24
T=0 Pairing in Coordinate space Workshop ESNT, Paris Shufang Ban Royal Institute of Technology (KTH) Stockholm, Sweden

T=0 Pairing in Coordinate space

  • Upload
    rollo

  • View
    41

  • Download
    0

Embed Size (px)

DESCRIPTION

Workshop ESNT, Paris. T=0 Pairing in Coordinate space. Shufang Ban. Royal Institute of Technology (KTH) Stockholm, Sweden. Outline. 1. Introduction: delta force in HFB 2. Symmetry of the s.p. wave function 3. Delta matrix can be real 4. If real kappa is possible? - PowerPoint PPT Presentation

Citation preview

Page 1: T=0 Pairing in Coordinate space

T=0 Pairing in Coordinate space

Workshop ESNT, Paris

Shufang Ban

Royal Institute of Technology (KTH) Stockholm, Sweden

Page 2: T=0 Pairing in Coordinate space

Outline1. Introduction: delta force in HFB

2. Symmetry of the s.p. wave function

3. Delta matrix can be real

4. If real kappa is possible?

5. Summary and further work

Page 3: T=0 Pairing in Coordinate space

1. Introduction

* *

'

1int

2

' ( ) ( ' ') ( , ' ')[ ( ) ( ' ') ( ) ( ' ')]

ij ijkl klkl

ijkl i j k l l k

V with eraction

V drdr r r V r r r r r r

HFB Equation:

* *

h U UE

V Vh

( , ' ') ( ')V r r r r

Delta force

1.1 Algorithm for using delta force in HFB calculations:

* *

'

* *

'

* *

'

( ) ( ')[ ( ) ( ') ( ) ( ')]

( ) ( ') ( ) ( ')

( ) ( ') ( ')

ijkl i j k l l k

ij i j k l klkl

i j

V dr r r r r r r

dr r r r r

dr r r r

Anti-symmetric

kl lk

Page 4: T=0 Pairing in Coordinate space

( ') ( ) ( ')k l klkl

r r r

, ' T=1 pairing (nn, pp)

1* *2( 1) ( , ) ( , ) ( )ij i jdr r r r

Local in coordinate space, we can calculate the value at every point r.

1 1( ) ( , ) ( , )

2 2k l klkl

r r r

:is antisymmetric for exchange k l ( ') ( ' )r r

1

2, '( ') ( )( 1)r r

spin should be antisymmetric

at every position r

Local Delta potential

Page 5: T=0 Pairing in Coordinate space

T=1 paring:

1, 1; 0 | , , 1

1, 1; 0 | , , 1

1, 0; 0 | , , 1 | , , 1

nn z z

pp z z

np z z

T T S S n n T

T T S S p p T

T T S S n p T n p T

1, 1/ 2; ' 1/ 2, 0zT S S

T=0 paring:

1, 1; 0 | , , 0

1, 1; 0 | , , 0

1, 0; 0 | , , 0 | , , 0

np z z

np z z

np z z

S S T T n p T

S S T T n p T

S S T T n p T p n T

' 1/ 2, 0; 1, 1/ 2zT T S

Alan L. Goodman, Phys. Rev. C 58(1998)R3051

All the possible pairing correlations:

Page 6: T=0 Pairing in Coordinate space

* *

' '

' ( ) ( ' ' ') ( , ' ' ')[ ( ) ( ' ' ') ( ) ( ' ' ')]ijkl i j k l l kV drdr r r V r r r r r r

( , ' ' ') ( ')V r r r r

Delta force

Wave function: ( )r with

1.2 using delta force in generalized HFB calculations including np-pairing:

( ) ( , , ) ( , , )k l klkl

r r r

11, 0 * *2

'

10, 1 * *2

'

1 1( 1) , ' |1 ( , , ) ( , , ') ( )

2 2

1 1( 1) , ' |1 ( , , ) ( , ', ) ( )

2 2

T Sij z i j

T Sij z i j

dr T r r r

dr S r r r

1 0T Tij ij ij

Local in Coordinate space

Page 7: T=0 Pairing in Coordinate space

2. Symmetries of the s.p. wave function

( , ) Re ( , ) Im ( , )r r i r

Parity: ˆ ( , ) ( , ) ( , ) 1k k k k kP r r p r with p

z-signature:( 1/ 2) ( , ) ( , , , ) ( , ) 1zi J

k k k k ke r x y z r with

Time-reversal:ˆ *

0ˆ ( , ) ( , ) ( , ) ( , )yi s

k k kkT r K e r r r

Global Phase convention:

Four real components:

1

2

3

4

( ) Re ( , )

( ) Im ( , )( )

( ) Re ( , )

Im ( , )( )

k

k

k

k

r r

r rr

r r

rr

Page 8: T=0 Pairing in Coordinate space

2. Symmetries of the s.p. wave function

x y z

1 + + p

2 _ _ p

3 _ + -p

4 + _ -p

ˆ( 1/ 2)

