24
Systems Fluid Dampers for Seismic Energy Dissipation of Woodframe Structures Michael D. Symans Kenneth J. Fridley William F. Cofer Ying Du CUREe-Caltech Woodframe Project Meeting of Element 1 Researchers (Testing and Analysis) San Diego, CA January 13, 2001

Task 1.4.7 - Innovative Systems Fluid Dampers for Seismic Energy Dissipation of Woodframe Structures Michael D. Symans Kenneth J. Fridley William F. Cofer

Embed Size (px)

Citation preview

Page 1: Task 1.4.7 - Innovative Systems Fluid Dampers for Seismic Energy Dissipation of Woodframe Structures Michael D. Symans Kenneth J. Fridley William F. Cofer

Task 1.4.7 - Innovative SystemsFluid Dampers for Seismic Energy

Dissipation of Woodframe Structures

Michael D. Symans

Kenneth J. Fridley

William F. Cofer

Ying Du

CUREe-Caltech Woodframe Project

Meeting of Element 1 Researchers (Testing and Analysis) San Diego, CA

January 13, 2001

Page 2: Task 1.4.7 - Innovative Systems Fluid Dampers for Seismic Energy Dissipation of Woodframe Structures Michael D. Symans Kenneth J. Fridley William F. Cofer

2

Outline

• Review of Research Plan• Description of Shear Wall FEM

– System Identification

• Shear Wall Seismic Analysis• Proposed Damper Configurations • Implementation Issues• Short-Term Goals

Page 3: Task 1.4.7 - Innovative Systems Fluid Dampers for Seismic Energy Dissipation of Woodframe Structures Michael D. Symans Kenneth J. Fridley William F. Cofer

3

• Phase ILiterature Review (Sept. 1999 to Dec. 1999)

• Phase IIInitial Analytical Study (Dec. 1999 to May 2000)

• Phase IIIIdentification of Practical Issues (Dec. 1999 to Sept. 2000)

• Phase IVFinal Analytical Study (May 2000 to Dec. 2000)

• Phase VRecommendations (Jan. 2001 to March 2001)

Review of Research Plan

Page 4: Task 1.4.7 - Innovative Systems Fluid Dampers for Seismic Energy Dissipation of Woodframe Structures Michael D. Symans Kenneth J. Fridley William F. Cofer

4

Shear Wall FEM Wall dimensions: 2.44 m x 2.44 m (8 ft x 8 ft) Framing: 50.8 mm x 101.6 mm (2” x 4”) nominal studs spaced at 60.96 cm (24”) Waferboard sheathing panels: 1.22 m x 2.44 m (4 ft x 8 ft), 9.53 mm (3/8”) Nails: 6.35 cm (2.5 in.) 8d galvanized common nails Field and perimeter nail spacing = 15.24 cm (6 in.) Mass: 44.5 kN (10 kips) lumped at nodes along top plate at top of studs (wall located at first story of 3-story building)

Page 5: Task 1.4.7 - Innovative Systems Fluid Dampers for Seismic Energy Dissipation of Woodframe Structures Michael D. Symans Kenneth J. Fridley William F. Cofer

5

Sheathing-to-Stud Connector Element

Typical Load-Deflection Curve Obtained from

Static Cyclic Sheathing Connector Test

(Source: Dolan, 1989)

Hybrid Stewart - Dolan Nail Connector Model

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

-20 -15 -10 -5 0 5 10 15 20

Displacement (mm)

Load (kN)

Simplified Hysteresis Loop for

Sheathing Connector Element

Page 6: Task 1.4.7 - Innovative Systems Fluid Dampers for Seismic Energy Dissipation of Woodframe Structures Michael D. Symans Kenneth J. Fridley William F. Cofer

6

System Identification

f1 = 4.18 Hz

1 = 2.1%

f2 = 22.35 Hz

2 = 7.6%

f3 = 22.81 Hz

3 = 7.7%

Page 7: Task 1.4.7 - Innovative Systems Fluid Dampers for Seismic Energy Dissipation of Woodframe Structures Michael D. Symans Kenneth J. Fridley William F. Cofer

7

Earthquake Loading

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0 10 20 30 40 50 60

Time (sec)

