90
This Standard is the property of Iran any part of this document may be transmitted in any form or by any me Technical recommendations IP nian Ministry of Petroleum. All rights are reserved to the e disclosed to any third party, reproduced, stored in eans without the prior written consent of the Iranian Min l requirements and engineeri s for onshore transportation Specifications Second edition February 2019 PS-E-PI-140(2) e owner. Neither whole nor n any retrieval system or nistry of Petroleum. ing n pipelines-

Technical requirements and engineering recommendations …

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Technical requirements and engineering recommendations …

This Standard is the property of Iranian Ministry of Petroleum. All rights are reserved to the owner. Neither whole nor

any part of this document may be disclosed to any third party, reproduced,

transmitted in any form or by any means without the prior written consent of the Iranian Ministry of Petroleum.

Technical requirements and engineering

recommendations

IPS

This Standard is the property of Iranian Ministry of Petroleum. All rights are reserved to the owner. Neither whole nor

any part of this document may be disclosed to any third party, reproduced, stored in any retrieval system or

transmitted in any form or by any means without the prior written consent of the Iranian Ministry of Petroleum.

Technical requirements and engineering

recommendations for onshore transportation pipelines

Specifications

Second edition

February 2019

IPS-E-PI-140(2)

This Standard is the property of Iranian Ministry of Petroleum. All rights are reserved to the owner. Neither whole nor

stored in any retrieval system or

transmitted in any form or by any means without the prior written consent of the Iranian Ministry of Petroleum.

Technical requirements and engineering

onshore transportation pipelines-

Page 2: Technical requirements and engineering recommendations …

Foreword

The Iranian Petroleum Standards (IPS) reflect the views of the

are intended for use in the oil and gas production facilities, oil refineries, chemical and

petrochemical plants, gas handling and processing installations and other such facilities.

IPS is based on internationally accepta

stipulated in the referenced standards. They are also supplemented by additional requirements

and/or modifications based on the experience acquired by the Iranian Petroleum Industry and the

local market availability. The options which are not specified in the text of the standards are

itemized in data sheet/s, so that, the user can select his appropriate preferences therein

The IPS standards are therefore expected to be sufficiently flexible so that the

these standards to their requirements. However, they may not cover every requirement of each

project. For such cases, an addendum to IPS Standard shall be prepared by the user which

elaborates the particular requirements of the user. This a

shall form the job specification for the specific project or work.

The IPS is reviewed and up-dated approximately every five years. Each standards are subject to

amendment or withdrawal, if required, thus the latest e

The users of IPS are therefore requested to send their views and comments, including any

addendum prepared for particular cases to the following address. These comments and

recommendations will be reviewed by the relevant

will be incorporated in the next revision of the standard.

Deputy of Standardization, Administrative of Technical, Execution and Evaluation of Projects

Affairs, No.17, St. 14th, North Kheradmand, Karimkhan

Postal Code- 1585886851

Tel: 021-88810459-60 & 021-

Fax: 021-88810462

Email: [email protected]

Feb. 2019

II

The Iranian Petroleum Standards (IPS) reflect the views of the Iranian Ministry of Petroleum and

are intended for use in the oil and gas production facilities, oil refineries, chemical and

petrochemical plants, gas handling and processing installations and other such facilities.

IPS is based on internationally acceptable standards and includes selections from the items

stipulated in the referenced standards. They are also supplemented by additional requirements

and/or modifications based on the experience acquired by the Iranian Petroleum Industry and the

availability. The options which are not specified in the text of the standards are

itemized in data sheet/s, so that, the user can select his appropriate preferences therein

The IPS standards are therefore expected to be sufficiently flexible so that the

these standards to their requirements. However, they may not cover every requirement of each

project. For such cases, an addendum to IPS Standard shall be prepared by the user which

elaborates the particular requirements of the user. This addendum together with the relevant IPS

shall form the job specification for the specific project or work.

dated approximately every five years. Each standards are subject to

amendment or withdrawal, if required, thus the latest edition of IPS shall be applicable

The users of IPS are therefore requested to send their views and comments, including any

addendum prepared for particular cases to the following address. These comments and

recommendations will be reviewed by the relevant technical committee and in case of approval

will be incorporated in the next revision of the standard.

Deputy of Standardization, Administrative of Technical, Execution and Evaluation of Projects

Affairs, No.17, St. 14th, North Kheradmand, Karimkhan Blvd., Tehran, Iran.

-66153055

IPS-E-PI-140(2)

Iranian Ministry of Petroleum and

are intended for use in the oil and gas production facilities, oil refineries, chemical and

petrochemical plants, gas handling and processing installations and other such facilities.

ble standards and includes selections from the items

stipulated in the referenced standards. They are also supplemented by additional requirements

and/or modifications based on the experience acquired by the Iranian Petroleum Industry and the

availability. The options which are not specified in the text of the standards are

itemized in data sheet/s, so that, the user can select his appropriate preferences therein

The IPS standards are therefore expected to be sufficiently flexible so that the users can adapt

these standards to their requirements. However, they may not cover every requirement of each

project. For such cases, an addendum to IPS Standard shall be prepared by the user which

ddendum together with the relevant IPS

dated approximately every five years. Each standards are subject to

dition of IPS shall be applicable

The users of IPS are therefore requested to send their views and comments, including any

addendum prepared for particular cases to the following address. These comments and

technical committee and in case of approval

Deputy of Standardization, Administrative of Technical, Execution and Evaluation of Projects

Blvd., Tehran, Iran.

Page 3: Technical requirements and engineering recommendations …

Titles

Introduction

1 Scope

2 References

3 Definitions

3-1 General terms

3-2 Specific terms

4 Abbreviations

5 Units

6 Fluid categories

7 Design

7-1 General considerations

7-2 Operational requirements

7-3 Economic considerations (Optimization)

7-4 Hydraulic design

7-5 Mechanical design

7-6 Pipeline Risks

8 Materials

8-1 General

8-2 Material procurement

8-3 Line pipe materials

8-4 Valves

8-5 Branch connections, fi

9 Pipeline route selection

9-1 General

9-2 Route and soil surveys

9-3 Proximity to occupied buildings

9-4 Proximity to other facilities

9-5 Right-of-way

10 Pipeline protection and marking

10-1 Burial philosophy

10-2 Trench dimensions

10-3 Anchor for pipelines

10-4 Non-buried pipelines

10-5 Corrosion Protection

10-6 Pipeline Markers

Feb. 2019

III

Contents

considerations

Operational requirements

Economic considerations (Optimization)

Material procurement

Branch connections, fittings, etc.

Route and soil surveys

Proximity to occupied buildings

Proximity to other facilities

Pipeline protection and marking

buried pipelines

on Protection

IPS-E-PI-140(2)

Page No

V

1

1

2

2

3

5

6

6

6

6

6

7

7

9

15

16

16

17

17

17

17

18

18

18

19

19

19

21

21

21

22

22

24

24

Page 4: Technical requirements and engineering recommendations …

11 Crossings

11-1 River crossings

11-2 Road and railway crossings

11-3 Crossing other pipelines

11-4 Crossing land faults

11-5 Land slides

12 Records

Appendices:

Appendix A (Informative) Critical velocity formula

Appendix B (Informative) Erosional velocity formula

Appendix C (Informative) Calculation hydraulic design

Appendix D (Informative) Moody (or darcy) friction factor chart

Feb. 2019

IV

Road and railway crossings

Crossing other pipelines

Critical velocity formula

Erosional velocity formula

Calculation hydraulic design

Moody (or darcy) friction factor chart

IPS-E-PI-140(2)

25

25

26

26

26

27

27

28

29

30

36

Page 5: Technical requirements and engineering recommendations …

Introduction

This standard has been developed in

of a wide range of professionals, representatives of organizations, companies, management,

institutions and research-laboratory centers, manufacturers, associations, etc.

Petroleum Standards developed by the Ministry of Petroleum ar

specialized reference committees every five years and, are performed with regard to their

applicability and effectiveness, approve, revoke or revise them in accordance with current

Ministry of Petroleum regulations. Obviously,

periodical review can be done early, if necessary.

English languages, English language shall govern.

Note 1:

This standard specification is reviewed and updat

2004, as amendment No. 1 by circular No. 194.

Note 2:

This bilingual standard is a revised version of the standard specification by the relevant technical

committee on Jul. 2009, which is issued as revision (1

specification is withdrawn.

Note 3:

This bilingual standard is a revised version of the standard specification by the relevant technical

committee on Feb. 2019, which is issued as revision (2). Revision (1) of the said

specification is withdrawn.

Iranian Petroleum Standards (IPS)

Deputy of Standardization, Administrative of Technical, Execution and Evaluation of Projects

Affairs, No.17, St. 14th, North kheradmand, Karimkhan Blvd., Tehran, Iran.

P.O.Box: 1585886851

Tel: + 98 (21) 61623055, (21) 88810459

Fax: + 98 (21) 88810462

Email: [email protected]

Website: http://ips.mop.ir

1 - Standardized specialized reference committees are qualified committees responsible for determination

reviewing standards for the petroleum industry

Feb. 2019

V

This standard has been developed in “specialized reference committees”1 and with the consensus

of a wide range of professionals, representatives of organizations, companies, management,

laboratory centers, manufacturers, associations, etc.

Petroleum Standards developed by the Ministry of Petroleum are reviewed systematically by

specialized reference committees every five years and, are performed with regard to their

applicability and effectiveness, approve, revoke or revise them in accordance with current

Ministry of Petroleum regulations. Obviously, in accordance with clause 4 of the Procedure, the

periodical review can be done early, if necessary. In case of conflict between Farsi (Persian) and

English languages, English language shall govern.

This standard specification is reviewed and updated by the relevant technical committee on Jan.

2004, as amendment No. 1 by circular No. 194.

This bilingual standard is a revised version of the standard specification by the relevant technical

committee on Jul. 2009, which is issued as revision (1). Revision (0) of the said standard

This bilingual standard is a revised version of the standard specification by the relevant technical

committee on Feb. 2019, which is issued as revision (2). Revision (1) of the said

Iranian Petroleum Standards (IPS)

Deputy of Standardization, Administrative of Technical, Execution and Evaluation of Projects

Affairs, No.17, St. 14th, North kheradmand, Karimkhan Blvd., Tehran, Iran.

Tel: + 98 (21) 61623055, (21) 88810459 - 60

Standardized specialized reference committees are qualified committees responsible for determination

reviewing standards for the petroleum industry (governmental, private and cooperative sectors).

IPS-E-PI-140(2)

and with the consensus

of a wide range of professionals, representatives of organizations, companies, management,

laboratory centers, manufacturers, associations, etc.

e reviewed systematically by

specialized reference committees every five years and, are performed with regard to their

applicability and effectiveness, approve, revoke or revise them in accordance with current

in accordance with clause 4 of the Procedure, the

In case of conflict between Farsi (Persian) and

ed by the relevant technical committee on Jan.

This bilingual standard is a revised version of the standard specification by the relevant technical

). Revision (0) of the said standard

This bilingual standard is a revised version of the standard specification by the relevant technical

committee on Feb. 2019, which is issued as revision (2). Revision (1) of the said standard

Deputy of Standardization, Administrative of Technical, Execution and Evaluation of Projects

Affairs, No.17, St. 14th, North kheradmand, Karimkhan Blvd., Tehran, Iran.

Standardized specialized reference committees are qualified committees responsible for determination and

(governmental, private and cooperative sectors).

Page 6: Technical requirements and engineering recommendations …

Technical requirements and engineering recommendations for onshore

transportation pipelines

1 Scope

This Standard provides a baseline for minimum technical requirements and recommended

engineering practices for design of off

hydrocarbons in Iranian Oil, Gas an

applies, as well as those relating to pipeline engineering issues not referred to in this standard,

are indicated in scope of ASME B 31.4 and ASME B 31.8 latest editions.

2 References

Throughout this Standard the following dated and undated standards/codes are referred to. These

referenced documents shall, to the extent specified herein, form a part of this standard. For dated

references, the edition cited applies. The applicability of changes in

after the cited date shall be mutually agreed upon by the Company and the Vendor. For undated

references, the latest edition of the referenced documents (including any supplements and

amendments) applies.

2-1 API RP 1102, Steel pipelines crossing rail roads and highways

2-2 API 1160, Managing systems integrity for hazardous liquid pipelines

2-3 API 6 D, Specification for

2-4 API SPEC.5L, Specification for

2-5 ASME B 31.4, Pipeline transportati

2-6 ASME B 31.8, Gas transmission and distribution systems

2-7 BS EN ISO 18086, Corrosion of metals and alloys

criteria

2-8 EI Model code of Safe practice Part 1

flammable fluids

2-9 IPS-E-GN-100, Engineering

2-10 IPS-C-CE-112, Construction

2-11 IPS-C-PI-270, Construction

2-12 IPS-C-PI-370, Construction

2-13 IPS-E-PI-240, Engineering

2-14 IPS-G-PI-280, General standard for pipe supports

2-15 IPS-M-PI-110, Material and

2-16 IPS-M-PI-150, Material standard for flanges and fittings

2-17 IPS-M-PI-130, Material and

2-18 IPS-M-PI-190, Material and

Feb. 2019

1

Technical requirements and engineering recommendations for onshore

transportation pipelines-Specifications

This Standard provides a baseline for minimum technical requirements and recommended

engineering practices for design of off-plot onshore pipelines used for transportation of

hydrocarbons in Iranian Oil, Gas and Petrochemical Industries. Facilities to which this standard

applies, as well as those relating to pipeline engineering issues not referred to in this standard,

are indicated in scope of ASME B 31.4 and ASME B 31.8 latest editions.

this Standard the following dated and undated standards/codes are referred to. These

referenced documents shall, to the extent specified herein, form a part of this standard. For dated

references, the edition cited applies. The applicability of changes in dated references that occur

after the cited date shall be mutually agreed upon by the Company and the Vendor. For undated

references, the latest edition of the referenced documents (including any supplements and

pipelines crossing rail roads and highways

systems integrity for hazardous liquid pipelines

API 6 D, Specification for pipeline and piping valves

API SPEC.5L, Specification for line pipe

transportation systems for liquid hydrocarbon and other liquids

transmission and distribution systems

EN ISO 18086, Corrosion of metals and alloys- Determination of AC corrosion

EI Model code of Safe practice Part 15, area classification code for installations handling

, Engineering standard for units

, Construction standard for earthworks

, Construction standard for welding of transportation pipelines

, Construction standard for transportation pipelines (onshore) pressure testing

, Engineering standard for plant piping systems

standard for pipe supports

, Material and equipment standard for valves

standard for flanges and fittings

, Material and equipment standard for pig launching and receiving traps

, Material and equipment standard for line pipes

IPS-E-PI-140(2)

Technical requirements and engineering recommendations for onshore

This Standard provides a baseline for minimum technical requirements and recommended

plot onshore pipelines used for transportation of

d Petrochemical Industries. Facilities to which this standard

applies, as well as those relating to pipeline engineering issues not referred to in this standard,

this Standard the following dated and undated standards/codes are referred to. These

referenced documents shall, to the extent specified herein, form a part of this standard. For dated

dated references that occur

after the cited date shall be mutually agreed upon by the Company and the Vendor. For undated

references, the latest edition of the referenced documents (including any supplements and

on systems for liquid hydrocarbon and other liquids

Determination of AC corrosion- Protection

area classification code for installations handling

standard for welding of transportation pipelines

tion pipelines (onshore) pressure testing

equipment standard for pig launching and receiving traps

Page 7: Technical requirements and engineering recommendations …

2-19 IPS-D-PI-143, Pipelines right

2-20 IPS-E-SF-100, Engineering

2-21 IPS-E-TP-270, Engineering

structures

2-22 IPS-E-TP-820, Engineering

2-23 IPS-D-TP-712, Combined

2-24 IPS-D-PI-175, Pipeline road crossing

2-25 IPS-E-EL-160, Engineering

2-26 IPS-C-PI-140, Construction

2-27 NACE MR 0175/ISO 15156

containing environments in oil and gas production

resistant materials

Note: INSO no.9226-1: “Petroleum and natural gas industries

environments in oil and gas production

materials” is compiled based on

2-28 NACE MR 0175/ISO 15156

containing environments in oil and gas production

steels, and the use of cast iron

Note: INSO no.9226-2: “Petroleum and natural gas industries

environments in oil and gas production

use of cast iron” is compiled based on

2-29 NACE MR 0175/ISO 15156

containing environments in oil and gas production

alloys) and other alloys

Note: INSO no.9226-3: “Petroleum and natural gas industries

environments in oil and gas production

other alloys” is compiled based on

2-30 NFPA 10: “Standard for portable fire extinguishers

3 Definitions

3-1 General terms

3-1-1

engineer

Refers to person or party representing the company for supervision of design, engineering

services, and execution of project as required and specified by the Company.

Feb. 2019

2

right-of-way

100, Engineering standard for classification of fires and fire hazard properties

ing standard for protective coatings for buried and submerged steel

, Engineering standard for cathodic protection

Combined marker and test point and bond box details

road crossing

Engineering standard for overhead transmission and distribution

, Construction standard for transportation pipelines (Onshore)

ISO 15156-1, Petroleum and natural gas industries - Materials for use in H

ironments in oil and gas production - Part 1: General principles for section of cracking

“Petroleum and natural gas industries - Materials for use in H

environments in oil and gas production - Part 1: General principles for section of cracking

ISO 15156-1:2009.

ISO 15156-2, Petroleum and natural gas industries - Materials for use in H

containing environments in oil and gas production - Part 2: Cracking-resistant carbon and low

Petroleum and natural gas industries - Materials for use in H

environments in oil and gas production - Part 2: Cracking-resistant carbon and l

is compiled based on ISO 15156-2:2009.

ISO 15156-3, Petroleum and natural gas industries - Materials for use in H

containing environments in oil and gas production - Part 3: Cracking-resistant CRAs (corrosion

“Petroleum and natural gas industries - Materials for use in H

environments in oil and gas production - Part 3: Cracking-resistant CRAs (corrosion

is compiled based on ISO 15156-3:2009.

Standard for portable fire extinguishers”

Refers to person or party representing the company for supervision of design, engineering

services, and execution of project as required and specified by the Company.

IPS-E-PI-140(2)

standard for classification of fires and fire hazard properties

standard for protective coatings for buried and submerged steel

and distribution

(Onshore)

Materials for use in H2S -

Part 1: General principles for section of cracking-

Materials for use in H2S -containing

General principles for section of cracking-resistant

Materials for use in H2S -

resistant carbon and low-alloy

Materials for use in H2S -containing

resistant carbon and low-alloy steels, and the

Materials for use in H2S -

CRAs (corrosion-resistant

Materials for use in H2S -containing

resistant CRAs (corrosion-resistant alloys) and

Refers to person or party representing the company for supervision of design, engineering

services, and execution of project as required and specified by the Company.

Page 8: Technical requirements and engineering recommendations …

3-1-2

manufacturer

The party that manufactures or produces line pipe and piping

requirements of relevant IPS standards.

3-1-3

consultant

Is the party which carries out all or part of a pipeline design and engineering.

3-2 Specific terms

3-2-1

design factor

Ratio of the hoop stress developed in the pipeline by the design

Minimum Yield Stress (SMYS) of the pipeline material.

3-2-2

specified minimum yield stress (SMYS)

The level of stress which produces 0.5 percent total strain (API definition). This is specified by

the Company and shall be guaranteed b

3-2-3

incidental pressure

Pressure which occurs in a pipeline with limited frequency and within a limited period of time,

such as surge pressures and thermal expansions, if not occurring most of the time.

3-2-4

maximum allowable incidental pressure (MAIP)

The maximum pressure that is allowed by ASME B 31.4 and B 31.8 to occur in a pipeline with a

limited frequency and during limited period of time.

3-2-5

maximum allowable operating pressure (MAOP)

The maximum pressure at whi

conditions, in accordance with ASME B 31.4 and ASME B 31.8.

Feb. 2019

3

The party that manufactures or produces line pipe and piping components according to the

requirements of relevant IPS standards.

Is the party which carries out all or part of a pipeline design and engineering.

Ratio of the hoop stress developed in the pipeline by the design pressure and the Specified

Minimum Yield Stress (SMYS) of the pipeline material.

specified minimum yield stress (SMYS)

The level of stress which produces 0.5 percent total strain (API definition). This is specified by

the Company and shall be guaranteed by the Manufacturers /Suppliers/Vendors.

Pressure which occurs in a pipeline with limited frequency and within a limited period of time,

such as surge pressures and thermal expansions, if not occurring most of the time.

allowable incidental pressure (MAIP)

The maximum pressure that is allowed by ASME B 31.4 and B 31.8 to occur in a pipeline with a

limited frequency and during limited period of time.

maximum allowable operating pressure (MAOP)

The maximum pressure at which a pipeline is allowed to be operated under steady state process

conditions, in accordance with ASME B 31.4 and ASME B 31.8.

IPS-E-PI-140(2)

components according to the

Is the party which carries out all or part of a pipeline design and engineering.

pressure and the Specified

The level of stress which produces 0.5 percent total strain (API definition). This is specified by

y the Manufacturers /Suppliers/Vendors.

Pressure which occurs in a pipeline with limited frequency and within a limited period of time,

such as surge pressures and thermal expansions, if not occurring most of the time.

The maximum pressure that is allowed by ASME B 31.4 and B 31.8 to occur in a pipeline with a

ch a pipeline is allowed to be operated under steady state process

Page 9: Technical requirements and engineering recommendations …

3-2-6

flammable fluid

A fluid having a flash point lower than 100°C.

3-2-7

stable fluid

A fluid which has an NFPA 10

3-2-8

toxic fluid

Includes all fluids in the slightly toxic, toxic and highly toxic categories.

3-2-9

flow line

A pipeline (including valves and fittings) for t

reservoir fluids between the stone trap outlet flange and the first flange on the incoming manifold

at the production unit or the wellhead separator surface safety valve.

3-2-10

transmission line

A pipeline (including valves, traps and fittings) for

containing hydrocarbon materials between the main block valve on the units outlet lines and the

main block valve on inlet lines to other units and wells.

3-2-11

main oil line (oil trunk line)

A pipeline (including valves and fittings) between the main block valve on the production unit

oil outlet line and the main block valve on crude oil terminal inlet line but excluding the piping,

valves, fittings, etc. between the

3-2-12

gas transmission line (gas trunk line)

A pipeline (including valves, traps and fittings) between the block valve on the NGL plant or gas

refinery or gas compressor station gas outlet line and the block

or consumers premises inlet line but excluding the piping, valves, fittings, etc. between the

booster stations main inlet and outlet block valves.

Feb. 2019

4

A fluid having a flash point lower than 100°C.

10 reactivity grade number of zero (Refer to IPS

Includes all fluids in the slightly toxic, toxic and highly toxic categories.

A pipeline (including valves and fittings) for transporting untreated hydrocarbons and other

reservoir fluids between the stone trap outlet flange and the first flange on the incoming manifold

at the production unit or the wellhead separator surface safety valve.

valves, traps and fittings) for transporting treated hydrocarbons or fluids

containing hydrocarbon materials between the main block valve on the units outlet lines and the

main block valve on inlet lines to other units and wells.

A pipeline (including valves and fittings) between the main block valve on the production unit

oil outlet line and the main block valve on crude oil terminal inlet line but excluding the piping,

valves, fittings, etc. between the booster stations main inlet and outlet block valves

gas transmission line (gas trunk line)

A pipeline (including valves, traps and fittings) between the block valve on the NGL plant or gas

refinery or gas compressor station gas outlet line and the block valve at gas distribution terminal

or consumers premises inlet line but excluding the piping, valves, fittings, etc. between the

booster stations main inlet and outlet block valves.

IPS-E-PI-140(2)

IPS-E-SF-100).

ransporting untreated hydrocarbons and other

reservoir fluids between the stone trap outlet flange and the first flange on the incoming manifold

treated hydrocarbons or fluids

containing hydrocarbon materials between the main block valve on the units outlet lines and the

A pipeline (including valves and fittings) between the main block valve on the production unit

oil outlet line and the main block valve on crude oil terminal inlet line but excluding the piping,

booster stations main inlet and outlet block valves

A pipeline (including valves, traps and fittings) between the block valve on the NGL plant or gas

valve at gas distribution terminal

or consumers premises inlet line but excluding the piping, valves, fittings, etc. between the

Page 10: Technical requirements and engineering recommendations …

3-2-13

ethylene and ethane transmission line

A pipeline (including valves, tra

olefinic units used to transport ethylene and ethane to produce a wide range of polymers.

3-2-14

gas gathering line

A pipeline (including valves, traps and fittings) between the block valve on the wel

separator (or wellhead separator cluster) gas outlet line and the block valve on the NGL plant or

production unit gas inlet line.

3-2-15

NGL line

A pipeline (including valves and fittings) between the block valve on the NGL plant liquid outlet

line and the block valve on the NGL distribution terminal or LPG plant or consumers premises

inlet line.

3-2-16

injection line

A pipeline (including valves, traps and fittings) between the block valve on the injection unit

outlet line and the block valve on the wellhead for

pressure increase.

3-2-17

waste water line (salt water, sour water ...)

A pipeline (including valves and fittings) between block valve on the production unit outlet line

and the block valve on the wellhead for trans

hydrocarbon substances into the well.

4 Abbreviations

Diameter Nominal

Liquefied Petroleum Gas

Natural Gas Liquids

Nominal Pipe Size

Reynolds

Raised Face

International System of Unites

Specified Minimum Yield Stress

Maximum Allowable Incidental Pressure

Maximum Allowable Operating Pressure

Environmental Impact Assessment

Feb. 2019

5

ethylene and ethane transmission line

including valves, traps and fittings) for supplying petrochemical units as well as

olefinic units used to transport ethylene and ethane to produce a wide range of polymers.

A pipeline (including valves, traps and fittings) between the block valve on the wel

separator (or wellhead separator cluster) gas outlet line and the block valve on the NGL plant or

A pipeline (including valves and fittings) between the block valve on the NGL plant liquid outlet

block valve on the NGL distribution terminal or LPG plant or consumers premises

A pipeline (including valves, traps and fittings) between the block valve on the injection unit

outlet line and the block valve on the wellhead for transporting the fluids required for the well

waste water line (salt water, sour water ...)

A pipeline (including valves and fittings) between block valve on the production unit outlet line

and the block valve on the wellhead for transporting the waste fluids contaminated with

hydrocarbon substances into the well.

DN

LPG

NGL

NPS

Re

RF

SI

Specified Minimum Yield Stress SMYS

Maximum Allowable Incidental Pressure MAIP

Maximum Allowable Operating Pressure MAOP

Environmental Impact Assessment EIA

IPS-E-PI-140(2)

) for supplying petrochemical units as well as

olefinic units used to transport ethylene and ethane to produce a wide range of polymers.

A pipeline (including valves, traps and fittings) between the block valve on the wellhead

separator (or wellhead separator cluster) gas outlet line and the block valve on the NGL plant or

A pipeline (including valves and fittings) between the block valve on the NGL plant liquid outlet

block valve on the NGL distribution terminal or LPG plant or consumers premises

A pipeline (including valves, traps and fittings) between the block valve on the injection unit

transporting the fluids required for the well

A pipeline (including valves and fittings) between block valve on the production unit outlet line

porting the waste fluids contaminated with

Page 11: Technical requirements and engineering recommendations …

5 Units

This standard is based on International System of Units (SI), as per

otherwise specified.

6 Fluid categories

Based on the hazard potential of a fluid transported in the pipeline, it

one of the four groups in table 1.

Category

A Non-flammable, stable and nonform at ambient temperature and atmospheric pressure

B Flammable, or unstable or toxic fluids which are in liquid form at

ambient temperature and atmospheric pressure.

C

Non-flammable, stable, non

or a mixture of gas and

atmospheric pressure.

D

Flammable, or unstable or toxic fluids which are in gaseous form or

a mixture of gas and liquid at ambient temperature and atmospheric

pressure.

Note: For definition of flammable, stable and toxic fluids see 3.2 of this Standard.

7 Design

7-1 General considerations

The relevant sections of ASME B31.4 and ASME B31.8 and other standards referred to and

supplemented by this Standard shall be used for design of the pipeline in which the operating

conditions and requirements, ease of inspection and maintenance, environmen

safety requirements, geographic location, climatic, geotechnic and seismic conditions as well as

future changes and expansions should be taken into account over the pipeline entire projected life

cycle including its final abandonment.

7-2 Operational requirements

In designing the pipeline and its associated piping systems, due account shall be given to the

operation, inspection and maintenance requirements for the predicted life cycle and the planned

conditions and criteria as set by and/or agre

operation and maintenance of the pipeline. Due regard should also be given to manning levels,

pipeline condition monitoring and maintenance system, remote operations, communications,

means of access to the right

maintenance without interruption of the pipeline operation, etc. Requirements for pipeline

Feb. 2019

6

This standard is based on International System of Units (SI), as per IPS-E-

Based on the hazard potential of a fluid transported in the pipeline, it should be categorized in

one of the four groups in table 1.

Table 1 - Fluid categories

Description

flammable, stable and non-toxic fluids which are in liquid form at ambient temperature and atmospheric pressure.

Flammable, or unstable or toxic fluids which are in liquid form at

ambient temperature and atmospheric pressure.

flammable, stable, non-toxic fluids which are in gaseous form

or a mixture of gas and liquid at ambient temperature and

atmospheric pressure.

Flammable, or unstable or toxic fluids which are in gaseous form or

a mixture of gas and liquid at ambient temperature and atmospheric

: For definition of flammable, stable and toxic fluids see 3.2 of this Standard.

The relevant sections of ASME B31.4 and ASME B31.8 and other standards referred to and

supplemented by this Standard shall be used for design of the pipeline in which the operating

conditions and requirements, ease of inspection and maintenance, environmen

safety requirements, geographic location, climatic, geotechnic and seismic conditions as well as

future changes and expansions should be taken into account over the pipeline entire projected life

cycle including its final abandonment.

requirements

In designing the pipeline and its associated piping systems, due account shall be given to the

operation, inspection and maintenance requirements for the predicted life cycle and the planned

conditions and criteria as set by and/or agreed in advance with the personnel responsible for the

operation and maintenance of the pipeline. Due regard should also be given to manning levels,

pipeline condition monitoring and maintenance system, remote operations, communications,

he right-of-way, by-pass requirements for components needing regular

maintenance without interruption of the pipeline operation, etc. Requirements for pipeline

IPS-E-PI-140(2)

-GN-100 except where

should be categorized in

Example

toxic fluids which are in liquid Water base fluids,

Slurries

Flammable, or unstable or toxic fluids which are in liquid form at Stabilized crude, Gas

oil, Methanol

toxic fluids which are in gaseous form

liquid at ambient temperature and

Nitrogen, Carbon

Dioxide, Argon, Air

Flammable, or unstable or toxic fluids which are in gaseous form or

a mixture of gas and liquid at ambient temperature and atmospheric

Hydrogen, Ethane,

Ethylene, Natural gas,

LPG (Propane and

Butane),

Ammonia, Chlorine

The relevant sections of ASME B31.4 and ASME B31.8 and other standards referred to and

supplemented by this Standard shall be used for design of the pipeline in which the operating

conditions and requirements, ease of inspection and maintenance, environmental conditions,

safety requirements, geographic location, climatic, geotechnic and seismic conditions as well as

future changes and expansions should be taken into account over the pipeline entire projected life

In designing the pipeline and its associated piping systems, due account shall be given to the

operation, inspection and maintenance requirements for the predicted life cycle and the planned

ed in advance with the personnel responsible for the

operation and maintenance of the pipeline. Due regard should also be given to manning levels,

pipeline condition monitoring and maintenance system, remote operations, communications,

pass requirements for components needing regular

maintenance without interruption of the pipeline operation, etc. Requirements for pipeline

Page 12: Technical requirements and engineering recommendations …

integrity monitoring such as corrosion monitoring, leak detection, supervisory control and data

acquisition (SCADA)1 shall be established at the design stage.

7-3 Economic considerations

When there are alternatives for designing and constructing a pipeline, an economic analysis shall

be carried out to determine the optimum design specifica

requirements with the highest technical integrity in the best possible way at the lowest possible

cost. The analysis should consider the following parameters as well as other factors which could

have significant cost implications on the one hand and safety risks and environmental impacts on

the other:

a) Different pipe diameters, operating pressures, flow velocities, materials, etc.

b) Distances between booster stations, with due consideration to other facilities requir

operation and maintenance of booster stations.

c) Alternative routes with their problems, peculiarities, impacts and risks with due consideration

to the interaction between the pipeline and the environment during each stage of the pipeline life

cycle.

d) Various construction methods particularly at different crossings, difficult terrains, marshy

areas, etc.

7-4 Hydraulic design

7-4-1 General considerations

Flow rate and pressure drop calculations may be made for the pipelines in various services using

the formulas and methods set out in this Sub

methods for calculating the pressure drops quoted or referred to in this Sub

to be generally consistent with

more accurate methods of calculation should be considered for particular cases and where the

fluid characteristics are fully known.

For a given pipe size, fluid characteristics and flow rate, a hydraulic analysis should be carried

out to establish the possible range of operational parameters which should provide the pressure

and temperature profiles along the pipeline for steady state and transient conditions

summer and winter cases by taking full account of the possible changes in flow rates and

operational modes over the life span of the pipeline.

The analysis should provide data to address the following:

- Surge pressure during sudden shut

- Turn-down limitation and inhibitiors or insulation requirements to avoid wax or hydrates or

other impurities to deposit.

- Effect of flow rates on the efficiency of the corrosion inhibitors.

- Liquid catching and slug control requirement especially at th

lines or at the low pressure points.

1- Supervisory control and data acquisition

Feb. 2019

7

integrity monitoring such as corrosion monitoring, leak detection, supervisory control and data

shall be established at the design stage.

considerations (Optimization)

When there are alternatives for designing and constructing a pipeline, an economic analysis shall

be carried out to determine the optimum design specifications to meet the specified operating

requirements with the highest technical integrity in the best possible way at the lowest possible

cost. The analysis should consider the following parameters as well as other factors which could

mplications on the one hand and safety risks and environmental impacts on

Different pipe diameters, operating pressures, flow velocities, materials, etc.

Distances between booster stations, with due consideration to other facilities requir

operation and maintenance of booster stations.

Alternative routes with their problems, peculiarities, impacts and risks with due consideration

to the interaction between the pipeline and the environment during each stage of the pipeline life

Various construction methods particularly at different crossings, difficult terrains, marshy

considerations

Flow rate and pressure drop calculations may be made for the pipelines in various services using

ulas and methods set out in this Sub-section and appendixes. Although the equations and

methods for calculating the pressure drops quoted or referred to in this Sub

to be generally consistent with the actual experienced results during operation, nevertheless,

more accurate methods of calculation should be considered for particular cases and where the

fluid characteristics are fully known.

For a given pipe size, fluid characteristics and flow rate, a hydraulic analysis should be carried

ut to establish the possible range of operational parameters which should provide the pressure

and temperature profiles along the pipeline for steady state and transient conditions

by taking full account of the possible changes in flow rates and

operational modes over the life span of the pipeline.

The analysis should provide data to address the following:

Surge pressure during sudden shut-down of the liquid lines.

down limitation and inhibitiors or insulation requirements to avoid wax or hydrates or

Effect of flow rates on the efficiency of the corrosion inhibitors.

Liquid catching and slug control requirement especially at the downstream end of two

lines or at the low pressure points.

upervisory control and data acquisition

IPS-E-PI-140(2)

integrity monitoring such as corrosion monitoring, leak detection, supervisory control and data

When there are alternatives for designing and constructing a pipeline, an economic analysis shall

tions to meet the specified operating

requirements with the highest technical integrity in the best possible way at the lowest possible

cost. The analysis should consider the following parameters as well as other factors which could

mplications on the one hand and safety risks and environmental impacts on

Different pipe diameters, operating pressures, flow velocities, materials, etc.

Distances between booster stations, with due consideration to other facilities required for

Alternative routes with their problems, peculiarities, impacts and risks with due consideration

to the interaction between the pipeline and the environment during each stage of the pipeline life

Various construction methods particularly at different crossings, difficult terrains, marshy

Flow rate and pressure drop calculations may be made for the pipelines in various services using

section and appendixes. Although the equations and

methods for calculating the pressure drops quoted or referred to in this Sub-section have proved

peration, nevertheless,

more accurate methods of calculation should be considered for particular cases and where the

For a given pipe size, fluid characteristics and flow rate, a hydraulic analysis should be carried

ut to establish the possible range of operational parameters which should provide the pressure

and temperature profiles along the pipeline for steady state and transient conditions for both

by taking full account of the possible changes in flow rates and

down limitation and inhibitiors or insulation requirements to avoid wax or hydrates or

e downstream end of two-phase

Page 13: Technical requirements and engineering recommendations …

- Effect of higher velocity ranges on impingement, cavitations and erosion on pipe wall, fittings

and valves.

