI 0 mon NULL R___ 0.00F -16.00F 16.00F

7328 $PP FSV_B_ PID Mlt PI 3 mon NULL R___ 0.00F -16.00F 16.00F

7329 $DP FSV_B_ PID MltPI selmon N/A R___ 0 0 3

7340 $PIN FSV_B_ PID PD enab src N/A RWS_ 4000 LST_003

7342 $PP FSV_B_ PD der filter ms RWS_ 5.00F CALC CALC

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 287: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————285Ch.3

Ipa Point type Vality DB Description fs unit Access mode Default Min Max

7343 $PV FSV_B_ PID PD out mon % R___ 0.00F -200.00F 200.00F

7350 $DP FSV_B_ PID out sign N/A RWS_ 0 0 1

7351 $PV FSV_B_ PID out gain NULL RWS_ 1.00F -16.00F +16.00F

7352 $PV FSV_B_ PID out mon % R___ 0.00F -200.00F 200.00F

7353 $PV FSV_B_ PID outS mon % R___ 0.00F -200.00F 200.00F

7360 $PP FSV_B_ Max deviation % RWS_ 90.00F -200.00F 200.00F

7361 $PP FSV_B_ Positioning spd % RWS_ 0.00F -200.00F 200.00F

7362 $FK FSV_B_ Gear box ratio NULL RWS_ 1.00F 0.001F 1.00F

7363 $FK FSV_B_ Dancer constant mm RWS_ 1.00F 1.0F 10000.00F

7364 $FK FSV_B_ Minimum diameter mm RWS_ 1.00F 1.00F 2000.00F

7365 $FK FSV_B_ Diameter mm RW__ 1.00F 1.00F 2000.00F

7366 $PP FSV_B_ Diacal PI out NULL RW__ +1.00F -16.00F +16.00F

7370 $PP FSV_B_ DCDelta error cnt R___ 0.00F 0.00F 0.00F

7371 $PP FSV_B_ DCDelta pos NULL R___ 0.00F 0.00F 0.00F

7402 $PIN FSV_B_ DiaClc start src N/A RWS_ 4000 LST_003

8000 $PV FSV_B_ Jog 0 rpm RWS_ 100.00F 0.00F 0.00F

8001 $PP FSV_B_ Jog 1 rpm RWS_ 0.00F 0.00F 0.00F

8002 $PP FSV_B_ Jog 2 rpm RWS_ 0.00F 0.00F 0.00F

8003 $PP FSV_B_ Jog 3 rpm RWS_ 0.00F 0.00F 0.00F

8004 $PV FSV_B_ Jog acc dlt spd rpm RWS_ 10000.00F 1.00F CALC

8005 $PV FSV_B_ Jog acc dlt time s RWS_ 10.00F 0.50F 10000.0F

8006 $PV FSV_B_ Jog dec dlt spd rpm RWS_ 10000.00F 1.00F CALC

8007 $PV FSV_B_ Jog dec dlt time s RWS_ 10.00F 0.50F 10000.0F

8010 $PP FSV_B_ Jog 0 mon rpm R___ 0.00F 0.00F 0.00F

8011 $DP FSV_B_ Jog sel mon N/A R___ 0 0 3

8012 $PV FSV_B_ Jog output rpm R___ 0.00F 0.00F 0.00F

8013 $DV FSV_B_ Jog state N/A R___ 0 0 1

