3
Teacher Pages: Modeling Power Grids with Snap Circuits Wisconsin Energy Institute – energy.wisc.edu/education Modeling Power Grids with Snap Circuitsâ Overview: Students use snap circuits to model power generation, distribution, and use in a traditional grid vs microgrid system. Students use the model to develop explanations for how microgrids help keep the lights on in communities during power outages and explore some of the characteristics of microgrids that allow for integration with small-scale renewable energy sources. Grade levels: Middle and High School Subjects: Physics, Earth Science, Environmental Science, Engineering Time required: Two 50-minute class periods Materials: Snap Circuits Alternative Energy Kits (1 per group, 2-4 students) Approximate cost: $40 each Learning objectives: Students will… 1. List the key characteristics of a microgrid and describe the similarities and differences with a traditional grid system. 2. Design, build, compare and evaluate different models of traditional grids and microgrids using Snap Circuits. 3. Explain how microgrids can improve the reliability of power delivery and integrate with renewable power sources such as wind and solar. Assumption of prior knowledge: Familiarity with electrical circuits and knowledge of the energy transformations associated with generating electricity is helpful. NGSS Standards: 4-PS3-2. Make observations to provide evidence that energy can be transferred from place to place by sound, light, heat, and electric currents. HS-PS3-3. Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy. 4-ESS3-2. Generate and compare multiple solutions to reduce the impacts of natural Earth processes on humans. HS-ESS3-4. Evaluate or refine a technological solution that reduces impacts of human activities on natural systems. MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.

Teacher Guide Modeling Power Grids Guide... · • Snap Circuits Alternative Energy Kits (1 per group, 2-4 ... Modeling Power Grids with ... between power sources. 2. Learn more:

Embed Size (px)

Citation preview

TeacherPages:ModelingPowerGridswithSnapCircuits

WisconsinEnergyInstitute–energy.wisc.edu/education

ModelingPowerGridswithSnapCircuitsâ

Overview:Studentsusesnapcircuitstomodelpowergeneration,distribution,anduseinatraditionalgridvsmicrogridsystem.Studentsusethemodeltodevelopexplanationsforhowmicrogridshelpkeepthelightsonincommunitiesduringpoweroutagesandexploresomeofthecharacteristicsofmicrogridsthatallowforintegrationwithsmall-scalerenewableenergysources.Gradelevels:MiddleandHighSchoolSubjects:Physics,EarthScience,EnvironmentalScience,EngineeringTimerequired:Two50-minuteclassperiodsMaterials:

• SnapCircuitsAlternativeEnergyKits(1pergroup,2-4students)• Approximatecost:$40each

Learningobjectives:Studentswill…

1. Listthekeycharacteristicsofamicrogridanddescribethesimilaritiesanddifferenceswithatraditionalgridsystem.

2. Design,build,compareandevaluatedifferentmodelsoftraditionalgridsandmicrogridsusingSnapCircuits.

3. Explainhowmicrogridscanimprovethereliabilityofpowerdeliveryandintegratewithrenewablepowersourcessuchaswindandsolar.

Assumptionofpriorknowledge:Familiaritywithelectricalcircuitsandknowledgeoftheenergytransformationsassociatedwithgeneratingelectricityishelpful.NGSSStandards:

• 4-PS3-2.Makeobservationstoprovideevidencethatenergycanbetransferredfromplacetoplacebysound,light,heat,andelectriccurrents.

• HS-PS3-3.Design,build,andrefineadevicethatworkswithingivenconstraintstoconvertoneformofenergyintoanotherformofenergy.

• 4-ESS3-2.GenerateandcomparemultiplesolutionstoreducetheimpactsofnaturalEarthprocessesonhumans.

• HS-ESS3-4. Evaluateorrefineatechnologicalsolutionthatreducesimpactsofhumanactivitiesonnaturalsystems.

• MS-ETS1-2. Evaluatecompetingdesignsolutionsusingasystematicprocesstodeterminehowwelltheymeetthecriteriaandconstraintsoftheproblem.

TeacherPages:ModelingPowerGridswithSnapCircuits

WisconsinEnergyInstitute–energy.wisc.edu/education

• HS-ETS1-3. Evaluateasolutiontoacomplexreal-worldproblembasedonprioritizedcriteriaandtrade-offsthataccountforarangeofconstraints,includingcost,safety,reliability,andaestheticsaswellaspossiblesocial,cultural,andenvironmentalimpacts.

Part1:Modelingasimplemainelectricgrid.Thepurposeofanelectricgridsystemistogenerateelectricityanddistributeitforitsenduses,suchaslighting,poweringelectronics,andheating.Inthisactivitystudentswilluseasnapcircuitmodeltoanswerthequestion“Whatneedstohappenforthelightstocomeoninyourbuilding?”Introductionandpre-assessment:

1. Introducetheguidingquestion,“Whatneedstohappenforthelightstocomeoninyourbuilding?”Switchthelightonandoffintheclassroomtoengagestudents.Insmallgroups,havestudentsdiscussandwritedownand/orillustratetheirinitialideas(Slide2).

2. Poolideasandprobestudentunderstandingofhowelectricityisgenerated,distributed,andused.

3. Usingwhiteboard,posters,etc.,sortstudentideasintothethreemainstages:powergeneration,distribution,anduse.Cometoaconsensusdefinitionofthepurposeofthestageandlistspecificexamples(Slides3-4).