- Cleaning requirements for water and other corrosive substances which may depo

7-4-2 Velocity limitations

For liquid lines the normal average flow velocities should be selected between 1 to 2 m/s.

Operations above 4 m/s should be avoided and lines containing a separate water phase (even in

small quantity such as 1% water c

water dropout which may create corrosive situations).

For gas lines the normal average flow velocities should be selected between 5 to 10 m/s and in

special cases, continuous operations up to 20

selected for fluids containing solid particles where maximum velocity will be dictated by the

occurrence of erosion.

Note:

1) The maximum velocity that can be obtained by a compressible fluid is the critical or

velocity (appendix A). In no case should the operating velocity exceed one half of the critical

velocity.

2) Where a mixture of gas and liquid is being transported, the erosional velocity may be

determined according to appendix B.

3) If sand or other erosive solids are expected to be present, the fluid velocity should be reduced

and/or special materials selected to avoid or reduce erosion.

However in two-phase lines (especially for long lines with elevation changes) the velocity shall

be selected to have a suitable flow regime with minimum pressure drop across the line.

4) Generally, the design pressure of pipeline should be at least equal to the maximum operating

pressure plus 10 percent or plus 350 kPa, whichever is greater; unless the company agree other

criterias based on situations.

7-4-3 Pressure drop calculations

In hydraulic calculations of the pressure drop for liquid or gas flows (single phase fluids) under

different conditions must be determined the influence of the physical properties of the fluid to be

used in the relationship (for example, the viscosity and fluid d

temperature change along the transmission rout). In the case of single

there are valid softwares that does not only

calculations but also consider changes in the physical properties of the fluid in hydraulic

calculations.

In the case of two-phase fluid lines, the use of methods based on the hydraulic models of

numerical calculation are recommended.

Therefore, using empirical equations and approximations for two

should be avoided and utilize valid softwares is recommended.

In Appendix C, a summarized classification of estimation formulas is given for hydraulic design

of pipelines.

In this section, the following should be considered:

1) Flow lines should be sized primarily on the basis of flow velocity which should be kept at

Feb. 2019

8

Effect of higher velocity ranges on impingement, cavitations and erosion on pipe wall, fittings

Cleaning requirements for water and other corrosive substances which may depo

For liquid lines the normal average flow velocities should be selected between 1 to 2 m/s.

Operations above 4 m/s should be avoided and lines containing a separate water phase (even in

small quantity such as 1% water cut) should not operate at velocities below 1 m/s (to prevent

water dropout which may create corrosive situations).

For gas lines the normal average flow velocities should be selected between 5 to 10 m/s and in

special cases, continuous operations up to 20 m/s. Velocities lower than 5 m/s may have to be

selected for fluids containing solid particles where maximum velocity will be dictated by the

The maximum velocity that can be obtained by a compressible fluid is the critical or

velocity (appendix A). In no case should the operating velocity exceed one half of the critical

Where a mixture of gas and liquid is being transported, the erosional velocity may be

ned according to appendix B.

ve solids are expected to be present, the fluid velocity should be reduced

and/or special materials selected to avoid or reduce erosion.

phase lines (especially for long lines with elevation changes) the velocity shall

suitable flow regime with minimum pressure drop across the line.

Generally, the design pressure of pipeline should be at least equal to the maximum operating

pressure plus 10 percent or plus 350 kPa, whichever is greater; unless the company agree other

Pressure drop calculations

In hydraulic calculations of the pressure drop for liquid or gas flows (single phase fluids) under

different conditions must be determined the influence of the physical properties of the fluid to be

used in the relationship (for example, the viscosity and fluid density as measured by the

temperature change along the transmission rout). In the case of single-phase liquid or gas lines,

there are valid softwares that does not only use appropriate relatio

calculations but also consider changes in the physical properties of the fluid in hydraulic

phase fluid lines, the use of methods based on the hydraulic models of

numerical calculation are recommended.

Therefore, using empirical equations and approximations for two-phase flows calculations

should be avoided and utilize valid softwares is recommended.

In Appendix C, a summarized classification of estimation formulas is given for hydraulic design

In this section, the following should be considered:

Flow lines should be sized primarily on the basis of flow velocity which should be kept at

IPS-E-PI-140(2)

Effect of higher velocity ranges on impingement, cavitations and erosion on pipe wall, fittings

Cleaning requirements for water and other corrosive substances which may deposit in the line.

For liquid lines the normal average flow velocities should be selected between 1 to 2 m/s.

Operations above 4 m/s should be avoided and lines containing a separate water phase (even in

ut) should not operate at velocities below 1 m/s (to prevent

For gas lines the normal average flow velocities should be selected between 5 to 10 m/s and in

m/s. Velocities lower than 5 m/s may have to be

selected for fluids containing solid particles where maximum velocity will be dictated by the

The maximum velocity that can be obtained by a compressible fluid is the critical or sonic

velocity (appendix A). In no case should the operating velocity exceed one half of the critical

Where a mixture of gas and liquid is being transported, the erosional velocity may be

ve solids are expected to be present, the fluid velocity should be reduced

phase lines (especially for long lines with elevation changes) the velocity shall

suitable flow regime with minimum pressure drop across the line.

Generally, the design pressure of pipeline should be at least equal to the maximum operating

pressure plus 10 percent or plus 350 kPa, whichever is greater; unless the company agree other

In hydraulic calculations of the pressure drop for liquid or gas flows (single phase fluids) under

different conditions must be determined the influence of the physical properties of the fluid to be

ensity as measured by the

phase liquid or gas lines,

use appropriate relationships for hydraulic

calculations but also consider changes in the physical properties of the fluid in hydraulic

phase fluid lines, the use of methods based on the hydraulic models of

phase flows calculations

In Appendix C, a summarized classification of estimation formulas is given for hydraulic design

Flow lines should be sized primarily on the basis of flow velocity which should be kept at

Page 14: Technical requirements and engineering recommendations …

least below fluid erosional velocity (see Note in 7.4.2).

the number of booster stations to determine the optimal fluid

considered in design.

2) The pressure drop in the flow line as well as other design parameters shall be such that gas

separation from the oil can not occur in the pipeline.

In natural gas liquid pipelines, thermal expansion and contraction of the liquid due to

temperature variations should be considered.

Also, the pressure at all points of the route shall be determined in such a way

evaporation of the fluid and the formation of a two

3) In natural gas liquid pipelines, thermal expansion and contraction of the liquid due to

temperature variations should be considered.

Also, the pressure at all points of the route shall be determined in such a way as to prevent the

evaporation of the fluid and the formation of a two

4) Gas gathering lines between wellhead separators and production units or NGL plants may

contain liquids and the effect of two

calculations. Also the effect of liquid accumulation at low sections of the pipelines with

provision of liquid knock-out traps, if necessary and where permitted, should be

the design.

5) If periodical cleaning of the pipeline from liquids and other deposits is considered necessary

by running pigs during operation, due regard should be given to the additional pressure

requirements for pigging.

6) It is recommended that, in order to increase the pipeline system's tolerance, the effects of

increasing pressure on gas condensation in the pipeline, regardless of the sections that reduce the

design pressure, are to be considered.

7) In ethylene and ethane transmission lines, it

below critical temperature. Therefore, operating conditions must be determined in the design of

the pipeline so that at a temperature below critical temperature, the two

pipeline is not formed.

7-5 Mechanical design

7-5-1 General considerations

7-5-1-1 Application of codes (category B fluids)

Pipelines carrying Category B fluids should be designed and constructed in accordance with

ASME B 31.4 and the additional requirements of this Standard.

7-5-1-2 Application of codes (category C and D fluids)

Pipelines carrying category C or D fluids should be designed and constructed in accordance with

ASME B 31.8 and the additional requirements of this Standard.

Notes:

1) Although LPG and anhydrous ammonia are covered by ASME B

Standard they fall under category D and therefore pipelines carrying these products should be

designed to ASME B 31.8.

2) Mechanical design for flow lines at the inhabited areas should be considered 50% of SMYS

Feb. 2019

9

least below fluid erosional velocity (see Note in 7.4.2). Also, the economic considerations and

the number of booster stations to determine the optimal fluid velocity along the route should be

The pressure drop in the flow line as well as other design parameters shall be such that gas

rom the oil can not occur in the pipeline.

In natural gas liquid pipelines, thermal expansion and contraction of the liquid due to

temperature variations should be considered.

Also, the pressure at all points of the route shall be determined in such a way

evaporation of the fluid and the formation of a two-phase flow in the pipeline.

In natural gas liquid pipelines, thermal expansion and contraction of the liquid due to

temperature variations should be considered.

all points of the route shall be determined in such a way as to prevent the

evaporation of the fluid and the formation of a two-phase flow in the pipeline.

Gas gathering lines between wellhead separators and production units or NGL plants may

ds and the effect of two-phase flow should be taken into account in pressure drop

calculations. Also the effect of liquid accumulation at low sections of the pipelines with

out traps, if necessary and where permitted, should be

If periodical cleaning of the pipeline from liquids and other deposits is considered necessary

by running pigs during operation, due regard should be given to the additional pressure

t, in order to increase the pipeline system's tolerance, the effects of

increasing pressure on gas condensation in the pipeline, regardless of the sections that reduce the

design pressure, are to be considered.

In ethylene and ethane transmission lines, it is possible to reduce the fluid temperature to

below critical temperature. Therefore, operating conditions must be determined in the design of

the pipeline so that at a temperature below critical temperature, the two

General considerations

Application of codes (category B fluids)

Pipelines carrying Category B fluids should be designed and constructed in accordance with

ASME B 31.4 and the additional requirements of this Standard.

codes (category C and D fluids)

Pipelines carrying category C or D fluids should be designed and constructed in accordance with

ASME B 31.8 and the additional requirements of this Standard.

Although LPG and anhydrous ammonia are covered by ASME B 31.4 but according to this

Standard they fall under category D and therefore pipelines carrying these products should be

Mechanical design for flow lines at the inhabited areas should be considered 50% of SMYS

IPS-E-PI-140(2)

the economic considerations and

along the route should be

The pressure drop in the flow line as well as other design parameters shall be such that gas

In natural gas liquid pipelines, thermal expansion and contraction of the liquid due to

Also, the pressure at all points of the route shall be determined in such a way as to prevent the

phase flow in the pipeline.

In natural gas liquid pipelines, thermal expansion and contraction of the liquid due to

all points of the route shall be determined in such a way as to prevent the

phase flow in the pipeline.

Gas gathering lines between wellhead separators and production units or NGL plants may

phase flow should be taken into account in pressure drop

calculations. Also the effect of liquid accumulation at low sections of the pipelines with

out traps, if necessary and where permitted, should be considered in

If periodical cleaning of the pipeline from liquids and other deposits is considered necessary

by running pigs during operation, due regard should be given to the additional pressure

t, in order to increase the pipeline system's tolerance, the effects of

increasing pressure on gas condensation in the pipeline, regardless of the sections that reduce the

is possible to reduce the fluid temperature to

below critical temperature. Therefore, operating conditions must be determined in the design of

the pipeline so that at a temperature below critical temperature, the two-phase flow in the

Pipelines carrying Category B fluids should be designed and constructed in accordance with

Pipelines carrying category C or D fluids should be designed and constructed in accordance with

31.4 but according to this

Standard they fall under category D and therefore pipelines carrying these products should be

Mechanical design for flow lines at the inhabited areas should be considered 50% of SMYS.

Page 15: Technical requirements and engineering recommendations …

7-5-1-3 Welding

Welding of carbon steel pipeline shall comply with

7-5-1-4 Pigging requirements

All pipelines shall be designed to have the capability of passing suitable types of pigs through

them as and when required.

Permanent pigging facilities should be considered for those pipelines which require frequent

pigging and/or have operational constraints. The distance between pigging stations should be

determined on the basis of anticipated pig wear and amount of collecte

pushed through as well as time required for traveling of pig between launcher and receiver.

Bends should have a sufficient radius to allow passage of those types of pigs which are

anticipated to pass through them

Permanent pig signalers should only be considered when frequent pigging operations are

anticipated. Flush mounted ancillary equipment, barred tees and sphere tees with suitable

drainage facilities should be considered where appropr

Pig launcher and receiver systems for pipelines shall be designed in accordance with

IPS-M-PI-130.

Valves to be used in the pipeline which will be pigged shall be full bore through

valve or full bore ball valves.

Reduced bore wedge gate or ball valves may be used in piping which is not to be pigged. Check

valves should not normally be installed in pipelines which will be pigged unless they have

special design to make them capable of passin

7-5-1-5 Hydrostatic testing

The pipeline and associated piping system to be hydrostatically tested in accordance with

IPS-C-PI-370.

7-5-1-6 Block valves

Block valves should be provided at each end of all pipelines,

the pipeline and where necessary for safety and maintenance reasons to isolate long pipelines

into sections as to limit the release of line content in case of leaks or line raptures.

The appropriate method of operating bl

determined from the likely effects of a leak or line rupture and its acceptable released volume

based on the total time in which a leak can be detected, located and isolated.

Automatic valves can be activated by detection of low pressure, increased flow, rate of loss of

pressure or a combination of these, or a signal from a leak detection system. Automatic valves

shall be fail-safe. The closure time of the valves shall not cause unacceptably high surge

pressures. The emergency shutdown valves shall be automatically actuated when an emergency

shutdown condition occurs at the plant or facility.

The requirements for determining the number and spacing of blocking valves are given in

ASME B31.4 and ASME B31.8 standards. In addition to that requirements, generally in order to

Feb. 2019

10

of carbon steel pipeline shall comply with IPS-C-PI-270.

All pipelines shall be designed to have the capability of passing suitable types of pigs through

Permanent pigging facilities should be considered for those pipelines which require frequent

pigging and/or have operational constraints. The distance between pigging stations should be

determined on the basis of anticipated pig wear and amount of collected solids which can be

pushed through as well as time required for traveling of pig between launcher and receiver.

Bends should have a sufficient radius to allow passage of those types of pigs which are

anticipated to pass through them. The minimum radius of hot bend should be 7D.

Permanent pig signalers should only be considered when frequent pigging operations are

anticipated. Flush mounted ancillary equipment, barred tees and sphere tees with suitable

drainage facilities should be considered where appropriate.

Pig launcher and receiver systems for pipelines shall be designed in accordance with

Valves to be used in the pipeline which will be pigged shall be full bore through

Reduced bore wedge gate or ball valves may be used in piping which is not to be pigged. Check

valves should not normally be installed in pipelines which will be pigged unless they have

special design to make them capable of passing pigs.

The pipeline and associated piping system to be hydrostatically tested in accordance with

Block valves should be provided at each end of all pipelines, at all connections and branches of

the pipeline and where necessary for safety and maintenance reasons to isolate long pipelines

into sections as to limit the release of line content in case of leaks or line raptures.

The appropriate method of operating block valves (i.e. locally, or automatically) shall be

determined from the likely effects of a leak or line rupture and its acceptable released volume

based on the total time in which a leak can be detected, located and isolated.

vated by detection of low pressure, increased flow, rate of loss of

pressure or a combination of these, or a signal from a leak detection system. Automatic valves

safe. The closure time of the valves shall not cause unacceptably high surge

essures. The emergency shutdown valves shall be automatically actuated when an emergency

shutdown condition occurs at the plant or facility.

The requirements for determining the number and spacing of blocking valves are given in

ASME B31.4 and ASME B31.8 standards. In addition to that requirements, generally in order to

IPS-E-PI-140(2)

All pipelines shall be designed to have the capability of passing suitable types of pigs through

Permanent pigging facilities should be considered for those pipelines which require frequent

pigging and/or have operational constraints. The distance between pigging stations should be

d solids which can be

pushed through as well as time required for traveling of pig between launcher and receiver.

Bends should have a sufficient radius to allow passage of those types of pigs which are

f hot bend should be 7D.

Permanent pig signalers should only be considered when frequent pigging operations are

anticipated. Flush mounted ancillary equipment, barred tees and sphere tees with suitable

Pig launcher and receiver systems for pipelines shall be designed in accordance with

Valves to be used in the pipeline which will be pigged shall be full bore through-conduit gate

Reduced bore wedge gate or ball valves may be used in piping which is not to be pigged. Check

valves should not normally be installed in pipelines which will be pigged unless they have

The pipeline and associated piping system to be hydrostatically tested in accordance with

at all connections and branches of

the pipeline and where necessary for safety and maintenance reasons to isolate long pipelines

into sections as to limit the release of line content in case of leaks or line raptures.

ock valves (i.e. locally, or automatically) shall be

determined from the likely effects of a leak or line rupture and its acceptable released volume

based on the total time in which a leak can be detected, located and isolated.

vated by detection of low pressure, increased flow, rate of loss of

pressure or a combination of these, or a signal from a leak detection system. Automatic valves

safe. The closure time of the valves shall not cause unacceptably high surge

essures. The emergency shutdown valves shall be automatically actuated when an emergency

The requirements for determining the number and spacing of blocking valves are given in

ASME B31.4 and ASME B31.8 standards. In addition to that requirements, generally in order to

Page 16: Technical requirements and engineering recommendations …

determine the number and spacing of blocking valves, engineering

taking into account the following conditions:

1) The effects of the nature and amount of pipeline fluid that can be released to the environment

through repair, leakage or line rupture on the inhabitants and the environment (especially so

gas pipelines).

2) Duration of discharge of the fluid from the isolated section of the pipeline.

3) Importance of pipeline service continuity.

4) Flexibility of service, maintenance and repair scheduling for pipeline.

5) Future development plans around the pipeline at intervals between blocking valves.

6) Conditions that can have a significant impact on pipeline operation and security.

7-5-1-7 Thermal relief valves (TRV)

Thermal relief valves should be considered for each section of

pig traps) that could be isolated by or between valves.

7-5-1-8 Pressure safety valves (PSV)

It should be used pressure safety valves for gas pipelines.

7-5-1-9 Vents and drains

Vent and drain connections shall be provided for

operation.

It is recommended that the necessary drain requirements be taken in such a way that the required

drainage time is less than 8 hours or one shift (whichever is less).

7-5-1-10 Valves and flanges

The rating of valves should be adequate for MAIP and test pressures of the pipeline subject to

ASME B 31.4 and ASME B 31.8 pressure and temperature limitations.

The number of flanges in the pipeline and piping systems should be kept to a minimum and

should be installed only to facilitate maintenance and inspection and where construction

conditions or process requirements dictate. Tie

7-5-1-11 Double block and bleed system

Double block and bleed system should be used in the situations where isolation of the

stream from the ancillary equipment is needed for safe operation and maintenance without

depressurizing the pipeline.

7-5-1-12 Emergency depressurization facilities

Emergency depressurization facilities (permanent or temporary for example Flare) shall be

considered at one end of all pipelines and for category C and D fluids, at each sectionalizing

valve location. The material specified for the blowdown system should be suitable for low

temperatures encountered during blowdown of category C and D fluids. The ca

Feb. 2019

11

determine the number and spacing of blocking valves, engineering assessment

taking into account the following conditions:

The effects of the nature and amount of pipeline fluid that can be released to the environment

through repair, leakage or line rupture on the inhabitants and the environment (especially so

Duration of discharge of the fluid from the isolated section of the pipeline.

Importance of pipeline service continuity.

Flexibility of service, maintenance and repair scheduling for pipeline.

Future development plans around the pipeline at intervals between blocking valves.

Conditions that can have a significant impact on pipeline operation and security.

Thermal relief valves (TRV)

Thermal relief valves should be considered for each section of liquid filled pipeline (including

pig traps) that could be isolated by or between valves.

Pressure safety valves (PSV)

It should be used pressure safety valves for gas pipelines.

Vent and drain connections shall be provided for satisfactory testing, commissioning and

It is recommended that the necessary drain requirements be taken in such a way that the required

drainage time is less than 8 hours or one shift (whichever is less).

should be adequate for MAIP and test pressures of the pipeline subject to

ASME B 31.4 and ASME B 31.8 pressure and temperature limitations.

The number of flanges in the pipeline and piping systems should be kept to a minimum and

o facilitate maintenance and inspection and where construction

conditions or process requirements dictate. Tie-in welds should be preferred.

Double block and bleed system

Double block and bleed system should be used in the situations where isolation of the

stream from the ancillary equipment is needed for safe operation and maintenance without

Emergency depressurization facilities

Emergency depressurization facilities (permanent or temporary for example Flare) shall be

idered at one end of all pipelines and for category C and D fluids, at each sectionalizing

valve location. The material specified for the blowdown system should be suitable for low

temperatures encountered during blowdown of category C and D fluids. The ca

IPS-E-PI-140(2)

essment shall be done

The effects of the nature and amount of pipeline fluid that can be released to the environment

through repair, leakage or line rupture on the inhabitants and the environment (especially sour

Duration of discharge of the fluid from the isolated section of the pipeline.

Future development plans around the pipeline at intervals between blocking valves.

Conditions that can have a significant impact on pipeline operation and security.

liquid filled pipeline (including

satisfactory testing, commissioning and

It is recommended that the necessary drain requirements be taken in such a way that the required

should be adequate for MAIP and test pressures of the pipeline subject to

The number of flanges in the pipeline and piping systems should be kept to a minimum and

o facilitate maintenance and inspection and where construction

in welds should be preferred.

Double block and bleed system should be used in the situations where isolation of the main

stream from the ancillary equipment is needed for safe operation and maintenance without

Emergency depressurization facilities (permanent or temporary for example Flare) shall be

idered at one end of all pipelines and for category C and D fluids, at each sectionalizing

valve location. The material specified for the blowdown system should be suitable for low

temperatures encountered during blowdown of category C and D fluids. The capacity of the

Page 17: Technical requirements and engineering recommendations …

blowdown system should be such that the pipeline can be depressurized as rapidly as practicable.

Due regards should be given to the control of excessive movements and vibration of the system

due to forces created by sudden blowdown.

7-5-1-13 Overpressure protection system

Any type of pressure control system shall not be considered as an overpressure protection

system. An overpressure protection system (consisting of mechanical safety/relief valves) shall

be fitted between the pipeline and the upstream

of MAIP of the pipeline. MAOP shall not be exceeded at any point along the pipeline during

normal continuous operations and MAIP shall not be exceeded at any point along the pipeline

during upset conditions of limited frequency and duration.

The pipeline system shall be designed such that surge pressure cannot exceed MAIP at any point

along the pipeline and will not trigger the over

from upstream facilities.

The occurrence of pressure surges should be determined for fluids with high density and low

compressibility (such as liquid fluids) by transient pressure analysis, using a specialized

simulation computer program. The location of the highest pre

should be recognized specially in hilly terrain.

Unacceptably high surge pressures shall be prevented by one or a combination of the following

methods:

- Valve closure speed reduction.

- Special fast-response pressure relief

- Strict adherence to well formulated operating procedures (especially when other methods are

insufficient).

7-5-1-14 Pipeline stability

Sections of the pipelines in swamps, floodable areas, high water table areas, r

shall be stable under the combined action of hydrostatic and hydrodynamic forces. The negative

buoyancy should be sufficient to prevent unacceptable lateral and vertical movements and

displacement of the pipeline.

The weight coating should normally be designed

buoyancy) of 1.2. In any case, the nature of the river bed should be taken into account in

determination of required weight.

be considered specific gravity related to the conditions of that fluids (such as pure water, sea

water, mud or other environments).

One or a combination of the following methods can be employed to achieve on

- Increasing the pipe wall thickness.

- Applying concrete weight coating.

- Installing spaced anchor points set

- Burying the pipeline.

Feb. 2019

12

blowdown system should be such that the pipeline can be depressurized as rapidly as practicable.

Due regards should be given to the control of excessive movements and vibration of the system

due to forces created by sudden blowdown.

ure protection system

Any type of pressure control system shall not be considered as an overpressure protection

system. An overpressure protection system (consisting of mechanical safety/relief valves) shall

be fitted between the pipeline and the upstream facilities which can generate pressures in excess

of MAIP of the pipeline. MAOP shall not be exceeded at any point along the pipeline during

normal continuous operations and MAIP shall not be exceeded at any point along the pipeline

of limited frequency and duration.

The pipeline system shall be designed such that surge pressure cannot exceed MAIP at any point

along the pipeline and will not trigger the over-pressure protection system if fitted for protection

The occurrence of pressure surges should be determined for fluids with high density and low

compressibility (such as liquid fluids) by transient pressure analysis, using a specialized

simulation computer program. The location of the highest pressure points along the pipeline

should be recognized specially in hilly terrain.

Unacceptably high surge pressures shall be prevented by one or a combination of the following

Valve closure speed reduction.

response pressure relief systems close to the point of surge initiation.

Strict adherence to well formulated operating procedures (especially when other methods are

Sections of the pipelines in swamps, floodable areas, high water table areas, r

shall be stable under the combined action of hydrostatic and hydrodynamic forces. The negative

buoyancy should be sufficient to prevent unacceptable lateral and vertical movements and

hould normally be designed based on the safety coefficient (for negative

. In any case, the nature of the river bed should be taken into account in

determination of required weight. Also for buoyancy force calculations of different fluids,

be considered specific gravity related to the conditions of that fluids (such as pure water, sea

water, mud or other environments).

One or a combination of the following methods can be employed to achieve on

wall thickness.

Applying concrete weight coating.

Installing spaced anchor points set-on weights or bolt-on weights.

IPS-E-PI-140(2)

blowdown system should be such that the pipeline can be depressurized as rapidly as practicable.

Due regards should be given to the control of excessive movements and vibration of the system

Any type of pressure control system shall not be considered as an overpressure protection

system. An overpressure protection system (consisting of mechanical safety/relief valves) shall

facilities which can generate pressures in excess

of MAIP of the pipeline. MAOP shall not be exceeded at any point along the pipeline during

normal continuous operations and MAIP shall not be exceeded at any point along the pipeline

The pipeline system shall be designed such that surge pressure cannot exceed MAIP at any point

pressure protection system if fitted for protection

The occurrence of pressure surges should be determined for fluids with high density and low

compressibility (such as liquid fluids) by transient pressure analysis, using a specialized

ssure points along the pipeline

Unacceptably high surge pressures shall be prevented by one or a combination of the following

systems close to the point of surge initiation.

Strict adherence to well formulated operating procedures (especially when other methods are

Sections of the pipelines in swamps, floodable areas, high water table areas, river crossings, etc.

shall be stable under the combined action of hydrostatic and hydrodynamic forces. The negative

buoyancy should be sufficient to prevent unacceptable lateral and vertical movements and

based on the safety coefficient (for negative

. In any case, the nature of the river bed should be taken into account in

force calculations of different fluids, it shall

be considered specific gravity related to the conditions of that fluids (such as pure water, sea

One or a combination of the following methods can be employed to achieve on-bottom stability:

Page 18: Technical requirements and engineering recommendations …

- Using Geotextile.

The pipeline shall be stable while empty or filled with water (for test) or with fluid for

designed. When calculating the negative buoyancy the density of water

shall be taken into account.

Special consideration shall be given to possible differential settlements in weak soils which may

cause damage to the pipeline.

7-5-2 Pipeline wall thickness calculating basis

7-5-2-1 Minimum wall thickness

The nominal pipe wall thickness shall not be less than 4.8 mm and shall be calculated according

to ASME B 31.4 for category B service and ASME B 31.8 for categories C and D services.

Special attention shall be paid to the requirements given in the above mentioned standards for the

least wall thickness of the pipe when the ratio of pipe nominal diameter to wall thickness exceeds

96.

7-5-2-2 Design factors (for hoop stress limitation)

The recommended design factors for the calculation of the nominal wall thickness (excluding

any corrosion allowance) are given in the table 2.

Feb. 2019

13

The pipeline shall be stable while empty or filled with water (for test) or with fluid for

designed. When calculating the negative buoyancy the density of water

Special consideration shall be given to possible differential settlements in weak soils which may

Pipeline wall thickness calculating basis

Minimum wall thickness

The nominal pipe wall thickness shall not be less than 4.8 mm and shall be calculated according

to ASME B 31.4 for category B service and ASME B 31.8 for categories C and D services.

Special attention shall be paid to the requirements given in the above mentioned standards for the

least wall thickness of the pipe when the ratio of pipe nominal diameter to wall thickness exceeds

Design factors (for hoop stress limitation)

ended design factors for the calculation of the nominal wall thickness (excluding

any corrosion allowance) are given in the table 2.

IPS-E-PI-140(2)

The pipeline shall be stable while empty or filled with water (for test) or with fluid for which it is

designed. When calculating the negative buoyancy the density of water-logged backfill mud

Special consideration shall be given to possible differential settlements in weak soils which may

The nominal pipe wall thickness shall not be less than 4.8 mm and shall be calculated according

to ASME B 31.4 for category B service and ASME B 31.8 for categories C and D services.

Special attention shall be paid to the requirements given in the above mentioned standards for the

least wall thickness of the pipe when the ratio of pipe nominal diameter to wall thickness exceeds

ended design factors for the calculation of the nominal wall thickness (excluding

Page 19: Technical requirements and engineering recommendations …

Table 2

Fluid category

Applicable ASME code

Location classes

Pipelines

Crossings (Note 2) Private roads Unimproved public roads Roads, highways, streets and railways

Rivers, dunes and beaches

Parallel encroachments (Note 3) Private roads Unimproved public roads Roads, highways, streets and railways

Fabricated assemblies (Note 4)

Pipelines on bridges

Near concentration of people

Pipelines, block valve stations and pig

trap stations (Note 6)

Compressor/Pump station piping Notes:

1) ASME B 31.4 does not use design factors other than 0.72, which is considered inappropriate at critical locations (e.g.

crossings, within plant fences), and for fabricated assemblies. In these situations, design factors in line with ASME B

31.8 location Class 1 are recommended.

2) ASME B 31.8 differentiates crossings with casings and without casings. Because of the poor experience of cased

crossings (i.e. annular corrosion), the same design factor is recommended, whether a casing is used or not. Design

factors for crossings of rivers, dunes and beaches, not included in ASME B 31.8, are provided.

3) Parallel encroachments are defined as those

distance less than 50 meters. (The distance to the highway should be at least 76 meters).

4) Fabricated assemblies include pig traps, valve stations, headers, finger type slug catc

5) Concentrations of people are defined in ASME B 31.8 Article 840.3.

6) This category, not specifically covered in ASME B 31.8, is added for increased safety.

7-5-2-3 Strain based design for hot products pipelines

For hot products pipelines (above

maximum permanent deformation strain of 2% is acceptable.

7-5-2-4 Temperature derating factors

Derating factors for carbon steel materials operating at above 120°C should be used in

accordance with Table 841.1.8

required at lower temperatures (above 50°C).

Feb. 2019

14

Table 2 - Design factors for onshore steel pipelines

B C and

B 31.4

(Note 1) B 31.8

- 1 2

0.72 0.72 0.60

Roads, highways, streets and railways

0.72

0.60

0.60

0.60

0.60

0.72

0.60

0.60 0.60

0.60

0.60

0.60

0.60

0.60

0.60

Roads, highways, streets and railways

0.72 0.72

0.72

0.72

0.72 0.72 0.60

0.60

0.60 0.60 0.60

0.60

0.60 0.60 0.60

0.60 0.60 0.60

0.72

0.50

(Note 5)

0.50

(Note 5)

Pipelines, block valve stations and pig

0.60

0.60

0.60

0.60 0.50 0.50

ASME B 31.4 does not use design factors other than 0.72, which is considered inappropriate at critical locations (e.g.

plant fences), and for fabricated assemblies. In these situations, design factors in line with ASME B

31.8 location Class 1 are recommended.

ASME B 31.8 differentiates crossings with casings and without casings. Because of the poor experience of cased

rossings (i.e. annular corrosion), the same design factor is recommended, whether a casing is used or not. Design

factors for crossings of rivers, dunes and beaches, not included in ASME B 31.8, are provided.

Parallel encroachments are defined as those sections of a pipeline running parallel to existing roads or railways, at a

distance less than 50 meters. (The distance to the highway should be at least 76 meters).

Fabricated assemblies include pig traps, valve stations, headers, finger type slug catchers, etc.

Concentrations of people are defined in ASME B 31.8 Article 840.3.

This category, not specifically covered in ASME B 31.8, is added for increased safety.

Strain based design for hot products pipelines

For hot products pipelines (above 80°C) strain based approach may be used. In this case a

maximum permanent deformation strain of 2% is acceptable.

Temperature derating factors

factors for carbon steel materials operating at above 120°C should be used in

1.8-1 of ASME B 31.8. For duplex stainless steel, derating is

required at lower temperatures (above 50°C).

IPS-E-PI-140(2)

and D

B 31.8

3 4

0.50 0.40

0.50 0.50

0.50 0.50

0.50

0.40 0.40

0.40 0.40

0.40

0.50 0.50 0.50

0.50

0.40 0.40

0.40

0.40

0.50 0.40

0.50 0.40

0.50 0.40

0.50

0.40

0.50 0.40

ASME B 31.4 does not use design factors other than 0.72, which is considered inappropriate at critical locations (e.g.

plant fences), and for fabricated assemblies. In these situations, design factors in line with ASME B

ASME B 31.8 differentiates crossings with casings and without casings. Because of the poor experience of cased

rossings (i.e. annular corrosion), the same design factor is recommended, whether a casing is used or not. Design

factors for crossings of rivers, dunes and beaches, not included in ASME B 31.8, are provided.

sections of a pipeline running parallel to existing roads or railways, at a

hers, etc.

80°C) strain based approach may be used. In this case a

factors for carbon steel materials operating at above 120°C should be used in

of ASME B 31.8. For duplex stainless steel, derating is

Page 20: Technical requirements and engineering recommendations …

7-6 Pipeline Risks

7-6-1 General

The risk associated with the pipeline, in terms of the safety of people, damage to the environment

and loss of income depends on the expected failure frequency and the associated consequence,

which is directly related to the type of fluids transported and the sensitivity of locations of the

pipeline. In this context, pipeline failures are defined as loss of containment.

The potential pipeline failures, causes and their consequences should be inventories and taken

into account in the design and the operating philosophy. The most common pipeline threats

which may lead to the loss of technical integrity are given below.

- Internal corrosion and hydrogen induced cracking (HIC).

- Internal erosion.

- External corrosion and bi-carbonate stress corrosion cracking.

- Mechanical impact, external interference.

- Fatigue.

- Hydrodynamic forces.

- Geo-technical forces.

- Growth of material defects.

- Over pressurization.

- Thermal expansion forces.

Notwithstanding the requirements of the ASME B31.4/8 and this standard, the factors which are

critical to public safety and the protection of the environment should be analyzed over the enti

life of the pipeline, including abandonment. The risk should be reduced to as low as reasonably

practicable, with the definite objective of preventing leaks. The level of risk may change with

time, and it is likely to increase to some extent as the pipe

7-6-2 Safety risk assessments

A quantitative risk assessment (QRA) should be carried out in the following situations with

specified location classes.

- Fluid category B and C in location classes 3

- Fluid category D in all location classes.

The assessment should confirm that the selected

distances (9.3) are adequate.

The risk depends firstly on the expected frequency of failure, due to internal and external

corrosion, external loading (e.g. impact

construction defects, and operational mishaps. Secondly, it depends on the consequences of the

failure, based on the nature of the fluid in terms of flammability, stability, toxicity and polluting

effect, the location of the pipeline in terms of ignition sources, population densities and

proximity to occupied buildings, and the prevailing climatic conditions. The expected frequency

Feb. 2019

15

The risk associated with the pipeline, in terms of the safety of people, damage to the environment

depends on the expected failure frequency and the associated consequence,

which is directly related to the type of fluids transported and the sensitivity of locations of the

pipeline. In this context, pipeline failures are defined as loss of containment.

The potential pipeline failures, causes and their consequences should be inventories and taken

into account in the design and the operating philosophy. The most common pipeline threats

which may lead to the loss of technical integrity are given below.

ternal corrosion and hydrogen induced cracking (HIC).

carbonate stress corrosion cracking.

Mechanical impact, external interference.

Notwithstanding the requirements of the ASME B31.4/8 and this standard, the factors which are

critical to public safety and the protection of the environment should be analyzed over the enti

life of the pipeline, including abandonment. The risk should be reduced to as low as reasonably

practicable, with the definite objective of preventing leaks. The level of risk may change with

time, and it is likely to increase to some extent as the pipeline ages.

