28
T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 1 T. Csörgő MTA KFKI RMKI, Budapest, Hungary + Jet Correlations to Locate Critical Point of 2nd Order QCD Phase Transition Introduction: 5 milestones in Au+Au collisions at RHIC Critical opalescence: Experimental observation of a 2nd order phase transition Hard correlations: Direct + hadron jet : LOCATE CEP Critical opalescence and max disappearance of punch-through jet Soft correlations: Lévy stable source distributions Measuring the critical exponents of the correlation function

T. Csörgő MTA KFKI RMKI, Budapest, Hungary

Embed Size (px)

DESCRIPTION

g + J et C orrelation s to Locate Critical Point of 2nd Order QCD Phase Transition. T. Csörgő MTA KFKI RMKI, Budapest, Hungary. Introduction: 5 milestones in Au+Au collisions at RHIC Critical opalescence: Experimental observation of a 2nd order phase transition Hard correlations: - PowerPoint PPT Presentation

Citation preview

Page 1: T. Csörgő MTA KFKI RMKI, Budapest, Hungary

T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 1

T. CsörgőMTA KFKI RMKI, Budapest, Hungary

+ Jet Correlations to Locate Critical Point

of 2nd Order QCD Phase Transition

Introduction: 5 milestones in Au+Au collisions at RHIC

Critical opalescence: Experimental observation of a 2nd order phase transition

Hard correlations:Direct + hadron jet : LOCATE CEPCritical opalescence and max disappearance of punch-through jet

Soft correlations:Lévy stable source distributions

Measuring the critical exponents of the correlation function

Page 2: T. Csörgő MTA KFKI RMKI, Budapest, Hungary

T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 2

Old idea: Quark Gluon Plasma“Ionize” nucleons with heat“Compress” them with density

New state(s?) of matter

Lattice QCD: EoS of QCD Matter

Z. Fodor and S.D. Katz:critical end point of 1st order phase tr

even at finite baryon density, cross over like transition.

(hep-lat/0106002, hep-lat/0402006)Tc=176±3 MeV (~2 terakelvin)

(hep-ph/0511166)

General input for hydro: p(,T)LQCD for RHIC region: p~p(T),

cs2 = p/e = cs

2(T) = 1/(T)It’s in the family analytic hydro solutions!

Tc

Page 3: T. Csörgő MTA KFKI RMKI, Budapest, Hungary

T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 3

Critical Opalescence: a laboratory method to observe a 2nd order PT correlation length diverges, clusters on all scales appear incl. the wavelength of the penetrating (laser) probe

side view: http://www.msm.cam.ac.uk/doitpoms/tlplib/solidsolutions/videos/laser1.mov

front view: matter becomes opaque at the critical point (CP)

T >> Tc T >~ Tc T = Tc

Critical Opalescence

Page 4: T. Csörgő MTA KFKI RMKI, Budapest, Hungary

T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 4

Suggests: the matter is most opaque at the critical point! (See videos here)observation of a penetrating probe with fixed trigger(e.g. a trigger particle with high pt > 5 GeV)look for the broadening and disappearance of the punch-through jetas a function of sqrt(sNN): max effect corresponds to hitting Tc (CP)

Critical Opalescence

Page 5: T. Csörgő MTA KFKI RMKI, Budapest, Hungary

T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 5

Direct -hadron jet correlations : yields the energy of the jet

penetrates matter

hadron jet: punches through T > Tc

punches through T < Tc

disappears near Tc

running down RHIC provides a uniqueopportunity to measure

( , jet) correlation functions

disappearance of the punch-through jet at the onset of the second order phase transition: signal of critical opalescence. (Minimum of RAA is reached)

Locating the Critical Point

gqqqqg

Hadrons

Page 6: T. Csörgő MTA KFKI RMKI, Budapest, Hungary

T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 6

Direct -hadron jet correlations valuable tool to pin down thecritical point of QCD!

Comparison with 0 triggered data necessary to extract direct photon correlations. (N. Grau for the PHENIX Collaboration, WWND 2006, San Diego)

Proof of principle: +jet correlations

gqqqqg

Hadrons

C(

Page 7: T. Csörgő MTA KFKI RMKI, Budapest, Hungary

T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 7

New PHENIX Results Increased Precision

2/8/2008M. Nguyen for PHENIX, Quark Matter7

*Note: Run 6, 7 Absolute Efficiencies not finalized – In Arbitrary Units

1/N

trig

dN

/d

(A.