8014 $PIN _S____ Jog 0 src N/A RWS_ 8000 LST_012_S

8014 $PIN F_V_B_ Jog 0 src N/A RWS_ 8000 LST_012_FVB

8015 $PIN FSV_B_ Jog cmd src N/A RWS_ 4000 LST_003

8016 $PIN FSV_B_ Jog sel 0 src N/A RWS_ 4000 LST_003

8017 $PIN FSV_B_ Jog sel 1 src N/A RWS_ 4000 LST_003

8018 $PIN FSV_B_ Jog invers src N/A RWS_ 4000 LST_003

8021 $DV FSV_B_ Ramp shape N/A RWS_ 0 0 1

8022 $PV FSV_B_ Ramp out mon rpm R___ 0.00F 0.00F 0.00F

8023 $DV FSV_B_ Ramp acc state N/A R___ 0 0 1

8024 $DV FSV_B_ Ramp dec state N/A R___ 0 0 1

8025 $DV FSV_B_ Ramp out != 0 N/A R___ 0 0 1

8026 $DP FSV_B_ Ramp cmds mon N/A R___ 0 0 15

8027 $PIN FSV_B_ Ramp input=0 N/A RWS_ 4000 LST_003

8028 $PIN FSV_B_ Ramp output=0 N/A RWS_ 4000 LST_003

8029 $PIN FSV_B_ Ramp freeze N/A RWS_ 4000 LST_003

8031 $DP FSV_B_ Ramp out enable N/A WS_Z 1 0 1

8040 $PP FSV_B_ MR0 acc dlt spd rpm RWS_ 1000.00F 1.00F CALC

8041 $PP FSV_B_ MR0 acc dlt time s RWS_ 10.00F 0.50F 10000.0F

8042 $PP FSV_B_ MR0 dec dlt spd rpm RWS_ 1000.00F 1.00F CALC

8043 $PP FSV_B_ MR0 dec dlt time s RWS_ 10.00F 0.50F 10000.0F

8044 $PP FSV_B_ MR0 fdec dlt spd rpm RWS_ 10000.00F 1.00F CALC

8045 $PP FSV_B_ MR0 fdec dlttime s RWS_ 10.00F 0.50F 10000.0F

8046 $PP FSV_B_ MR0 acc S curve s RWS_ 0.10F 0.00F 0.00F

8047 $PP FSV_B_ MR0 dec S curve s RWS_ 0.10F 0.00F 0.00F

8050 $PP FSV_B_ MR1 acc dlt spd rpm RWS_ 1000.00F 1.00F CALC

8051 $PP FSV_B_ MR1 acc dlt time s RWS_ 10.00F 0.50F 10000.0F

8052 $PP FSV_B_ MR1 dec dlt spd rpm RWS_ 1000.00F 1.00F CALC

8053 $PP FSV_B_ MR1 dec dlt time s RWS_ 10.00F 0.50F 10000.0F

8054 $PP FSV_B_ MR1 fdec dlt spd rpm RWS_ 10000.00F 1.00F CALC

8055 $PP FSV_B_ MR1 fdec dlttime s RWS_ 10.00F 0.50F 10000.0F

8056 $PP FSV_B_ MR1 acc S curve s RWS_ 0.10F 0.00F 0.00F

8057 $PP FSV_B_ MR1 dec S curve s RWS_ 0.10F 0.00F 0.00F

8060 $PP FSV_B_ MR2 acc dlt spd rpm RWS_ 1000.00F 1.00F CALC

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 288: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3286