Safety risk assessments

A quantitative risk assessment (QRA) should be carried out in the following situations with

Fluid category B and C in location classes 3 and 4.

Fluid category D in all location classes.

The assessment should confirm that the selected design factors clause (7.5.2.2) and proximity

The risk depends firstly on the expected frequency of failure, due to internal and external

corrosion, external loading (e.g. impacts, settlement differences, and free spans), material or

construction defects, and operational mishaps. Secondly, it depends on the consequences of the

failure, based on the nature of the fluid in terms of flammability, stability, toxicity and polluting

ect, the location of the pipeline in terms of ignition sources, population densities and

proximity to occupied buildings, and the prevailing climatic conditions. The expected frequency

IPS-E-PI-140(2)

The risk associated with the pipeline, in terms of the safety of people, damage to the environment

depends on the expected failure frequency and the associated consequence,

which is directly related to the type of fluids transported and the sensitivity of locations of the

pipeline. In this context, pipeline failures are defined as loss of containment.

The potential pipeline failures, causes and their consequences should be inventories and taken

into account in the design and the operating philosophy. The most common pipeline threats

Notwithstanding the requirements of the ASME B31.4/8 and this standard, the factors which are

critical to public safety and the protection of the environment should be analyzed over the entire

life of the pipeline, including abandonment. The risk should be reduced to as low as reasonably

practicable, with the definite objective of preventing leaks. The level of risk may change with

A quantitative risk assessment (QRA) should be carried out in the following situations with

design factors clause (7.5.2.2) and proximity

The risk depends firstly on the expected frequency of failure, due to internal and external

s, settlement differences, and free spans), material or

construction defects, and operational mishaps. Secondly, it depends on the consequences of the

failure, based on the nature of the fluid in terms of flammability, stability, toxicity and polluting

ect, the location of the pipeline in terms of ignition sources, population densities and

proximity to occupied buildings, and the prevailing climatic conditions. The expected frequency

Page 21: Technical requirements and engineering recommendations …

of failure and the possible consequences may be time

entire life of the pipeline.

Risks levels can be reduced by using lower design factors (e.g. higher wall thickness or stronger

steel), rerouting, providing additional protection to the pipeline, application of facilities to

minimize any released fluid volumes, and controlled methods of operation, maintenance and

inspection.

Note:

Pipelines with a wall thickness lower than 10 mm are susceptible to penetration, even by small

mechanical excavators. External interference by third parties

failures.

Specific precautions against this type of hazard should be addressed; this is particularly relevant

to pipelines transporting category C and D fluids.

7-6-3 Environmental impact assessments

An environmental impact assessme

pipelines.

EIA is a process for identifying the possible impact of a project on the environment, for

determining the significance of those impacts, and for designing strategies and means to

eliminate or minimize adverse impacts.

An EIA should consider the interaction between the pipeline and the environment during each

stage of the pipeline life cycle. The characteristics of the environment may affect pipeline design,

construction method, reinstatement techniques, and operations philosophy.

8 Materials

8-1 General

Depending mainly on the type of the fluid to be transported, specially its corrosivity

regime, temperature and pressure, the selection of pipeline material type can become a

fundamental issue which should be decided at the conceptual design stage of a pipeline project.

The most frequently used pipeline materials are metallic, especial

protection of internal corrosion and erosion of the pipe wall, which are governed by a variety of

process conditions such as corrosivity of the fluid (particularly due to presence of water

combined with hydrogen sulphide, carbon

of the fluid as well as deposition of solids, etc., can not be easily achieved in the same manner as

for the protection of external corrosion, the selection of pipeline material should be made after

careful consideration of all conditions to ensure that pipeline can remain fit

throughout its life time.

When sour service conditions are foreseen (as specified in NACE MR 0175/ISO 15156) the line

pipe material and other materials shall be specif

or not the fluid is to be dehydrated and inhibitors are to be used.

Carbon steel line pipe material may be used in "light" corrosive conditions but with sufficient

corrosion allowance, inhibitor injection,

Feb. 2019

16

of failure and the possible consequences may be time-dependent and should be analyzed over the

Risks levels can be reduced by using lower design factors (e.g. higher wall thickness or stronger

steel), rerouting, providing additional protection to the pipeline, application of facilities to

any released fluid volumes, and controlled methods of operation, maintenance and

Pipelines with a wall thickness lower than 10 mm are susceptible to penetration, even by small

mechanical excavators. External interference by third parties is a major cause of pipeline

Specific precautions against this type of hazard should be addressed; this is particularly relevant

to pipelines transporting category C and D fluids.

Environmental impact assessments

An environmental impact assessment (EIA) shall be carried out for all pipelines or groups of

EIA is a process for identifying the possible impact of a project on the environment, for

determining the significance of those impacts, and for designing strategies and means to

inate or minimize adverse impacts.

An EIA should consider the interaction between the pipeline and the environment during each

stage of the pipeline life cycle. The characteristics of the environment may affect pipeline design,

tement techniques, and operations philosophy.

Depending mainly on the type of the fluid to be transported, specially its corrosivity

regime, temperature and pressure, the selection of pipeline material type can become a

fundamental issue which should be decided at the conceptual design stage of a pipeline project.

The most frequently used pipeline materials are metallic, especially carbon steel. Since the

protection of internal corrosion and erosion of the pipe wall, which are governed by a variety of

process conditions such as corrosivity of the fluid (particularly due to presence of water

combined with hydrogen sulphide, carbon dioxide or oxygen), temperature, pressure and velocity

of the fluid as well as deposition of solids, etc., can not be easily achieved in the same manner as

for the protection of external corrosion, the selection of pipeline material should be made after

reful consideration of all conditions to ensure that pipeline can remain fit

When sour service conditions are foreseen (as specified in NACE MR 0175/ISO 15156) the line

pipe material and other materials shall be specified to resist sour services, regardless of whether

or not the fluid is to be dehydrated and inhibitors are to be used.

Carbon steel line pipe material may be used in "light" corrosive conditions but with sufficient

corrosion allowance, inhibitor injection, appropriate inspection and controlled operation.

IPS-E-PI-140(2)

ld be analyzed over the

Risks levels can be reduced by using lower design factors (e.g. higher wall thickness or stronger

steel), rerouting, providing additional protection to the pipeline, application of facilities to

any released fluid volumes, and controlled methods of operation, maintenance and

Pipelines with a wall thickness lower than 10 mm are susceptible to penetration, even by small

is a major cause of pipeline

Specific precautions against this type of hazard should be addressed; this is particularly relevant

nt (EIA) shall be carried out for all pipelines or groups of

EIA is a process for identifying the possible impact of a project on the environment, for

determining the significance of those impacts, and for designing strategies and means to

An EIA should consider the interaction between the pipeline and the environment during each

stage of the pipeline life cycle. The characteristics of the environment may affect pipeline design,

Depending mainly on the type of the fluid to be transported, specially its corrosivity, flow

regime, temperature and pressure, the selection of pipeline material type can become a

fundamental issue which should be decided at the conceptual design stage of a pipeline project.

ly carbon steel. Since the

protection of internal corrosion and erosion of the pipe wall, which are governed by a variety of

process conditions such as corrosivity of the fluid (particularly due to presence of water

dioxide or oxygen), temperature, pressure and velocity

of the fluid as well as deposition of solids, etc., can not be easily achieved in the same manner as

for the protection of external corrosion, the selection of pipeline material should be made after

reful consideration of all conditions to ensure that pipeline can remain fit-for-purpose

When sour service conditions are foreseen (as specified in NACE MR 0175/ISO 15156) the line

ied to resist sour services, regardless of whether

Carbon steel line pipe material may be used in "light" corrosive conditions but with sufficient

appropriate inspection and controlled operation.

Page 22: Technical requirements and engineering recommendations …

Corrosion allowances in excess of 3 mm shall not be considered without detailed analysis by

corrosion specialists.

If conditions which may cause erosion can not be avoided, special materials with improved

designs to reduce or eliminate erosion should be used.

When selecting higher grades of steel line pipe (X60 and higher), special attention shall be

given to weld ability and welding procedure (specially requirement for preheating to 300°C) ,the

unfinished welds before re-welding, and required yield to tensile ratio. Use of grades higher than

X70 is not recommended at present.

When low temperatures are expected (e.g. at downstream of gas pressure reducing stations),

attention shall be given to the fracture

long running fractures). See IPS

8-2 Material procurement

All materials should comply with relevant

requirements set and/or approved by the Company and should be procured from company

approved Vendors/ Manufacturers/ Suppliers.

Depending on criticality of pipeline, type of material, past performance and quality control

system of manufacturer, the Comp

Company intends to perform (if any).

For each pipe size, sufficient spare materials for possible route deviations, transportation and

construction damages, testing and set

with the actual quantities required for the project.

8-3 Line pipe materials

Carbon steel line pipe shall be in accordance with API Spec. 5L supplemented by

Line pipe materials other than carbon steel shall comply with ASME B 31.4 and B 31.8 and this

supplement as well as other specific relevant supplements and codes specified by the Company.

Note:

Using line pipe as per API 5L (PSL1) is not allowed.

8-4 Valves

Valves shall comply with IPS

to match the pipe internal diameter.

Check valves should preferably be swing type to API

to prior approval of the Company.

8-5 Branch connections, fittings

Flanges and fittings shall comply with

Threaded connections (pipe to pipe, fittings, etc.) and slip

part of the pipeline system.

Allowable length of pup piece for

Feb. 2019

17

Corrosion allowances in excess of 3 mm shall not be considered without detailed analysis by

If conditions which may cause erosion can not be avoided, special materials with improved

to reduce or eliminate erosion should be used.

When selecting higher grades of steel line pipe (X60 and higher), special attention shall be

given to weld ability and welding procedure (specially requirement for preheating to 300°C) ,the

welding, and required yield to tensile ratio. Use of grades higher than

X70 is not recommended at present.

When low temperatures are expected (e.g. at downstream of gas pressure reducing stations),

attention shall be given to the fracture toughness properties of pipe material (for possibility of

IPS-M-PI-190.

All materials should comply with relevant codes, standards, specifications and technic

requirements set and/or approved by the Company and should be procured from company

approved Vendors/ Manufacturers/ Suppliers.

Depending on criticality of pipeline, type of material, past performance and quality control

system of manufacturer, the Company shall specify the level and extent of inspection that the

Company intends to perform (if any).

For each pipe size, sufficient spare materials for possible route deviations, transportation and

construction damages, testing and set-up of contingency stock should be estimated and ordered

with the actual quantities required for the project.

Carbon steel line pipe shall be in accordance with API Spec. 5L supplemented by

pipe materials other than carbon steel shall comply with ASME B 31.4 and B 31.8 and this

supplement as well as other specific relevant supplements and codes specified by the Company.

Using line pipe as per API 5L (PSL1) is not allowed.

IPS-M-PI-110. The valve inlet and outlet passages should be specified

to match the pipe internal diameter.

Check valves should preferably be swing type to API-6D. Other types may be c

to prior approval of the Company.

fittings, etc.

Flanges and fittings shall comply with IPS-M-PI-150.

Threaded connections (pipe to pipe, fittings, etc.) and slip-on flanges shall not be used in any

Allowable length of pup piece for Tie-in:

IPS-E-PI-140(2)

Corrosion allowances in excess of 3 mm shall not be considered without detailed analysis by

If conditions which may cause erosion can not be avoided, special materials with improved

When selecting higher grades of steel line pipe (X60 and higher), special attention shall be

given to weld ability and welding procedure (specially requirement for preheating to 300°C) ,the

welding, and required yield to tensile ratio. Use of grades higher than

When low temperatures are expected (e.g. at downstream of gas pressure reducing stations),

toughness properties of pipe material (for possibility of

codes, standards, specifications and technical

requirements set and/or approved by the Company and should be procured from company

Depending on criticality of pipeline, type of material, past performance and quality control

any shall specify the level and extent of inspection that the

For each pipe size, sufficient spare materials for possible route deviations, transportation and

k should be estimated and ordered

Carbon steel line pipe shall be in accordance with API Spec. 5L supplemented by IPS-M-PI-190.

pipe materials other than carbon steel shall comply with ASME B 31.4 and B 31.8 and this

supplement as well as other specific relevant supplements and codes specified by the Company.

. The valve inlet and outlet passages should be specified

6D. Other types may be considered subject

flanges shall not be used in any

Page 23: Technical requirements and engineering recommendations …

- For pipes smaller than 6 inches: 2.5D or 150 mm, whichever is greater.

- For pipe sizes 6 to 24 inches: 2D

- For pipes larger than 24 inches: 1D or 1220 mm,

Allowable length of pup piece in Branches, fittings and attachments

A diameter of branch or fittings, or six times wall thickness of thickest piece, or 150 mm,

whichever is the greater.

Allowable length of pup piece between girth

An outside diameter of pipe or 500 mm, whichever is the greater.

Flanges should preferably be of welding neck type and the neck should match the internal

diameter of the line pipe for welding. Flanged connections shall conform to the followings

- Raised face flanges for classes 600 and below.

- Ring type joint flanges for classes above 600 and flow lines.

Note:

Gaskets should be raised face spiral wound for raised face flanges. Branch or instrument

connections smaller than DN 50 (NPS 2) should not b

reasons. For pipelines smaller than DN 50 (NPS 2), the branch connections shall be of the same

diameter as the pipeline. Weldolets larger than DN 75 (NPS 3) should not be used.

9 Pipeline route selection

9-1 General

In selecting the route, full account shall be taken of the associated risks (particularly safety and

environmental risks based on location classes, fluid categories, expected frequency of failure,

etc.), the accessibility for maintenance and inspection, as we

line, difficult terrains and crossings, etc.).

Site checks of alternative routes should be made and available maps and geotechnical/geological

information should be studied before selecting a suitable route for detailed su

correspondence for the route and pipeline inquiries with the relevant departments and

organizations shall be carried out to ensure compliance with their regulatory requirements.

9-2 Route and soil surveys

Detailed survey data should be mad

out detailed design. These data shall comply with those indicated in

Additional plan and profile drawings at enlarged scales should be provided for difficult sections

such as crossings at rivers, roads, railways, etc. Full topographic surveys may be required for

certain areas.

The profile drawings should also indicate areas in which major excavation or elevated pipeline

supports may be required.

The radius of curvature of the pipeline foundation along the route should not be less than 500

Feb. 2019

18

For pipes smaller than 6 inches: 2.5D or 150 mm, whichever is greater.

For pipe sizes 6 to 24 inches: 2D

For pipes larger than 24 inches: 1D or 1220 mm, whichever is greater.

Allowable length of pup piece in Branches, fittings and attachments:

A diameter of branch or fittings, or six times wall thickness of thickest piece, or 150 mm,

Allowable length of pup piece between girth welds:

An outside diameter of pipe or 500 mm, whichever is the greater.

Flanges should preferably be of welding neck type and the neck should match the internal

diameter of the line pipe for welding. Flanged connections shall conform to the followings

aised face flanges for classes 600 and below.

Ring type joint flanges for classes above 600 and flow lines.

Gaskets should be raised face spiral wound for raised face flanges. Branch or instrument

connections smaller than DN 50 (NPS 2) should not be used on pipeline for mechanical strength

reasons. For pipelines smaller than DN 50 (NPS 2), the branch connections shall be of the same

diameter as the pipeline. Weldolets larger than DN 75 (NPS 3) should not be used.

selecting the route, full account shall be taken of the associated risks (particularly safety and

environmental risks based on location classes, fluid categories, expected frequency of failure,

etc.), the accessibility for maintenance and inspection, as well as economic factors (length of

line, difficult terrains and crossings, etc.).

Site checks of alternative routes should be made and available maps and geotechnical/geological

information should be studied before selecting a suitable route for detailed su

correspondence for the route and pipeline inquiries with the relevant departments and

organizations shall be carried out to ensure compliance with their regulatory requirements.

Detailed survey data should be made available before finalizing the pipeline route and carrying

out detailed design. These data shall comply with those indicated in client standard drawing

Additional plan and profile drawings at enlarged scales should be provided for difficult sections

ch as crossings at rivers, roads, railways, etc. Full topographic surveys may be required for

The profile drawings should also indicate areas in which major excavation or elevated pipeline

the pipeline foundation along the route should not be less than 500

IPS-E-PI-140(2)

A diameter of branch or fittings, or six times wall thickness of thickest piece, or 150 mm,

Flanges should preferably be of welding neck type and the neck should match the internal

diameter of the line pipe for welding. Flanged connections shall conform to the followings:

Gaskets should be raised face spiral wound for raised face flanges. Branch or instrument

e used on pipeline for mechanical strength

reasons. For pipelines smaller than DN 50 (NPS 2), the branch connections shall be of the same

diameter as the pipeline. Weldolets larger than DN 75 (NPS 3) should not be used.

selecting the route, full account shall be taken of the associated risks (particularly safety and

environmental risks based on location classes, fluid categories, expected frequency of failure,

ll as economic factors (length of

Site checks of alternative routes should be made and available maps and geotechnical/geological

information should be studied before selecting a suitable route for detailed survey. Also, required

correspondence for the route and pipeline inquiries with the relevant departments and

organizations shall be carried out to ensure compliance with their regulatory requirements.

e available before finalizing the pipeline route and carrying

client standard drawing.

Additional plan and profile drawings at enlarged scales should be provided for difficult sections

ch as crossings at rivers, roads, railways, etc. Full topographic surveys may be required for

The profile drawings should also indicate areas in which major excavation or elevated pipeline

the pipeline foundation along the route should not be less than 500

Page 24: Technical requirements and engineering recommendations …

times the pipeline diameter (bends should be used when lower values are necessary). Additional

data to be furnished as follows:

a) Geotechnical and other environmental data (such as lands

currents at river crossings, climatic data, vegetation, fauna, etc.).

b) Soil investigation for type and consolidation of ground for assessing the degree of excavation

difficulties.

c) Soil investigation for foundation

underground erosion and cavitations by acidic water or mining activities).

d) Water table levels at mid spring and winter along the route of the pipeline where it is to be

buried.

e) Soil resistivity along the pipeline route for coating selection and cathodic protection design.

Areas where soil properties may change due to causes such as Sulphide reducing bacteria, which

increases current required for cathodic protection systems, should be identi

f) The considered route should have the lowest number of intersections with faults, river and

road and avoid passing through rocky, swampy, pond, slippery and skidding lands.

9-3 Proximity to occupied buildings

For minimum distance of pipeline from

regulations enforced by related Company.

9-4 Proximity to other facilities

- For categories B, C and D, the separation requirements of the pipeline to other facilities within

plant fences should be in accordance with

- For separation requirement at crossings see Section 11 of this Standard.

- Refer to the Energy Institute Model code of Safe practice Part 15 for area classifications around

the pipeline.

9-5 Right-of-way

Every pipeline shall have a permanent right

constructed (including future additional lines) and to allow access for pipeline inspection and

maintenance.

Land acquisition drawings shall be prepared and necessary coordination with related authorities

shall be made.

9-5-1 Right-of-way width

For every pipeline project, the width of the right

following criteria:

- Pipeline being buried or above ground.

- Diameter of the pipeline.

- Method of construction.

Feb. 2019

19

times the pipeline diameter (bends should be used when lower values are necessary). Additional

data to be furnished as follows:

Geotechnical and other environmental data (such as landslides, faults, earthquakes, floods,

currents at river crossings, climatic data, vegetation, fauna, etc.).

Soil investigation for type and consolidation of ground for assessing the degree of excavation

Soil investigation for foundation design (burial and/or support design), subsidence areas (e.g.

underground erosion and cavitations by acidic water or mining activities).

Water table levels at mid spring and winter along the route of the pipeline where it is to be

ivity along the pipeline route for coating selection and cathodic protection design.

Areas where soil properties may change due to causes such as Sulphide reducing bacteria, which

increases current required for cathodic protection systems, should be identi

The considered route should have the lowest number of intersections with faults, river and

road and avoid passing through rocky, swampy, pond, slippery and skidding lands.

occupied buildings

For minimum distance of pipeline from occupied buildings, reference shall be made to the safety

regulations enforced by related Company.

facilities

For categories B, C and D, the separation requirements of the pipeline to other facilities within

ccordance with IPS-E-PI-240.

For separation requirement at crossings see Section 11 of this Standard.

Refer to the Energy Institute Model code of Safe practice Part 15 for area classifications around

Every pipeline shall have a permanent right-of-way with sufficient width to enable the line to be

constructed (including future additional lines) and to allow access for pipeline inspection and

shall be prepared and necessary coordination with related authorities

For every pipeline project, the width of the right-of-way should be decided based on the

Pipeline being buried or above ground.

IPS-E-PI-140(2)

times the pipeline diameter (bends should be used when lower values are necessary). Additional

lides, faults, earthquakes, floods,

Soil investigation for type and consolidation of ground for assessing the degree of excavation

design (burial and/or support design), subsidence areas (e.g.

Water table levels at mid spring and winter along the route of the pipeline where it is to be

ivity along the pipeline route for coating selection and cathodic protection design.

Areas where soil properties may change due to causes such as Sulphide reducing bacteria, which

increases current required for cathodic protection systems, should be identified.

The considered route should have the lowest number of intersections with faults, river and

road and avoid passing through rocky, swampy, pond, slippery and skidding lands.

occupied buildings, reference shall be made to the safety

For categories B, C and D, the separation requirements of the pipeline to other facilities within

Refer to the Energy Institute Model code of Safe practice Part 15 for area classifications around

way with sufficient width to enable the line to be

constructed (including future additional lines) and to allow access for pipeline inspection and

shall be prepared and necessary coordination with related authorities

way should be decided based on the

Page 25: Technical requirements and engineering recommendations …

- Zigzag configuration of above ground pipeline.

- Pipeline being in flat areas or in mountainous or hilly areas, etc.

- Future pipelines along the same route (particularly in hilly and mountainous areas

blasting and/or excavation for widening the existing right

- Type of fluid and pressure of the pipeline and the consequential risks of pipeline failure.

For buried pipeline widths of right

The following figures can be considered as minimum widths of right

increased where necessary to suit the particular requirements of a specific project or may be

reduced, subject to prior approval of the Company, if certain restrictions do not permit widening

of the right-of-way to the required ideal widths:

a) For above ground pipelines in flat areas:

- For DN 150 (NPS 6) and below: 25 m

- For DN 200 (NPS 8) up to and

- For above DN 650 (NPS 26) and

b) For above ground pipelines in hilly and

- For DN 400 (NPS 16) and below: 21 m

- For above DN 400 (NPS 16): 24 m

c) For buried pipelines, widths of right

specified

Notes:

1) It is not permitted to place several pipelines in a same trench; however, under certain

conditions, which do not have sufficient space to pass the pipeline, and with the approval of the

company, when several pipelines must pass through

surfaces between the two adjacent pipelines should

determine the proper distances for pipelines with separate trenches or above ground. Under

certain conditions, where space is not sufficien

be changed with the assessment of engineering and the approval of the company.

2) The crossing of existing pipelines, cables, power lines, roads, railways and waterways

should be at an angle between 90 and

3) If the pipeline is in a parallel path with high voltage power lines, the effects of the induction

current in the pipeline can lead to corrosion; in this case, the following should be considered

generally:

- The limits for pipelines that mention

- In the case of pipelines in parallel with high voltage power lines with voltages of 63 KW or

greater, risk assessment shall be carried out in accordance with BS EN ISO 18086 and the

necessary measures are taken to minimize and control the inductive effec

cathodic protection systems shall be designed in accordance with that effects.

- If the pipeline is at a distance of 3 km or less parallely along with high voltage power lines with

Feb. 2019

20

Zigzag configuration of above ground pipeline.

Pipeline being in flat areas or in mountainous or hilly areas, etc.

Future pipelines along the same route (particularly in hilly and mountainous areas

blasting and/or excavation for widening the existing right-of-way may create problem).

Type of fluid and pressure of the pipeline and the consequential risks of pipeline failure.

For buried pipeline widths of right-of-way shall conform to standard drawing (

The following figures can be considered as minimum widths of right

increased where necessary to suit the particular requirements of a specific project or may be

duced, subject to prior approval of the Company, if certain restrictions do not permit widening

way to the required ideal widths:

For above ground pipelines in flat areas:

For DN 150 (NPS 6) and below: 25 m

nd including DN 650 (NPS 26): 40 m

For above DN 650 (NPS 26) and based on 1 to 3 lines per track: 60 m

For above ground pipelines in hilly and mountainous areas:

For DN 400 (NPS 16) and below: 21 m

For above DN 400 (NPS 16): 24 m

For buried pipelines, widths of right-of-way should be as per IPS-D-PI

It is not permitted to place several pipelines in a same trench; however, under certain

conditions, which do not have sufficient space to pass the pipeline, and with the approval of the

company, when several pipelines must pass through a same trench, the minimum

surfaces between the two adjacent pipelines should be 0.9 m. Use the IPS

determine the proper distances for pipelines with separate trenches or above ground. Under

certain conditions, where space is not sufficient (such as corridors, etc.), pipeline distances can

be changed with the assessment of engineering and the approval of the company.

The crossing of existing pipelines, cables, power lines, roads, railways and waterways

should be at an angle between 90 and 60 degrees.

If the pipeline is in a parallel path with high voltage power lines, the effects of the induction

current in the pipeline can lead to corrosion; in this case, the following should be considered

hat mentioned in IPS-E-EL-160 standard shall be considered.

In the case of pipelines in parallel with high voltage power lines with voltages of 63 KW or

greater, risk assessment shall be carried out in accordance with BS EN ISO 18086 and the

necessary measures are taken to minimize and control the inductive effects of the current. Also,

cathodic protection systems shall be designed in accordance with that effects.

If the pipeline is at a distance of 3 km or less parallely along with high voltage power lines with

IPS-E-PI-140(2)

Future pipelines along the same route (particularly in hilly and mountainous areas where

way may create problem).

Type of fluid and pressure of the pipeline and the consequential risks of pipeline failure.

drawing (IPS-D-PI-143).

The following figures can be considered as minimum widths of right-of-way and may be

increased where necessary to suit the particular requirements of a specific project or may be

duced, subject to prior approval of the Company, if certain restrictions do not permit widening

-143, unless otherwise

It is not permitted to place several pipelines in a same trench; however, under certain

conditions, which do not have sufficient space to pass the pipeline, and with the approval of the

inimum distance of the

IPS-D-PI-143 standard to

determine the proper distances for pipelines with separate trenches or above ground. Under

t (such as corridors, etc.), pipeline distances can

be changed with the assessment of engineering and the approval of the company.

The crossing of existing pipelines, cables, power lines, roads, railways and waterways

If the pipeline is in a parallel path with high voltage power lines, the effects of the induction

current in the pipeline can lead to corrosion; in this case, the following should be considered

160 standard shall be considered.

In the case of pipelines in parallel with high voltage power lines with voltages of 63 KW or

greater, risk assessment shall be carried out in accordance with BS EN ISO 18086 and the

ts of the current. Also,

cathodic protection systems shall be designed in accordance with that effects.

If the pipeline is at a distance of 3 km or less parallely along with high voltage power lines with

Page 26: Technical requirements and engineering recommendations …

a voltage of at least 110 KW, at least 200 m of di

required, unless risk assessment is carried out and based on change the distances in associated

with approval from the company.

- If the pipeline is at a distance more than 3 km

with a voltage of at least 110 KW, at least 500 m of distance from high voltage power lines is

required, unless risk assessment is carried out and based on change the distances in associated

with approval from the company.

9-5-2 Other considerations

The longitudinal slope of right

(less than 1 km), the longitudinal slope of the right

service roads with maximum longitudinal slope of 22% should be consider

sections. In high longitudinal slope and depending on depth of trench coverage and type of soil

and seasonal inundation where pipeline may lose its full restraint, it should be ensured that the

equivalent stresses in the pipe wall ar

considered to reduce or eliminate longitudinal forces due to effective component of the dead

weight of the pipeline and its content.

The design of right-of-way should comply with line bending speci

in IPS-C-CE-112 standard.

10 Pipeline protection and marking

10-1 Burial philosophy

Pipelines are normally buried to protect them from mechanical damage, unusual environmental

and climatical conditions, fires, tampering, etc. and to assure that they are fully restrained. As a

general rule, risk assessment and engineering determines whether the pipeline is buried or not;

but usually, pipelines of DN 400 (NPS 16) and larger should be

make burial impracticable or the length is too short to justify burial advantages. Pipelines of DN

300 (NPS 12) and smaller and short life pipelines of all sizes (such as flowlines) may be laid

above ground unless there are

protection from diurnal temperature variation is necessary or where the line passes through

populated areas, etc.

10-2 Trench dimensions

The recommended minimum covers are given in table 3 and 4.

Feb. 2019

21

a voltage of at least 110 KW, at least 200 m of distance from high voltage power lines is

required, unless risk assessment is carried out and based on change the distances in associated

with approval from the company.

s at a distance more than 3 km parallely along with high voltage pow

with a voltage of at least 110 KW, at least 500 m of distance from high voltage power lines is

required, unless risk assessment is carried out and based on change the distances in associated

with approval from the company.

e longitudinal slope of right-of-way should not exceed 22%. However, for short distances

(less than 1 km), the longitudinal slope of the right-of-way may be up to 30% in which case the

service roads with maximum longitudinal slope of 22% should be consider

sections. In high longitudinal slope and depending on depth of trench coverage and type of soil

and seasonal inundation where pipeline may lose its full restraint, it should be ensured that the

equivalent stresses in the pipe wall are within acceptable limits or else remedial provisions are

considered to reduce or eliminate longitudinal forces due to effective component of the dead

weight of the pipeline and its content.

way should comply with line bending specification and also specification

Pipeline protection and marking

Pipelines are normally buried to protect them from mechanical damage, unusual environmental

climatical conditions, fires, tampering, etc. and to assure that they are fully restrained. As a

risk assessment and engineering determines whether the pipeline is buried or not;

pipelines of DN 400 (NPS 16) and larger should be buried unless the terrain would

make burial impracticable or the length is too short to justify burial advantages. Pipelines of DN

300 (NPS 12) and smaller and short life pipelines of all sizes (such as flowlines) may be laid

above ground unless there are good reasons for burial; e.g. process requirements or where

protection from diurnal temperature variation is necessary or where the line passes through

The recommended minimum covers are given in table 3 and 4.

IPS-E-PI-140(2)

stance from high voltage power lines is

required, unless risk assessment is carried out and based on change the distances in associated

parallely along with high voltage power lines

with a voltage of at least 110 KW, at least 500 m of distance from high voltage power lines is

required, unless risk assessment is carried out and based on change the distances in associated

way should not exceed 22%. However, for short distances

way may be up to 30% in which case the

service roads with maximum longitudinal slope of 22% should be considered for access to these

sections. In high longitudinal slope and depending on depth of trench coverage and type of soil

and seasonal inundation where pipeline may lose its full restraint, it should be ensured that the

e within acceptable limits or else remedial provisions are

considered to reduce or eliminate longitudinal forces due to effective component of the dead

fication and also specification

Pipelines are normally buried to protect them from mechanical damage, unusual environmental

climatical conditions, fires, tampering, etc. and to assure that they are fully restrained. As a

risk assessment and engineering determines whether the pipeline is buried or not;

buried unless the terrain would

make burial impracticable or the length is too short to justify burial advantages. Pipelines of DN

300 (NPS 12) and smaller and short life pipelines of all sizes (such as flowlines) may be laid

good reasons for burial; e.g. process requirements or where

protection from diurnal temperature variation is necessary or where the line passes through

Page 27: Technical requirements and engineering recommendations …

Table 3 - Recommended minimum cover for buried oil pipelines

Item Trench in

rocky terrain

Minimum depth of

cover

Width of trench excess

of pipe diameter

Table 4 - Recommended minimum cover for buried gas pipelines

Local

Class 1

Class 2

Class 3 & 4

Notes:

1) The cover refers to the undisturbed ground level to the top of the pipe.

2) A minimum vertical clearance of 0.9 m should be kept between the surface of pipeline and

other buried structures surfaces (see also 11.3.4 for crossing other pipelines).

Additional depth may be required in c

ploughing and of drain systems shall be taken into account. A cover of 1.2 m would be adequate

in most cases. The width of trench should be not less than 400 mm wider than the pipeline

outside diameter in all ground conditions including rock. When pipelines are coated and/or

insulated, the outside diameter of coated or insulated pipe should be assumed as outside diameter

for minimum coverage.

Initial backfilling around the pipeline shall be carried

10 mm or other soft material which is approved by company; Other requirements for backfilling

shall be according to IPS-C-PI

10-3 Anchor for pipelines

Buried pipelines operating at very high temperatures

by high compressive loads due to expansion. In such cases, the depth of burial cover should be

increased to prevent the upheaval buckling. In general, the recommended cover depth should be

enough to make the pipeline fully restrained and to contain thermal expansion and contraction of

the pipeline as well as other forces due to internal pressure and pipeline weight in slopes.

Pipeline anchors should be installed at end points of buried pipelines and at other location

where the pipeline rises above ground level for connections to facilities, etc.

Pipeline anchors should be designed for the particular application to withstand forces due to

MAIP and temperature variations and to suit the ground conditions specially wher

seasonal inundation or in dry water courses in high slopes where pipeline dead weight creates

longitudinal stresses.

10-4 Non-buried pipelines

Any non-buried pipeline sections shall be justified on an individual basis and hence shall be

Feb. 2019

22

Recommended minimum cover for buried oil pipelines

Trench in

rocky terrain

Trench in uncultivated

terrain other than rocky

600 mm 900 mm

400 mm 400 mm

Recommended minimum cover for buried gas pipelines

Minimum cover (m)

in normal ground

Minimum cover (m)

in rock requiring blasting

0.9 1.0 1.2

undisturbed ground level to the top of the pipe.

A minimum vertical clearance of 0.9 m should be kept between the surface of pipeline and

other buried structures surfaces (see also 11.3.4 for crossing other pipelines).

Additional depth may be required in certain locations such as agricultural areas where depth of

ploughing and of drain systems shall be taken into account. A cover of 1.2 m would be adequate

in most cases. The width of trench should be not less than 400 mm wider than the pipeline

eter in all ground conditions including rock. When pipelines are coated and/or

insulated, the outside diameter of coated or insulated pipe should be assumed as outside diameter

Initial backfilling around the pipeline shall be carried out with soft soil with a maximum mesh of

10 mm or other soft material which is approved by company; Other requirements for backfilling

PI-140 standard.

Buried pipelines operating at very high temperatures may be prone to upheaval buckling caused

by high compressive loads due to expansion. In such cases, the depth of burial cover should be

increased to prevent the upheaval buckling. In general, the recommended cover depth should be

e fully restrained and to contain thermal expansion and contraction of

the pipeline as well as other forces due to internal pressure and pipeline weight in slopes.

Pipeline anchors should be installed at end points of buried pipelines and at other location

where the pipeline rises above ground level for connections to facilities, etc.

Pipeline anchors should be designed for the particular application to withstand forces due to

MAIP and temperature variations and to suit the ground conditions specially wher

seasonal inundation or in dry water courses in high slopes where pipeline dead weight creates

buried pipeline sections shall be justified on an individual basis and hence shall be

IPS-E-PI-140(2)

Recommended minimum cover for buried oil pipelines

Trench in cultivated

terrain

1200 mm

400 mm

Recommended minimum cover for buried gas pipelines

Minimum cover (m)

in rock requiring blasting

0.6 0.8 1.0

A minimum vertical clearance of 0.9 m should be kept between the surface of pipeline and

other buried structures surfaces (see also 11.3.4 for crossing other pipelines).

ertain locations such as agricultural areas where depth of

ploughing and of drain systems shall be taken into account. A cover of 1.2 m would be adequate

in most cases. The width of trench should be not less than 400 mm wider than the pipeline

eter in all ground conditions including rock. When pipelines are coated and/or

insulated, the outside diameter of coated or insulated pipe should be assumed as outside diameter

out with soft soil with a maximum mesh of

10 mm or other soft material which is approved by company; Other requirements for backfilling

may be prone to upheaval buckling caused

by high compressive loads due to expansion. In such cases, the depth of burial cover should be

increased to prevent the upheaval buckling. In general, the recommended cover depth should be

e fully restrained and to contain thermal expansion and contraction of

the pipeline as well as other forces due to internal pressure and pipeline weight in slopes.

Pipeline anchors should be installed at end points of buried pipelines and at other locations

where the pipeline rises above ground level for connections to facilities, etc.