U.)

Systematic error dominated by uncertainty in Rand -h contribution

Page 8: T. Csörgő MTA KFKI RMKI, Budapest, Hungary

T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 8

Characterizing a 2nd order phase transition

Relevant and important quantities:critical exponents, universality classes

Reduced temperature:

Exponent of susceptibility:

Exponent of specific heat:

Exponent of order parameter:

Exponent of correlationlength :

Page 9: T. Csörgő MTA KFKI RMKI, Budapest, Hungary

T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 9

Characterizing a 2nd order PT – 2.

Exponent of the Fourier-transformedcorrelation function:

Exponents <-> universality class!

Exponent of order parameterin external field:

There are thus 6 critical exponents,

but only 2 are independent:

Page 10: T. Csörgő MTA KFKI RMKI, Budapest, Hungary

T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 10

Characterizing by two-particle correlations

Single particle spectrum:averages over space-time information

Correlations: sensitivity to space-time information

Intensity interferometry, HBT technique, femtoscopy ….

),(4 pp xSdxddNE

),(|),(|)/)(/(

/)( 2

2111

2122 qrqrr

ppppq SdddNddN

dddNC

Source functionFSI

Page 11: T. Csörgő MTA KFKI RMKI, Budapest, Hungary

T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 11

Correlation functions for various collisions

C2(Q

inv)

Qinv (GeV/c)

STAR preliminary p+pR ~ 1 fm

d+AuR ~ 2 fmAu+Au

R ~ 6 fm

Correlations have more information (3d shape analysis)Use advanced techniques & extract it (R. Lacey, PHENIX, QM’08

also S. Panitkin, STAR,Moriond’05)

Page 12: T. Csörgő MTA KFKI RMKI, Budapest, Hungary

T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 12

Search for a 1st order QCD phase transition

QGP has more degrees of freedom than pion gas

Entropy should be conservedduring fireball evolution

Hence: Look in hadronic phasefor signs of:

Large size, Large lifetime,

Softest point of EOS

signals of a 1st order (!) phase trans.

Page 13: T. Csörgő MTA KFKI RMKI, Budapest, Hungary

T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 13

Non-Gaussian structures, 2d, UA1 data

UA1 (p+p) dataB. BuschbeckPLB (2006)

Best Gaussianbad shape

Page 14: T. Csörgő MTA KFKI RMKI, Budapest, Hungary

T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 14

Lattice QCD: EoS of QCD Matter

At the Critical End Point, the phase transition is of 2nd order.Stepanov, Rajagopal,Shuryak:

Universality class of QCD -> 3d Ising model PRL 81 (1998) 4816

Tc

(TE, E )

Z. Fodor, S.D. Katz:TE=162±2 MeV, E = 360±40 MeV (hep-lat/0402006)

Page 15: T. Csörgő MTA KFKI RMKI, Budapest, Hungary

T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 15

Critical phenomena

Order parameter of QCD - quark condensate:

Correlation function of quark condensate:

measures spatial correlations of pions,it decreases for large distances as:

d: dimension = 3critical exponent of the correlation function

Random field 3d Ising (QCD @ CEP):(Rieger, Phys. Rev. B52 (1995) 6659)

w/o random field: even smaller value!

Page 16: T. Csörgő MTA KFKI RMKI, Budapest, Hungary

T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 16

Scale invariant (Lévy) sources

Fluctuations appear on many scales, final position is a sum of many random shifts:

correlation function measures a Fourier-transform,that of an n-fold convolution:

Lévy: generalized central limit theoremsadding one more step in the convolution does not change the shape

Page 17: T. Csörgő MTA KFKI RMKI, Budapest, Hungary

T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 17

Correlation functions for Lévy sources

Correlation funct of stable sources:

R: scale parameter : shape parameter or Lévy index of stability Gaussian, Lorentzian sources

Further details: T. Cs, S. Hegyi and W. A. Zajc, EPJ C36 (2004) 67

Page 18: T. Csörgő MTA KFKI RMKI, Budapest, Hungary

T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 18

Correlation signal of the CEP

If the source distributionat CEP is a Lévy, it decays as:

at CEP, the tail decreases as:

hence: & excitation of as a function of = | T - Tc| / Tc

T. Cs, S. Hegyi, T. Novák, W.A.Zajc,

Acta Phys. Pol. B36 (2005) 329-337

Page 19: T. Csörgő MTA KFKI RMKI, Budapest, Hungary

T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 19

Excitation of 3d Gaussian fit parameters

These data exclude:

1st order phase trans. (assumed in many hydro codes)

For a second order PT:

excitation function of non-Gaussian parameter New analysis / new data are needed

Page 20: T. Csörgő MTA KFKI RMKI, Budapest, Hungary

T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 20

Correlation signal, VARIOUS Quark MattersTransition to hadron gas may be:

(strong) 1st ordersecond order (Critical Point, CP)cross-overfrom a supercooled state (scQGP)

Type of phase transition: its correlation signature:

Strong 1st order QCD phase transition:(Pratt, Bertsch, Rischke, Gyulassy) Rout >> Rside

Second order QCD phase transition:(T. Cs, S. Hegyi, T. Novák, W.A. Zajc) non-Gaussian shape

(Lévy) decreases to 0.5

Cross-over quark matter-hadron gas transition: (lattice QCD, Buda-Lund hydro fits) hadrons appear from

a region with T > TcSupercooled QGP (scQGP) -> hadrons:

(T. Cs, L.P. Csernai) pion flash (Rout ~ Rside)same freeze-out for allstrangeness enhancementno mass-shift of

Page 21: T. Csörgő MTA KFKI RMKI, Budapest, Hungary

T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 21

Summary

High transverse momentum + jet correlations:maximal opalescence for

LOCATING the critical end point

Soft Bose-Einstein correlations:measure the excitation function of anon-Gaussian parameter: Lévy index of stability,

critical exponent of the correlation functionUniversality class argument:

decreases from 2 (or 1.4) to 0.5 (random field 3d Ising) or even smaller value (3d Ising) at CEP

yielding one of the 4 exponents thatCHARACTERIZE 2nd order phase transition

Page 22: T. Csörgő MTA KFKI RMKI, Budapest, Hungary

T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 22

Backup slidesBackup slides

Page 23: T. Csörgő MTA KFKI RMKI, Budapest, Hungary

T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 23

LévyLévy

PHENIX PRELIMINARY

PHENIX PRELIMINARY

Lévy fits to prelim. Au+Au @ QM 2005

Page 24: T. Csörgő MTA KFKI RMKI, Budapest, Hungary

T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 24

Two particle Interferometry

y

X

1

2

Source

24

2xiq4

21)K,x(Sxd

e)K,x(Sxd1)p,p(C

21 ppq 2121 ppK

emission function

for non-interacting identical bosons

C (Q

inv)

Qinv (GeV/c)

1

2

0.05 0.10

Width ~ 1/R

Page 25: T. Csörgő MTA KFKI RMKI, Budapest, Hungary

T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 25

beam direction

p1 p2

Q T

Q

Q L

beam direction

p2p1

Q T

Q S

Q O

Pratt-Bertsch coordinate system

)T2PT1P(21

TK

2long

2long

2side

2side

2out

2out)(1),( RqRqRqekkqC

Page 26: T. Csörgő MTA KFKI RMKI, Budapest, Hungary

T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 26

Femptoscopy signal of sudden hadronization

Buda-Lund hydro: RHIC data follow thepredicted (1994-96)

scaling of HBT radii

T. Cs, L.P. Csernaihep-ph/9406365

T. Cs, B. Lörstadhep-ph/9509213

Hadrons with T>Tc :1st order PT excludedhint of a cross-overM. Csanád, T. Cs, B. Lörstad and A. Ster,

nucl-th/0403074

Page 27: T. Csörgő MTA KFKI RMKI, Budapest, Hungary

T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 27

But are the correlation data Gaussian?

1 dimensional correlations:

typically more peaked than a Gaussian

if a Gaussian fit does not describe the data

then have the parametersany meaning?

Example:like sign correlation data of the UA1 collaboration

p + pbar @ Ecms = 630 GeV

Page 28: T. Csörgő MTA KFKI RMKI, Budapest, Hungary

T. Csörgő @ Rio, 06/08/31 & Tokaj, 08/03/19 28

Non-Gaussians, 2d E802 Si+Au data

E802 Si+Au data,sqrt(sNN) = 5.4 GeV

Best Gaussian:bad shape