Ipa Point type Vality DB Description fs unit Access mode Default Min Max

8061 $PP FSV_B_ MR2 acc dlt time s RWS_ 10.00F 0.50F 10000.0F

8062 $PP FSV_B_ MR2 dec dlt spd rpm RWS_ 1000.00F 1.00F CALC

8063 $PP FSV_B_ MR2 dec dlt time s RWS_ 10.00F 0.50F 10000.0F

8064 $PP FSV_B_ MR2 fdec dlt spd rpm RWS_ 10000.00F 1.00F CALC

8065 $PP FSV_B_ MR2 fdec dlttime s RWS_ 10.00F 0.50F 10000.0F

8066 $PP FSV_B_ MR2 acc S curve s RWS_ 0.10F 0.00F 0.00F

8067 $PP FSV_B_ MR2 dec S curve s RWS_ 0.10F 0.00F 0.00F

8070 $PP FSV_B_ MR3 acc dlt spd rpm RWS_ 1000.00F 1.00F CALC

8071 $PP FSV_B_ MR3 acc dlt time s RWS_ 10.00F 0.50F 10000.0F

8072 $PP FSV_B_ MR3 dec dlt spd rpm RWS_ 1000.00F 1.00F CALC

8073 $PP FSV_B_ MR3 dec dlt time s RWS_ 10.00F 0.50F 10000.0F

8074 $PP FSV_B_ MR3 fdec dlt spd rpm RWS_ 10000.00F 1.00F CALC

8075 $PP FSV_B_ MR3 fdec dlttime s RWS_ 10.00F 0.50F 10000.0F

8076 $PP FSV_B_ MR3 acc S curve s RWS_ 0.10F 0.00F 0.00F

8077 $PP FSV_B_ MR3 dec S curve s RWS_ 0.10F 0.00F 0.00F

8078 $DP FSV_B_ Mlt ramp sel mon N/A R___ 0 0 3

8080 $DP FSV_B_ FRC cmd mon N/A R___ 0 0 3

8081 $DV FSV_B_ FRC invers N/A R___ 0 0 1

8082 $DV FSV_B_ FRC alarm N/A R___ 0 0 1

8083 $PIN FSV_B_ Forward src N/A RWS_ 4001 LST_003

8084 $PIN FSV_B_ Reverse src N/A RWS_ 4000 LST_003

8090 $PIN FSV_B_ Mlt ramp s0 src N/A RWS_ 4000 LST_003

8091 $PIN FSV_B_ Mlt ramp s1 src N/A RWS_ 4000 LST_003

8998 $DP FSV_B_ Last SBI error N/A R___ 0 0 0

8999 $DK FSVABT SBI enable N/A RWS_ 0 0 1

9000 $PV FSV_B_ SBI Drv W0 mon NULL R___ 0.00F INT_MIN INT_MAX

9001 $PV FSV_B_ SBI Drv W1 mon NULL R___ 0.00F INT_MIN INT_MAX

9002 $PV FSV_B_ SBI Drv W2 mon NULL R___ 0.00F INT_MIN INT_MAX

9003 $PV FSV_B_ SBI Drv W3 mon NULL R___ 0.00F INT_MIN INT_MAX

9004 $PV FSV_B_ SBI Drv W4 mon NULL R___ 0.00F INT_MIN INT_MAX

9005 $PV FSV_B_ SBI Drv W5 mon NULL R___ 0.00F INT_MIN INT_MAX

9010 $PIN _S____ Drv SBI W0 src N/A RWS_ 9020 LST_040_S

9010 $PIN __V___ Drv SBI W0 src N/A RWS_ 9020 LST_040_V

9010 $PIN ____B_ Drv SBI W0 src N/A RWS_ 9020 LST_040_B

9010 $PIN F_____ Drv SBI W0 src N/A RWS_ 9020 LST_040_F

9011 $PIN F_____ Drv SBI W1 src N/A RWS_ 9021 LST_040_F

9011 $PIN __V___ Drv SBI W1 src N/A RWS_ 9021 LST_040_V

9011 $PIN ____B_ Drv SBI W1 src N/A RWS_ 9021 LST_040_B

9011 $PIN _S____ Drv SBI W1 src N/A RWS_ 9021 LST_040_S

9012 $PIN F_____ Drv SBI W2 src N/A RWS_ 9022 LST_040_F

9012 $PIN _S____ Drv SBI W2 src N/A RWS_ 9022 LST_040_S

9012 $PIN __V___ Drv SBI W2 src N/A RWS_ 9022 LST_040_V

9012 $PIN ____B_ Drv SBI W2 src N/A RWS_ 9022 LST_040_B

9013 $PIN _S____ Drv SBI W3 src N/A RWS_ 9023 LST_040_S

9013 $PIN __V___ Drv SBI W3 src N/A RWS_ 9023 LST_040_V

9013 $PIN F_____ Drv SBI W3 src N/A RWS_ 9023 LST_040_F

9013 $PIN ____B_ Drv SBI W3 src N/A RWS_ 9023 LST_040_B

9014 $PIN ____B_ Drv SBI W4 src N/A RWS_ 9024 LST_040_B

9014 $PIN __V___ Drv SBI W4 src N/A RWS_ 9024 LST_040_V

9014 $PIN _S____ Drv SBI W4 src N/A RWS_ 9024 LST_040_S

9014 $PIN F_____ Drv SBI W4 src N/A RWS_ 9024 LST_040_F

9015 $PIN __V___ Drv SBI W5 src N/A RWS_ 9025 LST_040_V

9015 $PIN _S____ Drv SBI W5 src N/A RWS_ 9025 LST_040_S

9015 $PIN F_____ Drv SBI W5 src N/A RWS_ 9025 LST_040_F

9015 $PIN ____B_ Drv SBI W5 src N/A RWS_ 9025 LST_040_B

9020 $PV FSV_B_ Int Drv SBI W0 NULL RWS_ 0.00F INT_MIN INT_MAX

9021 $PV FSV_B_ Int Drv SBI W1 NULL RWS_ 0.00F INT_MIN INT_MAX

9022 $PV FSV_B_ Int Drv SBI W2 NULL RWS_ 0.00F INT_MIN INT_MAX

9023 $PV FSV_B_ Int Drv SBI W3 NULL RWS_ 0.00F INT_MIN INT_MAX

9024 $PV FSV_B_ Int Drv SBI W4 NULL RWS_ 0.00F INT_MIN INT_MAX

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 289: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————287Ch.3