Pipeline anchors should be designed for the particular application to withstand forces due to

MAIP and temperature variations and to suit the ground conditions specially where subject to

seasonal inundation or in dry water courses in high slopes where pipeline dead weight creates

buried pipeline sections shall be justified on an individual basis and hence shall be

Page 28: Technical requirements and engineering recommendations …

installed in such a way that stay clear of the ground all the time to avoid external corrosion. Pipe

supports should be designed in accordance with

The height of supports should be chosen to suit local

the bottom of pipeline at least 300 mm above the highest recorded flood level.

Non-buried pipelines should normally be laid in a zigzag configuration to cater for the effect of

thermal expansion and contraction.

However, for specific cases, the correct configuration should be determined by appropriate

design.

Where zigzag configuration is not or can not be employed, alternative means, such as fully

restraining the pipeline from movements (e.g. by adequate anchoring at appropriate intervals),

should be provided to contain thermal expansion and contraction as well as other prevailing

forces.

Pipeline anchors should be considered for non

facilities and at other positions where restraint may be necessary.

Hillside anchors shall be designed, as and where required and shall be installed on steep hills to

restrain pipeline movement and to keep the combined stresse

acceptable limits. The effect of the weight of the pipeline and its contents on the longitudinal

stress in the pipeline wall should be considered in calculating the combined stresses.

Figure 1 - Plan view of zig

Feb. 2019

23

n such a way that stay clear of the ground all the time to avoid external corrosion. Pipe

supports should be designed in accordance with IPS-G-PI-280.

The height of supports should be chosen to suit local conditions but should be sufficient to keep

the bottom of pipeline at least 300 mm above the highest recorded flood level.

buried pipelines should normally be laid in a zigzag configuration to cater for the effect of

thermal expansion and contraction. The zigzag configuration may be in accordance with Fig. 1.

However, for specific cases, the correct configuration should be determined by appropriate

Where zigzag configuration is not or can not be employed, alternative means, such as fully

ning the pipeline from movements (e.g. by adequate anchoring at appropriate intervals),

should be provided to contain thermal expansion and contraction as well as other prevailing

Pipeline anchors should be considered for non-buried pipelines at all tie-in connections to other

facilities and at other positions where restraint may be necessary.

Hillside anchors shall be designed, as and where required and shall be installed on steep hills to

restrain pipeline movement and to keep the combined stresses in the pipeline wall within the

acceptable limits. The effect of the weight of the pipeline and its contents on the longitudinal

stress in the pipeline wall should be considered in calculating the combined stresses.

Plan view of zig-zag configuration for above-ground pipeline

IPS-E-PI-140(2)

n such a way that stay clear of the ground all the time to avoid external corrosion. Pipe

conditions but should be sufficient to keep

the bottom of pipeline at least 300 mm above the highest recorded flood level.

buried pipelines should normally be laid in a zigzag configuration to cater for the effect of

The zigzag configuration may be in accordance with Fig. 1.

However, for specific cases, the correct configuration should be determined by appropriate

Where zigzag configuration is not or can not be employed, alternative means, such as fully

ning the pipeline from movements (e.g. by adequate anchoring at appropriate intervals),

should be provided to contain thermal expansion and contraction as well as other prevailing

in connections to other

Hillside anchors shall be designed, as and where required and shall be installed on steep hills to

s in the pipeline wall within the

acceptable limits. The effect of the weight of the pipeline and its contents on the longitudinal

stress in the pipeline wall should be considered in calculating the combined stresses.

ground pipeline

Page 29: Technical requirements and engineering recommendations …

Table 5

Offset (m) Straight length (m)

(Minimum) 60

116 9.1

100 6.5

116 9.1

100 6.5

116 9.5

100 6.5

116 9.5

100 6.5

116 7.1

100 6.5

116 7.1

100 6.5

10-5 Corrosion Protection

As a general rule, in normally dry climates, no external anti

above-ground pipelines which are

conditions or the ground are such that external corrosion may occur, either a corrosion allowance

on the pipe wall thickness may be required or, alternatively, a suitable anti

should be considered.

Where sections of above-ground pipelines are to be buried (e.g. road, railway or river crossings),

the buried sections shall be suitably coated, cathodically

the rest of the pipeline in accordance with

Those sections of pipeline which pass above waterways and rivers should be externally coated

for protection against corrosion caused by condensation of water vapor on the pipeline exterior.

Where above-ground pipelines pass through culverts or below bridges (which are normally for

pipelines crossing the main roads and/or for surface water passages), these secti

shall be suitably coated for protection against splashing water and blown sand and dirt.

All metallic buried pipelines including duplex material pipelines, shall be coated externally by a

suitable anti-corrosion coating, supplemented by ca

from the plants and facilities to which they are connected.

The design of cathodic protection systems shall be carried out in accordance with

Protective coatings shall be selected to suit the soil and other environmental conditions and shall

comply with IPS-E-TP-270.

10-6 Pipeline Markers

The location of buried pipelines shall be clearly identified by markers.

interference or disturbance by mechanical excavators or boat anchors (at river crossings) is high,

additional warning signs should be installed to lower the risk. Pipeline markers should be

installed at the following locations al

Feb. 2019

24

Table 5 - Zig-zag configuration dimensions

Straight length (m)

(Minimum)

Pipe material grade

per API 5L

Pipe size

DN (NPS

4 GR B Up to DN 300 (NPS 12)

9.1 GR B/ X 42 DN 400

6.5 X 52/ ×X 60

9.1 GR B/ X 42 DN 500

6.5 X 52/ X 60

9.5 GR B/ X 42 DN 550

6.5 X52/ X 60

9.5 GR B/ X 42 DN 600

6.5 X 52/ X 60

7.1 GR B/ X 42 DN 650

6.5 X 52/ X 60

7.1 GR B/ X 42 DN 750

6.5 X 52/ X 60

As a general rule, in normally dry climates, no external anti-corrosion coating is required for

ground pipelines which are supported clear of the ground. However, where the climatic

conditions or the ground are such that external corrosion may occur, either a corrosion allowance

on the pipe wall thickness may be required or, alternatively, a suitable anti

ground pipelines are to be buried (e.g. road, railway or river crossings),

the buried sections shall be suitably coated, cathodically protected and electrically isolated from

the rest of the pipeline in accordance with IPS-E-TP-820.

Those sections of pipeline which pass above waterways and rivers should be externally coated

against corrosion caused by condensation of water vapor on the pipeline exterior.

ground pipelines pass through culverts or below bridges (which are normally for

pipelines crossing the main roads and/or for surface water passages), these secti

shall be suitably coated for protection against splashing water and blown sand and dirt.

All metallic buried pipelines including duplex material pipelines, shall be coated externally by a

corrosion coating, supplemented by cathodic protection and electrically isolated

from the plants and facilities to which they are connected.

The design of cathodic protection systems shall be carried out in accordance with

ve coatings shall be selected to suit the soil and other environmental conditions and shall

The location of buried pipelines shall be clearly identified by markers. In areas where the risk of

interference or disturbance by mechanical excavators or boat anchors (at river crossings) is high,

additional warning signs should be installed to lower the risk. Pipeline markers should be

installed at the following locations along buried pipelines:

IPS-E-PI-140(2)

Pipe size

DN (NPS)

Up to DN 300 (NPS 12)

DN 400 (NPS 16)

DN 500 (NPS 20)

DN 550 (NPS 22)

DN 600 (NPS 24)

DN 650 (NPS 26)

DN 750 (NPS 30)

corrosion coating is required for

supported clear of the ground. However, where the climatic

conditions or the ground are such that external corrosion may occur, either a corrosion allowance

on the pipe wall thickness may be required or, alternatively, a suitable anti-corrosion coating

ground pipelines are to be buried (e.g. road, railway or river crossings),

protected and electrically isolated from

Those sections of pipeline which pass above waterways and rivers should be externally coated

against corrosion caused by condensation of water vapor on the pipeline exterior.

ground pipelines pass through culverts or below bridges (which are normally for

pipelines crossing the main roads and/or for surface water passages), these sections of the lines

shall be suitably coated for protection against splashing water and blown sand and dirt.

All metallic buried pipelines including duplex material pipelines, shall be coated externally by a

thodic protection and electrically isolated

The design of cathodic protection systems shall be carried out in accordance with IPS-E-TP-820.

ve coatings shall be selected to suit the soil and other environmental conditions and shall

In areas where the risk of

interference or disturbance by mechanical excavators or boat anchors (at river crossings) is high,

additional warning signs should be installed to lower the risk. Pipeline markers should be

Page 30: Technical requirements and engineering recommendations …

a) At one kilometer interval.

b) At all major changes in direction of the pipeline.

c) At both sides of every road, railway and under

d) At changes in wall thickness or material.

e) At branches.

f) At buried valves and fittings such as

Fabrication and installation details should be as per Standard Drawing No.

11 Crossings

11-1 River crossings

11-1-1 Where pipeline has to cross

most suitable way of crossing which will ensure maximum reliability during the pipeline

operating life with minimum maintenance problems. The selection of the most suitable location

and type of crossing should be based on the survey results and information on geotechnical and

hydroclimatological conditions and other prevailing environmental issues. The migration of the

river course should also receive particular attention.

11-1-2 Elevated pipe supports should be high enough to carry the line at least 300 mm clear of

highest flood level (oldest available return conditions). This clearance should be increased if

there is likelihood of large floating objects being carried by flood wat

navigable. Elevated pipe supports should be designed to suit the particular circumstances and be

strong to withstand the forces imposed on them by flood water and the objects which are carried

by the flood and may be caught by the

of torrential flood, pipe bridges are preferred to single pipe supports. If pipeline is to be

cathodically protected, means of isolating the pipeline from the supports should be considered.

11-1-3 The sections of pipelines laid under the river bed should be coated and wrapped in

accordance with IPS-E-TP-270

11-1-4 The sections of pipeline laid in trenches in the river bed should be weight coated to give

the necessary negative buoyancy to the pipeline to fully restrain the pipeline in position at all

times, during construction, operation and whil

Pipeline stability design requirements are mentioned in 7.5.1.14.

Depth of cover and the curvature of the pipeline during laying and henceforth as well as method

of laying the pipeline should be selected for the p

pipeline specially when it is being installed.

11-1-5 Isolating block valves fitted with automatic line

fenced areas on either side of the major river crossings. If valves

top of the pits should be above maximum recorded high water level and if there is possibilities of

water ingressing into the pits, facilities should be considered for emptying the water.

The automatic line-break-operators s

failure and subsequent rapid rate of change of pressure in the pipeline but should not be affected

by normal operational pressure fluctuations. The design should ensure that changes of the water

course and/or collapse of the river side walls will not endanger the integrity of the valve support.

Feb. 2019

25

At all major changes in direction of the pipeline.

At both sides of every road, railway and under-water crossings.

At changes in wall thickness or material.

At buried valves and fittings such as check valves, vents, drains, slug-catchers, etc.

Fabrication and installation details should be as per Standard Drawing No.

Where pipeline has to cross a major river, careful studies shall be carried out as to

most suitable way of crossing which will ensure maximum reliability during the pipeline

operating life with minimum maintenance problems. The selection of the most suitable location

d type of crossing should be based on the survey results and information on geotechnical and

hydroclimatological conditions and other prevailing environmental issues. The migration of the

river course should also receive particular attention.

Elevated pipe supports should be high enough to carry the line at least 300 mm clear of

highest flood level (oldest available return conditions). This clearance should be increased if

there is likelihood of large floating objects being carried by flood water and where the river is

navigable. Elevated pipe supports should be designed to suit the particular circumstances and be

strong to withstand the forces imposed on them by flood water and the objects which are carried

by the flood and may be caught by the supports. In wide rivers and where there are possibilities

of torrential flood, pipe bridges are preferred to single pipe supports. If pipeline is to be

cathodically protected, means of isolating the pipeline from the supports should be considered.

The sections of pipelines laid under the river bed should be coated and wrapped in

270 and cathodically protected in accordance with

The sections of pipeline laid in trenches in the river bed should be weight coated to give

the necessary negative buoyancy to the pipeline to fully restrain the pipeline in position at all

times, during construction, operation and while shut down for maintenance or inspection.

Pipeline stability design requirements are mentioned in 7.5.1.14.

Depth of cover and the curvature of the pipeline during laying and henceforth as well as method

of laying the pipeline should be selected for the particular application to avoid damage to the

pipeline specially when it is being installed.

Isolating block valves fitted with automatic line-break-operators should be installed in

fenced areas on either side of the major river crossings. If valves are installed in valve pits, the

top of the pits should be above maximum recorded high water level and if there is possibilities of

water ingressing into the pits, facilities should be considered for emptying the water.

operators should be designed to close the valve in the event of pipeline

failure and subsequent rapid rate of change of pressure in the pipeline but should not be affected

by normal operational pressure fluctuations. The design should ensure that changes of the water

course and/or collapse of the river side walls will not endanger the integrity of the valve support.

IPS-E-PI-140(2)

catchers, etc.

Fabrication and installation details should be as per Standard Drawing No. IPS-D-TP-712.

a major river, careful studies shall be carried out as to determine the

most suitable way of crossing which will ensure maximum reliability during the pipeline

operating life with minimum maintenance problems. The selection of the most suitable location

d type of crossing should be based on the survey results and information on geotechnical and

hydroclimatological conditions and other prevailing environmental issues. The migration of the

Elevated pipe supports should be high enough to carry the line at least 300 mm clear of

highest flood level (oldest available return conditions). This clearance should be increased if

er and where the river is

navigable. Elevated pipe supports should be designed to suit the particular circumstances and be

strong to withstand the forces imposed on them by flood water and the objects which are carried

supports. In wide rivers and where there are possibilities

of torrential flood, pipe bridges are preferred to single pipe supports. If pipeline is to be

cathodically protected, means of isolating the pipeline from the supports should be considered.

The sections of pipelines laid under the river bed should be coated and wrapped in

and cathodically protected in accordance with IPS-E-TP-820.

The sections of pipeline laid in trenches in the river bed should be weight coated to give

the necessary negative buoyancy to the pipeline to fully restrain the pipeline in position at all

e shut down for maintenance or inspection.

Depth of cover and the curvature of the pipeline during laying and henceforth as well as method

articular application to avoid damage to the

operators should be installed in

are installed in valve pits, the

top of the pits should be above maximum recorded high water level and if there is possibilities of

water ingressing into the pits, facilities should be considered for emptying the water.

hould be designed to close the valve in the event of pipeline

failure and subsequent rapid rate of change of pressure in the pipeline but should not be affected

by normal operational pressure fluctuations. The design should ensure that changes of the water

course and/or collapse of the river side walls will not endanger the integrity of the valve support.

Page 31: Technical requirements and engineering recommendations …

11-2 Road and railway crossings

Pipelines crossing roads and railways should preferably be through culverts or concrete box and

bridges (new or existing). The use of casing pipe should be discouraged (due to external

corrosion problems and electrical contact between casing pipe and carri

1102 for recommendations in this respect.) Suitable protection should be provided on both sides

of the road to prevent damage to the pipeline by vehicles leaving the road. At the intersections of

the pipeline with road and railway, a

construction details should be as per standard drawing no. IPS

If the right-of-way is intended for more than one pipeline, culverts or bridge should be wide

enough to accommodate future pipeline(

adjacent pipelines should not be less than 400 mm. For angle of crossing refer to Note 2 of

Clause 9.5.1 of this Standard.

11-3 Crossing other pipelines

11-3-1 Where above-ground pipelines cross each other a min

be maintained between adjacent lines.

11-3-2 Where a buried pipeline is to cross an existing above

of cover should be specified for the whole width of the right

11-3-3 Where an above-ground pipeline is to cross an existing buried pipeline means should be

provided to allow continued use of the buried pipeline right

11-3-4 Where a buried pipeline is to cross an existing buried pipeline the new line should pass

under the existing line with at least 900 mm clearance between the two lines.

11-3-5 Potential test points, current test points and bonding points (direct or resistance) should be

installed on both lines at the crossing to enable the cathodic protection systems to be

interconnected, if required.

11-3-6 For a minimum distance of 15 meters on either side of the pipeline crossing the new

pipeline shall be double wrapped.

11-3-7 Where a pipeline crosses an existing pipeline owned by an outside Company, the design

of the crossing and cathodic protection should satisfy the requirements of the outside company.

11-4 Crossing land faults

When a pipeline has to cross a passive fault, the nec

should be decided after studying geotechnical survey results by Company geological department

or Company appointed geologist and should be considered their recommendations.

Crossing an active fault shall be avoi

active fault or a passive fault which is expected to become active, the following considerations

should be given at the crossing to protect the pipeline:

11-4-1 Factors that significantly influen

movements are: burial depth, trench shape, relative displacement of the fault, intersection point

of the pipeline with fault, soil properties, unrestrained length of the pipeline, geometry of the

Pipeline and internal pressure.

Feb. 2019

26

railway crossings

Pipelines crossing roads and railways should preferably be through culverts or concrete box and

bridges (new or existing). The use of casing pipe should be discouraged (due to external

corrosion problems and electrical contact between casing pipe and carrier pipe). (See API RP

1102 for recommendations in this respect.) Suitable protection should be provided on both sides

of the road to prevent damage to the pipeline by vehicles leaving the road. At the intersections of

the pipeline with road and railway, a minimum depth of 2 meters shall be considered and

construction details should be as per standard drawing no. IPS-D-PI-175.

way is intended for more than one pipeline, culverts or bridge should be wide

enough to accommodate future pipeline(s). In this case the horizontal space between two

adjacent pipelines should not be less than 400 mm. For angle of crossing refer to Note 2 of

ground pipelines cross each other a minimum clearance of 300 mm should

be maintained between adjacent lines.

Where a buried pipeline is to cross an existing above-ground pipeline an increased depth

of cover should be specified for the whole width of the right-of-way.

ground pipeline is to cross an existing buried pipeline means should be

provided to allow continued use of the buried pipeline right-of-way.

Where a buried pipeline is to cross an existing buried pipeline the new line should pass

g line with at least 900 mm clearance between the two lines.

Potential test points, current test points and bonding points (direct or resistance) should be

installed on both lines at the crossing to enable the cathodic protection systems to be

For a minimum distance of 15 meters on either side of the pipeline crossing the new

pipeline shall be double wrapped.

Where a pipeline crosses an existing pipeline owned by an outside Company, the design

of the crossing and cathodic protection should satisfy the requirements of the outside company.

When a pipeline has to cross a passive fault, the necessity of provision of any protection system

should be decided after studying geotechnical survey results by Company geological department

or Company appointed geologist and should be considered their recommendations.

Crossing an active fault shall be avoided if feasible. When, however, the pipeline has to cross an

active fault or a passive fault which is expected to become active, the following considerations

should be given at the crossing to protect the pipeline:

Factors that significantly influence the performance of the pipeline exposed to fault

movements are: burial depth, trench shape, relative displacement of the fault, intersection point

of the pipeline with fault, soil properties, unrestrained length of the pipeline, geometry of the

and internal pressure.

IPS-E-PI-140(2)

Pipelines crossing roads and railways should preferably be through culverts or concrete box and

bridges (new or existing). The use of casing pipe should be discouraged (due to external

er pipe). (See API RP

1102 for recommendations in this respect.) Suitable protection should be provided on both sides

of the road to prevent damage to the pipeline by vehicles leaving the road. At the intersections of

minimum depth of 2 meters shall be considered and

way is intended for more than one pipeline, culverts or bridge should be wide

s). In this case the horizontal space between two

adjacent pipelines should not be less than 400 mm. For angle of crossing refer to Note 2 of

imum clearance of 300 mm should

ground pipeline an increased depth

ground pipeline is to cross an existing buried pipeline means should be

Where a buried pipeline is to cross an existing buried pipeline the new line should pass

g line with at least 900 mm clearance between the two lines.

Potential test points, current test points and bonding points (direct or resistance) should be

installed on both lines at the crossing to enable the cathodic protection systems to be

For a minimum distance of 15 meters on either side of the pipeline crossing the new

Where a pipeline crosses an existing pipeline owned by an outside Company, the design

of the crossing and cathodic protection should satisfy the requirements of the outside company.

essity of provision of any protection system

should be decided after studying geotechnical survey results by Company geological department

or Company appointed geologist and should be considered their recommendations.

ded if feasible. When, however, the pipeline has to cross an

active fault or a passive fault which is expected to become active, the following considerations

ce the performance of the pipeline exposed to fault

movements are: burial depth, trench shape, relative displacement of the fault, intersection point

of the pipeline with fault, soil properties, unrestrained length of the pipeline, geometry of the

Page 32: Technical requirements and engineering recommendations …

11-4-2 Where practical, a pipeline which crosses a slippery fault, must be placed in a way that the

pipelines are stretched.

11-4-3 Reverse faults should be crossed at a diagonal angle, which is as small as possible, to

minimize compressive stresses. If the displacement of the slip extends considerably, the

intersection angle should be chosen to facilitate the increase of the pipeline stretching length.

11-4-4 In all areas where there is a potential for land failure, the pipeline must be in straight and

perpendicular to the fault or close to the perpendicular (considering the increasing capacity of the

pipeline length), in order to avoid the sudden change of th

Also, as far as possible, the pipeline should be constructed without bends and constraint that tend

to restrain pipelines.

11-4-5 The determining factor in pipe resistance at the intersections leading to a stretch, i

thickness of the pipe. Increasing the thickness of the pipeline reduces the tensile stress at the

fault intersection. On the other hand, for intersections leading to a pressure, the diameter to

thickness ratio is the controlling factor. This is becau

ellipticity of the pipe section and the strain of its compression and shrinkage.

11-4-6 Design factors similar to those indicated for rivers, dunes and beaches should be used in

300 meters of the pipeline at either

Standard).

11-4-7 There should be no horizontal bends, flanges, tees, valves or similar constraints such as

concrete weights in at least 200 m of the pipeline at either sides of the fault zone.

11-4-8 The Depth of pipeline burial should be minimized in fault zones in order to reduce the soil

constraint on the pipeline during the fault movement.

material around the pipeline in 200 meters of either sides of t

way that the pipeline is subjected to minimum restraint.

11-4-9 Line break valves with automatic shut

either side of the fault zone. These valves should be secured aga

the pipeline which crosses the fault by means of adequately designed anchors.

11-5 Land slides

Passing near the areas where there are evidence of land slide shall be avoided by using

alternative routes or going around the suspec

12 Records

A comprehensive set of design documents shall be produced and retained for the life of the

pipeline. These documents should include all the design criteria, calculations and assessments

which led to the technical choices during

include pipeline operating and maintenance manual which should cover the range of key

operating conditions that can be envisaged for the entire life span, major features, parameters,

contingency plans, etc.

Feb. 2019

27

Where practical, a pipeline which crosses a slippery fault, must be placed in a way that the

Reverse faults should be crossed at a diagonal angle, which is as small as possible, to

pressive stresses. If the displacement of the slip extends considerably, the

intersection angle should be chosen to facilitate the increase of the pipeline stretching length.

In all areas where there is a potential for land failure, the pipeline must be in straight and

perpendicular to the fault or close to the perpendicular (considering the increasing capacity of the

pipeline length), in order to avoid the sudden change of the direction and level of the placement.

Also, as far as possible, the pipeline should be constructed without bends and constraint that tend

The determining factor in pipe resistance at the intersections leading to a stretch, i

thickness of the pipe. Increasing the thickness of the pipeline reduces the tensile stress at the

fault intersection. On the other hand, for intersections leading to a pressure, the diameter to

thickness ratio is the controlling factor. This is because that ratio has a direct impact on the

ellipticity of the pipe section and the strain of its compression and shrinkage.

Design factors similar to those indicated for rivers, dunes and beaches should be used in

300 meters of the pipeline at either side of the fault zone. (See Table 2 of Clause 7.5.2.2 of this

There should be no horizontal bends, flanges, tees, valves or similar constraints such as

concrete weights in at least 200 m of the pipeline at either sides of the fault zone.

The Depth of pipeline burial should be minimized in fault zones in order to reduce the soil

constraint on the pipeline during the fault movement. The trench dimensions and the backfill

material around the pipeline in 200 meters of either sides of the fault zone should be selected in a

way that the pipeline is subjected to minimum restraint.

Line break valves with automatic shut-down operators shall be installed in 250 meters of

either side of the fault zone. These valves should be secured against movements of the section of

the pipeline which crosses the fault by means of adequately designed anchors.

Passing near the areas where there are evidence of land slide shall be avoided by using

alternative routes or going around the suspected areas.

A comprehensive set of design documents shall be produced and retained for the life of the

pipeline. These documents should include all the design criteria, calculations and assessments

which led to the technical choices during conception and design of the pipeline. They shall also

include pipeline operating and maintenance manual which should cover the range of key

operating conditions that can be envisaged for the entire life span, major features, parameters,

IPS-E-PI-140(2)

Where practical, a pipeline which crosses a slippery fault, must be placed in a way that the

Reverse faults should be crossed at a diagonal angle, which is as small as possible, to

pressive stresses. If the displacement of the slip extends considerably, the

intersection angle should be chosen to facilitate the increase of the pipeline stretching length.

In all areas where there is a potential for land failure, the pipeline must be in straight and

perpendicular to the fault or close to the perpendicular (considering the increasing capacity of the

e direction and level of the placement.

Also, as far as possible, the pipeline should be constructed without bends and constraint that tend

The determining factor in pipe resistance at the intersections leading to a stretch, is the

thickness of the pipe. Increasing the thickness of the pipeline reduces the tensile stress at the

fault intersection. On the other hand, for intersections leading to a pressure, the diameter to

se that ratio has a direct impact on the

ellipticity of the pipe section and the strain of its compression and shrinkage.

Design factors similar to those indicated for rivers, dunes and beaches should be used in

side of the fault zone. (See Table 2 of Clause 7.5.2.2 of this

There should be no horizontal bends, flanges, tees, valves or similar constraints such as

concrete weights in at least 200 m of the pipeline at either sides of the fault zone.

The Depth of pipeline burial should be minimized in fault zones in order to reduce the soil

The trench dimensions and the backfill

he fault zone should be selected in a

down operators shall be installed in 250 meters of

inst movements of the section of

the pipeline which crosses the fault by means of adequately designed anchors.

Passing near the areas where there are evidence of land slide shall be avoided by using

A comprehensive set of design documents shall be produced and retained for the life of the

pipeline. These documents should include all the design criteria, calculations and assessments

conception and design of the pipeline. They shall also

include pipeline operating and maintenance manual which should cover the range of key

operating conditions that can be envisaged for the entire life span, major features, parameters,

Page 33: Technical requirements and engineering recommendations …

Critical velocity for ideal gases:

Where:

Vc Critical velocity, m/sec

K =Cv

Cp Specific heat Ratio

g Gravity acceleration, 9.81 m/sec²

R=Rο/M Gas constant

Rο Universal Gas Constant: 8.314 J/(K.mol)

M Mole weight, kg

T Gas absolute temperature, Kelvin

Feb. 2019

28

Appendix A

(Informative)

Critical velocity formula

kgRTVc =

Critical velocity, m/sec

Specific heat Ratio

Gravity acceleration, 9.81 m/sec²

Universal Gas Constant: 8.314 J/(K.mol)

Gas absolute temperature, Kelvin

IPS-E-PI-140(2)

Page 34: Technical requirements and engineering recommendations …

Erosional velocity where a mixture of gas and liquid is being transported

Where:

Ve Erosional velocity, m/sec

C Empirical constant = 125 for non

ρm Density of the gas/liquid. mixture in kg/m³ at operating pressure and temperature

Notes:

The amount of ρm may be calculated from the following derived equation:

ρm =

Where:

SL Relative density of oil (water = 1)

P Operating pressure (

R Gas/oil ratio (m3 of gas/m

G Gas relative density =

MW Molecular weight of the gas at 20°C and 760 mm mercury

T Operating temperature (°K)

Z Gas compressibility factor

e 1.22C/V =

Feb. 2019

29

Appendix B

(Informative)

Erosional velocity formula

where a mixture of gas and liquid is being transported:

Erosional velocity, m/sec

Empirical constant = 125 for non-continuous operation and 100 for continuous operation

Density of the gas/liquid. mixture in kg/m³ at operating pressure and temperature

may be calculated from the following derived equation:

Relative density of oil (water = 1)

Operating pressure (kPa Absolute)

of gas/m3 of oil at metric standard conditions)

Gas relative density =

9.28

MW at standard conditions

Molecular weight of the gas at 20°C and 760 mm mercury

Operating temperature (°K)

ility factor

ρm

1.22C/

Z T R 10.12 P 28.82

P G R 35.22 P S 28829.6 L

××+

××+×

IPS-E-PI-140(2)

continuous operation and 100 for continuous operation

Density of the gas/liquid. mixture in kg/m³ at operating pressure and temperature

Page 35: Technical requirements and engineering recommendations …

C.1 Single phase pipelines

C.1.1 Liquid

For liquid pipelines, the Darcy

any liquid. This equation may also be used

equation, changes in elevation, velocity, or density must be accounted for by applying

Bernoulli’s theorem. The Darcy

short such that fluid density is essentially constant over that segment.

Darcy-Weisbach equation is as following:

Where:

∆P Pressure drop, in (kPa/km)

QL Flow rate, in (m³/h)

S Relative density, (dimensionless)

f Darcy (or Moody) friction factor,

d Inside diameter, in (mm)

In addition to the Darcy-Weisbach equation, several correlations have been developed for the

hydraulic calculations of the liquid transportation pipelines. The most frequently used

correlations have been summarized in table C

The formulas related to crude oil

presently produced from most of the fields in south of Iran (with API No ranging between 30

and 34). However, for crude oil properties which are substantially different, these formulas may

not be accurate enough and therefore basic hydraulic principles shall be applied to determine the

friction factor.

Feb. 2019

30

Appendix C

(Informative)

Calculation hydraulic design

For liquid pipelines, the Darcy-Weisbach equation is valid for both laminar and turbulent flow of

This equation may also be used for gases with certain restrictions.

equation, changes in elevation, velocity, or density must be accounted for by applying

Bernoulli’s theorem. The Darcy-Weisbach equation must be applied to line segments sufficiently

density is essentially constant over that segment.

Weisbach equation is as following:

∆P � 6.2475 ∗ 10 � ∗ f. s. Q��d�

Pressure drop, in (kPa/km)

Flow rate, in (m³/h)

Relative density, (dimensionless)

cy (or Moody) friction factor, dimensionless (Appendix D)

Inside diameter, in (mm)

Weisbach equation, several correlations have been developed for the

hydraulic calculations of the liquid transportation pipelines. The most frequently used

marized in table C-1.

The formulas related to crude oil in table C-1, have given accurate results for the crude oils

presently produced from most of the fields in south of Iran (with API No ranging between 30

and 34). However, for crude oil properties which are substantially different, these formulas may

ough and therefore basic hydraulic principles shall be applied to determine the

IPS-E-PI-140(2)

Weisbach equation is valid for both laminar and turbulent flow of

for gases with certain restrictions. When using this

equation, changes in elevation, velocity, or density must be accounted for by applying

Weisbach equation must be applied to line segments sufficiently

Weisbach equation, several correlations have been developed for the

hydraulic calculations of the liquid transportation pipelines. The most frequently used

have given accurate results for the crude oils

presently produced from most of the fields in south of Iran (with API No ranging between 30

and 34). However, for crude oil properties which are substantially different, these formulas may

ough and therefore basic hydraulic principles shall be applied to determine the

Page 36: Technical requirements and engineering recommendations …

Table C

Correlation Formula

SHELL/MIT ∆P � 6.2191 ∗ 10 � ∗

Miller Q � 3.996 ∗ 10�� ∗ M�d

T.R Aude ∆P � 8.888 ∗ 10� ∗ �Q. μ�. �!K. d

Hazen-

Williams Q � 9.0379 ∗ 10�� ∗ Cd�.

∆P Pressure drop, in (kPa/km)

QL Flow rate, in (m³/h)

S Relative density, (dimensionless)

d Inside diameter, in (mm)

µ(mu) Absolute viscosity, in centipoise (cP)

Rem Reynolds number modified Re/7742

M Miller parameter, (dimensionless)

K T.R.Aude K-factor

C Hazen-Williams C-factor

C.1.2 Gas

The steady-state and isothermal flow behavior of gas in pipelines is defined by a general energy

equation as following:

QWhere:

$ Gas volumetric flow rate, in (Sm³/d)

%Specific gravity of gas, (Air=1)

Feb. 2019

31

Table C-1: Correlations for liquid transportation pipelines

Parameter

∗ f. s. Q��d�

Rem = Re/7742

- For viscous flow (laminar):

f � 0.00207 & 1Re)*

- For turbulent flow

f � 0.0018 + 0.00662 & 1Re)*

�.,,�

�d�∆P/S/�.� M � Log ��d,S∆P/μ�/ 3 0.4965

�!. S�.!!�d�.��� 4

.� � K-factor, usually 0.90 to 0.95

.�, &∆PS *�.�! Hazen-Williams C-factor

state and isothermal flow behavior of gas in pipelines is defined by a general energy

Q � 0.000562&T6P6*17f8 �

P � 3 P��ZSTL 4�.�

d�.�E

Gas volumetric flow rate, in (Sm³/d)

Specific gravity of gas, (Air=1)

IPS-E-PI-140(2)

1: Correlations for liquid transportation pipelines

Remark

- Calculation of pressure drop in

heavy crude oil and heated liquid

- Used for crude oil pipelines

- The effect of pipe roughness not

considered

- Trial-and error approach should be

used for this equation

- Popular for refined petroleum

products

- pressure drop calculations for 8 in.

to 12 in. pipelines

- commonly used in the design of

water distribution lines

- pressure drop in refined petroleum

products such as gasoline and

diesel

state and isothermal flow behavior of gas in pipelines is defined by a general energy

Page 37: Technical requirements and engineering recommendations …

;Length of line (km)

<Inside diameter, in (mm)

=>Standard temperature (288.15 K)

?>Standard pressure (101.325 kPa)

P1 Inlet gas absolute pressure (kPa)

P2 Outlet gas absolute pressure (kPa)

= Gas average temperature (K)

@Gas average compressibility

A Pipeline efficiency

BBFanning friction factor

C7BB Transmission factor

This equation is completely general for steady

in compressibility factor, kinetic energy, pressure and temperature for any typical line section.

However, the equation as derived involves an unspecified value of the transmission factor,

78D.The correct representation of this friction factor is

Empirical methods historically and currently used to calculate or predict the flow of gas in a

pipeline are the result of various correlations of the transmission factor substituted into the

general energy equation. The most frequently used correlations have been summarized in table

C-2.

Feb. 2019

32

Inside diameter, in (mm)

Standard temperature (288.15 K)

Standard pressure (101.325 kPa)

Inlet gas absolute pressure (kPa)

Outlet gas absolute pressure (kPa)

Gas average temperature (K)

Gas average compressibility

This equation is completely general for steady-state flow, and adequately accounts for vari

in compressibility factor, kinetic energy, pressure and temperature for any typical line section.

However, the equation as derived involves an unspecified value of the transmission factor,

.The correct representation of this friction factor is necessary to the validity of the equation.

Empirical methods historically and currently used to calculate or predict the flow of gas in a

pipeline are the result of various correlations of the transmission factor substituted into the

n. The most frequently used correlations have been summarized in table

IPS-E-PI-140(2)

state flow, and adequately accounts for variations

in compressibility factor, kinetic energy, pressure and temperature for any typical line section.

However, the equation as derived involves an unspecified value of the transmission factor,

necessary to the validity of the equation.