ˆ

ˆ( 1/ 2)

ˆ ˆ ( , )

ˆ ˆ ˆ( , ) ( , )

ˆ ( , )

z

y

z

i Jk

i Jk k

i Jk

PTe r x x

Pe p r PT r y y

e P r z z

[1] P. Bonche, H. Flocard, and P. H. Heenen, Nucl. Phys. A 443 (1985) 39

1/8 space

Page 9: T=0 Pairing in Coordinate space

2. Symmetries of the s.p. wave function

Signature symmetry is broken by np pairing

ˆ ˆ

( 1)

z z

jm jm jm jm

i J i Jjm jm jm jm

jm jm jm jm

C C C C

e C C e C C

C C C C

ˆ ˆz zi J i J

jm jme C e iC

Time-reversal symmetry is broken by cranking

zE J 0( ) , yi sz zJ l s T K e

P. Bonche, et. al., Nucl. Phys. A 467 (1987) 475Y. Engel, et. al., Nucl. Phys. A 249 (1975) 215

Axial symmetry is broken by np pairing

1( ) ( ) imz jm z jmR C R e C

1

2

( ) ( )

jm jm jm jm

z jm jm z jm jm

imjm jm jm jm

C C C C

R C C R C C

C C e C C

A. L. Goodman, Nucl. Phys. A 186 (1972) 475

Page 10: T=0 Pairing in Coordinate space

2. Symmetries of the s.p. wave function

Static Triaxial-de

Cranking np paringCranking+ np paring

Parity Yes Yes Yes Yes

Time-reversal

Yes No Yes No

Signature Yes Yes No NoPhase convention Yes Yes Yes Yes

Calculated Coor-space 1/8 [1] 1/8 [2] 1/4 1/4

( , , ) Re ( , , ) Im ( , , )r r i r

[1] P. Bonche, H. Flocard, and P. H. Heenen, Nucl. Phys. A 443 (1985) 39 [2] P. Bonche, H. Flocard, and P. H. Heenen, Nucl. Phys. A 467 (1987) 475

Page 11: T=0 Pairing in Coordinate space

1 1 ( )( ')

0 0 ( )( ')

1( ; , '; , ') ( ) [ ( , , ) ( , ', ') ( , , ') ( , ', )]

2

1( ; , '; , ') ( ) [ ( , , ) ( , ', ') ( , , ') ( , ', )]

2

T T k l k l kq lqkl

T T k l k l kq lqkl

r q q v r r q r q r q r q

r q q v r r q r q r q r q

1 0( )( ') ( )( ') ( )( ')

T Tiq jq iq jq iq jq

3 * *( )( ')

'

( , , ) ( , ', ') ( ; , '; , ')Tiq jq i j Td r r q r q r q q

3. Pairing matrix can be real

Phase convention:ˆˆ

0ˆ ( ) ( ) ( )y yi s i Jq q q

k k k kT r K e r p e r

1 1 1 1( ) ( , ) | | [ ( , ) | ( , ) | ] |

2 2 2 2q q q qk k k kr r q r r q

ˆ ˆ ( )qkPT r Re ( , , , ) Re ( , , , )

Im ( , , , ) Im ( , , , )

q qk k

q qk k

x y z x y z

x y z x y z

(1)

Page 12: T=0 Pairing in Coordinate space

3 * * 1/ 2( )( ) 1 0

'

3

'

Im Im ( , ) ( , ')[ ( , , ') ( 1) ( , , ')]

{[Re ( , ) Re ( , ') Im ( , ) Im ( , ')]

q q qiq j q i j T T

q q q qi j i j

d r r r r r

d r r r r r

1/ 21 0

1

Im[ ( , , ') ( 1) ( , , ')]

[Re ( , ) Im ( , ') Im ( , ) Re ( , ')]

Re[ ( , ,

qT T

q q q qi j i j

T

r r

r r r r

r

1/ 20') ( 1) ( , , ')]}q

T r

( ) ( , , ) ( , , )r x y z x y z

1,0 1,0(1 ( ) / )T T cv G r

0,1 0,1

0,1 0,1

Re ( , , ; , ') Re ( , , ; , ')

Im ( , , ; , ') Im ( , , ; , ')T T

T T

x y z x y z

x y z x y z

(2)

Assume real kl and using the wave function symmetry (1)

The integrand {…} is anti-symmetric under inversion y— -y, there for we have

Paring matrix can be real

Page 13: T=0 Pairing in Coordinate space

1 1 ( )( ')

0 0 ( )( ')

1( ; , '; , ') ( ) [ ( , , ) ( , ', ') ( , , ') ( , ', )]

2

1( ; , '; , ') ( ) [ ( , , ) ( , ', ') ( , , ') ( , ', )]