Ipa Point type Vality DB Description fs unit Access mode Default Min Max

9025 $PV FSV_B_ Int Drv SBI W5 NULL RWS_ 0.00F INT_MIN INT_MAX

9030 $PP FSV_B_ Drv SBI W0 mon NULL R___ 0.00F INT_MIN INT_MAX

9031 $PP FSV_B_ Drv SBI W1 mon NULL R___ 0.00F INT_MIN INT_MAX

9032 $PP FSV_B_ Drv SBI W2 mon NULL R___ 0.00F INT_MIN INT_MAX

9033 $PP FSV_B_ Drv SBI W3 mon NULL R___ 0.00F INT_MIN INT_MAX

9034 $PP FSV_B_ Drv SBI W4 mon NULL R___ 0.00F INT_MIN INT_MAX

9035 $PP FSV_B_ Drv SBI W5 mon NULL R___ 0.00F INT_MIN INT_MAX

9040 $DP FSVABT DOL activity N/A RWS_ 3 1 6

9041 $DP FSVABT MOL activity N/A RWS_ 3 1 6

9042 $DP FSVABT SFL activity N/A RWS_ 3 1 6

9043 $PP FSVABT UVR attempts NULL RWS_ 5.00F 1.00F 1000.0F

9044 $PP FSVABT UVR delay s RWS_ 240.00F 1.00F CALC

9046 $DP FSVABT DS restart N/A RWS_ 0 0 1

9047 $PP FSVABT DS restart time ms RWS_ 1000.00F 0.00F 30000.0F

9049 $DP FSVABT ACF activity N/A RWS_ 3 2 6

9050 $DP FSVABT UV restart N/A RWS_ 0 0 1

9051 $PP FSVABT UV restart time ms RWS_ 1000.00F 0.00F 30000.0F

9052 $DP FSVABT OV restart N/A RWS_ 0 0 1

9053 $PP FSVABT OV restart time ms RWS_ 1000.00F 0.00F 30000.0F

9054 $DP FSVABT HTS activity N/A RWS_ 3 2 6

9055 $DP FSVABT HTS restart N/A RWS_ 0 0 1

9056 $PP FSVABT HTS restart time ms RWS_ 1000.00F 0.00F 30000.0F

9057 $DP FSVABT RGS activity N/A RWS_ 3 2 6

9058 $DP FSVABT RGS restart N/A RWS_ 0 0 1

9059 $PP FSVABT RGS restart time ms RWS_ 1000.00F 0.00F 30000.0F

9060 $DP FSVABT EF activity N/A RWS_ 3 2 6

9061 $DP FSVABT EF restart N/A RWS_ 0 0 1

9062 $PP FSVABT EF restart time ms RWS_ 1000.00F 0.00F 30000.0F

9063 $DP FSVABT IOC restart N/A RWS_ 0 0 1

9064 $PP FSVABT IOC restart time ms RWS_ 1000.00F 0.00F 30000.0F

9065 $DP FSVABT MOT activity N/A RWS_ 3 2 6

9066 $DP FSVABT MOT restart N/A RWS_ 0 0 1

9067 $PP FSVABT MOT restart time ms RWS_ 1000.00F 0.00F 30000.0F

9068 $DP FSVABT ISB activity N/A RWS_ 3 2 6

9069 $DP FSVABT ISB restart N/A RWS_ 0 0 1

9070 $PP FSVABT ISB restart time ms RWS_ 1000.00F 0.00F 30000.0F

9071 $DP FSVABT BUOL activity N/A RWS_ 3 2 6

9072 $PV FSVABT HT sensor temp C R___ 0.00F 0.00F 0.00F

9073 $PV FSVABT RG sensor temp C R___ 0.00F 0.00F 0.00F

9074 $DP FSVABT CCF activity N/A RWS_ 3 2 6

9075 $PIN FSV_B_ EF src N/A RWS_ 4000 LST_003

9076 $PIN FSV_B_ Fault reset src N/A RWS_ 4000 LST_003

9076 $PIN ___A_T Fault reset src N/A RWS_ 4000 LST_041

9086 $DP FSVABT FRC activity N/A RWS_ 3 2 6

9087 $DP FSVABT IAS activity N/A RWS_ 3 2 6

9088 $DP FSVABT IAS restart N/A RWS_ 0 0 1

9089 $PP FSVABT IAS restart time ms RWS_ 1000.00F 0.00F 30000.0F

9090 $DV FSV_B_ Sequencer status N/A R___ 0 0 0xffff

9095 $PV FSVABT IA sensor temp C R___ 0.00F 0.00F 0.00F

9100 $PV FSV_B_ Pad 0 RWS_ 0.00F INT_MIN INT_MAX

9101 $PV FSV_B_ Pad 1 RWS_ 0.00F INT_MIN INT_MAX

9102 $PV FSV_B_ Pad 2 RWS_ 0.00F INT_MIN INT_MAX

9103 $PV FSV_B_ Pad 3 RWS_ 0.00F INT_MIN INT_MAX

9104 $PV FSV_B_ Pad 4 RWS_ 0.00F INT_MIN INT_MAX

9105 $PV FSV_B_ Pad 5 RWS_ 0.00F INT_MIN INT_MAX

9106 $PV FSV_B_ Pad 6 RWS_ 0.00F INT_MIN INT_MAX

9107 $PV FSV_B_ Pad 7 RWS_ 0.00F INT_MIN INT_MAX

9108 $PV FSV_B_ Pad 8 RWS_ 0.00F INT_MIN INT_MAX

9109 $PV FSV_B_ Pad 9 RWS_ 0.00F INT_MIN INT_MAX

9110 $PV FSV_B_ Pad 10 RWS_ 0.00F INT_MIN INT_MAX

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 290: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3288