Empirical methods historically and currently used to calculate or predict the flow of gas in a

pipeline are the result of various correlations of the transmission factor substituted into the

n. The most frequently used correlations have been summarized in table

Page 38: Technical requirements and engineering recommendations …

Table C

Correlation Formula

Par

tial

ly t

urb

ule

nt

Panhandle

A

Q � 0.00457 &T6P6*

.�E�� � PZS

AGA

Partially

Turbulent

Q � 0.000562 &T6P6*17f8

Full

y t

urb

ule

nt

Panhandle

B

Q � 0.01002 &T6P6*

.�� �Z

Weymout

h

Q � 0.00366 T6P6 �

P �ZSTL

AGA

Fully

Turbulent

Q � 0.0023T6P6 log � &3.7dε

Q Gas volumetric flow rate, in (Sm³/d);

S Specific gravity of gas, (Air=1);

L Length of line (km);

d Inside diameter, in (mm)

Ts Standard temperature (288.15 K)

Ps Standard pressure (101.325 k Pa)

P1 Inlet gas absolute pressure (k Pa)

P2 Outlet gas absolute pressure (k Pa)

T Gas average temperature (K)

E Pipeline efficiency ɛ Absolute pipe wall roughness (mm)

Feb. 2019

33

Table C-2: Correlations for gas transportation pipelines

Formula Transmission Factor

� P � 3 P��S�.��,ITL4�.�,I!

d�.� ��E 17f8 � 6.872Re�.�E,��

7 8�P � 3 P��ZSTL 4

�.�d�.�E

17f8 � 4log � � Re

1/7f84 3 0

� P � 3 P��ZS�.I� TL4�.�

d�.�,E 17f8 � 16.49Re�.� I�

� 3 P��ZSTL 4�.�

d�.��EE 17f8 � 6.523d /�

& d*�P � 3 P��ZSTL 4�.�

d�.�E 17f8 � 4log � &3.7dε *

Note:

The flow regime of the natural gas can be determined by

the following steps:

The transmission factor is calculated, using Nikuradse

equation : 17f8 �

Prandtl - Von Karman equation could now be used to find

the Re number at the transition zone:17f8 �

If the Re in the pipeline is larger than this calculated

the flow regime will be fully turbulent

IPS-E-PI-140(2)

2: Correlations for gas transportation pipelines

Transmission Factor Remark

- Efficiency factor,

E, of about 0.90

- Tends to

underestimate

the friction

pressure drop

4 0.6

- Requires

iterative

calculations, not

easily practicable

for hand

calculations

- The efficiency

factor, Evaries

between about

0.88 and 0.94

- Tends to

overestimate the

pressure drop

predictions

- Contains a lower

degree of

accuracy relative

to the other

equations

- Assumes the

transmission

factor as a

function of the

diameter

*

- The most

frequently

recommended

and widely used

equation

The flow regime of the natural gas can be determined by

The transmission factor is calculated, using Nikuradse

7 � 4log � &3.7dε *

Von Karman equation could now be used to find

the Re number at the transition zone:

7 � 4log � � Re1/7f84 3 0.6

If the Re in the pipeline is larger than this calculated Re,

the flow regime will be fully turbulent

Page 39: Technical requirements and engineering recommendations …

C.1.3 Recommendations

The above mentioned liquid and gas correlations can only be used for preliminary estimation of a

pipeline transport capacity and their accuracy is limited as they assume a constant

temperature and constant properties of the fluid over the pipeline length.

For gas transportation pipelines, the above mentioned methods consider the gravity term of the

pressure drop as negligible compared to frictional pressure drop. They are not

transportation of a fluid at a pressure above the dew point or to gas transported at very high

pressure through a hilly profile pipeline.

For liquid pipelines, the above mentioned correlations do not take wax depositions into account.

When more accurate calculations are requested or when the assumption of a constant average

flowing temperature cannot be made, flow simulations using computer programs shall be carried

out.

C.2 Two phase pipelines

Two-phase flow presents several design and operational difficulties not present in single phase

liquid or vapor flow. The physical properties of the phases are quite different and vary differently

with the pressure and the temperature. In addition, gravity

result of the difference in phase behavior, a slippage occurs between the gas and the liquid(s)

which do not flow at the same velocity; This event affects the distribution of the phases in the

pipeline cross-sections and consequently the overall liquid content of the pipeline or liquid hold

up.

C.2.1 Classical method for multi

The classical correlations (such as Eaton, Lockhart and Martinelli, Beggs&Brill, ...) solve Multi

phase flow transport problems with q

consistently predicts the pressure drop and liquid/water hold up within a reasonable level of

accuracy for all flow conditions. Thus the mechanistic method is a more reliable solution for

multi-phase regimes.

In a mechanistic model, the basic equations of local mass and momentum three

(3D) conservation equations are written with respect to space, when modelling steady

with respect to space and time, when modelling transie

each basic sub-region of the flow pattern.

for each space step along the

each time step), using the inlet and outlet process condition as boundary conditions.

C.2.2 Recommendations

The two phase correlations are applicable for process pipes. For transportation pipelines,

regarding to the profile of the pipeline, a single correlation cannot be used f

profile, because the pipeline cannot be supposed as a single vertical or horizontal line, and for

each segment an appropriate correlation should be applied for calculations.

Whenever possible, mechanistic multi

correlation-based programs.

Feb. 2019

34

The above mentioned liquid and gas correlations can only be used for preliminary estimation of a

pipeline transport capacity and their accuracy is limited as they assume a constant

temperature and constant properties of the fluid over the pipeline length.

For gas transportation pipelines, the above mentioned methods consider the gravity term of the

pressure drop as negligible compared to frictional pressure drop. They are not

transportation of a fluid at a pressure above the dew point or to gas transported at very high

pressure through a hilly profile pipeline.

For liquid pipelines, the above mentioned correlations do not take wax depositions into account.

hen more accurate calculations are requested or when the assumption of a constant average

flowing temperature cannot be made, flow simulations using computer programs shall be carried

phase flow presents several design and operational difficulties not present in single phase

liquid or vapor flow. The physical properties of the phases are quite different and vary differently

with the pressure and the temperature. In addition, gravity acts differently on each phase. As a

result of the difference in phase behavior, a slippage occurs between the gas and the liquid(s)

which do not flow at the same velocity; This event affects the distribution of the phases in the

nd consequently the overall liquid content of the pipeline or liquid hold

method for multi-phase flow

The classical correlations (such as Eaton, Lockhart and Martinelli, Beggs&Brill, ...) solve Multi

phase flow transport problems with quite limited validity, and there is no general correlation that

consistently predicts the pressure drop and liquid/water hold up within a reasonable level of

accuracy for all flow conditions. Thus the mechanistic method is a more reliable solution for

In a mechanistic model, the basic equations of local mass and momentum three

conservation equations are written with respect to space, when modelling steady

with respect to space and time, when modelling transient two-phase flow,

region of the flow pattern. The closed differential system is solved numerically

for each space step along the direction of the flow (and in use of transient flow modelling, for

the inlet and outlet process condition as boundary conditions.

The two phase correlations are applicable for process pipes. For transportation pipelines,

regarding to the profile of the pipeline, a single correlation cannot be used f

profile, because the pipeline cannot be supposed as a single vertical or horizontal line, and for

each segment an appropriate correlation should be applied for calculations.

Whenever possible, mechanistic multi-phase computer programs should be used, preferably to

IPS-E-PI-140(2)

The above mentioned liquid and gas correlations can only be used for preliminary estimation of a

pipeline transport capacity and their accuracy is limited as they assume a constant average

For gas transportation pipelines, the above mentioned methods consider the gravity term of the

pressure drop as negligible compared to frictional pressure drop. They are not appropriate to the

transportation of a fluid at a pressure above the dew point or to gas transported at very high

For liquid pipelines, the above mentioned correlations do not take wax depositions into account.

hen more accurate calculations are requested or when the assumption of a constant average

flowing temperature cannot be made, flow simulations using computer programs shall be carried

phase flow presents several design and operational difficulties not present in single phase

liquid or vapor flow. The physical properties of the phases are quite different and vary differently

acts differently on each phase. As a

result of the difference in phase behavior, a slippage occurs between the gas and the liquid(s)

which do not flow at the same velocity; This event affects the distribution of the phases in the

nd consequently the overall liquid content of the pipeline or liquid hold

The classical correlations (such as Eaton, Lockhart and Martinelli, Beggs&Brill, ...) solve Multi-

uite limited validity, and there is no general correlation that

consistently predicts the pressure drop and liquid/water hold up within a reasonable level of

accuracy for all flow conditions. Thus the mechanistic method is a more reliable solution for

In a mechanistic model, the basic equations of local mass and momentum three-dimensional

conservation equations are written with respect to space, when modelling steady-state, and

phase flow, for each phase and

The closed differential system is solved numerically

direction of the flow (and in use of transient flow modelling, for

the inlet and outlet process condition as boundary conditions.

The two phase correlations are applicable for process pipes. For transportation pipelines,

regarding to the profile of the pipeline, a single correlation cannot be used for the whole pipeline

profile, because the pipeline cannot be supposed as a single vertical or horizontal line, and for

each segment an appropriate correlation should be applied for calculations.

should be used, preferably to

Page 40: Technical requirements and engineering recommendations …

When the presence of a free water phase is expected to play a significant role in the flow

behavior, like for example in wet gas

would occur, a three-phase simulation code should be used.

For multiphase flow system design, at preliminary or pre

simulations should be used; at

specific cases where the size of major pieces of pipeline is governed by dynamic flow behavior

of the system.

At a basic or detailed design stage, transient simulations shall be used to confirm some details of

the design, to provide data for the process control or guidelines to

Feb. 2019

35

When the presence of a free water phase is expected to play a significant role in the flow

behavior, like for example in wet gas-condensate pipeline where water-condensate segregation

phase simulation code should be used.

For multiphase flow system design, at preliminary or pre-project stage, only steady

at that stage, transient simulations will only be considered in very

e size of major pieces of pipeline is governed by dynamic flow behavior

At a basic or detailed design stage, transient simulations shall be used to confirm some details of

the design, to provide data for the process control or guidelines to develop operating procedures.

IPS-E-PI-140(2)

When the presence of a free water phase is expected to play a significant role in the flow

condensate segregation

project stage, only steady-state

that stage, transient simulations will only be considered in very

e size of major pieces of pipeline is governed by dynamic flow behavior

At a basic or detailed design stage, transient simulations shall be used to confirm some details of

develop operating procedures.

Page 41: Technical requirements and engineering recommendations …

Moody (or darcy) friction factor chart

Key

moody Diagram

Transition Region

Laminar Flow

Complete Turbulence

Smooth Pipe

Friction Factor

Relative Pipe Roughness

Reynolds Number Concrete, Coarse Concrete, New Smooth

Drawn Tubing

Glass, Plastic, Perspex

Iron, Cast Sewers, Old

Steel, Mortar Lined Steel, Rusted

Steel, Structural or Forged Water Mains, Old

Feb. 2019

36

Appendix D

(Informative)

Moody (or darcy) friction factor chart

V Fluid Velocity m/s ρ Fluid Density µ Fluid Viscosity cp ε Absolute Pipe Roughness mm d Pipe Diameter mm

IPS-E-PI-140(2)

Page 42: Technical requirements and engineering recommendations …

هاي مهندسي براي خطوط لوله انتقال در

IPS

هاي مهندسي براي خطوط لوله انتقال در الزامات فني و توصيه

ها ويژگي -خشكي

دومويرايش

1397بهمن

IPS-E-PI-140(2)

الزامات فني و توصيه

Page 43: Technical requirements and engineering recommendations …

هاي وزارت نفت ايران است و براي استفاده در

ي شيميائي و پتروشيمي، تأسيسات انتقال و فراورش

هائي از المللي تهيه شده و شامل گزيده

از بازار همچنين براساس تجربيات صنعت نفت كشور و قابليت تأمين كالا

مواردي از . طور تكميلي و يا اصلاحي در اين استاندارد لحاظ شده است

گذاري شده براي صورت شماره هها ب

ها پذير تدوين شده است تا كاربران بتوانند نيازهاي خود را با آن

گونه موارد بايد در اين. هاي پروژه ها را پوشش ندهند

اين الحاقيه همراه با استاندارد . نمايد تهيه و پيوست نمايند

ها در اين بررسي. گردند بار مورد بررسي قرار گرفته و روزآمد مي

ها ملاك اين همواره آخرين ويرايش آن

اي كه براي نظرها و پيشنهادات اصلاحي و يا هرگونه الحاقيه

هاي فني نظرات و پيشنهادات دريافتي در كميته

.و در صورت تصويب در تجديد نظرهاي بعدي استاندارد منعكس خواهد شد

17ايران، تهران، خيابان كريمخان زند، خردمند شمالي، كوچه چهاردهم، شماره

Feb. 2019 IPS

ب

هاي وزارت نفت ايران است و براي استفاده در كننده ديدگاه منعكس )IPS(استانداردهاي نفت ايران

ي شيميائي و پتروشيمي، تأسيسات انتقال و فراورش هاي نفت، واحدها تأسيسات توليد نفت و گاز، پالايشگاه

.گاز و ساير تأسيسات مشابه تهيه شده است

المللي تهيه شده و شامل گزيده استانداردهاي نفت، براساس استانداردهاي قابل قبول بين

همچنين براساس تجربيات صنعت نفت كشور و قابليت تأمين كالا. باشد استانداردهاي مرجع مي

طور تكميلي و يا اصلاحي در اين استاندارد لحاظ شده است هداخلي و نيز برحسب نياز، مواردي ب

ها ب برگ هاي فني كه در متن استانداردها آورده نشده است در داده

.استفاده مناسب كاربران آورده شده است

پذير تدوين شده است تا كاربران بتوانند نيازهاي خود را با آن شكلي كاملاً انعطاف

هاي پروژه ها را پوشش ندهند با اين حال ممكن است تمام نيازمندي

نمايد تهيه و پيوست نمايند ها را تامين مي اي كه نيازهاي خاص آن

.مربوطه، مشخصات فني آن پروژه و يا كار خاص را تشكيل خواهند داد

بار مورد بررسي قرار گرفته و روزآمد مي استانداردهاي نفت تقريباً هر پنج سال يك

اين همواره آخرين ويرايش آناي به آن اضافه شود و بنابر ممكن است استانداردي حذف و يا الحاقيه

نظرها و پيشنهادات اصلاحي و يا هرگونه الحاقيه شود نقطه از كاربران استاندارد، درخواست مي

نظرات و پيشنهادات دريافتي در كميته. اند، به نشاني زير ارسال نمايند موارد خاص تهيه نموده

و در صورت تصويب در تجديد نظرهاي بعدي استاندارد منعكس خواهد شد

ايران، تهران، خيابان كريمخان زند، خردمند شمالي، كوچه چهاردهم، شماره

هاها و پروژه

1585886851

66153055و 88810459

88810462

[email protected]

IPS-E-PI-140(2)

پيش گفتار

استانداردهاي نفت ايران

تأسيسات توليد نفت و گاز، پالايشگاه

گاز و ساير تأسيسات مشابه تهيه شده است

استانداردهاي نفت، براساس استانداردهاي قابل قبول بين

استانداردهاي مرجع مي

داخلي و نيز برحسب نياز، مواردي ب

هاي فني كه در متن استانداردها آورده نشده است در داده گزينه

استفاده مناسب كاربران آورده شده است

شكلي كاملاً انعطاف ه، باستانداردهاي نفت

با اين حال ممكن است تمام نيازمندي. منطبق نمايند

اي كه نيازهاي خاص آن الحاقيه

مربوطه، مشخصات فني آن پروژه و يا كار خاص را تشكيل خواهند داد

استانداردهاي نفت تقريباً هر پنج سال يك

ممكن است استانداردي حذف و يا الحاقيه

.باشد عمل مي

از كاربران استاندارد، درخواست مي

موارد خاص تهيه نموده

و در صورت تصويب در تجديد نظرهاي بعدي استاندارد منعكس خواهد شدمربوطه بررسي

ايران، تهران، خيابان كريمخان زند، خردمند شمالي، كوچه چهاردهم، شماره

ها و پروژهاستانداردهاي طرح

1585886851: كدپستي

88810459 - 60: تلفن

88810462: دور نگار

[email protected]: پست الكترونيك

Page 44: Technical requirements and engineering recommendations …

صفحه

ه

1

1

3

3

3

7

8

8

8

8

9

9

10

12

20

22

22

23

23

23

23

24

24

24

25

25

26

28

Feb. 2019 IPS

ج

فهرست مندرجات

كاربرد

تعاريف

ي

ياختصاص

يعموم

يعمليات

)يساز بهينه( ياقتصاد

يهيدروليك

يمكانيك

لوله خطوط

غيره اتصالات،

لوله

خاك و

يمسكون يها ساختمان

تأسيسات ساير

ي

لوله خط يگذار

IPS-E-PI-140(2)

عنوان

مقدمه

كاربرد ةدامن و هدف 1

يالزام مراجع 2

تعاريف و اصطلاحات 3

يعموم يها واژه 1- 3

اختصاص يهاواژه 2- 3

اختصاري علائم 4

واحدها 5

سيالات يبنددسته 6

يطراح 7

عموم ملاحظات 1- 7

عمليات الزامات 2- 7

اقتصاد حظاتملا 3- 7

هيدروليك يطراح 4- 7

مكانيك يطراح 5- 7

خطوط هاي سكير 6- 7

مواد جنس 8

اتيكل 1- 8

كالا تدارك 2- 8

لوله خط مواد 3- 8

شيرها 4- 8

اتصالات، انشعابات، 5- 8

لوله خط مسير انتخاب 9

اتيكل 1- 9

و مسير يبررس 2- 9

ساختمان با مجاورت 3- 9

ساير با مجاورت 4- 9

ياختصاص جاده 5- 9

گذار علامت و حفاظت 10

Page 45: Technical requirements and engineering recommendations …

28

28

29

29

30

31

32

32

33

33

34

35

35

36

37

38

Feb. 2019 IPS

د

لوله كانال

لوله خطوط

مدفون ريغ

يخوردگ برابر

لوله خطوط

رودخانه

آهن راه و جاده

لوله خطوط ساير

نيزم يها گسل

يبحران سرعت فرمول )دهنده

يشيسا سرعت فرمول )دهنده

دروليكيهي طراحي محاسبات )دهنده

IPS-E-PI-140(2)

دفن فلسفه 10-1

كانال يهااندازه 10-2

خطوط براي مهار 10-3

لوله خطوط 10-4

در محافظت 10-5

خطوط ينشانگرها 10-6

ها تقاطع 11

رودخانه با تقاطع 11-1

جاده با تقاطع 11-2

ساير با تقاطع 11-3

گسل با تقاطع 11-4

زمين رانش 11-5

سوابق و اسناد 12

:اهتسويپ

دهنده آگاهي( الف پيوست

دهنده آگاهي( ب پيوست

دهنده آگاهي( پ پيوست

Page 46: Technical requirements and engineering recommendations …

اي از متخصصين، نمايندگان و با اتفاق نظر طيف گسترده

ها و غيره ذيربط و آزمايشگاهي، سازندگان، انجمن

هاي طور سيستماتيك توسط كميته

و تأثيرگذاري آنها، نسبت به تأييد، ابطال

4بديهي است مطابق بند . شود اقدام لازم انجام مي

و فارسي متن بين اختلاف صورت

طي 1عنوان اصلاحيه شماره توسط كميته فني مربوطه بررسي و موارد تأييد شده به

و تاييد مربوطه فني كميته سطتو 1388

مربوطه فني كميته توسط 1397بهمن ماه سال

.باشد مي منسوخ

اداره كل نظام فني و اجرايي و ارزشيابي ،

استانداردها را براي هاي واجد صلاحيت هستند كه وظايف تعيين و بازنگري

Feb. 2019 IPS

ه

و با اتفاق نظر طيف گسترده 1هاي مرجع تخصصي اين استاندارد در كميته

آزمايشگاهي، سازندگان، انجمن - ها، نهادها و مراكز تحقيقاتي ، مديريت

.نفع تدوين شده است

طور سيستماتيك توسط كميته هبار ب استانداردهاي تدوين شده از سوي وزارت نفت هر پنج سال يك

و تأثيرگذاري آنها، نسبت به تأييد، ابطال مرجع تخصصي مورد بررسي قرار گرفته و با توجه به قابليت اجرايي

اقدام لازم انجام مي وزارت نفتها مطابق با مقررات جاري

صورت در. شود انجام هنگام زود تواند مي بازنگري زماني

.باشد مي ملاك انگليسي

توسط كميته فني مربوطه بررسي و موارد تأييد شده به 1383اين استاندارد در دي ماه سال

.ابلاغ گرديد

1388تير ماه سال كه در باشد مي فوق استاندارد شده بازنگري نسخه

.گرديد

بهمن ماه سال كه در باشد مي فوق استاندارد شده بازنگري نسخه

منسوخ داستاندار اين )1( ويرايش پس اين از. گردد مي ارايه )2

استانداردهاي صنعت نفت ايران

، 17خردمند شمالي، كوچه چهاردهم، شماره خيابان كريمخان زند،

، معاونت استانداردها

)021( 61623055و )021

021(

[email protected]

هاي واجد صلاحيت هستند كه وظايف تعيين و بازنگري هاي مرجع تخصصي استاندارد، كميته

.بر عهده دارند) هاي دولتي، خصوصي و تعاوني

IPS-E-PI-140(2)

مقدمه

اين استاندارد در كميته

، مديريتها ها، شركت سازمان

نفع تدوين شده است ذي

استانداردهاي تدوين شده از سوي وزارت نفت هر پنج سال يك

مرجع تخصصي مورد بررسي قرار گرفته و با توجه به قابليت اجرايي

ها مطابق با مقررات جاري و يا تجديدنظر آن

زماني هروش اجرايي، دور

انگليسي متن انگليسي،

:1يادآوري

اين استاندارد در دي ماه سال

ابلاغ گرديد 194بخشنامه شماره

:2يادآوري

نسخه زبانه، دو استاندارد اين

گرديد ارايه )1( ويرايش عنوان به

:3يادآوري

نسخه زبانه، دو استاندارد اين

2( ويرايش عنوان به و تاييد

استانداردهاي صنعت نفت ايران

كريمخان زند، بلوار ايران، تهران،

، معاونت استانداردهاها طرح

1585886851: كدپستي

( 88810459 - 60: تلفن

021( 88810462: گاردور ن

[email protected]: رايانامه

http://ips.mop.ir: وبگاه

هاي مرجع تخصصي استاندارد، كميته كميته -1

هاي دولتي، خصوصي و تعاوني بخش(صنعت نفت

Page 47: Technical requirements and engineering recommendations …

ها ويژگي-مهندسي براي خطوط لوله انتقال در خشكي

له منظور طراحي خطوط لو هاي مهندسي به

. باشـد در خشكي و خارج از كارخانه براي انتقال سيالات هيدروكربني در صنايع نفت و گاز و پتروشيمي مـي

شود و همچنين در خصـوص مـوارد مهندسـي مربـوط بـه

و ASME B31.4سـتانداردهاي اي نشـده اسـت، الزامـات ا

. است شده داده ارجاع ها آن به الزامي

براي آن بعدي نظرهاي تجديد و ها

است، شده داده ارجاع ها ن آ به انتشار

2-1 API RP 1102, Steel pipelines crossing rail roads and highways

2-2 API 1160, Managing systems integrity for hazardous liquid pipelines

2-3 API 6 D, Specification for

2-4 API SPEC.5L, Specification for

2-5 ASME B 31.4, Pipeline transportation systems for liquid hydrocarbon and other liquids

2-6 ASME B 31.8, Gas transmission and distribution systems

2-7 BS EN ISO 18086, Corrosion of metals and alloys

criteria

2-8 EI Model code of safe practice Part 15,

flammable fluids

2-9 IPS-E-GN-100, Engineering

2-10 IPS-C-CE-112, Construction

2-11 IPS-C-PI-270, Construction

Feb. 2019 IPS

1

مهندسي براي خطوط لوله انتقال در خشكيهاي الزامات فني و توصيه

هدف و دامنة كاربرد

هاي مهندسي به هدف از تدوين اين استاندارد، تبيين حداقل الزامات فني و توصيه

در خشكي و خارج از كارخانه براي انتقال سيالات هيدروكربني در صنايع نفت و گاز و پتروشيمي مـي

شود و همچنين در خصـوص مـوارد مهندسـي مربـوط بـه ها اعمال مي تأسيساتي كه اين استاندارد درباره آن

اي نشـده اسـت، الزامـات ا هـا اشـاره خطوط لوله كه در اين استاندارد بـه آن

.باشد ملاك عمل مي

الزامي صورت به استاندارد اين متن در كه دارد وجود ضوابطي

.شوند مي محسوب استاندارد اين از جزئي ضوابط

ها اصلاحيه باشد، شده داده ارجاع انتشار تاريخ ذكر با مرجعي

انتشار تاريخ ذكر بدون كه مراجعي مورد در. نيست

.است نظر مورد ها آن بعدي هاي اصلاحيه و تجديدنظر

.است الزامي استاندارد اين اربردك براي1

pipelines crossing rail roads and highways

systems integrity for hazardous liquid pipelines

API 6 D, Specification for pipeline and piping valves

ion for line pipe

transportation systems for liquid hydrocarbon and other liquids

transmission and distribution systems

EN ISO 18086, Corrosion of metals and alloys- Determination of AC corrosion

practice Part 15, area classification code for installations

, Engineering standard for units

, Construction standard for earthworks

, Construction standard for welding of transportation pipelines

.باشد صورت اختلاف بين متن فارسي و انگليسي، متن انگليسي ملاك مي

IPS-E-PI-140(2)

الزامات فني و توصيه

هدف و دامنة كاربرد 1

هدف از تدوين اين استاندارد، تبيين حداقل الزامات فني و توصيه

در خشكي و خارج از كارخانه براي انتقال سيالات هيدروكربني در صنايع نفت و گاز و پتروشيمي مـي

تأسيساتي كه اين استاندارد درباره آن

خطوط لوله كه در اين استاندارد بـه آن

ASME B31.8 ملاك عمل مي

ع الزاميمراج 2

ضوابطي زير مراجع در

ضوابط آن ترتيب، بدين

مرجعي به كه صورتي در

آور الزام استاندارد اين

تجديدنظر آخرين همواره

براي زير مراجع از استفاده

transportation systems for liquid hydrocarbon and other liquids

Determination of AC corrosion- Protection

area classification code for installations handling

standard for welding of transportation pipelines

صورت اختلاف بين متن فارسي و انگليسي، متن انگليسي ملاك ميدر -1

Page 48: Technical requirements and engineering recommendations …

2-12 IPS-C-PI-370, Construction

2-13 IPS-E-PI-240, Engineering

2-14 IPS-G-PI-280, General standard for pipe supports

2-15 IPS-M-PI-110, Material and

2-16 IPS-M-PI-150, Material standard for flanges

2-17 IPS-M-PI-130, Material and

2-18 IPS-M-PI-190, Material and

2-19 IPS-D-PI-143, Pipelines right

2-20 IPS-E-SF-100, Engineering

2-21 IPS-E-TP-270, Engineering

structures

2-22 IPS-E-TP-820, Engineering

2-23 IPS-D-TP-712, Combined

2-24 IPS-D-PI-175, Pipeline road crossing

2-25 IPS-E-EL-160, Engineering

2-26 IPS-C-PI-140, Construction

2-27 NACE MR 0175/ISO 15156

containing environments in oil and gas production

resistant materials

هـاي مـواد مـورد اسـتفاده در محـيط -صنايع نفت و گاز طبيعي

، بـا اسـتفاده از خوردگي اصول كلي انتخاب مواد مقاوم به ترك

2-28 NACE MR 0175/ISO 15156

containing environments in oil and

steels, and the use of cast iron

هـاي مـواد مـورد اسـتفاده در محـيط -صنايع نفت و گاز طبيعي

خـوردگي و اسـتفاده فولادهاي كربني و كم آلياژ مقاوم به ترك

2-29 NACE MR 0175/ISO 15156

containing environments in oil an

resistant alloys) and other alloys

هـاي مـواد مـورد اسـتفاده در محـيط -صنايع نفت و گاز طبيعي

و ساير آلياژهـاي مقـاوم ) آلياژهاي مقاوم به خوردگي

2-30 NFPA 10: “Standard for portable fire extinguishers”

Feb. 2019 IPS

2

, Construction standard for transportation pipelines (onshore) pressure testing

, Engineering standard for plant piping systems

standard for pipe supports

, Material and equipment standard for valves

standard for flanges and fittings

, Material and equipment standard for pig launching and receiving traps

, Material and equipment standard for line pipes

right-of-way

100, Engineering standard for classification of fires and fire hazard properties

, Engineering standard for protective coatings for buried and submerged steel

, Engineering standard for cathodic protection

, Combined marker and test point and bond box details

road crossing

Engineering standard for overhead transmission and distribution

, Construction standard for transportation pipelines (onshore)

ISO 15156-1, Petroleum and natural gas industries - Materials for use in H

containing environments in oil and gas production - Part 1: General principles for section of cracking

صنايع نفت و گاز طبيعي، 1393سال : 9226-1استاندارد ملي ايران شماره

(H2S اصول كلي انتخاب مواد مقاوم به ترك -1قسمت -ر توليد نفت و گازد

ISO 15156 تدوين شده است.

ISO 15156-2, Petroleum and natural gas industries - Materials for use in H

containing environments in oil and gas production - Part 2: Cracking-resistant carbon and low

صنايع نفت و گاز طبيعي، 1393سال : 9226-2استاندارد ملي ايران شماره

(H2S فولادهاي كربني و كم آلياژ مقاوم به ترك -2قسمت -در توليد نفت و گاز

.تدوين شده است ISO 15156-2: 2009، با استفاده از استاندارد

ISO 15156-3, Petroleum and natural gas industries - Materials for use in H

containing environments in oil and gas production - Part 3: Cracking-resistant CRAs (corrosion

صنايع نفت و گاز طبيعي، 1393سال : 9226-3استاندارد ملي ايران شماره

(H2S 3قسمت -در توليد نفت و گاز- CRAs )آلياژهاي مقاوم به خوردگي

.تدوين شده است ISO 15156-3: 2009، با استفاده از استاندارد

NFPA 10: “Standard for portable fire extinguishers”

IPS-E-PI-140(2)

standard for transportation pipelines (onshore) pressure testing

equipment standard for pig launching and receiving traps

standard for classification of fires and fire hazard properties

for protective coatings for buried and submerged steel

d transmission and distribution

standard for transportation pipelines (onshore)

Materials for use in H2S -

Part 1: General principles for section of cracking-

استاندارد ملي ايران شماره -يادآوري

(Sحاوي سولفيد هيدروژن

2009 :1-15156استاندارد

Materials for use in H2S -

resistant carbon and low-alloy

استاندارد ملي ايران شماره -يادآوري

(Sحاوي سولفيد هيدروژن

، با استفاده از استاندارد ها از چدن

Materials for use in H2S -

resistant CRAs (corrosion-

استاندارد ملي ايران شماره -يادآوري

(Sحاوي سولفيد هيدروژن

، با استفاده از استاندارد خوردگي به ترك

Page 49: Technical requirements and engineering recommendations …

engineer

هـاي هاي مهندسـي و اجـراي پـروژه

.شود

manufacturer

كه سازنده يا توليدكننده خط لولـه و اجـزاء آن مطـابق بـا الزامـات اسـتانداردهاي

consultant

.دهند شود كه تمام يا قسمتي از طراحي و مهندسي خط لوله را انجام مي

design factor

نسبت بين تنش حلقوي ايجاد شده در خط لوله توسط فشار طراحي به حداقل تنش تسـليم مشـخص شـده

Feb. 2019 IPS

3

اصطلاحات و تعاريف

:درو كار مي در اين استاندارد، اصطلاحات و تعاريف زير به

هاي عمومي

هاي مهندسـي و اجـراي پـروژه شود كه براي نظارت بر طراحي، سرويس به شخص يا گروهي اطلاق مي

شود عنوان نماينده از طرف كارفرما تعيين مي همورد نياز و مشخص كارفرما ب

كه سازنده يا توليدكننده خط لولـه و اجـزاء آن مطـابق بـا الزامـات اسـتانداردهاي شود

.باشند مربوطه در استانداردهاي نفت ايران مي

شود كه تمام يا قسمتي از طراحي و مهندسي خط لوله را انجام مي

هاي اختصاصي

نسبت بين تنش حلقوي ايجاد شده در خط لوله توسط فشار طراحي به حداقل تنش تسـليم مشـخص شـده

IPS-E-PI-140(2)

اصطلاحات و تعاريف 3

در اين استاندارد، اصطلاحات و تعاريف زير به

هاي عمومي واژه 1- 3

3-1-1

نماينده كارفرما

به شخص يا گروهي اطلاق مي

مورد نياز و مشخص كارفرما ب

3-1-2

سازنده

شود به گروهي اطلاق مي

مربوطه در استانداردهاي نفت ايران مي

3-1-3

مشاور

شود كه تمام يا قسمتي از طراحي و مهندسي خط لوله را انجام مي به گروهي اطلاق مي

هاي اختصاصي واژه 2- 3

3-2-1

ضريب طراحي

نسبت بين تنش حلقوي ايجاد شده در خط لوله توسط فشار طراحي به حداقل تنش تسـليم مشـخص شـده

.براي جنس خط لوله

Page 50: Technical requirements and engineering recommendations …

specified minimum yield stress

اين مقدار توسـط كارفرمـا ).تعريف انجمن نفت آمريكا

.نمايند

incidental pressure

افتد، مثل تغييـر ناگهـاني فشاري كه با تواتر محدود و در يك فاصله زماني محدود در يك خط لوله اتفاق مي

.كه اكثر اوقات اتفاق نيافتد

maximum allowable incidental pressure

يـك خـط لولـه ASME B 31.4و

.د در سرويس داشته باشد

maximum allowable operating pressure

ASME B31.4 بـا توانـد يك خـط لولـه مـي

Feb. 2019 IPS

4

حداقل تنش تسليم مشخص شده

specified minimum yield stress

تعريف انجمن نفت آمريكا(درصد كرنش نمايد 5/0حد تنشي كه مجموعاً توليد

نمايند پيمانكار فرعي بايد آن را ضمـانت /كننده تهيه/شود و سازنده

فشاري كه با تواتر محدود و در يك فاصله زماني محدود در يك خط لوله اتفاق مي

كه اكثر اوقات اتفاق نيافتد هاي حرارتي، در صورتي اطفشار و فشار حاصل از انبس

حداكثر فشار اتفاقي مجاز

aximum allowable incidental pressure

و ASME B 31.8حــداكثر فشــار مجازي كـه طبـــق استـــانداردهاي

د در سرويس داشته باشدتواند با تواتر محدود و در يك فاصله زماني محدو

حداكثر فشار عملياتي مجاز

aximum allowable operating pressure

ASME B31.4 و ASME B31.8حداكثر فشار مجازي كه طبق استانداردهاي

.شرايط عملياتي يكنواخت و پايدار در سرويس داشته باشد

IPS-E-PI-140(2)

3-2-2

حداقل تنش تسليم مشخص شده

SMYS

حد تنشي كه مجموعاً توليد

شود و سازنده مشخص مي

3-2-3

فشار اتفاقي

فشاري كه با تواتر محدود و در يك فاصله زماني محدود در يك خط لوله اتفاق مي

فشار و فشار حاصل از انبس

3-2-4

حداكثر فشار اتفاقي مجاز

MAIP

حــداكثر فشــار مجازي كـه طبـــق استـــانداردهاي

تواند با تواتر محدود و در يك فاصله زماني محدو مي

3-2-5

حداكثر فشار عملياتي مجاز

MAOP

حداكثر فشار مجازي كه طبق استانداردهاي

شرايط عملياتي يكنواخت و پايدار در سرويس داشته باشد

Page 51: Technical requirements and engineering recommendations …

flammable fluid

.باشد

stable fluid

-IPS-E-SFبـه اسـتاندارد (پذيري آن صفر باشـد

toxic fluid

.است و خيلي سمي

flow line

براي انتقال سيال هيدروكربني فـراورش نشـده و سـاير سـيالات

برداري و يا تا شير اطمينـان سـطح

transmission line

براي انتقال سيال هيدروكربني فراورش شـده يـا سـيالات

د هيدروكربني بين شير مسدود كننده اصلي لوله خروجي از واحدها و شير مسـدود كننـده اصـلي

Feb. 2019 IPS

5

باشد C 100° ها كمتر از كه دماي نقطه اشتعال آن شود

پذيري آن صفر باشـد شماره درجه واكنش NFPA 10 سيالي كه طبق استاندارد

و خيلي سمي ي سمي، سميصورت كم هبندي شده ب شامل تمام سيالات دسته

براي انتقال سيال هيدروكربني فـراورش نشـده و سـاير سـيالات كه ) همراه با اتصالات و شيرها

برداري و يا تا شير اطمينـان سـطح بهره له سنگ تا فلنج ورودي چندراهه در واحداز فلنج خروجي ت

.رود كار مي كننده سر چاهي به

براي انتقال سيال هيدروكربني فراورش شـده يـا سـيالات كه ) ها و شيرها همراه با اتصالات، تله

د هيدروكربني بين شير مسدود كننده اصلي لوله خروجي از واحدها و شير مسـدود كننـده اصـلي

.رود كار مي به ها ي ورودي به ساير واحدها و چاه

IPS-E-PI-140(2)

3-2-6

القابل اشتعسيال

شود اطلاق مي سياليبه

3-2-7

سيال پايدار

سيالي كه طبق استاندارد

).مراجعه شود 100

3-2-8

سيال سمي

شامل تمام سيالات دسته

3-2-9

خط جرياني

همراه با اتصالات و شيرها( اي خط لوله

از فلنج خروجي ت ،مخازن

كننده سر چاهي به الارضي تفكيك

3-2-10

خط انتقال

همراه با اتصالات، تله( اي خط لوله

د هيدروكربني بين شير مسدود كننده اصلي لوله خروجي از واحدها و شير مسـدود كننـده اصـلي حاوي موا

ي ورودي به ساير واحدها و چاهها لوله

Page 52: Technical requirements and engineering recommendations …

main oil line (oil trunk line)

مسـدود كننـده اصـلي لولـه خروجـي نفـت از واحـد

تصـالات و اما بدون لوله، شيرها، ا ،و شير مسدود كننده اصلي لوله هاي ورودي به پايانه نفت خام

.قرار دارد ،هاي تقويت فشار

gas transmission line (gas trunk line)

كننده گاز خروجي واحد گاز طبيعي مايع

كننده لوله ورودي به پايانه پخش و يا محوطه

كننـده ورودي و خروجـي به استثناء لوله و اتصالات و شيرها و غيره بين شـيرهاي مسـدود

ethylene and ethane transmission line

جملـه از پتروشـيمي حـدهاي وا خـوراك

.شود مي استفاده پليمرها از وسيعي

gas gathering line

ي بين شير مسدود كننده گاز خروجي جدا كننده سر چاه

كننده گاز ورودي واحد گاز طبيعي مايع شده يا خط ورودي

Feb. 2019 IPS

6

)شاه لوله نفت(خط انتقال اصلي نفت

مسـدود كننـده اصـلي لولـه خروجـي نفـت از واحـد بـين شـير كه ) همراه با اتصالات و شيرها

و شير مسدود كننده اصلي لوله هاي ورودي به پايانه نفت خام

هاي تقويت فشار كننده ورودي و خروجي ايستگاهغيره، بين شيرهاي مسدود

)ازشاه لوله گ(

gas transmission line (gas trunk line)

كننده گاز خروجي واحد گاز طبيعي مايع بين شير مسدود كه )ها و شيرها همراه با اتصالات، تله

كننده لوله ورودي به پايانه پخش و يا محوطه شده يا پالايشگاه گاز يا ايستگاه تقويت فشار گاز و شير مسدود

به استثناء لوله و اتصالات و شيرها و غيره بين شـيرهاي مسـدود

.، قرار داردهاي تقويت فشار

خط انتقال اتيلن و اتان

ethylene and ethane transmission line

خـوراك تـأمين بـراي كـه ) ها و شـيرها همراه با اتصالات، تله

وسيعي طيف اتان براي توليد و اتيلن انتقال منظور اولفيني كه به

بين شير مسدود كننده گاز خروجي جدا كننده سر چاه كه )ها و شيرها همراه با اتصالات، تله

كننده گاز ورودي واحد گاز طبيعي مايع شده يا خط ورودي و شير مسدود) يا مجتمع جدا كننده سر چاهي

.، قرار دارد

IPS-E-PI-140(2)

3-2-11

خط انتقال اصلي نفت

همراه با اتصالات و شيرها( اي خط لوله

و شير مسدود كننده اصلي لوله هاي ورودي به پايانه نفت خام يبردار بهره

غيره، بين شيرهاي مسدود

3-2-12

(خط انتقال اصلي گاز

همراه با اتصالات، تله( اي خط لوله

شده يا پالايشگاه گاز يا ايستگاه تقويت فشار گاز و شير مسدود

به استثناء لوله و اتصالات و شيرها و غيره بين شـيرهاي مسـدود ،كنندگان مصرف

هاي تقويت فشار اصلي ايستگاه

3-2-13

خط انتقال اتيلن و اتان

همراه با اتصالات، تله( اي خط لوله

اولفيني كه به واحدهاي

3-2-14

خط جمع آوري گاز

همراه با اتصالات، تله( اي خط لوله

يا مجتمع جدا كننده سر چاهي(

، قرار داردبرداري گاز واحد بهره

Page 53: Technical requirements and engineering recommendations …

NGL line

ايع شده گاز طبيعي م بين شير مسدود كننده لوله خروجي واحد

كننده لوله ورودي به پايانه پخش گاز طبيعي مايع شده يا واحد گاز نفتي مايع شده يا محوطه

injection line

بين شير مسدود كننده لوله خروجي واحد تزريـق گـاز و

.رود كار مي به شير مسدود كننده سر چاهي به منظور انتقال سيال مورد نياز براي فشار افزايي چاه

waste water line (salt water, sour water

فرآورشـي و شـير بين شير مسدود كننـده لولـه خروجـي واحـد

.شود ، استفاده ميمنظور انتقال سيالات زائد آلوده به مواد هيدروكربني به چاه

Diameter Nominal

Liquefied Petroleum Gas

Natural Gas Liquids

Nominal Pipe Size

Reynolds

Raised Face

International System of Unites

Specified Minimum Yield Stress

Feb. 2019 IPS

7

خط گاز طبيعي مايع شده

بين شير مسدود كننده لوله خروجي واحدكه ) همراه با اتصالات و شيرها

كننده لوله ورودي به پايانه پخش گاز طبيعي مايع شده يا واحد گاز نفتي مايع شده يا محوطه

.، قرار دارد

بين شير مسدود كننده لوله خروجي واحد تزريـق گـاز و كه )همراه با اتصالات، تله ها و شيرها

شير مسدود كننده سر چاهي به منظور انتقال سيال مورد نياز براي فشار افزايي چاه

)و غيرهآب نمكي، آب ترش

aste water line (salt water, sour water, etc.)