2

T T k l k l kq lqkl

T T k l k l kq lqkl

r q q v r r q r q r q r q

r q q v r r q r q r q r q

4. If real is possible? kl

Page 14: T=0 Pairing in Coordinate space

4. If real is possible? kl

is real.kl

Page 15: T=0 Pairing in Coordinate space

4. If real is possible? kl

0

1, 0 1, 0

0, 1 0, 1

0, 1 0, 1

0, 0, 0

Re ( , , , , ') 0; Im ( , , , , ') 0

Re ( , , , , ) Re ( , , , , );

Im ( , , , , ) Im ( , , , , )

Re ( , , , , ) 0; Im ( , , , , ) 0

z z

z z

z z

z z

T S S T S S

T S T S

T S T S

T S T S

r q q r q q

r n p r n p

r n p r n p

r n p r n p

Complex

Im

Re

Page 16: T=0 Pairing in Coordinate space

Chose complex wave function and assume real kl

4. If real is possible? kl

the np pairing can be described in general.

Remained question:

1. If complex wave function, real kappa are equivalent to real wave function, complex kappa? Is there any transformation between them?

2. How we can construct the input wave functions of general case from the wave function of T=1 case?

Page 17: T=0 Pairing in Coordinate space

5. Summary and further work

1. Using delta force, we can get the local pairing matrix, for both with or without np pairing cases.

2. The np pairing breaks axial and signature symmetries, we must calculate it in ¼ space when parity and phase convention are required.

3. Chose complex wave function, assume real kappa, the pairing matrix can be real.

4. Using complex wave function and real kappa, the np pairing can be described without lose generality. There are still remained questions.

Further work: 1. Make sure if the kappa can be real?2. Construct the pairing matrix3. Construct the calculation space by the symmetries ……Aim: develop the code cr8 with np pairing included.

Page 18: T=0 Pairing in Coordinate space

Thank you !Thank you !

Page 19: T=0 Pairing in Coordinate space

1 2 2 1

1 2 2 1

1 2

1 2

1 2

1 2

( )( ) ( )( )( )( ') ( )( ') ( )( ) ( )( ') ( )( )

( )( )( )( ') ( )( )

1[

2kq lq kq lq

iq jq iq jq kq lq iq jq kq lqklq q

kq lqiq jq kq lq

klq q

V V

V

1 0( )( ') ( )( ') ( )( ')

T Tiq jq iq jq iq jq

1

0

1 0

1 1( , ') (1 )(1 ( ) / ) ( ') (1 )

2 21 1

(1 )(1 ( ) / ) ( ') (1 )2 2

(1 ( ) / ) ( ')

T c

T c

c T T

V r r G P r r r P

G P r r r P

G r r r if G G G

Page 20: T=0 Pairing in Coordinate space

1 0( )( ') ( )( ') ( )( ')

T Tiq jq iq jq iq jq

Page 21: T=0 Pairing in Coordinate space
Page 22: T=0 Pairing in Coordinate space

2. Symmetries of the s.p. wave function

( , ) Re ( , ) Im ( , )r r i r

x y z

1 + + p

2 - - p

3 - + -p

4 + - -p

1

2

3

4

( ) Re ( , )

( ) Im ( , )( )

( ) Re ( , )

Im ( , )( )

k

k

k

k

r r

r rr

r r

rr

1k

Static:

1

2

3

4

( ) Re ( , )

( ) Im ( , )

( ) Re ( , )

Im ( , )( )

k

k

k

k

r r

r r

r r

rr

1k

1

2

3

4

( ) Re ( , )

( ) Im ( , )

( ) Re ( , )

Im ( , )( )

k

k

k

k

r r

r r

r r

rr

1k

Cranking:

Page 23: T=0 Pairing in Coordinate space

* *

' '

' ( ) ( ' ' ') ( , ' ' ')[ ( ) ( ' ' ') ( ) ( ' ' ')]ijkl i j k l l kV drdr r r V r r r r r r

( , ' ' ') ( ')V r r r r

Delta force

* *

' '

( ) ( ' ') ( ' ')ij i jdr r r r

1/ 2, ' '

1/ 2, ' , '

( ' ') ( ) ( ' ')

( )( 1)

( )( 1)

k l klkl

r r r

r

or r

Wave function: ( )r with

1.2 using delta force in generalized HFB calculations including np-pairing:

antisymmetric ask

spin antisymmetric and isospin symmetric

or isospin antisymmetric and spin symmetric

at every position r

( ) ( , , ) ( , , )k l klkl

r r r

Page 24: T=0 Pairing in Coordinate space

5. Summary and further work

Cranking triaxial-deformed wave function as input:

Construct density matrix and T=1 pairing matrix in ¼ space

Get the H for HFB equation, solve it and get first U, V

Assure starting values for the delta potential, T=0 paring

Calculate new density matrix and pairing matrix

Calculate new density matrix and diagonalizes in canonical basis

Mixing neutron proton in quasi-particle basis