Ipa Point type Vality DB Description fs unit Access mode Default Min Max

9111 $PV FSV_B_ Pad 11 RWS_ 0.00F INT_MIN INT_MAX

9112 $PV FSV_B_ Pad 12 RWS_ 0.00F INT_MIN INT_MAX

9113 $PV FSV_B_ Pad 13 RWS_ 0.00F INT_MIN INT_MAX

9114 $PV FSV_B_ Pad 14 RWS_ 0.00F INT_MIN INT_MAX

9115 $PV FSV_B_ Pad 15 RWS_ 0.00F INT_MIN INT_MAX

9116 $DV FSV_B_ Dig pad 0 N/A RWS_ 0 0 1

9117 $DV FSV_B_ Dig pad 1 N/A RWS_ 0 0 1

9118 $DV FSV_B_ Dig pad 2 N/A RWS_ 0 0 1

9119 $DV FSV_B_ Dig pad 3 N/A RWS_ 0 0 1

9120 $DV FSV_B_ Dig pad 4 N/A RWS_ 0 0 1

9121 $DV FSV_B_ Dig pad 5 N/A RWS_ 0 0 1

9122 $DV FSV_B_ Dig pad 6 N/A RWS_ 0 0 1

9123 $DV FSV_B_ Dig pad 7 N/A RWS_ 0 0 1

9124 $DV FSV_B_ Dig pad 8 N/A RWS_ 0 0 1

9125 $DV FSV_B_ Dig pad 9 N/A RWS_ 0 0 1

9126 $DV FSV_B_ Dig pad 10 N/A RWS_ 0 0 1

9127 $DV FSV_B_ Dig pad 11 N/A RWS_ 0 0 1

9128 $DV FSV_B_ Dig pad 12 N/A RWS_ 0 0 1

9129 $DV FSV_B_ Dig pad 13 N/A RWS_ 0 0 1

9130 $DV FSV_B_ Dig pad 14 N/A RWS_ 0 0 1

9131 $DV FSV_B_ Dig pad 15 N/A RWS_ 0 0 1

9210 $PIN FSV_B_ Term Start src N/A RWS_ 4000 LST_016

9211 $PIN FSV_B_ Term Stop src N/A RWS_ 4000 LST_016

9215 $PP FSVABT Tphase threshold % RWS_ 95.00F 10.00F 100.00F

9216 $DP FSVABT Tphase in alarm N/A RW__ 0 0 32

9220 $DP FSVABT OS activity N/A RWS_ 3 2 6

9221 $PP FSVABT OS threshold rpm RWS_ 3000.00F CALC CALC

9230 $DP FSVABT Test phase N/A RWS_ 0 0 32

9231 $PV FSVABT Exe phase % R___ 0.00F 0.00F 0.00F

9232 $PV FSVABT Min phase % R___ 0.00F 0.00F 0.00F

9233 $PV FSVABT Max phase % R___ 0.00F 0.00F 0.00F

9300 $PV FSV_B_ ISBus Drv W0 mon NULL R___ 0.00F INT_MIN INT_MAX

9301 $PV FSV_B_ ISBus Drv W1 mon NULL R___ 0.00F INT_MIN INT_MAX

9302 $PV FSV_B_ ISBus Drv W2 mon NULL R___ 0.00F INT_MIN INT_MAX

9303 $PV FSV_B_ ISBus Drv W3 mon NULL R___ 0.00F INT_MIN INT_MAX

9304 $PV FSV_B_ ISBus Drv W4 mon NULL R___ 0.00F INT_MIN INT_MAX

9305 $PV FSV_B_ ISBus Drv W5 mon NULL R___ 0.00F INT_MIN INT_MAX

9306 $PV FSV_B_ ISBus Drv W6 mon NULL R___ 0.00F INT_MIN INT_MAX

9307 $PV FSV_B_ ISBus Drv W7 mon NULL R___ 0.00F INT_MIN INT_MAX

9320 $PV FSV_B_ Int Drv ISBus W0 NULL RWS_ 0.00F INT_MIN INT_MAX

9321 $PV FSV_B_ Int Drv ISBus W1 NULL RWS_ 0.00F INT_MIN INT_MAX

9322 $PV FSV_B_ Int Drv ISBus W2 NULL RWS_ 0.00F INT_MIN INT_MAX

9323 $PV FSV_B_ Int Drv ISBus W3 NULL RWS_ 0.00F INT_MIN INT_MAX

9324 $PV FSV_B_ Int Drv ISBus W4 NULL RWS_ 0.00F INT_MIN INT_MAX

9325 $PV FSV_B_ Int Drv ISBus W5 NULL RWS_ 0.00F INT_MIN INT_MAX

9326 $PV FSV_B_ Int Drv ISBus W6 NULL RWS_ 0.00F INT_MIN INT_MAX

9327 $PV FSV_B_ Int Drv ISBus W7 NULL RWS_ 0.00F INT_MIN INT_MAX

9340 $PIN F_____ Word1 B0 src N/A RWS_ 4000 LST_001_F

9340 $PIN _S____ Word1 B0 src N/A RWS_ 4000 LST_001_S

9340 $PIN __V___ Word1 B0 src N/A RWS_ 4000 LST_001_V

9340 $PIN ____B_ Word1 B0 src N/A RWS_ 4000 LST_001_B

9341 $PIN _S____ Word1 B1 src N/A RWS_ 4000 LST_001_S

9341 $PIN ____B_ Word1 B1 src N/A RWS_ 4000 LST_001_B

9341 $PIN __V___ Word1 B1 src N/A RWS_ 4000 LST_001_V

9341 $PIN F_____ Word1 B1 src N/A RWS_ 4000 LST_001_F

9342 $PIN ____B_ Word1 B2 src N/A RWS_ 4000 LST_001_B

9342 $PIN __V___ Word1 B2 src N/A RWS_ 4000 LST_001_V

9342 $PIN F_____ Word1 B2 src N/A RWS_ 4000 LST_001_F

9342 $PIN _S____ Word1 B2 src N/A RWS_ 4000 LST_001_S

9343 $PIN F_____ Word1 B3 src N/A RWS_ 4000 LST_001_F

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 291: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Parameters & Pick Lists ——————289Ch.3