بين شير مسدود كننـده لولـه خروجـي واحـد كه ) همراه با اتصالات و شيرها

منظور انتقال سيالات زائد آلوده به مواد هيدروكربني به چاه مسدود كننده سر چاهي به

علائم اختصاري

DN قطر اسمي

LPG گاز نفتي مايع شده

NGL هگاز طبيعي مايع شد

NPS اندازه اسمي لوله

Re عدد رينولدز

RF سطح برجسته

System of Unites SI بين المللي واحدها

Specified Minimum Yield Stress SMYS حداقل تنش تسليم مشخص شده

IPS-E-PI-140(2)

3-2-15

خط گاز طبيعي مايع شده

همراه با اتصالات و شيرها( اي خط لوله

كننده لوله ورودي به پايانه پخش گاز طبيعي مايع شده يا واحد گاز نفتي مايع شده يا محوطه و شير مسدود

، قرار داردكنندگان مصرف

3-2-16

تزريقخط

همراه با اتصالات، تله ها و شيرها( اي خط لوله

شير مسدود كننده سر چاهي به منظور انتقال سيال مورد نياز براي فشار افزايي چاه

3-2-17

آب نمكي، آب ترش (خط پساب

همراه با اتصالات و شيرها( اي خط لوله

مسدود كننده سر چاهي به

علائم اختصاري 4

گاز نفتي مايع شده

گاز طبيعي مايع شد

بين المللي واحدها سيستم

حداقل تنش تسليم مشخص شده

Page 54: Technical requirements and engineering recommendations …

Maximum Allowable Incidental Pressure

Maximum Allowable Operating Pressure

Environmental Impact Assessment

باشـد، مگـر مـي IPS-E-GN-100، منطبق با استاندارد

قرار 1ها، در يكي از چهار دسته جدول

مثال

سيالات پايه آبي، دوغابسيال غيرقابل اشتعال و غير سمي و پايدار كه در دماي محيط و فشار

نفت خام پايدار، گازوئيل، متانولسيال قابل اشتعال يا سمي يا غير پايدار كه در دماي محيط و فشار اتمسفر

ازت، گاز كربنيك، آرگون، هواسيال غيرقابل اشتعال، غير سمي و پايدار كه در دماي محيط و فشار اتمسفر

هيدروژن، اتان، اتيلن، گاز

پروپان و (طبيعي، گاز نفتي مايع

، آمونياك، كلر)بوتان

ا سمي يا غير پايدار كه در دماي محيط و فشار اتمسفر

.اين استاندارد مراجعه شود

ها ارجـاع شـده اسـت و ساير استانداردها كه به آن

اند بايد براي طراحي خط لوله مورد استفاده قـرار گيرنـد كـه در آن توصـيه

شود كه الزامات و شرايط عملياتي، سهولت بازرسي، تعميرات و نگهداري، شرايط محيطي، الزامات ايمنـي،

Feb. 2019 IPS

8

ental Pressure MAIP حداكثر فشار اتفاقي مجاز

Maximum Allowable Operating Pressure MAOP حداكثر فشار عملياتي مجاز

Impact Assessment EIA رات زيست محيطي

، منطبق با استاندارد (SI)ها يكاالمللي بين سيستماين استاندارد، برمبناي

.آنكه در متن استاندارد به واحد ديگري اشاره شده باشد

بندي سيالات

ها، در يكي از چهار دسته جدول يابند بسته به خطرساز بودن آن سيالاتي كه با خط لوله انتقال مي

بندي سيالات دسته -1جدول

شرح

سيال غيرقابل اشتعال و غير سمي و پايدار كه در دماي محيط و فشار

باشد صورت مايع مي اتمسفر به

سيال قابل اشتعال يا سمي يا غير پايدار كه در دماي محيط و فشار اتمسفر

باشد مايع مي

سيال غيرقابل اشتعال، غير سمي و پايدار كه در دماي محيط و فشار اتمسفر

باشد صورت گاز يا مخلوطي از گاز و مايع مي

ا سمي يا غير پايدار كه در دماي محيط و فشار اتمسفر سيال قابل اشتعال ي

باشد صورت گاز يا مخلوطي از گاز و مايع مي

اين استاندارد مراجعه شود 2-3براي تعريف سيالات قابل اشتعال، پايدار و سمي به زيربنـد

ملاحظات عمومي

ASME B31.8 وASME B31.4 ساير استانداردها كه به آنو

اند بايد براي طراحي خط لوله مورد استفاده قـرار گيرنـد كـه در آن توصـيه توسط اين استاندارد تكميل شده

شود كه الزامات و شرايط عملياتي، سهولت بازرسي، تعميرات و نگهداري، شرايط محيطي، الزامات ايمنـي،

IPS-E-PI-140(2)

حداكثر فشار اتفاقي مجاز

حداكثر فشار عملياتي مجاز

رات زيست محيطيارزيابي اث

واحدها 5

اين استاندارد، برمبناي

آنكه در متن استاندارد به واحد ديگري اشاره شده باشد

بندي سيالات دسته 6

سيالاتي كه با خط لوله انتقال مي

.گيرند مي

دسته

سيال غيرقابل اشتعال و غير سمي و پايدار كه در دماي محيط و فشار

اتمسفر بهA

سيال قابل اشتعال يا سمي يا غير پايدار كه در دماي محيط و فشار اتمسفر

مايع مي صورت به B

سيال غيرقابل اشتعال، غير سمي و پايدار كه در دماي محيط و فشار اتمسفر

صورت گاز يا مخلوطي از گاز و مايع مي به C

سيال قابل اشتعال ي

صورت گاز يا مخلوطي از گاز و مايع مي به D

براي تعريف سيالات قابل اشتعال، پايدار و سمي به زيربنـد -يادآوري

طراحي 7

ملاحظات عمومي 7-1

ASME B31.8هاي مربوطه از بخش

توسط اين استاندارد تكميل شده

شود كه الزامات و شرايط عملياتي، سهولت بازرسي، تعميرات و نگهداري، شرايط محيطي، الزامات ايمنـي، مي

Page 55: Technical requirements and engineering recommendations …

هاي بعدي بـراي تمـام دوره ي و فصلي و نيز تغييرات و توسعه

.زماني اجراي پروژه خط لوله و مدت زمان در سرويس قرار نگرفتن آن بعد از اتمام پروژه در نظر گرفته شوند

، بازرسي و تعميـرات و نگهـداري كشي مربوط به آن بايد نيازهاي عملياتي

ريـزي شـده كـه از قبـل بـا در مدت زمان پيش بيني شده براي عمر خط لوله و نيز معيارها و شرايط برنامـه

ميـزان حضـور افـراد، پـايش . مسئولين عملياتي و تعميرات و نگهداري توافق شده است، در نظر گرفته شـود

ليات از راه دور، ارتباطات، دسترسي به جـاده اختصاصـي،

نياز به مسيرهاي فرعي براي اجزايي كه نياز به تعميرات منظم بدون از سرويس خارج كردن خط لوله دارنـد،

ه خـط الزامات براي پـايش يكپارچ ـ

(SCADA)بايـد در مرحلـه طراحـي 1

هاي متعددي وجود داشته باشد، براي تعيين مشخصات طراحي

ترين هزينه ممكـن، يـك بررسـي هترين روش و پايين

هاي ايمنـي و اهميـت علاوه بر عواملي كه اثرات مهمي در كاهش هزينه و ريسك

هاي اقتصادي ذكر شده موارد زير نيز در نظر گرفتـه

هاي جريان، جنس مواد و غيره؛

هاي تقويت فشار، با توجه لازم به ساير تسهيلات مورد نياز براي عمليات و تعميرات و

احتمالي و ملاحظات مقتضي به هاي

.العبور، مناطق باتلاقي و غيره هاي مختلف، مناطق صعب

1- Supervisory control and data aquisition

Feb. 2019 IPS

9

ي و فصلي و نيز تغييرات و توسعهشناس خاكهوا، شرايط محل جغرافيايي، آب و

زماني اجراي پروژه خط لوله و مدت زمان در سرويس قرار نگرفتن آن بعد از اتمام پروژه در نظر گرفته شوند

الزامات عملياتي

كشي مربوط به آن بايد نيازهاي عملياتي در طراحي خط لوله و سيستم لوله

در مدت زمان پيش بيني شده براي عمر خط لوله و نيز معيارها و شرايط برنامـه

مسئولين عملياتي و تعميرات و نگهداري توافق شده است، در نظر گرفته شـود

ليات از راه دور، ارتباطات، دسترسي به جـاده اختصاصـي، شرايط خط لوله و سيستم نگهداري آن، اجراي عم

نياز به مسيرهاي فرعي براي اجزايي كه نياز به تعميرات منظم بدون از سرويس خارج كردن خط لوله دارنـد،

الزامات براي پـايش يكپارچ ـ . شود ها در زمان طراحي توصيه مي ن عواملي هستند كه توجه خاص به آ

(SCADA)يابي، كنترل نظارتي و كسب اطلاعات ردگي، نشت

)سازي بهينه(ملاحظات اقتصادي

هاي متعددي وجود داشته باشد، براي تعيين مشخصات طراحي وقتي كه براي طراحي و نصب خط لوله روش

هترين روش و پايينبهينه مطابق با نيازهاي عملياتي با دقت فني بالا و با ب

علاوه بر عواملي كه اثرات مهمي در كاهش هزينه و ريسك. اقتصادي بايد انجام پذيرد

هاي اقتصادي ذكر شده موارد زير نيز در نظر گرفتـه شود كه در بررسي محيطي دارند، توصيه مي

هاي جريان، جنس مواد و غيره؛ ارهاي عملياتي، سرعتلف لوله، فش

هاي تقويت فشار، با توجه لازم به ساير تسهيلات مورد نياز براي عمليات و تعميرات و فواصل بين ايستگاه

هاي تقويت فشار؛

هاي سكيرها و ها، حالات ويژه، آسيب مسيرهاي جايگزين و مشكلات آن

طي هر مرحله از دوره عمر خط لوله؛اثرات متقابل خط لوله با محيط در

هاي مختلف، مناطق صعب خصوص در تقاطع هاي مختلف اجرايي به

upervisory control and data aquisition

IPS-E-PI-140(2)

محل جغرافيايي، آب و

زماني اجراي پروژه خط لوله و مدت زمان در سرويس قرار نگرفتن آن بعد از اتمام پروژه در نظر گرفته شوند

الزامات عملياتي 7-2

در طراحي خط لوله و سيستم لوله

در مدت زمان پيش بيني شده براي عمر خط لوله و نيز معيارها و شرايط برنامـه

مسئولين عملياتي و تعميرات و نگهداري توافق شده است، در نظر گرفته شـود

شرايط خط لوله و سيستم نگهداري آن، اجراي عم

نياز به مسيرهاي فرعي براي اجزايي كه نياز به تعميرات منظم بدون از سرويس خارج كردن خط لوله دارنـد،

عواملي هستند كه توجه خاص به آ

ردگي، نشتلوله نظير پايش خو

.تعيين گردند

ملاحظات اقتصادي 7-3

وقتي كه براي طراحي و نصب خط لوله روش

بهينه مطابق با نيازهاي عملياتي با دقت فني بالا و با ب

اقتصادي بايد انجام پذيرد

محيطي دارند، توصيه مي زيستاثرات

:شوند

لف لوله، فشقطرهاي مخت -الف

فواصل بين ايستگاه -ب

هاي تقويت فشار؛ نگهداري ايستگاه

مسيرهاي جايگزين و مشكلات آن -پ

اثرات متقابل خط لوله با محيط در

هاي مختلف اجرايي به روش -ت

Page 56: Technical requirements and engineering recommendations …

تـوان بـا اسـتفاده از هـاي مختلـف را مـي

با وجود انطباق كلي معـادلات و .انجام داد

توصـيه تجربيات واقعي در ضمن عمليات براي محاسبه افت فشار،

اسـباتي هـاي مح كه مشخصات سيال كـاملاً شـناخته شـده اسـت، روش

كـار رود تـا اي با قطر، مشخصات سيال و مقدار جريان داده شده، بايد يك تحليـل هيـدروليكي بـه

پروفيل فشار و دما در طول خـط لولـه در

شرايط حالت پايدار و گذرا و در هر دو فصل تابستان و زمسـتان و بـا در نظـر گـرفتن تغييـرات احتمـالي در

منظور پرهيز از رسوب موم يا آب يـا سـاير

ازي يـا در نقـاط دستي خطـوط دو ف ـ

وي جداره لوله،اتصـالات و هاي كاويتاسيون و سايش ر

.يندآوري آب و ساير مواد خورنده كه ممكن است در خط رسوب نما

. انتخاب شود m/s 2 تا m/s 1 هاي حاوي مايعات سرعت متوسط نرمال جريان بين

حتي به مقدار كم (فاز آب جدا شده

منظور پرهيز از تشكيل قطرات آب كه ممكن است توليد شرايط

Feb. 2019 IPS

10

طراحي هيدروليكي

ملاحظات عمومي

هـاي مختلـف را مـي اي خطوط لولـه در سـرويس محاسبات مقدار جريان و افت فشار بر

انجام دادالف تا ت پيوستو بند هاي بيان شده در اين زير

تجربيات واقعي در ضمن عمليات براي محاسبه افت فشار، با نتايج بندهاي ارائه شده در اين زير

كه مشخصات سيال كـاملاً شـناخته شـده اسـت، روش شود در حالات خاص و در جايي

.تري مد نظر قرار داد

اي با قطر، مشخصات سيال و مقدار جريان داده شده، بايد يك تحليـل هيـدروليكي بـه

پروفيل فشار و دما در طول خـط لولـه در كننده محدوده قابل قبول پارامترهاي عملياتي را بدهد كه مشخص

شرايط حالت پايدار و گذرا و در هر دو فصل تابستان و زمسـتان و بـا در نظـر گـرفتن تغييـرات احتمـالي در

.هاي عملياتي در عمر خط لوله باشد ها و وضعيت

:دهد هاي زير ارائه مي اين تحليل هيدروليكي اطلاعاتي در زمينه

ر در ضمن بسته شدن آني خطوط مايع؛

منظور پرهيز از رسوب موم يا آب يـا سـاير كاري به ها يا لزوم عايق محدوده حداقل مقدار جريان و بازدارنده

هاي خوردگي؛ روي كارآيي بازدارنده

دستي خطـوط دو ف ـ خصوص در انتهاي پايين هنياز به جداسازي مايعات و يا كنترل لجن ب

هاي كاويتاسيون و سايش ر وجود آمدن پديده هاثر دامنه بالاي سرعت جريان و ب

آوري آب و ساير مواد خورنده كه ممكن است در خط رسوب نما الزامات تميزكاري براي جمع

هاي سرعت

هاي حاوي مايعات سرعت متوسط نرمال جريان بين شود كه در لوله

فاز آب جدا شده بايد اجتناب نمود و در خطوط داراي m/s4 هاي عملياتي بالاي

منظور پرهيز از تشكيل قطرات آب كه ممكن است توليد شرايط به( m/s 1 سرعت عملياتي كمتر از

.شود توصيه نمي

IPS-E-PI-140(2)

طراحي هيدروليكي 7-4

ملاحظات عمومي 7-4-1

محاسبات مقدار جريان و افت فشار بر

هاي بيان شده در اين زير ها و روش فرمول

هاي ارائه شده در اين زير روش

شود در حالات خاص و در جايي مي

تري مد نظر قرار داد دقيق

اي با قطر، مشخصات سيال و مقدار جريان داده شده، بايد يك تحليـل هيـدروليكي بـه براي لوله

محدوده قابل قبول پارامترهاي عملياتي را بدهد كه مشخص

شرايط حالت پايدار و گذرا و در هر دو فصل تابستان و زمسـتان و بـا در نظـر گـرفتن تغييـرات احتمـالي در

ها و وضعيت جريانمقادير

اين تحليل هيدروليكي اطلاعاتي در زمينه

ر در ضمن بسته شدن آني خطوط مايع؛غيير ناگهاني فشات -

محدوده حداقل مقدار جريان و بازدارنده -

ها؛ ناخالصي

روي كارآيي بازدارندهاثر مقادير جريان -

نياز به جداسازي مايعات و يا كنترل لجن ب -

داراي فشار پايين؛

اثر دامنه بالاي سرعت جريان و ب -

شيرآلات؛

الزامات تميزكاري براي جمع -

هاي سرعت محدوديت 7-4-2

شود كه در لوله توصيه مي

هاي عملياتي بالاي از سرعت

سرعت عملياتي كمتر از) 1% مثل

توصيه نمي) خورنده نمايد

Page 57: Technical requirements and engineering recommendations …

و در شـرايط خـاص عمليـاتي 10

كننده تعيين ،كه سايش براي سيالاتي كه حاوي ذرات جامد هستند، جايي

.باشداجباري

پيوسـت (شـود تواند بدست آورد سرعت بحراني يا صـوتي ناميـده مـي

.اوز ننمايد

.توان مطابق پيوست ب محاسبه نمود

گردد كه سرعت سيال را كم نمود و يـا در جايي كه احتمال وجود شن يا ساير ذرات ساينده وجود دارد؛ توصيه مي

بايد سرعتي را انتخاب نمود كه سيال داراي يك

يا به اضـافه 10%معادل حداكثر فشار كاري به اضافه

.هر كدام كه بيشتر است، در نظر گرفته شود؛ مگر آنكه كارفرما بنابر شرايط معيار ديگري را بپذيرد

پـذيري خـواص د تأثيرباي ـ) سيالات تك فاز

پـذيري گرانـروي و طور مثـال تأثير

در خصوص خطوط تك فاز مايع يا گاز، نرم افزارهاي معتبري وجود دارند كه نـه تنهـا بـا اسـتفاده از روابـط

دهند بلكه تغييـرات خـواص فيزيكـي سـيال را نيـز در محاسـبات

هاي مبتني بـر مـدل هيـدروليكي محاسـباتي عـددي

هاي دوفازي اجتنـاب كـرده و حاسبات جريان

هاي تخميني براي طراحي هيدروليكي خطوط لوله آورده شده

از سـرعت سايشـي سرعت جريان كه كمتـر

شـود كـه همچنين توصيه مـي ). ملاحظه شود

هاي تقويت فشار جهت تعيين سرعت بهينـه سـيال در طـول مسـير، در

Feb. 2019 IPS

11

m/sتـا m/s 5 خطوط گاز انتخاب سرعت متوسط نرمال جريـان بـين

براي سيالاتي كه حاوي ذرات جامد هستند، جايي. شود توصيه مي

اجباري m/s 5 هاي كمتر از باشد، ممكن است انتخاب سرعت

تواند بدست آورد سرعت بحراني يا صـوتي ناميـده مـي پذير مي حداكثر سرعتي كه يك سيال تراكم

اوز ننمايدشود كه تحت هيچ شرايطي سرعت عملياتي از نصف سرعت بحراني تج

توان مطابق پيوست ب محاسبه نمود شود، سرعت سايشي را مي در جايي كه مخلوطي از گاز و مايع منتقل مي

در جايي كه احتمال وجود شن يا ساير ذرات ساينده وجود دارد؛ توصيه مي

.ا كاهش ميزان سايش استفاده نموداي براي پرهيز ي

بايد سرعتي را انتخاب نمود كه سيال داراي يك ) خطوط طويل با تغييرات ارتفاع خصوص در هب(به هر حال در خطوط دو فازي

.رژيم جرياني مناسب با حداقل افت فشار در طول خط باشد

معادل حداكثر فشار كاري به اضافه شود كه فشار طراحي خط لوله حداقل طور كلي توصيه مي

هر كدام كه بيشتر است، در نظر گرفته شود؛ مگر آنكه كارفرما بنابر شرايط معيار ديگري را بپذيرد

افت فشار محاسبات هيدروليكي

سيالات تك فاز(گاز هاي مايع يا براي جرياندر محاسبات هيدروليكي افت فشار

طور مثـال تأثير به(شود فيزيكي سيال در شرايط مختلف، جهت استفاده در روابط تعيين

).چگالي سيال با تغيير دما در طول مسير انتقال

در خصوص خطوط تك فاز مايع يا گاز، نرم افزارهاي معتبري وجود دارند كه نـه تنهـا بـا اسـتفاده از روابـط

دهند بلكه تغييـرات خـواص فيزيكـي سـيال را نيـز در محاسـبات محاسبات هيدروليكي را انجام مي

.گيرند هيدروليكي در نظر مي

هاي مبتني بـر مـدل هيـدروليكي محاسـباتي عـددي در خصوص خطوط سيالات دو فازي، استفاده از روش

حاسبات جريانها در م بنابراين بايد از معادلات تجربي و تقريب

.شود مي معتبر توصيهافزارهاي

هاي تخميني براي طراحي هيدروليكي خطوط لوله آورده شده بندي فرمول طور خلاصه دسته

:مد نظر قرار دادبايد شرح زير را ، موارد به

سرعت جريان كه كمتـر مبناي اوليه محاسبه قطر لوله بر اساس شود كه

ملاحظه شود 2-4-7بند زيرتوضيح (شود تعيين گردد

هاي تقويت فشار جهت تعيين سرعت بهينـه سـيال در طـول مسـير، در ملاحظات اقتصادي و تعداد ايستگاه

.نظر گرفته شوند

IPS-E-PI-140(2)

خطوط گاز انتخاب سرعت متوسط نرمال جريـان بـين در

توصيه مي m/s 20 مستمر تا

باشد، ممكن است انتخاب سرعت ت ميحداكثر سرع

حداكثر سرعتي كه يك سيال تراكم -1يادآوري

شود كه تحت هيچ شرايطي سرعت عملياتي از نصف سرعت بحراني تج توصيه مي). الف

در جايي كه مخلوطي از گاز و مايع منتقل مي -2يادآوري

در جايي كه احتمال وجود شن يا ساير ذرات ساينده وجود دارد؛ توصيه مي -3يادآوري

اي براي پرهيز ي از مواد ويژه

به هر حال در خطوط دو فازي

رژيم جرياني مناسب با حداقل افت فشار در طول خط باشد

طور كلي توصيه مي هب -4يادآوري

kpa350 هر كدام كه بيشتر است، در نظر گرفته شود؛ مگر آنكه كارفرما بنابر شرايط معيار ديگري را بپذيرد

محاسبات هيدروليكي 7-4-3

در محاسبات هيدروليكي افت فشار

فيزيكي سيال در شرايط مختلف، جهت استفاده در روابط تعيين

چگالي سيال با تغيير دما در طول مسير انتقال

در خصوص خطوط تك فاز مايع يا گاز، نرم افزارهاي معتبري وجود دارند كه نـه تنهـا بـا اسـتفاده از روابـط

محاسبات هيدروليكي را انجام مي مناسب

هيدروليكي در نظر مي

در خصوص خطوط سيالات دو فازي، استفاده از روش

بنابراين بايد از معادلات تجربي و تقريب. شود ميتوصيه

افزارهاي استفاده از نرم

طور خلاصه دسته در پيوست ج به

.است

، موارد بهزيربند در اين

شود كه توصيه مي -الف

شود تعيين گردد سيال نگه داشته مي

ملاحظات اقتصادي و تعداد ايستگاه

نظر گرفته شوند طراحي در

Page 58: Technical requirements and engineering recommendations …

نفت از گاز كه باشند طوري طراحي در خط لوله بايد

شود كه انبساط و انقباض حرارتي مايع ناشي از تغييرات

اي تعيين گردد كه مانع از تبخير سيال

هـاي گـاز طبيعـي برداري يا كارخانه

ازي در محاسبات افت فشـار در نظـر

بايستي اثرات جمع شدن مايعات در نقاط تحتاني خطوط لوله و در صورت لزوم و مجاز

فاده از توپك لازم بـه اي خطوط لوله از مايعات يا ساير رسوبات است

منظور افزايش قابليت تحمل سيستم خط لوله، اثرات افزايش فشار ناشي از تراكم گاز در

.رد بررسي قرار گيرندگردند مو

بنـابراين . پـذير اسـت درخطوط انتقال اتيلن و اتان، كاهش دماي سيال به مقادير زير دماي بحراني امكان

بايد در طراحي خط لوله شرايط عملياتي طوري تعيين شود كه در دماهاي كمتـر از دمـاي بحرانـي، جريـان

ASME B 31.4 و الزامـات اضـافي ايـن

ASME B31.8 و الزامات اضافي اين اسـتاندارد

ASME B 31.4 بحث شـده اسـت امـا طبـق

قلولـه حـاوي ايـن سـيالات طب ـ شـود خطـوط

Feb. 2019 IPS

12

طراحي در خط لوله بايد پارامترهاي ساير همينطور و جريان

شود كه انبساط و انقباض حرارتي مايع ناشي از تغييرات در خطوط لوله گاز طبيعي مايع شده توصيه مي

اي تعيين گردد كه مانع از تبخير سيال گونه تمام نقاط مسير بايد بههمچنين فشار در .

.و تشكيل جريان دو فازي در خط لوله شود

برداري يا كارخانه هاي سرچاهي و واحدهاي بهره آوري گاز بين جداكننده

ازي در محاسبات افت فشـار در نظـر مايع شده ممكن است حاوي مايعاتي باشند و بايستي اثرات جريان دو ف

بايستي اثرات جمع شدن مايعات در نقاط تحتاني خطوط لوله و در صورت لزوم و مجاز

.بودن تله جداكننده مايع نيز در طراحي در نظر گرفته شوند

اي خطوط لوله از مايعات يا ساير رسوبات است كاري دورهاگر در ضمن عمليات تميز

.راني در نظر گرفته شود نظر برسد بايد فشار اضافي مورد نياز براي توپك

منظور افزايش قابليت تحمل سيستم خط لوله، اثرات افزايش فشار ناشي از تراكم گاز در

گردند مو خط لوله بدون در نظر گرفتن مقاطعي كه باعث تقليل فشار طراحي مي

درخطوط انتقال اتيلن و اتان، كاهش دماي سيال به مقادير زير دماي بحراني امكان

بايد در طراحي خط لوله شرايط عملياتي طوري تعيين شود كه در دماهاي كمتـر از دمـاي بحرانـي، جريـان

.دوفازي در خط لوله تشكيل نشود

مكانيكي

ملاحظات عمومي

)Bهاي دسته سيال(ها نامه كاربرد آئين

ASME B 31.4شود خطوط لوله حاوي سيالات دسته ب طبق اسـتاندارد

.استاندارد طراحي و ساخته شوند

)Dو Cهاي دسته سيال(كاربرد قوانين

ASME B31.8طبق استاندارد بايد D يا Cحاوي سيالات دسته

.

ASME B 31.4اگر چه درباره گاز نفتي مايع شده و آمونياك بدون آب در استاندارد

شـود خطـوط مـي انـد، بنـابراين توصـيه قرار گرفته "D"بندي ها جزء دسته

.طراحي شوند

IPS-E-PI-140(2)

جريان خط در فشار افت -ب

.نشود جدا

در خطوط لوله گاز طبيعي مايع شده توصيه مي -پ

دما در نظر گرفته شود

و تشكيل جريان دو فازي در خط لوله شود

آوري گاز بين جداكننده خطوط جمع -ت

مايع شده ممكن است حاوي مايعاتي باشند و بايستي اثرات جريان دو ف

همچنين. گرفته شوند

بودن تله جداكننده مايع نيز در طراحي در نظر گرفته شوند

اگر در ضمن عمليات تميز -ث

نظر برسد بايد فشار اضافي مورد نياز براي توپك

منظور افزايش قابليت تحمل سيستم خط لوله، اثرات افزايش فشار ناشي از تراكم گاز در شود به توصيه مي -ج

خط لوله بدون در نظر گرفتن مقاطعي كه باعث تقليل فشار طراحي مي

درخطوط انتقال اتيلن و اتان، كاهش دماي سيال به مقادير زير دماي بحراني امكان -چ

بايد در طراحي خط لوله شرايط عملياتي طوري تعيين شود كه در دماهاي كمتـر از دمـاي بحرانـي، جريـان

دوفازي در خط لوله تشكيل نشود

مكانيكي طراحي 7-5

ملاحظات عمومي 7-5-1

كاربرد آئين 7-5-1-1

شود خطوط لوله حاوي سيالات دسته ب طبق اسـتاندارد توصيه مي

استاندارد طراحي و ساخته شوند

كاربرد قوانين 7-5-1-2

حاوي سيالات دسته خطوط لوله

.طراحي و ساخته شوند

اگر چه درباره گاز نفتي مايع شده و آمونياك بدون آب در استاندارد -1يادآوري

ها جزء دسته اين استاندارد آن

ASME B 31.8 طراحي شوند

Page 59: Technical requirements and engineering recommendations …

در طراحـي درنظـر SMYSمقدار 50 %

IPS-C انجام شود.

هـا قابـل ن هاي مناسب از داخـل آ

هـاي عمليـاتي نـد و يـا داراي محـدوديت

رانـي بـر هاي توپـك شود كه فاصله ايستگاه

ها باشد بيني مقدار فرسايش توپك، مقدار مواد جامد جمع شده كه توپك قادر به حركت دادن آن

توصـيه . هاي ارسال و دريافـت توپـك محاسـبه شـود

پـذير هـا امكـان بيني شده از داخـل آن

هـاي دائمـي علامـت دهنـده ،شود

هاي مجهز به ميله صورت هم سطح با لوله، سه راهي

.هاي مناسب در نظر گرفته شوند هاي تميزكننده با تأسيسات تخليه بايد در محل

IPS-M-PI طراحي شوند.