ModelingthegridwithSnapCircuits:

1. UsingtheSnapCircuitsAlterativeEnergykits,havestudentsworkingroupsof2-4toconstructamodelofatraditionalgridsystemwithpowergeneration,distribution,anduse(Slide5).

a. Option1:Removetheinstructionsandimagesfromtheworksheetandletstudentscreatetheirownmodelfromscratchwiththematerialsinthekit.

b. Option2:Havestudentsusethesamplemodelfromtheillustrationanddirectionsontheworksheet.

2. Afterstudentsworkthroughthefirsttwoquestions,discussandaddressanyquestionsandmisunderstandingsthatcomeuprelatedtothebasicphysicsofelectricitygenerationandcircuits.Drawingasimplecircuitdiagramasaclassorinsmallgroupscanbehelpful.

3. Havestudentsshareexamplesforquestion#3(typesofgeneration,uses,etc.).Thesecanbeaddedtotheposterorwhiteboarddiagramunderthecomponentsoftheelectricalgrid(generation,distribution,use).

4. Discussand/orconstructasharedanalogymap(studenthandout)comparingthemicrogridmodeltotherealelectricgrid.ThenhavestudentssharesomeexamplesforhowtheyusedtheSnapCircuitstomodeapoweroutage.(Slide6).

5. Assessment:Studentscanrevisitandrevisetheiranswerstotheguidingquestion“Whatneedstohappenforthelightstocomeon?”

Extensionsandvariations:

• Studentscaninvestigatetheprocessofgeneratingpowerfromdifferentenergysources.• Lookatyourstate’senergyportfolioandnearbypowerplantsontheEnergyInformation

Administration:http://www.eia.gov/state/Part2:Modelingamicrogrid.Amicrogriddoesthesamethingsasatraditionalgrid:generateselectricityanddistributesittoenduses,butatasmallerscale.Themaingridisaninterconnectednetworkofpowerplants,transmissionlines,andcommunitiesthatcoversmanystates.Butamicrogrid

TeacherPages:ModelingPowerGridswithSnapCircuits

WisconsinEnergyInstitute–energy.wisc.edu/education

isasmallnetworkofpowersourcesandusesthatcanserveacity,neighborhood,orbuilding.Amicrogridcanconnectanddisconnectfromthetraditionalgridandoffersflexibilitytousesmaller-scalerenewableenergysources,suchaswindandsolar.StudentswillproposeexplanationsforwhythelightsstayedoninsomeplaceslikeNewYorkUniversityduringthemassiveblackoutinManhattanduringHurricaneSandy.Theywillthenmodifytheirgridmodeltoincludefeaturesofamicrogridthatcould“island”fromthemaingridandkeepthepoweronduringablackout.Introducingtheproblem:

1. ShowstudentstheaerialnightphotoofLowerManhattanduringtheHurricaneSandyblackoutandhavethemshareobservationsandquestions.(Slide7).ExplainthattheregionwithlightsstillonistheNewYorkUniversitycampus.

2. Posethequestion:“HowdidthelightsstayonatNewYorkUniversitycampusduringthemassiveblackoutduringHurricaneSandy?”Havestudentsdeveloptheirexplanationsinsmallgroupsandthenshareout.

ModelingamicrogridwithSnapCircuits:StudenthandoutPart2

3. Introducetheconceptofamicrogridanditskeyelementsusingthisvideo(https://youtu.be/qwVggeO_GTY)presentationgraphics(Slides9-11).

4. Studentsmodifytheirgridmodeltoincludekeyelementsofamicrogrid:1)abilitytooperateindependentlyofmaingrid(“islanding”),and2)abilitytoincorporatemultiplepowersources(local,small-scalegenerationandregionallargerscalepowerplants).

a. Option1:Removetheinstructionsandimagesfromtheworksheetandletstudentscreatetheirownmodelfromscratchwiththematerialsinthekit.

b. Option2:Havestudentsusethesamplemodelfromtheillustrationanddirectionsontheworksheet.

5. Afterstudentsconstruct,use,andanswerquestionsabouttheirmicrogridmodelsinsmallgroups,discussanswersasaclass(PPTslide).Discusslimitationsofthemodelandideasforimprovement.

6. ConstructtheFrayerdiagramasaclass,comparingthesimilaritiesanddifferencesbetweenamicrogridandtraditionalgridsystem.

7. Sharesomeexamplesofhowmicrogridsareusedaroundtheworld(PPTslides).8. Assessment:Studentscanrevisitandrevisetheiranswerstotheguidingquestion“Howdidthe

lightsstayonatNewYorkUniversitycampusduringthemassiveblackoutduringHurricaneSandy?”

Extensionsandvariations:

1. GroupscanworktogetherandshareSnapCircuitpartstoimprovetheirmodelssothattheymoreeasilyislandinthecaseofblackoutsandswitchbetweenpowersources.

2. Learnmore:a. ReadaboutmicrogridsresearchattheWisconsinEnergyInstitute,UW-Madison:

https://energy.wisc.edu/news/micro-macro-uw-madisons-expansion-microgrid-ideab. TheLawrenceBerkeleyNationalLabdescriptionofmicrogridsandexamples,

https://building-microgrid.lbl.gov/about-microgrids-0