Ipa Point type Vality DB Description fs unit Access mode Default Min Max

9343 $PIN _S____ Word1 B3 src N/A RWS_ 4000 LST_001_S

9343 $PIN __V___ Word1 B3 src N/A RWS_ 4000 LST_001_V

9343 $PIN ____B_ Word1 B3 src N/A RWS_ 4000 LST_001_B

9344 $PIN ____B_ Word1 B4 src N/A RWS_ 4000 LST_001_B

9344 $PIN __V___ Word1 B4 src N/A RWS_ 4000 LST_001_V

9344 $PIN F_____ Word1 B4 src N/A RWS_ 4000 LST_001_F

9344 $PIN _S____ Word1 B4 src N/A RWS_ 4000 LST_001_S

9345 $PIN ____B_ Word1 B5 src N/A RWS_ 4000 LST_001_B

9345 $PIN __V___ Word1 B5 src N/A RWS_ 4000 LST_001_V

9345 $PIN F_____ Word1 B5 src N/A RWS_ 4000 LST_001_F

9345 $PIN _S____ Word1 B5 src N/A RWS_ 4000 LST_001_S

9346 $PIN _S____ Word1 B6 src N/A RWS_ 4000 LST_001_S

9346 $PIN __V___ Word1 B6 src N/A RWS_ 4000 LST_001_V

9346 $PIN F_____ Word1 B6 src N/A RWS_ 4000 LST_001_F

9346 $PIN ____B_ Word1 B6 src N/A RWS_ 4000 LST_001_B

9347 $PIN F_____ Word1 B7 src N/A RWS_ 4000 LST_001_F

9347 $PIN _S____ Word1 B7 src N/A RWS_ 4000 LST_001_S

9347 $PIN __V___ Word1 B7 src N/A RWS_ 4000 LST_001_V

9347 $PIN ____B_ Word1 B7 src N/A RWS_ 4000 LST_001_B

9348 $PIN _S____ Word1 B8 src N/A RWS_ 4000 LST_001_S

9348 $PIN __V___ Word1 B8 src N/A RWS_ 4000 LST_001_V

9348 $PIN ____B_ Word1 B8 src N/A RWS_ 4000 LST_001_B

9348 $PIN F_____ Word1 B8 src N/A RWS_ 4000 LST_001_F

9349 $PIN _S____ Word1 B9 src N/A RWS_ 4000 LST_001_S

9349 $PIN ____B_ Word1 B9 src N/A RWS_ 4000 LST_001_B

9349 $PIN F_____ Word1 B9 src N/A RWS_ 4000 LST_001_F

9349 $PIN __V___ Word1 B9 src N/A RWS_ 4000 LST_001_V

9350 $PIN F_____ Word1 B10 src N/A RWS_ 4000 LST_001_F

9350 $PIN _S____ Word1 B10 src N/A RWS_ 4000 LST_001_S

9350 $PIN __V___ Word1 B10 src N/A RWS_ 4000 LST_001_V

9350 $PIN ____B_ Word1 B10 src N/A RWS_ 4000 LST_001_B

9351 $PIN ____B_ Word1 B11 src N/A RWS_ 4000 LST_001_B

9351 $PIN F_____ Word1 B11 src N/A RWS_ 4000 LST_001_F

9351 $PIN _S____ Word1 B11 src N/A RWS_ 4000 LST_001_S

9351 $PIN __V___ Word1 B11 src N/A RWS_ 4000 LST_001_V

9352 $PIN __V___ Word1 B12 src N/A RWS_ 4000 LST_001_V

9352 $PIN ____B_ Word1 B12 src N/A RWS_ 4000 LST_001_B

9352 $PIN _S____ Word1 B12 src N/A RWS_ 4000 LST_001_S

9352 $PIN F_____ Word1 B12 src N/A RWS_ 4000 LST_001_F

9353 $PIN F_____ Word1 B13 src N/A RWS_ 4000 LST_001_F

9353 $PIN ____B_ Word1 B13 src N/A RWS_ 4000 LST_001_B

9353 $PIN __V___ Word1 B13 src N/A RWS_ 4000 LST_001_V

9353 $PIN _S____ Word1 B13 src N/A RWS_ 4000 LST_001_S

9354 $PIN _S____ Word1 B14 src N/A RWS_ 4000 LST_001_S

9354 $PIN __V___ Word1 B14 src N/A RWS_ 4000 LST_001_V

9354 $PIN F_____ Word1 B14 src N/A RWS_ 4000 LST_001_F

9354 $PIN ____B_ Word1 B14 src N/A RWS_ 4000 LST_001_B

9355 $PIN F_____ Word1 B15 src N/A RWS_ 4000 LST_001_F

9355 $PIN _S____ Word1 B15 src N/A RWS_ 4000 LST_001_S

9355 $PIN __V___ Word1 B15 src N/A RWS_ 4000 LST_001_V

9355 $PIN ____B_ Word1 B15 src N/A RWS_ 4000 LST_001_B

9356 $DV FSV_B_ W1 comp out N/A R___ 0 0 0xffff

9360 $DV FSV_B_ W1 decomp inp N/A RWS_ 0 0 0xffff

9361 $PIN F_____ W1 decomp src N/A RWS_ 9360 LST_027_F

9361 $PIN _S____ W1 decomp src N/A RWS_ 9360 LST_027_S

9361 $PIN __V___ W1 decomp src N/A RWS_ 9360 LST_027_V

9361 $PIN ____B_ W1 decomp src N/A RWS_ 9360 LST_027_B

9362 $DP FSV_B_ W1 decomp mon N/A R___ 0 0 0xffff

9363 $DV FSV_B_ B0 W1 decomp N/A R___ 0 0 1

9364 $DV FSV_B_ B1 W1 decomp N/A R___ 0 0 1

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 292: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