اي ها توپك عبور خواهد كرد بايد از نوع شير دروازه

شوند راني نمي هائي كه توپك در لوله

طرفه نصـب نشـود راني خواهند شد شير يك

IPS-C-PI آزمـون هيدرواسـتاتيكي

1- Pigging requirements

Feb. 2019 IPS

13

% شود براي طراحي مكانيكي خطوط جريان در مناطق مسكوني توصيه مي

C-PI-270جوشكاري خطوط لوله از جنس فولاد كربني بايد طبق استاندارد

1راني توپك

هاي مناسب از داخـل آ نحوي طراحي شوند كه در صورت نياز انواع توپك تمام خطوط لوله بايد به

نـد و يـا داراي محـدوديت رانـي دار اي كه نياز مكرر به توپك شود براي خطوط لوله

شود كه فاصله ايستگاه توصيه مي. راني دائمي در نظر گرفته شود هستند تسهيلات توپك

بيني مقدار فرسايش توپك، مقدار مواد جامد جمع شده كه توپك قادر به حركت دادن آن

هاي ارسال و دريافـت توپـك محاسـبه شـود ك بين ايستگاهو نيز مدت زمان لازم جهت حركت توپ

بيني شده از داخـل آن ها به اندازه كافي باشد كه عبور انواع توپك پيش

.برابر قطر باشد 7شود كه شعاع خم گرم حداقل

شود ميبيني ي مكرر پيشران شود كه فقط مواقعي كه عمليات توپك

صورت هم سطح با لوله، سه راهي تجهيزات جانبي نصب شده به. توپك در نظر گرفته شود

هاي تميزكننده با تأسيسات تخليه بايد در محل هاي گوي

PI-130استاندارد وط لوله بايد طبق يافت توپك خطهاي ارسال و در

ها توپك عبور خواهد كرد بايد از نوع شير دروازه اي كه در داخل آن شيرهاي مورد استفاده در خطوط لوله

.اندازه لوله باشند

در لوله ،اندازه لوله نيستند اي يا توپي كه داراي مجراي هم

راني خواهند شد شير يك هايي كه توپك شود كه در مسير لوله توصيه مي

.مگر آنكه داراي طراحي مناسب براي عبور توپك باشند

يرواستاتيكآزمون هيد

PI-370كشي وابسته به آن بايد طبق استاندارد لوله هاي

IPS-E-PI-140(2)

براي طراحي مكانيكي خطوط جريان در مناطق مسكوني توصيه مي -2يادآوري

.گرفته شود

جوشكاري 7-5-1-3

جوشكاري خطوط لوله از جنس فولاد كربني بايد طبق استاندارد

توپكالزامات 7-5-1-4

تمام خطوط لوله بايد به

.عبور باشد

شود براي خطوط لوله توصيه مي

هستند تسهيلات توپك

بيني مقدار فرسايش توپك، مقدار مواد جامد جمع شده كه توپك قادر به حركت دادن آن مبناي پيش

و نيز مدت زمان لازم جهت حركت توپ

ها به اندازه كافي باشد كه عبور انواع توپك پيش شود كه شعاع خم مي

شود كه شعاع خم گرم حداقل توصيه مي. شود

شود كه فقط مواقعي كه عمليات توپك توصيه مي

توپك در نظر گرفته شود

هاي گوي هدايت و سه راهي

هاي ارسال و در سيستم

شيرهاي مورد استفاده در خطوط لوله

اندازه لوله باشند با مجراي هميا توپي

اي يا توپي كه داراي مجراي هم رهاي دروازهنصب شي

توصيه مي. است پذير امكان

مگر آنكه داراي طراحي مناسب براي عبور توپك باشند

آزمون هيد 7-5-1-5

هاي سيستمخط لوله و

.شوند

Page 60: Technical requirements and engineering recommendations …

اي كـه مربوط به آن و هر نقطهشود كه در دو انتهاي خط لوله و روي كليه نقاط اتصال و انشعابات

تـا بـدين وسـيله شود شير مسدود كننده نصب

تري تقسيم شده و درصورت بروز نشتي و يا تركيدن خط از تخليه شدن كـل

بروز نشتي و يا تركيدن لوله و با توجه به مدت زماني كه براي رديابي و پيدا نمودن محل نشـتي و

ـ (شود بايد روش مناسبي براي عمل نمودن شير مسدود كننده طـور هدر محـل يـا ب

توانند در صورت بروز فشار پايين، ازدياد جريان، ميزان افت فشـار و يـا تركيبـي از ايـن

شـيرهاي خودكـار بايـد در هنگـام بـروز

ني فشار بـالا و زمان بسته شدن شيرها نبايد باعث ايجاد تغييرات ناگها

ـ صـورت هشـيرهاي اضـطراري بايـد ب

ASME B31.4 وASME B31.8

طور كلي جهت تعيين تعداد و فواصل شيرهاي مسدود كننـده بايـد

توانـد بـه محـيط اثرات ناشي از نوع و مقدار سيال خط لوله كه در اثر تعمير، نشت يا تركيدن خط مـي

؛)بخصوص خطوط لوله گاز ترش

دهي، نگهداري و تعميرات خط لوله؛

ن شيرهاي مسدود كننده؛

.تواند بر عملكرد و امنيت خط لوله تأثير قابل توجهي بگذارد

Feb. 2019 IPS

14

شيرهاي مسدود كننده

شود كه در دو انتهاي خط لوله و روي كليه نقاط اتصال و انشعابات

شير مسدود كننده نصب ،رسد نظر مي به دلايل ايمني و يا تعميرات و نگهداري لازم به

تري تقسيم شده و درصورت بروز نشتي و يا تركيدن خط از تخليه شدن كـل هاي كوچك

.عمل آيد همحتواي خط لوله جلوگيري ب

بروز نشتي و يا تركيدن لوله و با توجه به مدت زماني كه براي رديابي و پيدا نمودن محل نشـتي و

شود بايد روش مناسبي براي عمل نمودن شير مسدود كننده مجزا كردن آن صرف مي

.تعيين نمود تا مقدار حجم سيال آزاد شده به حداقل برسد

توانند در صورت بروز فشار پايين، ازدياد جريان، ميزان افت فشـار و يـا تركيبـي از ايـن

شـيرهاي خودكـار بايـد در هنگـام بـروز . ردياب نشتي عمل نمايد سيستمعوامل و يا توسط علائم ارسالي از

زمان بسته شدن شيرها نبايد باعث ايجاد تغييرات ناگها. گردند سيستمحوادث منجر به ايمني

ـ ،اري در تأسيسات يا كارخانه مربـوط در صورت بروز شرايط توقف اضطر شـيرهاي اضـطراري بايـد ب

ASME B31.4الزامات تعيين تعداد و فواصل شيرهاي مسـدود كننـده در اسـتانداردهاي

طور كلي جهت تعيين تعداد و فواصل شيرهاي مسدود كننـده بايـد هامات مذكور، بعلاوه بر الز

:ارزيابي مهندسي با در نظر گرفتن شرايط زير انجام شود

اثرات ناشي از نوع و مقدار سيال خط لوله كه در اثر تعمير، نشت يا تركيدن خط مـي

بخصوص خطوط لوله گاز ترش(زيست م در منطقه و محيطاطراف آزاد شود بر افراد و جانداران مقي

؛مدت زمان تخليه سيال از بخش جدا شده خط لوله

دهي خط لوله؛ اهميت استمرار سرويس

دهي، نگهداري و تعميرات خط لوله؛ ميزان انعطاف پذيري زمانبندي سرويس

ن شيرهاي مسدود كننده؛در فواصل بيهاي توسعه آينده در اطراف خط لوله

تواند بر عملكرد و امنيت خط لوله تأثير قابل توجهي بگذارد

IPS-E-PI-140(2)

شيرهاي مسدود كننده 7-5-1-6

شود كه در دو انتهاي خط لوله و روي كليه نقاط اتصال و انشعابات توصيه مي

به دلايل ايمني و يا تعميرات و نگهداري لازم به

هاي كوچك خط لوله به قسمت

محتواي خط لوله جلوگيري ب

بروز نشتي و يا تركيدن لوله و با توجه به مدت زماني كه براي رديابي و پيدا نمودن محل نشـتي و در صورت

مجزا كردن آن صرف مي

تعيين نمود تا مقدار حجم سيال آزاد شده به حداقل برسد) خودكار

توانند در صورت بروز فشار پايين، ازدياد جريان، ميزان افت فشـار و يـا تركيبـي از ايـن شيرهاي خودكار مي

عوامل و يا توسط علائم ارسالي از

حوادث منجر به ايمني

.غير قابل قبول شود

در صورت بروز شرايط توقف اضطر

.خودكار عمل نمايند

الزامات تعيين تعداد و فواصل شيرهاي مسـدود كننـده در اسـتانداردهاي

علاوه بر الز. اند آورده شده

ارزيابي مهندسي با در نظر گرفتن شرايط زير انجام شود

اثرات ناشي از نوع و مقدار سيال خط لوله كه در اثر تعمير، نشت يا تركيدن خط مـي -الف

اطراف آزاد شود بر افراد و جانداران مقي

مدت زمان تخليه سيال از بخش جدا شده خط لوله -ب

اهميت استمرار سرويس -پ

ميزان انعطاف پذيري زمانبندي سرويس -ت

هاي توسعه آينده در اطراف خط لوله برنامه -ث

تواند بر عملكرد و امنيت خط لوله تأثير قابل توجهي بگذارد كه مي شرايطي -ج

Page 61: Technical requirements and engineering recommendations …

بتواند توسط يك و )جمله تله توپك

.استفاده شود 1 )

.استفاده شود

بينـي و تخليـه پـيش بايد اتصالات هـواگيري

اي در نظر گرفته شود كه زمان تخليه مورد نيـاز

ASME B 31.8 و ASME B 31.4 ، رده

كشي حـداقل باشـد و فقـط بـراي

،كند يين ميتعميرات و نگهداري و يا بازرسي و يا هر موقعيتي كه شرايط نصب يا الزامات فرآيندي تع

منظور عمليـات ايمـن، تعميـر و نگهـداري خطـوط لولـه بـدون

.شود تجهيزات جانبي باشد، توصيه مي

جهت انداختن فشار در مواقع اضطراري، بايد در يك طرف خـط لولـه، و

. فتـه شـود بندي شده است، در نظر گر

حين هاي پايين كه در شود جنس مواد تخصيص داده شده براي سيستم تخليه براي درجه حرارت

شـود ظرفيـت توصيه ميچنين هم.

1- Thermal relief valves

2- Pressure safety valves

3- Flare

Feb. 2019 IPS

15

شيرهاي اطمينان حرارتي

جمله تله توپكاز (ع پر شده است شود براي هر قسمتي از خط لوله كه با ماي

(TRV) از شير اطمينان حرارتي ،شود شير يا قرار گرفتن بين دو شير مجزا

شيرهاي اطمينان فشاري

استفاده شود 2 (PSV) شود براي خطوط لوله گاز از شير اطمينان فشاري

هواگيري و تخليه

بايد اتصالات هـواگيري ،اندازي و عمليات بخش آزمايش فشار، راه

اي در نظر گرفته شود كه زمان تخليه مورد نيـاز شود كه تمهيدات لازم جهت تخليه به گونه

.باشد) هر كدام كه كمتر است(يا يك شيفت كاري

ها شيرها و فلنج

B 31.8هـاي فشـار و دمـا در استـــانداردهاي محدوديت

.مناسب باشد آزمونو فشار MAIPبراي

كشي حـداقل باشـد و فقـط بـراي لوله يستمو سشود كه تعداد فلنج استفاده شده در خطوط لوله

تعميرات و نگهداري و يا بازرسي و يا هر موقعيتي كه شرايط نصب يا الزامات فرآيندي تع

.شود اتصالات نهائي جوشي باشند توصيه مي

سيستم دوگانه انسداد و تخليه

منظور عمليـات ايمـن، تعميـر و نگهـداري خطـوط لولـه بـدون استفاده از سيستم دوگانه انسداد و تخليه به

تجهيزات جانبي باشد، توصيه ميهايي كه نياز به مجزا نمودن جريان اصلي از انداختن فشار، در محل

فشار در مواقع اضطراريكاهش تسهيلات جهت

جهت انداختن فشار در مواقع اضطراري، بايد در يك طرف خـط لولـه، و ) 3فلر ثابت يا موقت مانند

C« و»D «بندي شده است، در نظر گر در هر قسمتي كه توسط شير قسمت

شود جنس مواد تخصيص داده شده براي سيستم تخليه براي درجه حرارت

»C« و»D « مناسب باشد ،با آن مواجه خواهيم بود .

IPS-E-PI-140(2)

شيرهاي اطمينان حرارتي 7-5-1-7

شود براي هر قسمتي از خط لوله كه با ماي توصيه مي

شير يا قرار گرفتن بين دو شير مجزا

شيرهاي اطمينان فشاري 7-5-1-8

شود براي خطوط لوله گاز از شير اطمينان فشاري توصيه مي

هواگيري و تخليه 7-5-1-9

بخش آزمايش فشار، راه منظور انجام رضايت به

شود كه تمهيدات لازم جهت تخليه به گونه توصيه مي. شود

يا يك شيفت كاري h 8 كمتر از

شيرها و فلنج 7-5-1-10

محدوديتبا در نظر گـرفتن

براي فشاري شيرها بايد

شود كه تعداد فلنج استفاده شده در خطوط لوله توصيه مي

تعميرات و نگهداري و يا بازرسي و يا هر موقعيتي كه شرايط نصب يا الزامات فرآيندي تعتسهيل

توصيه مي. شودفلنج نصب

سيستم دوگانه انسداد و تخليه 7-5-1-11

استفاده از سيستم دوگانه انسداد و تخليه به

انداختن فشار، در محل

تسهيلات جهت 7-5-1-12

ثابت يا موقت مانند(تسهيلات

C« براي سيالات دسته

شود جنس مواد تخصيص داده شده براي سيستم تخليه براي درجه حرارت توصيه مي

«تخليه سيالات دسته

Page 62: Technical requirements and engineering recommendations …

جهت كنتـرل جابجـا شـدن . شودسيستم تخليه چنان باشد كه خط لوله بتواند با حداقل زمان ممكن تخليه

.آيد عمل تخليه ناگهاني ملاحظات مقتضي به

سيستم. در مقابل فشار بيش از حد در نظر گرفت

بايد بين خط لوله و تأسيسات ) اطمينان مكانيكي

در هر نقطـه از طـول خـط . شودنصب

در هر نقطه از خط لوله در شـرايط

سيستم خط لوله بايد طوري طراحي شود كه فشار حاصل از تغيير فشار ناگهاني نتواند در هيچ نقطه در مسير

سـتي، سيسـتم حفاظـت در د محافظت خط لوله از تأسيسات بـالا

.شودحفاظتي اين فشار نبايد باعث راه اندازي سيستم

شـود بـا تحليـل توصيه مـي ) مثل سيالات مايع

توصـيه . شـود ييـر فشـار ناگهـاني مشـخص

.در مناطق تپه ماهوري مشخص شوند

هاي زير بايد از بروز تغيير فشار ناگهاني غير قابـل قبـول جلـوگيري

يك نقطه شروع تغيير ناگهاني فشار؛

ها مخصوصاً زماني كه ساير روش( نحو شايسته تنظيم شده است

تقـاطع ديـك بـه سـطح زمـين، هاي زيرزميني نز

. ديناميكي آب حالت پايدار داشته باشـند

حدي باشد كه از حركات غير قابل قبول عرضي و عمودي و از جابجا شـدن خـط لولـه

2/1) منفـي شـناوري بـراي (ايمني

گرفته نظر رودخانه در بستر ماهيت

شرايط همان سـيال با متناسب مخصوص

Feb. 2019 IPS

16

سيستم تخليه چنان باشد كه خط لوله بتواند با حداقل زمان ممكن تخليه

تخليه ناگهاني ملاحظات مقتضي بهحين علت نيروي توليد شده در بيش از حد و لرزش سيستم به

در مقابل فشار بيش از حدحفاظت

در مقابل فشار بيش از حد در نظر گرفت حفاظتعنوان سيستم هر سيستم كنترلي فشار را نبايد به

اطمينان مكانيكي/ شامل شيرهاي ايمني(در مقابل فشار بيش از حد

نصب ،خط لوله بنمايد MAIPتواند توليد فشاري بالاتر از

در هر نقطه از خط لوله در شـرايط تجاوز نمايد و MAOPنبايد فشار از ،عمليات مداوم و نرمال

.بيشتر شود MAIPنبايد فشار از ،آشفتگي با تواتر و مدت محدود

سيستم خط لوله بايد طوري طراحي شود كه فشار حاصل از تغيير فشار ناگهاني نتواند در هيچ نقطه در مسير

محافظت خط لوله از تأسيسات بـالا بيشتر شود و اگر براي

اين فشار نبايد باعث راه اندازي سيستم ،مقابل فشار بيش از حد نصب شده باشد

مثل سيالات مايع(براي سيالات با جرم مخصوص بالا و قابليت فشردگي پايين

ييـر فشـار ناگهـاني مشـخص سازي وقـوع تغ فشار گذرا و با استفاده از برنامه كامپيوتري شبيه

در مناطق تپه ماهوري مشخص شوند فشار در طول مسير خط لوله مخصوصاًشود نقاط داراي بالاترين

هاي زير بايد از بروز تغيير فشار ناگهاني غير قابـل قبـول جلـوگيري با استفاده از هر يك و يا تركيبي از روش

شدن شير؛كاهش سرعت بسته

يك نقطه شروع تغيير ناگهاني فشار؛سازي فشار نزدواكنش سريع سيستم مخصوص آزاد

نحو شايسته تنظيم شده است هاي عملياتي كه به تبعيت اكيد از روش

پايداري خط لوله

هاي زيرزميني نز ب ر، آگي ط لوله كه از مناطق باتلاقي، سيل

ديناميكي آب حالت پايدار داشته باشـند و گذرند بايد در مقابل نيروهاي استاتيكي ها و نظاير آن مي

حدي باشد كه از حركات غير قابل قبول عرضي و عمودي و از جابجا شـدن خـط لولـه

ايمني ضريب اساس بر لوله خط اي وزنه پوشش معمول طور

ماهيت ،نياز مورد وزنه تعيين براي كه شود توصيه مي حالتي

مخصوص وزن مختلف، شناوري سيالات نيروي محاسبات

.شود گرفته نظر ، در)ها محيط ساير يا ولاي گل دريا،

IPS-E-PI-140(2)

سيستم تخليه چنان باشد كه خط لوله بتواند با حداقل زمان ممكن تخليه

بيش از حد و لرزش سيستم به

حفاظت سيستم 7-5-1-13

هر سيستم كنترلي فشار را نبايد به

در مقابل فشار بيش از حد حفاظت

تواند توليد فشاري بالاتر از بالا دستي كه مي

عمليات مداوم و نرمالدر حين لوله

آشفتگي با تواتر و مدت محدود

سيستم خط لوله بايد طوري طراحي شود كه فشار حاصل از تغيير فشار ناگهاني نتواند در هيچ نقطه در مسير

بيشتر شود و اگر براي MAIPخط لوله از

مقابل فشار بيش از حد نصب شده باشد

براي سيالات با جرم مخصوص بالا و قابليت فشردگي پايين

فشار گذرا و با استفاده از برنامه كامپيوتري شبيه

شود نقاط داراي بالاترين مي

با استفاده از هر يك و يا تركيبي از روش

:نمود

كاهش سرعت بسته -

واكنش سريع سيستم مخصوص آزاد -

تبعيت اكيد از روش -

).كافي نيستند

پايداري خط لوله 7-5-1-14

ط لوله كه از مناطق باتلاقي، سيلهايي از خ قسمت

ها و نظاير آن مي رودخانه

حدي باشد كه از حركات غير قابل قبول عرضي و عمودي و از جابجا شـدن خـط لولـه شناوري منفي بايد به

.جلوگيري نمايد

طور هكه ب شود مي هتوصي

حالتي هر در. گردد طراحي

محاسبات براي همچنين. شود

دريا، آب خالص، آب مانند(

Page 63: Technical requirements and engineering recommendations …

:كار برد توان جهت پايداري زير و روي خط لوله به

يا سيالي كه براي انتقال آن طراحـي شـده

مخصوص گـل و لاي درون جرم بايد

كه ممكن است به خط لوله صدمه بزنـد، بايـد توجـه

طبـق » B«د و اين ضخامت بايد براي سرويس دسـته

محاسـبه ASME B 31.8طبـق اسـتاندارد

بايد توجه خاصي بـه ،تجاوز نمايد 96

.عمل آيد

بدون در نظر گرفتن ميزان مجاز بـراي

1- Geotextaile

Feb. 2019 IPS

17

توان جهت پايداري زير و روي خط لوله به ها را مي يا تركيبي از آن

اضافه نمودن ضخامت جداره لوله؛

اي بتني؛

صورت زيني يا پيچي؛ ار كننده در فواصل مشخص به

.1استفاده از ژئوتكستايل

يا سيالي كه براي انتقال آن طراحـي شـده ) فشار آزمونبراي (خط لوله بايد در مواقع پر و خالي شدن از آب

بايد موقع محاسبه مقاومت در برابر شناوري .حالت پايدار داشته باشد

.كانال در نظر گرفته شود

كه ممكن است به خط لوله صدمه بزنـد، بايـد توجـه ستهاي س به امكان نشست ناموزون خط لوله در زمين

مباني محاسبه ضخامت جداره خط لوله

حداقل ضخامت جداره

د و اين ضخامت بايد براي سرويس دسـته باش mm 8/4 ضخامت اسمي جداره لوله نبايد كمتر از

ASME B 31.4 و براي سـرويس دسـته»C« و»D « طبـق اسـتاندارد

96به ضخامت جداره لوله از (DN) در مواردي كه نسبت قطر اسمي

عمل آيد براي حداقل ضخامت لوله بهالزامات استانداردهاي ذكر شده در بالا

)براي حد تنش حلقوي(ضرايب طراحي

بدون در نظر گرفتن ميزان مجاز بـراي (ضرايب طراحي توصيه شده براي محاسبه ضخامت جداره اسمي لوله

.است آورده شده

IPS-E-PI-140(2)

يا تركيبي از آنهاي زير يكي از روش

اضافه نمودن ضخامت جداره لوله؛ -

اي بتني؛ وشش وزنهاعمال پ -

ار كننده در فواصل مشخص بههاي مه نصب وزنه -

دفن خط لوله؛ -

استفاده از ژئوتكستايل -

خط لوله بايد در مواقع پر و خالي شدن از آب

حالت پايدار داشته باشد ،است

كانال در نظر گرفته شود

به امكان نشست ناموزون خط لوله در زمين

.خاصي شود

مباني محاسبه ضخامت جداره خط لوله 7-5-2

حداقل ضخامت جداره 7-5-2-1

ضخامت اسمي جداره لوله نبايد كمتر از

ASME B 31.4استاندارد

در مواردي كه نسبت قطر اسمي. شود

الزامات استانداردهاي ذكر شده در بالا

ضرايب طراحي 7-5-2-2

ضرايب طراحي توصيه شده براي محاسبه ضخامت جداره اسمي لوله

2در جدول ) خوردگي

Page 64: Technical requirements and engineering recommendations …

ضرايب طراحي براي خطوط لوله فولادي در خشكي

C وD

ASME B31.8

2 3 4

60/0 50/0 40/0

60/0

60/0

60/0

60/0

60/0

50/0

50/0

50/0

50/0

50/0

40/0

40/0

40/0

40/0

40/0

6/0

6/0

6/0

6/0

5/0

5/0

5/0

5/0

4/0

4/0

4/0

4/0

Feb. 2019 IPS

18

ضرايب طراحي براي خطوط لوله فولادي در خشكي -2جدول

B بندي سيال

ASME

B31.4

(Note 1)

- 1

72/0 72/0 60

هاي عمومي اصلاح نشده

آهن ها و راه

هاي شني و سواحل

72/0

60/0

60/0

60/0

60/0

72/0

60/0

60/0

60/0

60/0

60

60

60

60

60

صورت موازي تجاوز خط لوله به حريم به

هاي عمومي اصلاح نشده

آهن ها و راه

72/0

72/0

72/0

72/0

72/0

72/0

6/0

6/0

6

6

6

6

IPS-E-PI-140(2)

بندي سيال دسته

استانداردهاي قابل كاربرد

ها كلاس موقعيت

خطوط لوله

)2يادآوري (ها تقاطع

هاي خصوصي جاده

هاي عمومي اصلاح نشده جاده

ها و راه ها، خيابان ها، بزرگراه جاده

هاي شني و سواحل پهها، ت رودخانه

تجاوز خط لوله به حريم به

)3يادآوري (

هاي خصوصي جاده

هاي عمومي اصلاح نشده جاده

ها و راه يابانها، خ ها، بزرگراه جاده

Page 65: Technical requirements and engineering recommendations …

)ادامه( ضرايب طراحي براي خطوط لوله فولادي در خشكي

C وD

6/0 5/0 4/0

6/0 5/0 4/0

50/0

)5يادآوري

50/0 40/0

6/0 50/0 40/0

50/0 50/0 40/0

هـا، براي مثال در تقـاطع (شود، كه در نقاط بحراني

كـه از ضـرايب طراحـي گـردد مـي ها توصـيه در اين موقعيت

با توجه به تجربه نامطلوب كـاربرد غـلاف . باشند هاي با استفاده از غلاف و بدون غلاف متمايز از هم مي

ضرايب طراحـي بـراي . شود هاي با غلاف و بدون غلاف توصيه مي

.وجود ندارند در اين جدول ذكر گرديده است

هـا يـا متـر بـه مـوازات جـاده 50اي كمتر از شود كه در فاصله

).متر در نظر گرفته شود

.باشند رهاي نوع انگشتي و نظاير آن مي

.اي نشده است و براي بالا بردن ايمني اضافه شده است

هاي با دماي بالا

اي بر مبنـاي كـرنش اسـتفاده ممكن است از شيوه

شـود طبـق توصـيه مـي C 120° هاي فولادي در دماي عملياتي بـالاتر از

هاي از جنس فولاد زنـگ براي لوله.

.مورد نياز است

Feb. 2019 IPS

19

ضرايب طراحي براي خطوط لوله فولادي در خشكي -2جدول

B بندي سيال

6 6/0 6/0 )4يادآوري(هاي پيش ساخت

6/0 6/0 6

72/0 هاي پر جمعيت50/0

)5يادآوري (

50

يادآوري (

هاي شيرهاي مسدود

)6يادآوري (هاي تله توپك 60/0 60/0 60

50 50/0 60/0 پمپاژ/ هاي تقويت فشار

شود، كه در نقاط بحراني استفاده نمي 72/0از ضرايب طراحي ديگري غير از ASME B 31.4بر اساس استاندارد

در اين موقعيت. رسد نظر نمي ساخته شده مناسب بههاي پيش و براي مجموعه

.استفاده شود ASME B 31.8طبق

ASME B 31.8 هاي با استفاده از غلاف و بدون غلاف متمايز از هم مي تقاطع

هاي با غلاف و بدون غلاف توصيه مي ايب طراحي يكسان براي تقاطعاعمال ضر) به عبارت ديگر خوردگي حلقوي

وجود ندارند در اين جدول ذكر گرديده است ASME B 31.8هاي شني و سواحل كه در

شود كه در فاصله ميهايي از خط لوله گفته صورت موازي آن قسمت تجاوز خط لوله به حريم به

متر در نظر گرفته شود 76ها حداقل شود فاصله مذكور براي بزرگراه توصيه مي. (آهن موجود كشيده شده اند

رهاي نوع انگشتي و نظاير آن ميهاي اصلي، لجن گي هاي شير، لوله هاي توپك، ايستگاه هاي پيش ساخت شامل تله

.مشخص گرديده است ASME B 31.8 استاندارد 840.3محل تمركز جمعيت در بند

ASME B 31.8 اي نشده است و براي بالا بردن ايمني اضافه شده است به اين دسته اشاره

هاي با دماي بالا ه حاوي فرآوردهلول طراحي بر مبناي كرنش براي خطوط

ممكن است از شيوه) C80° بالاي(هاي با دماي بالا فرآورده

.قابل قبول است 2% در اين حالت حداكثر كرنش تغيير شكل دائمي

ضرايب كاهش حد تنش ناشي از دما

هاي فولادي در دماي عملياتي بـالاتر از ولهضرايب كاهش حد تنش براي ل

. مورد استفاده قرار گيرند ASME B 31.8از استاندارد

مورد نياز است) C50° بالاي(تري نزن دو فازي كاهش حد تنش در دماهاي پايين

IPS-E-PI-140(2)

جدول

بندي سيال دسته

هاي پيش ساخت مجموعه

ها پلخطوط لوله روي

هاي پر جمعيت نزديك محل

هاي شيرهاي مسدود خطوط لوله، ايستگاه

هاي تله توپك كننده و ايستگاه

هاي تقويت فشار كشي ايستگاه لوله

بر اساس استاندارد -1يادآوري

و براي مجموعه) ها در داخل محدوده كارخانه

طبق 1مربوط به كلاس موقعيت

ASME B 31.8در استاندارد -2يادآوري

به عبارت ديگر خوردگي حلقوي(ها در تقاطع

هاي شني و سواحل كه در ها، تپهتقاطع با رودخانه

تجاوز خط لوله به حريم به -3يادآوري

آهن موجود كشيده شده اند هاي راه ريل

هاي پيش ساخت شامل تله مجموعه -4يادآوري

محل تمركز جمعيت در بند -5يادآوري

ASME B 31.8در استاندارد -6يادآوري

طراحي بر مبناي كرنش براي خطوط 7-5-2-3

فرآوردهبراي خطوط لوله

در اين حالت حداكثر كرنش تغيير شكل دائمي. شود

ضرايب كاهش حد تنش ناشي از دما 7-5-2-4

ضرايب كاهش حد تنش براي ل

از استاندارد 1-841.1.8جدول

نزن دو فازي كاهش حد تنش در دماهاي پايين

Page 66: Technical requirements and engineering recommendations …

وابسته به خط لوله، نظير ايمني افراد، صدمه به محيط زيست و از دست دادن درآمـد منـوط بـه

شـود و نوع سيالي كه منتقـل مـي

خـط لولـه بـه از دسـت دادن سـيال تعبيـر

آوري شـده و در فلسـفه هـا جمـع شود كه خرابي هاي بالقوه خط لوله، دلايل و نتايج حاصله از آن

بيشترين تهديدات معمول براي خط لولـه كـه ممكـن اسـت باعـث از

شود عواملي كه براي اين استاندارد، توصيه مي

ايمني عمومي و حفاظت محيط زيست بحراني هستند، براي طول عمر خط لوله و مدت زمـاني كـه متـروك

نظر گرفتن هدف مشخص جلوگيري از

پذيري ممكـن اسـت سكيرسطح .

.رسد كه تا حدودي با گذشت عمر خط لوله افزايش يابد

:شوددر حالات زير با مشخص نمودن كلاس موقعيت انجام

Feb. 2019 IPS

20

خطوط لوله

وابسته به خط لوله، نظير ايمني افراد، صدمه به محيط زيست و از دست دادن درآمـد منـوط بـه

مورد انتظار خط و نتايج ناشي از آن است كه مستقيماً به

خـط لولـه بـه از دسـت دادن سـيال تعبيـر هـاي در اين زمينه خرابي. خط لوله ارتباط دارد

شود كه خرابي هاي بالقوه خط لوله، دلايل و نتايج حاصله از آن

بيشترين تهديدات معمول براي خط لولـه كـه ممكـن اسـت باعـث از . طراحي و عمليات در نظر گرفته شوند

:شده استر آورده آن شود در زي

هاي ناشي از نفوذ هيدروژن؛ خوردگي داخلي و ترك

كربنات؛ ي خوردگي تنشي ناشي از بيها خوردگي خارجي و ترك

ضربات مكانيكي، صدمات خارجي؛

نيروهاي هيدروديناميكي؛

گسترش عيوب مواد؛

.نيروهاي حاصل از انبساط حرارتي

ASME B 31.4 وASME B 31.8 اين استاندارد، توصيه مي الزامات و

ايمني عمومي و حفاظت محيط زيست بحراني هستند، براي طول عمر خط لوله و مدت زمـاني كـه متـروك

نظر گرفتن هدف مشخص جلوگيري از شود كه با در توصيه مي چنين هم. شوندنگه داشته شده است، تحليل

. پايين آورده شود ،پذيري تا آنجا كه منطقاً عملي است

رسد كه تا حدودي با گذشت عمر خط لوله افزايش يابد نظر مي

ريسكايمني

در حالات زير با مشخص نمودن كلاس موقعيت انجام پذيري شود كه ارزيابي كمي ريسك

؛4و 3هاي موقعيت در كلاس »C«و

IPS-E-PI-140(2)

خطوط لولههاي سكير 7-6

كليات 7-6-1

وابسته به خط لوله، نظير ايمني افراد، صدمه به محيط زيست و از دست دادن درآمـد منـوط بـه هاي سكير

مورد انتظار خط و نتايج ناشي از آن است كه مستقيماً به يها تواتر خرابي

خط لوله ارتباط دارد حساسيت محل

.شود مي

شود كه خرابي هاي بالقوه خط لوله، دلايل و نتايج حاصله از آن توصيه مي

طراحي و عمليات در نظر گرفته شوند

دست دادن يكپارچگي

خوردگي داخلي و ترك -

سايش داخلي، -

خوردگي خارجي و ترك -

ضربات مكانيكي، صدمات خارجي؛ -

خستگي فلز؛ -

نيروهاي هيدروديناميكي؛ -

نيروهاي ژئوتكنيكي؛ -

گسترش عيوب مواد؛ -

حد؛فشار بيش از -

نيروهاي حاصل از انبساط حرارتي -

ASME B 31.4 با وجود الزامات

ايمني عمومي و حفاظت محيط زيست بحراني هستند، براي طول عمر خط لوله و مدت زمـاني كـه متـروك

نگه داشته شده است، تحليل

پذيري تا آنجا كه منطقاً عملي است سكيرنشتي، زبرو

نظر مي با زمان تغيير نمايد، به

ايمني هاي ارزيابي 7-6-2

شود كه ارزيابي كمي ريسك صيه ميتو

و »B«سيالات دسته -

Page 67: Technical requirements and engineering recommendations …

و فاصـله ) 2-2-5-7بنـد يرز(شود كه اين ارزيابي كافي بودن مقادير انتخابي براي ضرايب طراحي

هـاي داخلـي و علت خـوردگي هاي مورد انتظار به

مواد يا سـاخت، و ، عيوب)هاي آزاد

آمدهاي خرابي بر مبناي طبيعـت سـيال، از نظـر قابليـت

اشتعال، پايداري، اثرات سمي بودن و آلودگي، محل و استقرار خط لوله از نظر نزديكي به منابع توليد جرقـه،

هاي مورد تواتر خرابي. باشد هاي مسكوني و شرايط آب و هوايي غالب مي

شود كه در طول عمر خـط لولـه تحليـل

براي مثال ضخامت بدنه بالاتر يـا فـولاد

اضافي براي خط لوله، كاربرد تسهيلات براي به حداقل رساندن حجـم

.هاي عملياتي، تعميرات و بازرسي پايين آورد

. حتي با وسايل كوچك حفاري مكانيكي مستعد به نفوذ هستند

اي در مقابل اين نوع صدمات انجام پذيرد؛ اين اقـدامات مخصوصـاً

.دهند انجام پذيرد

.هايي از خطوط لوله بايد انجام گيرد

فرآيندي براي بررسي تأثيرات احتمالي زيست محيطي پروژه، تعيين اهميـت ايـن تـأثيرات و

زيست در هر مرحله عمري شود اثرات متقابل خط لوله و محيط

هـاي وي طراحي خط لولـه، روش اجـرا، روش

1 Enviromental impact assesment

Feb. 2019 IPS

21

.موقعيت محلهاي تمام كلاس در

شود كه اين ارزيابي كافي بودن مقادير انتخابي براي ضرايب طراحي

.را تأييد نمايد) 3

هاي مورد انتظار به پذيري خط لوله در درجه اول مربوط به تواتر خرابي

هاي آزاد ها، اختلاف هاي نشست و دهنه براي مثال ضربه(خارجي، بارهاي خارجي

آمدهاي خرابي بر مبناي طبيعـت سـيال، از نظـر قابليـت در درجه دوم مربوط به پي. است

اشتعال، پايداري، اثرات سمي بودن و آلودگي، محل و استقرار خط لوله از نظر نزديكي به منابع توليد جرقـه،

هاي مسكوني و شرايط آب و هوايي غالب مي تراكم جمعيت و همجواري ساختمان

شود كه در طول عمر خـط لولـه تحليـل آمدهاي آن ممكن است تابعي از زمان بوده و توصيه مي

براي مثال ضخامت بدنه بالاتر يـا فـولاد (تر توان با استفاده از ضرايب طراحي پايين پذيري را مي

اضافي براي خط لوله، كاربرد تسهيلات براي به حداقل رساندن حجـم هاي ، تغيير مسير، تهيه محافظ

هاي عملياتي، تعميرات و بازرسي پايين آورد سيال آزاد شده و كنترل روش

حتي با وسايل كوچك حفاري مكانيكي مستعد به نفوذ هستند mm 10 بدنه كمتر از ديواره خطوط لوله با ضخامت

.باشد هاي شخص ثالث مي ط لوله دخالت خارجي توسط گروه

اي در مقابل اين نوع صدمات انجام پذيرد؛ اين اقـدامات مخصوصـاً شود كه اقدامات پيشگيرانه ويژه

دهند انجام پذيرد را انتقال مي »D«و »C«هايي كه سيالات دسته

طيرات زيست محي

هايي از خطوط لوله بايد انجام گيرد براي كليه خطوط لوله يا گروه EIA(1(زيست محيطي

فرآيندي براي بررسي تأثيرات احتمالي زيست محيطي پروژه، تعيين اهميـت ايـن تـأثيرات و

.يا تقليل اثرات مضر آن است ها و تدابير حذف

شود اثرات متقابل خط لوله و محيط ابي تأثيرات زيست محيطي توصيه مي

وي طراحي خط لولـه، روش اجـرا، روش خصوصيات محيط زيست ممكن است ر.