Acceleration (g)

1952 Kern County EarthquakeTaft record - Lincoln School Tunnel

(S69E component)

Page 8: Task 1.4.7 - Innovative Systems Fluid Dampers for Seismic Energy Dissipation of Woodframe Structures Michael D. Symans Kenneth J. Fridley William F. Cofer

8

Damper Configuration

Piston Head

Piston Rod

Pinned Connection

PinnedConnection

Viscous Fluid

Page 9: Task 1.4.7 - Innovative Systems Fluid Dampers for Seismic Energy Dissipation of Woodframe Structures Michael D. Symans Kenneth J. Fridley William F. Cofer

9

Hysteretic Behavior of Wall

C = 87.6 kN-s/m (500 lb-s/in)

No Damper

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

Drift Ratio (%)

Base Shear Coefficient

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

Drift Ratio (%)

Base Shear Coefficient

Page 10: Task 1.4.7 - Innovative Systems Fluid Dampers for Seismic Energy Dissipation of Woodframe Structures Michael D. Symans Kenneth J. Fridley William F. Cofer

10

Hysteretic Behavior of Wall(Plotted to same scale)

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

Drift Ratio (%)

Base Shear Coefficient

No Damper

-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

-0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 0.3 0.4

Drift Ratio (%)

Base Shear Coefficient

C = 87.6 kN-s/m (500 lb-s/in)

Page 11: Task 1.4.7 - Innovative Systems Fluid Dampers for Seismic Energy Dissipation of Woodframe Structures Michael D. Symans Kenneth J. Fridley William F. Cofer

11

Components of Hysteresis Loop(Plotted to same scale)

Wall Contribution Damper Contribution

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

Drift Ratio (%)

Base Shear Coefficient

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

Drift Ratio (%)

Damper Force / Weight

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

Drift Ratio (%)

Wall Force / Weight

C = 87.6 kN-s/m (500 lb-s/in)

Page 12: Task 1.4.7 - Innovative Systems Fluid Dampers for Seismic Energy Dissipation of Woodframe Structures Michael D. Symans Kenneth J. Fridley William F. Cofer

12

-0.25

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

0.25

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15

Drift Ratio (%)

Normalized Force

Wall Force / Weight Damper Force / Weight

Comparison of Components

C = 87.6 kN-s/m (500 lb-s/in)

Page 13: Task 1.4.7 - Innovative Systems Fluid Dampers for Seismic Energy Dissipation of Woodframe Structures Michael D. Symans Kenneth J. Fridley William F. Cofer

13

Effect of Dampers on Drift

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0 5 10 15Time (sec)

Drift Ratio (%)

No Damper

C = 17.5 kN-s/m

C = 87.6 kN-s/m

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3

Wall Condition

Peak Drift Ratio (%)

No Damper

C = 17.5 kN-s/m(-41%)

C = 87.6 kN-s/m(-67%)

Peak drift reduced by 67%Note: 400% increase in damping capacity results in additional 26% reduction in peak drift.

Page 14: Task 1.4.7 - Innovative Systems Fluid Dampers for Seismic Energy Dissipation of Woodframe Structures Michael D. Symans Kenneth J. Fridley William F. Cofer

14

Effect of Dampers on Base Shear

Peak base shear reduced by 45%

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3

Wall Condition

Base Shear Coefficient

No Damper

C = 17.5 kN-s/m(-25%)

C = 87.6 kN-s/m(-45%)

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15

Time (sec)

Base Shear Coefficient

No Damper

C = 17.5 kN-s/m

C = 87.6 kN-s/m

Page 15: Task 1.4.7 - Innovative Systems Fluid Dampers for Seismic Energy Dissipation of Woodframe Structures Michael D. Symans Kenneth J. Fridley William F. Cofer

15

Energy Distribution

No Damper C = 87.6 kN-s/m

- Inelastic energy dissipation demand reduced by 93 %

- Portion of input energy absorbed by dampers = 82 %

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12 14 16

Time (sec)

Energy (kN-m)

InputInelasticViscousElasticKinetic

0

0.05

0.1

0.15

0.2

0.25

0.3

0 2 4 6 8 10 12 14 16

Time (sec)

Energy (kN-m)