AD10 Version 2 User’s Guide

—————— Parameters & Pick Lists —————— Ch.3290

Ipa Point type Vality DB Description fs unit Access mode Default Min Max

9365 $DV FSV_B_ B2 W1 decomp N/A R___ 0 0 1

9366 $DV FSV_B_ B3 W1 decomp N/A R___ 0 0 1

9367 $DV FSV_B_ B4 W1 decomp N/A R___ 0 0 1

9368 $DV FSV_B_ B5 W1 decomp N/A R___ 0 0 1

9369 $DV FSV_B_ B6 W1 decomp N/A R___ 0 0 1

9370 $DV FSV_B_ B7 W1 decomp N/A R___ 0 0 1

9371 $DV FSV_B_ B8 W1 decomp N/A R___ 0 0 1

9372 $DV FSV_B_ B9 W1 decomp N/A R___ 0 0 1

9373 $DV FSV_B_ B10 W1 decomp N/A R___ 0 0 1

9374 $DV FSV_B_ B11 W1 decomp N/A R___ 0 0 1

9375 $DV FSV_B_ B12 W1 decomp N/A R___ 0 0 1

9376 $DV FSV_B_ B13 W1 decomp N/A R___ 0 0 1

9377 $DV FSV_B_ B14 W1 decomp N/A R___ 0 0 1

9378 $DV FSV_B_ B15 W1 decomp N/A R___ 0 0 1

9500 $FK FS__B_ Test torque ref Nm RWS_ CALC 0.00F 0.00F

9501 $FK FS__B_ Measured Inertia kgm2 RW__ CALC 0.00F 0.00F

9502 $FK FS__B_ Measured Frict Nm RW__ CALC 0.00F 0.00F

9526 $PP ____B_ Rho cnt RW__ 0.00F 0.00F 0.00F

9527 $DP ____B_ Sin-Cos/Res pos N/A R___ 0 0 0x0000

9528 $DV ____B_ Hall sensor N/A R___ 0 0 0x0000

9529 $DP ____B_ Hall offset N/A RWS_ 0 0 0x0000

9550 $DV F___B_ Index storing en N/A RWS_ 0 0 3

9551 $DV F___B_ Int IS ctrl N/A RWS_ 0 0 0xffff

9553 $PV F___B_ Std enc position cnt R___ 0.00F 0.00F 0.00F

9554 $PV F___B_ Exp enc position cnt R___ 0.00F 0.00F 0.00F

9555 $DV F___B_ H Index register N/A R___ 0 0 0xffff

9556 $DV F___B_ L Index register N/A R___ 0 0 0xffff

9557 $PIN F___B_ IS ctrl src N/A RWS_ 9551 LST_039

9600 $PP FSV_B_ EF hold off ms RWS_ 0.00F 0.00F 30000.0F

9603 $PP FSVABT MOT hold off ms RWS_ 1000.00F 0.00F 30000.0F

9604 $PP FSVABT HTS hold off ms RWS_ 1000.0F 0.00F 30000.0F

9605 $PP FSVABT RGS hold off ms RWS_ 1000.0F 0.00F 30000.0F

9606 $PP FSVABT IAS hold off ms RWS_ 1000.00F 0.00F 30000.0F

9607 $PP FSVABT FRC hold off ms RWS_ 32.00F 0.00F 30000.0F

9608 $PP FSVABT OS hold off ms RWS_ 0.00F 0.00F 30000.0F

9610 $DP FSVABT Mask W1 S1 N/A RWS_ 0xffff 0 0xffff

9611 $DP FSVABT Mask W2 S1 N/A RWS_ 0xffff 0 0xffff

9612 $DP FSVABT Mask W3 S1 N/A RWS_ 0xffff 0 0xffff

9614 $DP FSVABT Mask W1 S2 N/A RWS_ 0xffff 0 0xffff

9615 $DP FSVABT Mask W2 S2 N/A RWS_ 0xffff 0 0xffff

9616 $DP FSVABT Mask W3 S2 N/A RWS_ 0xffff 0 0xffff

9630 $DV FSVABT Alm W1 S1 N/A R___ 0 0 0xffff

9631 $DV FSVABT Alm W2 S1 N/A R___ 0 0 0xffff

9632 $DV FSVABT Alm W3 S1 N/A R___ 0 0 0xffff

9634 $DV FSVABT Alm W1 S2 N/A R___ 0 0 0xffff