Input

Inelastic

Viscous

Elastic

Kinetic

Page 16: Task 1.4.7 - Innovative Systems Fluid Dampers for Seismic Energy Dissipation of Woodframe Structures Michael D. Symans Kenneth J. Fridley William F. Cofer

16

Energy Distribution(Plotted to same scale)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12 14 16

Time (sec)

Energy (kN-m)

InputInelasticViscousElasticKinetic

No Damper

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12 14 16

Time (sec)

Energy (kN-m)

Input

Inelastic

Viscous

Elastic

Kinetic

C = 87.6 kN-s/m

Page 17: Task 1.4.7 - Innovative Systems Fluid Dampers for Seismic Energy Dissipation of Woodframe Structures Michael D. Symans Kenneth J. Fridley William F. Cofer

17

Proposed Damper Configurations

Piston Head

Piston Rod

Pinned Connection

PinnedConnection

Viscous Fluid

Dual let-in rod pin-connected to bottom cornerof wall and to damper;

Damper pin-connected to upper corner

Page 18: Task 1.4.7 - Innovative Systems Fluid Dampers for Seismic Energy Dissipation of Woodframe Structures Michael D. Symans Kenneth J. Fridley William F. Cofer

18

Recently Developed Amplification Systems for Stiff Structures

Toggle-Brace System Scissors-Jack System

Page 19: Task 1.4.7 - Innovative Systems Fluid Dampers for Seismic Energy Dissipation of Woodframe Structures Michael D. Symans Kenneth J. Fridley William F. Cofer

19

Pre-Fabricated Wall

- Prefabricated in a controlled manufacturing environment (similar to Simpson Strong Wall which “drops” into framing)

- 50.8 x 152.4 mm (2 x 6 in.) framing

- Damper connections which ensure minimal slip before damper engagement.

Page 20: Task 1.4.7 - Innovative Systems Fluid Dampers for Seismic Energy Dissipation of Woodframe Structures Michael D. Symans Kenneth J. Fridley William F. Cofer

20

Possible Damper Connection Details

Page 21: Task 1.4.7 - Innovative Systems Fluid Dampers for Seismic Energy Dissipation of Woodframe Structures Michael D. Symans Kenneth J. Fridley William F. Cofer

21

Implementation Issues

- Taft EQ, C = 87.6 kN-s/m (500 lb-s/in):

- Damper Force Demand = 2.6 kN (580 lb)

- Damper Velocity Demand = 3.0 cm/s (1.2 in/s)

- Damper Stroke Demand = 0.2 cm (0.08 in)

- Off-the-shelf dampers (D-Series; Taylor Devices, Inc.):

- Force capacity = 2 or 8.9 kN (450 lb or 2000 lb)

- Stroke capacity = 5.1, 10.2, 15.2 or 20.3 cm (2, 4, 6, or 8 in.)

- Estimated cost = $300/damper

Page 22: Task 1.4.7 - Innovative Systems Fluid Dampers for Seismic Energy Dissipation of Woodframe Structures Michael D. Symans Kenneth J. Fridley William F. Cofer

22

Damper Engagement

(effect of initial wall displacement w/out damper engagement)

Implementation Issues

Fg

uwus/cos

Gap element

uw

us

us = 1/16”, 1/8”, 1/4”, 3/8”, 1/2”

-us/cos

C

KFg = gap element force

Page 23: Task 1.4.7 - Innovative Systems Fluid Dampers for Seismic Energy Dissipation of Woodframe Structures Michael D. Symans Kenneth J. Fridley William F. Cofer

23

Response to Comments from Element 1 Managers

• Sept. 16, 2000 Meeting Comments– Analytical results need to be checked carefully

(Done)– Typical detailing/connection of the dampers should

be considered (In progress)

Page 24: Task 1.4.7 - Innovative Systems Fluid Dampers for Seismic Energy Dissipation of Woodframe Structures Michael D. Symans Kenneth J. Fridley William F. Cofer

24

Short-Term Goals

• Parametric studies of wall performance

– Various earthquake records and intensities

– Various damper configurations

– Effect of delay in damper engagement

• Development of implementation details

• Analysis of 3-D Woodframe Building with dampers.