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 293: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

—————— Warranty Parts and Service ——————291Ch.4

4. WARRANTY PARTS AND SERVICEThe purpose of this section is to provide specific in-structions to the user of the standard drive referencedin this book regarding warranty administration and howto obtain assistance on both in-warranty and out-of-warranty equipment.

If assistance is required to determine warranty status,identify defective parts, or obtain the name of your lo-cal distributor, call:

Saftronics, Inc.

5580 Enterprise Parkway

Fort Myers, FL 33905

Phone: + 1 941 693 7200

Fax: + 1 941 693 2431

(“+” indicates the international access code requiredwhen calling from outside of the USA.)

WARRANTY COVERAGE

The warranty covers all major parts of the drive suchas the main printed circuit boards, transistor modules,etc. The warranty does not cover replacement of fusesor of the entire drive.

“Warranty period is 12 months after installation or 18months after shipment from the Company, whicheveroccurs first”.

However, the guarantee will not apply in the followingcases, even if the guarantee term has not expired:

1. Damage was caused by incorrect use or inappro-priate repair or modification.

2. The product was used in an environment outsidethe standard specified range.

3. Damage was caused by dropping the product af-ter purchase or occurred during transportation.

4. Damage was caused by an earthquake, fire, flood-ing, lightning, abnormal voltage, or other naturalcalamities and secondary disasters.

Before calling the number at left to determine war-ranty status, the drive serial number will be required.This is located on the drive nameplate.

OUT-OF WARRANTY PROCEDURES

When the defective part has been identified, contactyour local authorized Saftronics standard drivesdistributor to order replacement parts.

MOTORS

Please complete and return warranty registration cardlocated inside back cover.

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor

Page 294: System Automation Drive - EFES  · PDF fileSystem Automation Drive ... the Torque Current Limit Control and the Zero Torque. (Torque Setpoint ... Sensorless Vector Control

5580 Enterprise Parkway, Fort Myers, Florida 33905 • Telephone (941) 693-7200 • Fax (941) 693-2431

REV 0501P/N 027-AD1001 2001 Saftronics

efesotomasyon.com - Control Techniques,emerson,saftronics -ac drive-servo motor