.بازگرداني به حالت اوليه و فلسفه عمليات اثر بگذارد

IPS-E-PI-140(2)

در »D«سيالات دسته -

شود كه اين ارزيابي كافي بودن مقادير انتخابي براي ضرايب طراحي توصيه مي

3-9بند زير(همجواري

پذيري خط لوله در درجه اول مربوط به تواتر خرابي سكير

خارجي، بارهاي خارجي

است عملياتيمشكلات

اشتعال، پايداري، اثرات سمي بودن و آلودگي، محل و استقرار خط لوله از نظر نزديكي به منابع توليد جرقـه،

تراكم جمعيت و همجواري ساختمان

آمدهاي آن ممكن است تابعي از زمان بوده و توصيه مي انتظار و پي

.شود

پذيري را مي سكيرسطح

، تغيير مسير، تهيه محافظ)تر قوي

سيال آزاد شده و كنترل روش

ديواره خطوط لوله با ضخامت -يادآوري

ط لوله دخالت خارجي توسط گروهبزرگترين دليل خرابي خ

شود كه اقدامات پيشگيرانه ويژه توصيه مي

هايي كه سيالات دسته در مورد خطوط لوله

رات زيست محياثارزيابي 7-6-3

زيست محيطي رات اثيك ارزيابي

فرآيندي براي بررسي تأثيرات احتمالي زيست محيطي پروژه، تعيين اهميـت ايـن تـأثيرات و (EIA)ارزيابي

ها و تدابير حذف طراحي استراتژي

ابي تأثيرات زيست محيطي توصيه ميدر ارزي

. شودبررسي خط لوله

بازگرداني به حالت اوليه و فلسفه عمليات اثر بگذارد

Page 68: Technical requirements and engineering recommendations …

مخصوصاً خورنـدگي، نـوع جريـان، دمـا و فشـار آن،

تواند يك مسئله اساسي باشد كه در مرحله طراحي مفهومي پروژه خط لولـه

فـولاد كربنـي در اكثر موارد جنس خط لوله از فلـز، مخصوصـاً

مخصوصـاً بـه علـت (با توجه به اينكه شرايط عملياتي مختلف مثل قابليت خورندگي سـيال

، دمـا، فشـار و سـرعت آن و )وجود آب همراه با سولفيد هيدروژن، دي اكسيد كـربن يـا اكسـيژن در سـيال

خوردگي داخلي و سايش جداره لوله

باشـد، از ر نميهاي حفاظتي در مقابل خوردگي خارجي امكان پذي

انتخاب جنس خط لوله پس از بررسي دقيق تمام شرايط فوق و با هدف كاركرد مطمئن

ــه شــرايط تعيــين شــده در ــا توجــه ب ب

نظر از آنكه آب سيستم گرفته شده و از مواد بازدارنـده از خـوردگي

شوند كه در مقابل محيط تـرش مقـاوم

هاي نسبتاً خورنده، در صورت منظور نمودن ضخامت اضافي كافي براي خـوردگي، تزريـق

. كـرد هاي فولادي اسـتفاده توان از لوله

براي خوردگي نبايد بدون تحليل تفصيلي كارشناسان خوردگي در نظر

شود براي كاهش يا حذف سايش از مـواد

استفاده شود بايد به قابليت و روش جوشكاري

كاري مجدد و نسبت تنش تسليم هاي ناتمام قبل از جوش

توصيه X70 در حال حاضر استفاده از فولاد با گريد بالاتر از

، )هاي تقليـل فشـار گـاز براي مثال قسمت پايين دستي ايستگاه

بـه اسـتاندارد . )هاي طويل براي احتمال گسترش شكستگي

Feb. 2019 IPS

22

مخصوصاً خورنـدگي، نـوع جريـان، دمـا و فشـار آن، ،شود سته به نوع سيالي كه انتقال داده مي

تواند يك مسئله اساسي باشد كه در مرحله طراحي مفهومي پروژه خط لولـه مواد خط لوله مي

در اكثر موارد جنس خط لوله از فلـز، مخصوصـاً . عمل خواهد آمد گيري به

با توجه به اينكه شرايط عملياتي مختلف مثل قابليت خورندگي سـيال

وجود آب همراه با سولفيد هيدروژن، دي اكسيد كـربن يـا اكسـيژن در سـيال

خوردگي داخلي و سايش جداره لوله توانند باعث همچنين رسوب مواد جامد و غيره از عواملي هستند كه مي

هاي حفاظتي در مقابل خوردگي خارجي امكان پذي ها به آساني روش شوند لذا جلوگيري از آن

انتخاب جنس خط لوله پس از بررسي دقيق تمام شرايط فوق و با هدف كاركرد مطمئن

.ده براي آن انجام پذيردبيني ش خط لوله در تمام دوره عمر پيش

ــرار مــي ــرش ق ــواد ت ــه در ســرويس م ــر وقتــي كــه خــط لول ــه شــرايط تعيــين شــده در ،دگي ــا توجــه ب ب

NACE MR 0175/ISO 15156( نظر از آنكه آب سيستم گرفته شده و از مواد بازدارنـده از خـوردگي صرف

شوند كه در مقابل محيط تـرش مقـاوم نحوي انتخاب استفاده شده يا نه، جنس خط لوله و ساير مواد بايد به

هاي نسبتاً خورنده، در صورت منظور نمودن ضخامت اضافي كافي براي خـوردگي، تزريـق

توان از لوله مي ،خوردگي، بازرسي مناسب و عمليات كنترل شده

براي خوردگي نبايد بدون تحليل تفصيلي كارشناسان خوردگي در نظر mm 3 ضخامت اضافي مجاز بيشتر از

شود براي كاهش يا حذف سايش از مـواد اگر از شرايطي كه باعث سايش شود نتوان اجتناب نمود، توصيه مي

.مخصوصي همراه با اصلاح طراحي استفاده شود

استفاده شود بايد به قابليت و روش جوشكاري ) بالاتريا X60(وقتي براي خط لوله از فولاد با گريد بالا

هاي ناتمام قبل از جوش ، جوش)C300° مخصوصاً الزام به پيش گرمي تا

در حال حاضر استفاده از فولاد با گريد بالاتر از. مورد نياز به تنش كششي توجه مخصوص شود

براي مثال قسمت پايين دستي ايستگاه(ان پايين آمدن دما وجود دارد

براي احتمال گسترش شكستگي(بايد به خاصيت چقرمگي جنس لوله توجه شود

.شود مراجعه

IPS-E-PI-140(2)

جنس مواد 8

كليات 8-1

سته به نوع سيالي كه انتقال داده ميطور كلي ب هب

مواد خط لوله مي انتخاب جنس

گيري به راجع به آن تصميم

با توجه به اينكه شرايط عملياتي مختلف مثل قابليت خورندگي سـيال . شود انتخاب مي

وجود آب همراه با سولفيد هيدروژن، دي اكسيد كـربن يـا اكسـيژن در سـيال

همچنين رسوب مواد جامد و غيره از عواملي هستند كه مي

شوند لذا جلوگيري از آن

انتخاب جنس خط لوله پس از بررسي دقيق تمام شرايط فوق و با هدف كاركرد مطمئن شود رو توصيه مي اين

خط لوله در تمام دوره عمر پيش

ــرار مــي ــرش ق ــواد ت ــه در ســرويس م وقتــي كــه خــط لول

NACE MR 0175/ISO 15156)

استفاده شده يا نه، جنس خط لوله و ساير مواد بايد به

.باشند

هاي نسبتاً خورنده، در صورت منظور نمودن ضخامت اضافي كافي براي خـوردگي، تزريـق در شرايط سرويس

خوردگي، بازرسي مناسب و عمليات كنترل شدهمواد بازدارنده از

ضخامت اضافي مجاز بيشتر از

.گرفته شود

اگر از شرايطي كه باعث سايش شود نتوان اجتناب نمود، توصيه مي

مخصوصي همراه با اصلاح طراحي استفاده شود

وقتي براي خط لوله از فولاد با گريد بالا

مخصوصاً الزام به پيش گرمي تا(

مورد نياز به تنش كششي توجه مخصوص شود

.شود نمي

ان پايين آمدن دما وجود دارد امكوقتي كه

بايد به خاصيت چقرمگي جنس لوله توجه شود

IPS-M-PI-190 مراجعه

Page 69: Technical requirements and engineering recommendations …

ها، استانداردها، مشخصات و الزامـات فنـي تعيـين شـده توسـط كارفرمـا

.شوندكنندگان تأييد شده توسط كارفرما خريداري

ازنده، كارفرما بايد سطح و دامنه كنترل كيفي س

منظور احتمال تغيير مسير، صدمات ناشي از حمل و نقل، نصب

.ز پروژه سفارش شوندبيني و همراه مقادير حقيقي مورد نيا

IPS-M-PI تكميـل شـده مطابقـت

ASME B 31. وASME B 31.8 ايـن و

هاي مربوطه كه توسط كارفرما مشخص شده مطابقت داشته

نحـوي شود مجراهاي ورودي و خروجي شير به

در . باشـند API-6Dترجيحـاً از نـوع لـولايي و طبـق اسـتاندارد

.مورد استفاده قرار گيرند

كـار همت خط لوله باي نبايد در هيچ قس

.، هر كدام كه بيشتر است150

.، هر كدام كه بيشتر است1220

Feb. 2019 IPS

23

ها، استانداردها، مشخصات و الزامـات فنـي تعيـين شـده توسـط كارفرمـا نامه با آئين تمام مواد

كنندگان تأييد شده توسط كارفرما خريداري تهيه/سازندگان/مطابقت داشته باشند و از فروشندگان

كنترل كيفي س سيستمبسته به اهميت خط لوله، نوع مواد، عملكرد قبلي و

.مشخص نمايد) درصورت وجود(بازرسي كه قصد انجام آن را دارد

منظور احتمال تغيير مسير، صدمات ناشي از حمل و نقل، نصب شود براي هر قطري از خط لوله به

بيني و همراه مقادير حقيقي مورد نيا ، كالاي اضافي به مقدار كافي پيش

PI-190كه توسط API Spec. 5Lهاي فولادي كربني بايد با مشخصات

ASME B 31.4بايد با استانداردهاي ) نيستند API 5Lكه از خانواده

هاي مربوطه كه توسط كارفرما مشخص شده مطابقت داشته نامه استاندارد و همچنين ساير استانداردها و آئين

.مجاز نيست API 5L (PSL1) استفاده از لوله بر اساس

شود مجراهاي ورودي و خروجي شير به توصيه مي. باشند IPS-M-PI-110شيرها بايد طبق استاندارد

.تعيين شوند كه با قطر داخلي لوله همخواني داشته باشند

ترجيحـاً از نـوع لـولايي و طبـق اسـتاندارد شود ، توصيه ميطرفه

مورد استفاده قرار گيرندتواند طرفه مي يك هايشيرساير انواع ،صورت اخذ تأييد قبلي از كارفرما

انشعابات، اتصالات، غيره

.باشند IPS-M-PI-150ها و اتصالات بايد مطابق با

اي نبايد در هيچ قس هاي نر و ماده و فلنج) اتصالات و غيرهلوله به لوله،

:نقاط اتصال براي

mm 150برابر قطر يا 5/2: )اينچ mm 150 )6 كوچكتراز

mm150 تاmm610 )6 دو برابر قطر: )اينچ 24 تا

mm 1220يا قطر يك: )اينچ mm 610 )24 از بزرگتر

:انشعابات، اتصالات و ملحقات محل

IPS-E-PI-140(2)

الاكتدارك 8-2

تمام مواد ضروري است

مطابقت داشته باشند و از فروشندگان

بسته به اهميت خط لوله، نوع مواد، عملكرد قبلي و

بازرسي كه قصد انجام آن را دارد

شود براي هر قطري از خط لوله به توصيه مي

، كالاي اضافي به مقدار كافي پيشآزمونو

مواد خط لوله 8-3

هاي فولادي كربني بايد با مشخصات لوله

.داشته باشند

كه از خانواده (ها ساير لوله

استاندارد و همچنين ساير استانداردها و آئين

استفاده از لوله بر اساس .باشند

شيرها 8-4

شيرها بايد طبق استاندارد

تعيين شوند كه با قطر داخلي لوله همخواني داشته باشند

طرفه شيرهاي يكدر مورد

صورت اخذ تأييد قبلي از كارفرما

انشعابات، اتصالات، غيره 8-5

ها و اتصالات بايد مطابق با فلنج

لوله به لوله، (اي اتصالات رزوه

.برده شوند

براي لوله تكه مجاز طول

كوچكتراز سايز با لوله براي -

mm سايز با لوله براي -

بزرگتر سايز با لوله براي -

در لوله تكه مجاز طول

Page 70: Technical requirements and engineering recommendations …

، هر كدام كه بيشـتر mm 150 قطعه، يا

ها ترجيحاً از نوع گلوئي بوده و گلـوئي آن بـا قطـر داخلـي خـط لولـه بـراي جوشـكاري

صورت مارپيچ پيچيده شـده، اسـتفاده هاز واشر نوع سطح برجسته كه ب

ط لوله توصـيه در خ DN 50 (NPS 2)يا اتصالات ابزار دقيق كوچكتر از

اسـتفاده از رابـط انشـعاب . اندازه انشعابات بايد برابر قطر لولـه باشـد

هـاي مربـوط بـه محـيط مني و ريسك

و ) هاي مكـرر و نظـاير آن بندي هاي سيال، احتمال خرابي

طـول خـط لولـه، (دسترسي براي تعمير و نگهداري و بازرسي خط لوله و همچنين عوامـل اقتصـادي

بررسي قرار گرفته موردبرداري، مسيرهاي ديگر نيز

همچنين براي استعلام مسـير و خـط

هاي مربوط مكاتبات لازم ها با ادارات و سازمان

هاي انجام شـده شود اطلاعات بررسي

ه اسـتاندارد اين اطلاعات بايد با اطلاعـات داده شـده در نقش ـ

هاي اضافي پلان و برش طولي مسير در مقيـاس بـزرگ

Feb. 2019 IPS

24

قطعه، يا ترين ديواره ضخيم ضخامت برابر شش اتصالات، يا

:محيطي هاي جوش مجاز تكه لوله بين

.، هر كدام كه بيشتر استmm 500 لوله يا

ها ترجيحاً از نوع گلوئي بوده و گلـوئي آن بـا قطـر داخلـي خـط لولـه بـراي جوشـكاري

:فلنجي بايد انجام شودمتابعت از شرايط زير در اتصالات

.و كمتر 600 فشارفلنج از نوع سطح برجسته براي رده

.و خطوط جريان 600بالاي فشارال رينگي براي رده

از واشر نوع سطح برجسته كه ب شود ميتوصيه هاي سطح برجسته

يا اتصالات ابزار دقيق كوچكتر از ودليل استحكام مكانيكي استفاده از انشعابات

اندازه انشعابات بايد برابر قطر لولـه باشـد DN 50 (NPS 2)براي خطوط لوله كوچكتر از

DN 75 (NPS 3) شود توصيه نمي.

انتخاب مسير خط لوله

مني و ريسكمخصوصاً اي( هاي مربوطه سكيرتوجه خاصي به

بندي هاي سيال، احتمال خرابي هاي موقعيت خط لوله، دسته

دسترسي براي تعمير و نگهداري و بازرسي خط لوله و همچنين عوامـل اقتصـادي

.خاصي مبذول گرددتوجه ) ها و نظاير آن ، تقاطع

برداري، مسيرهاي ديگر نيز نتخاب مسير مناسب و انجام نقشهشود قبل از ا

همچنين براي استعلام مسـير و خـط . زمين شناسي مطالعه گردند/هاي موجود و اطلاعات فني زمين

ها با ادارات و سازمان زمانلوله، جهت اطمينان از رعايت مقررات حريم مصوبه آن سا

بررسي مسير و خاك

شود اطلاعات بررسي توصيه مي ،قبل از نهايي كردن مسير خط لوله و انجام طراحي تفصيلي

اين اطلاعات بايد با اطلاعـات داده شـده در نقش ـ . در مورد جزئيات مسير در دسترس قرار گيرند

هاي اضافي پلان و برش طولي مسير در مقيـاس بـزرگ شود نقشه توصيه مي. كارفرما همخواني داشته باشند

IPS-E-PI-140(2)

اتصالات، يا يا انشعاب قطر -

.است

مجاز تكه لوله بين طول

لوله يا قطر خارجي -

ها ترجيحاً از نوع گلوئي بوده و گلـوئي آن بـا قطـر داخلـي خـط لولـه بـراي جوشـكاري فلنج شود ميتوصيه

.همخواني داشته باشد

متابعت از شرايط زير در اتصالات

فلنج از نوع سطح برجسته براي رده -

ال رينگي براي رده فلنج از نوع اتص -

هاي سطح برجسته براي فلنج -يادآوري

دليل استحكام مكانيكي استفاده از انشعابات به. شود

براي خطوط لوله كوچكتر از . شود مين

DN 75 (NPS 3)جوشي بزرگتر از

انتخاب مسير خط لوله 9

كليات 9-1

توجه خاصي به در انتخاب مسير بايد

هاي موقعيت خط لوله، دسته زيست بر مبناي رده

دسترسي براي تعمير و نگهداري و بازرسي خط لوله و همچنين عوامـل اقتصـادي قابليت

، تقاطعالعبور مناطق صعب

شود قبل از ا توصيه مي

هاي موجود و اطلاعات فني زمين و نقشه

لوله، جهت اطمينان از رعايت مقررات حريم مصوبه آن سا

.انجام شود

بررسي مسير و خاك 9-2

قبل از نهايي كردن مسير خط لوله و انجام طراحي تفصيلي

در مورد جزئيات مسير در دسترس قرار گيرند

كارفرما همخواني داشته باشند

Page 71: Technical requirements and engineering recommendations …

عينـي بـراي منـاطق م . آهن و نظاير آن تهيـه شـوند

هـاي بـرش نقشـه در ،دارندهاي با ارتفاع بالا

وقتـي مقـادير (برابر قطر خط لوله نباشد

:شرح زير بايد ارائه شوند اطلاعات اضافي به

هـا، هـا، زلزلـه يا رانش زمين، گسـل

؛)پوشش گياهي، جانوري و نظاير آن

ن براي تعيين ميزان مشكلات حفاري؛

براي مثـال سـايش (، نشست زمين

؛)هاي استخراج معادن

خطوط لوله كه قرار است مدفون شود؛

شود توصيه مي. منظور انتخاب پوشش و طراحي حفاظت كاتدي

هاي سولفيدي احيا كننده تغييـر نماينـد،

دهد، از قبل شناسائي شوند؛ يش مي

از عبـور در و باشـد داشته را جاده و

طـه هاي مسكوني بايد به مقررات ايمني ابلاغـي شـركت مربو

الزامـات جداسـازي خـط لولـه از سـاير تأسيسـات داخـل

.اين استاندارد مراجعه شود

سسـه مؤدستورالعمل نمونه براي عمليات ايمني

Feb. 2019 IPS

25

آهن و نظاير آن تهيـه شـوند ها، راه ها، جاده قاطع دشوار مثل تقاطع با رودخانه

.باشد توپولوژيهاي كامل ممكن است نياز به تهيه نقشه

هاي با ارتفاع بالا شود مناطقي كه نياز به حفاري عميق و يا نگهدارنده

.طولي مسير نشان داده شوند

برابر قطر خط لوله نباشد 500شود شعاع انحناي خط لوله در طول مسير كمتر از

اطلاعات اضافي به). استفاده گرددشود از خم كمتري مورد نياز باشد توصيه مي

يا رانش زمين، گسـل مثل ريزش كوه (اطلاعات فني زمين و ساير عوامل زيست محيطي

پوشش گياهي، جانوري و نظاير آن هاي با رودخانه، اطلاعات جوي، ها، جريانات در تقاطع

ن براي تعيين ميزان مشكلات حفاري؛تعيين نوع خاك و استحكام آ منظور

، نشست زمين )يا طراحي نگهدارنده/دفن و(منظور طراحي زيرسازي

هاي استخراج معادن هاي اسيدي يا فعاليت زيرزمين و تشكيل حفره توسط آب

خطوط لوله كه قرار است مدفون شود؛زمستان در طول مسير هاي زيرزميني در اواسط بهار و

منظور انتخاب پوشش و طراحي حفاظت كاتدي مقاومت خاك در طول مسير خط لوله به

هاي سولفيدي احيا كننده تغييـر نماينـد، مناطقي كه خواص خاك ممكن است به علت عواملي نظير باكتري

يش ميهاي حفاظت كاتدي را افزا سيستمياز براي كه اين امر جريان مورد ن

و رودخانه ها، با گسل تقاطع تعداد كمترين بايد شده گرفته

.شوداجتناب و پرشيب لغزشي بركه، باتلاقي،

هاي مسكوني مجاورت با ساختمان

هاي مسكوني بايد به مقررات ايمني ابلاغـي شـركت مربو براي تعيين حداقل فاصله خط لوله از ساختمان

مجاورت با ساير تأسيسات

الزامـات جداسـازي خـط لولـه از سـاير تأسيسـات داخـل Dو B ,Cهاي دسته شود براي سيال

.باشد IPS-E-PI-240محدوده كارخانه طبق استاندارد

اين استاندارد مراجعه شود 11ها به بند براي الزامات جداسازي در تقاطع

دستورالعمل نمونه براي عمليات ايمني 15قسمت خطوط لوله به بندي مناطق اطراف

IPS-E-PI-140(2)

قاطع دشوار مثل تقاطع با رودخانهبراي م

ممكن است نياز به تهيه نقشه

شود مناطقي كه نياز به حفاري عميق و يا نگهدارنده يه ميتوص

طولي مسير نشان داده شوند

شود شعاع انحناي خط لوله در طول مسير كمتر از توصيه مي

كمتري مورد نياز باشد توصيه مي

اطلاعات فني زمين و ساير عوامل زيست محيطي -الف

ها، جريانات در تقاطع سيل

منظور بررسي خاك به -ب

منظور طراحي زيرسازي بررسي خاك به -پ

زيرزمين و تشكيل حفره توسط آب

هاي زيرزميني در اواسط بهار و سطح آب -ت

مقاومت خاك در طول مسير خط لوله به -ث

مناطقي كه خواص خاك ممكن است به علت عواملي نظير باكتري

كه اين امر جريان مورد ن

گرفته نظر در مسير -ج

باتلاقي، سنگي، هاي زمين

مجاورت با ساختمان 9-3

براي تعيين حداقل فاصله خط لوله از ساختمان

.مراجعه نمود

مجاورت با ساير تأسيسات 9-4

شود براي سيال توصيه مي -

محدوده كارخانه طبق استاندارد

براي الزامات جداسازي در تقاطع -

بندي مناطق اطراف براي دسته -

.انرژي مراجعه شود

Page 72: Technical requirements and engineering recommendations …

منظور عمليات اجرايي نصـب خـط لولـه

.و امكان دستيابي براي بازرسي و تعميرات آن باشد

.عمل آيد هاي تحصيل اراضي بايد تهيه شود و با مسئولان مربوطه هماهنگي لازم به

:شود براي هر پروژه خط لوله بر مبناي معيارهاي زير پهناي جاده اختصاصي مشخص شود

ر آن؛

اي و كوهسـتاني كـه ممكـن اسـت عمليـات

.

.باشد IPS-D-PI-143نقشه استاندارد

توان آن توانند به عنوان حداقل پهناي جاده اختصاصي در نظر گرفته شوند و در صورت لزوم مي

هاي معينـي اجـازه تعـريض محدوديت

:كارفرما آن را كم نمود

m 40):اينچ

m60: بر مبناي يك تا سه خط در هر مسير

Feb. 2019 IPS

26

جاده اختصاصي

منظور عمليات اجرايي نصـب خـط لولـه خط لوله بايد داراي يك جاده اختصاصي دائمي با عرض كافي به

و امكان دستيابي براي بازرسي و تعميرات آن باشد) شامل خطوط لوله اضافي در آينده

هاي تحصيل اراضي بايد تهيه شود و با مسئولان مربوطه هماهنگي لازم به

اي جاده اختصاصي

شود براي هر پروژه خط لوله بر مبناي معيارهاي زير پهناي جاده اختصاصي مشخص شود

خط لوله مدفون يا رو زميني؛

؛وضعيت زيگزاك خط لوله روي زميني

ر آن؛اي و نظاي تپهقرار گرفتن خط لوله در مناطق هموار يا كوهستاني يا

اي و كوهسـتاني كـه ممكـن اسـت عمليـات مخصوصـاً در منـاطق تپـه (خطوط لوله آينده در همان مسير

؛)اختصاصي موجود توليد مشكل نمايديا تعريض جاده

.نوع سيال و فشار خط لوله و عواقب مخاطرات ناشي از شكست خط لوله

نقشه استاندارد مطابقد پهناي جاده اختصاصي براي خطوط لوله مدفون باي

توانند به عنوان حداقل پهناي جاده اختصاصي در نظر گرفته شوند و در صورت لزوم مي

محدوديتاضافه نمود و يا اگر ،باشد خاصي ا تا حدي كه مناسب الزامات پروژه

كارفرما آن را كم نمود با اخذ تأييد از ،آل و مورد نياز را ندهد جاده اختصاصي تا پهناي ايده

:در مناطق هموار خطوط لوله روي زميني

mm 150 )6 و كمتر) اينچ:m 25

mm 200 )8 اينچ 26( 650ر اسمي شامل قط تا و) اينچ

بر مبناي يك تا سه خط در هر مسير و) اينچ mm650 )26براي قطر اسمي بالاتر از

:اي و كوهستاني هاي روي زميني در مناطق تپه

mm 400 )16 و كمتر) اينچ :m21

m 24):اينچ mm400 )16براي قطر اسمي بالاتر از

IPS-E-PI-140(2)

جاده اختصاصي 9-5

خط لوله بايد داراي يك جاده اختصاصي دائمي با عرض كافي بههر

شامل خطوط لوله اضافي در آينده(

هاي تحصيل اراضي بايد تهيه شود و با مسئولان مربوطه هماهنگي لازم به نقشه

اي جاده اختصاصيپهن 9-5-1

شود براي هر پروژه خط لوله بر مبناي معيارهاي زير پهناي جاده اختصاصي مشخص شود توصيه مي

خط لوله مدفون يا رو زميني؛ -

قطر خط لوله؛ -

روش ساخت؛ -

وضعيت زيگزاك خط لوله روي زميني -

قرار گرفتن خط لوله در مناطق هموار يا كوهستاني يا -

خطوط لوله آينده در همان مسير -

يا تعريض جاده /انفجاري و

نوع سيال و فشار خط لوله و عواقب مخاطرات ناشي از شكست خط لوله -

پهناي جاده اختصاصي براي خطوط لوله مدفون باي

توانند به عنوان حداقل پهناي جاده اختصاصي در نظر گرفته شوند و در صورت لزوم مي اعداد زير مي

ا تا حدي كه مناسب الزامات پروژهر

جاده اختصاصي تا پهناي ايده

خطوط لوله روي زمينيبراي -الف

mm براي قطر اسمي -

mm براي قطر اسمي -

براي قطر اسمي بالاتر از -

هاي روي زميني در مناطق تپه براي لوله -ب

mm براي قطر اسمي -

براي قطر اسمي بالاتر از -

Page 73: Technical requirements and engineering recommendations …

شـود كـه عـرض جـاده اختصاصـي بـر اسـاس نقشـه اسـتاندارد

د در شرايط خاص كه فضاي كافي جهت عبور لوله

شـود حـداقل نماينـد، توصـيه مـي وجود ندارد و با اخذ تأييد از كارفرما، وقتي كه چندين خط لوله بايد از يك كانال لوله عبـور

مجـزا يـا هـاي جهت تعيين فواصل مناسب براي خطوط لوله با كانال

، )غيـره مانند كريدورها و (در شرايط خاص كه فضا كافي نيست

آهـن و آبراهـه توصـيه ها، راه ها، خطوط برق فشار قوي، جاده

توانـد خسـارات اگر خط لوله در مسير موازي با خطوط برق فشار قوي باشد، اثرات جريان القايي در خط لولـه مـي

:طور كلي موارد زير مد نظر قرار گيرند

.بايد رعايت شوند

باشـد، بايـد ارزيـابي ريسـك و بزرگتـر 63

انجام شود و اقدامات لازم جهت حداقل نمـودن اثـرات القـايي جريـان و كنتـرل آن

.هاي حفاظت كاتدي بايد متناسب با اثرات مذكور طراحي شوند

باشـد، حـداقل kV 110 ر، به موازات خطوط برق فشار قوي با ولتـاژ حـداقل

فاصله از خطوط برق فشار قوي لازم است؛ مگر اينكه ارزيابي ريسك انجام شده و بر آن اساس با اخذ تاييد از كارفرمـا

m 500 باشـد، حـداقل kV 110 قوي بـا ولتـاژ حـداقل

فاصله از خطوط برق فشار قوي لازم است؛ مگر اينكه ارزيابي ريسك انجام شده و بر آن اساس با اخـذ تاييـد از كارفرمـا فواصـل

كمتر از يك (د، در فواصل كوتاه با اين وجو

هم برسد كه در اين حالـت بـراي دسترسـي بـه ايـن

هاي طولي تند، با در شيب. شوند در نظر گرفته مي

هاي فصلي كه امكان دارد باعث از جا كنـده شـدن خـط

هاي معادل در ديواره لوله در محدوده قابل قبول باشد يا

تدابير ترميمي انديشيده شود تا نيروهاي طولي وارد بر خط لوله حاصل از وزن خط لوله و محتوي آن را كـم

طراحـي جـاده اختصاصـي بـا مشخصـات خـم لولـه و همچنـين بـا مشخصـات اسـتاندارد

Feb. 2019 IPS

27

شـود كـه عـرض جـاده اختصاصـي بـر اسـاس نقشـه اسـتاندارد براي خطوط لوله مـدفون توصـيه مـي

.باشد، مگر آنكه چيز ديگري مشخص شده باشد

د در شرايط خاص كه فضاي كافي جهت عبور لوله قراردادن چندين خط لوله در يك كانال مجاز نيست؛ با اين وجو

وجود ندارد و با اخذ تأييد از كارفرما، وقتي كه چندين خط لوله بايد از يك كانال لوله عبـور

جهت تعيين فواصل مناسب براي خطوط لوله با كانال. باشد m 9/0 فاصله سطح تا سطح بين دو خط لوله مجاور

در شرايط خاص كه فضا كافي نيست . عمل شود IPS-D-PI-143 رو زميني بر اساس نقشه استاندارد

. تواند تغيير يابد فواصل خطوط لوله با ارزيابي مهندسي واخذ تاييديه از كارفرما مي

ها، خطوط برق فشار قوي، جاده در محل تقاطع خط لوله با خطوط لوله موجود، كابل

.باشد 90 ° تا 60 ° شود كه زاويه تقاطع بين

اگر خط لوله در مسير موازي با خطوط برق فشار قوي باشد، اثرات جريان القايي در خط لولـه مـي

طور كلي موارد زير مد نظر قرار گيرند هشود كه ب خوردگي در پي داشته باشد؛ در اين حالت توصيه مي

بايد رعايت شوند IPS-E-EL-160هاي بيان شده براي خطوط لوله در استاندارد

kV 63 در شرايطي كه خط لوله در مسير موازي با خطوط برق فشار قوي با ولتاژهاي

BS EN ISO 18086 انجام شود و اقدامات لازم جهت حداقل نمـودن اثـرات القـايي جريـان و كنتـرل آن

هاي حفاظت كاتدي بايد متناسب با اثرات مذكور طراحي شوند همچنين سيستم

ر، به موازات خطوط برق فشار قوي با ولتـاژ حـداقل يا كمت km 3 اگر خط لوله در مسافتي به اندازه

فاصله از خطوط برق فشار قوي لازم است؛ مگر اينكه ارزيابي ريسك انجام شده و بر آن اساس با اخذ تاييد از كارفرمـا

قوي بـا ولتـاژ حـداقل به موازات خطوط برق فشار km 3 اگر خط لوله در مسافتي بيش از

فاصله از خطوط برق فشار قوي لازم است؛ مگر اينكه ارزيابي ريسك انجام شده و بر آن اساس با اخـذ تاييـد از كارفرمـا فواصـل

ساير ملاحظات

با اين وجو. تجاوز ننمايد 22 % شود شيب طولي جاده اختصاصي از

هم برسد كه در اين حالـت بـراي دسترسـي بـه ايـن 30% تواند به شيب طولي جاده اختصاصي مي

در نظر گرفته مي 22% هاي دسترسي با شيب طولي حداكثر

هاي فصلي كه امكان دارد باعث از جا كنـده شـدن خـط در نظر گرفتن عمق دفن، نوع خاك و وجود سيلاب

هاي معادل در ديواره لوله در محدوده قابل قبول باشد يا كه تنششود لوله شوند، بهتر است اطمينان حاصل

تدابير ترميمي انديشيده شود تا نيروهاي طولي وارد بر خط لوله حاصل از وزن خط لوله و محتوي آن را كـم

طراحـي جـاده اختصاصـي بـا مشخصـات خـم لولـه و همچنـين بـا مشخصـات اسـتاندارد

.مطابقت داشته باشد

IPS-E-PI-140(2)

براي خطوط لوله مـدفون توصـيه مـي -پ

IPS-D-PI-143 باشد، مگر آنكه چيز ديگري مشخص شده باشد

قراردادن چندين خط لوله در يك كانال مجاز نيست؛ با اين وجو -1يادآوري

وجود ندارد و با اخذ تأييد از كارفرما، وقتي كه چندين خط لوله بايد از يك كانال لوله عبـور

فاصله سطح تا سطح بين دو خط لوله مجاور

رو زميني بر اساس نقشه استاندارد

فواصل خطوط لوله با ارزيابي مهندسي واخذ تاييديه از كارفرما مي

در محل تقاطع خط لوله با خطوط لوله موجود، كابل -2يادآوري

شود كه زاويه تقاطع بين مي

اگر خط لوله در مسير موازي با خطوط برق فشار قوي باشد، اثرات جريان القايي در خط لولـه مـي -3يادآوري

خوردگي در پي داشته باشد؛ در اين حالت توصيه مي

هاي بيان شده براي خطوط لوله در استاندارد حريم -

در شرايطي كه خط لوله در مسير موازي با خطوط برق فشار قوي با ولتاژهاي -

BS EN ISO 18086مطابق با استاندارد

همچنين سيستم. صورت پذيرد

اگر خط لوله در مسافتي به اندازه -

m 200 فاصله از خطوط برق فشار قوي لازم است؛ مگر اينكه ارزيابي ريسك انجام شده و بر آن اساس با اخذ تاييد از كارفرمـا

.فواصل تغيير يابد

اگر خط لوله در مسافتي بيش از -

فاصله از خطوط برق فشار قوي لازم است؛ مگر اينكه ارزيابي ريسك انجام شده و بر آن اساس با اخـذ تاييـد از كارفرمـا فواصـل

.تغيير يابد

ساير ملاحظات 9-5-2

شود شيب طولي جاده اختصاصي از توصيه مي

شيب طولي جاده اختصاصي مي) كيلومتر

هاي دسترسي با شيب طولي حداكثر ها جاده قسمت

در نظر گرفتن عمق دفن، نوع خاك و وجود سيلاب

لوله شوند، بهتر است اطمينان حاصل

تدابير ترميمي انديشيده شود تا نيروهاي طولي وارد بر خط لوله حاصل از وزن خط لوله و محتوي آن را كـم

.يا حذف نمايد

طراحـي جـاده اختصاصـي بـا مشخصـات خـم لولـه و همچنـين بـا مشخصـات اسـتاندارد شـود مـي يه توص

IPS-C-CE-112 مطابقت داشته باشد

Page 74: Technical requirements and engineering recommendations …

غير عادي، آتش سوزي، غلطيدن و

. كننـد اند، معمولاً خطوط لوله را در زير خاك دفـن مـي

باشد؛ ولي مدفون بودن يا نبودن خط لوله مي

شوند مگر آنكه شرايط زمين، دفن لولـه را

. قدري كوتاه باشد كه مزايـاي دفـن كـردن قابـل توجيـه نباشـد

وانند ت مي) مثل خطوط جرياني( ها

مگر آنكه دلايل قابل قبولي مثل الزامات فرآيندي، حفاظت در برابر تغييرات روزانـه دمـا يـا

آورده شـده 4و 3داول ترتيـب در ج ـ

حداقل عمق دفن توصيه شده براي خطوط لوله نفت مدفون

كانال لوله در نواحي

زراعي

mm

كانال لوله در نواحي غير

اي زراعي و غير صخره

1200

400

مدفون گاز حداقل عمق دفن توصيه شده براي خطوط لوله

اي هاي صخره نحداقل عمق دفن در زمي

m

6/0

8/0

0/1

.

بـراي (فاصله سطح تا سطح منظـور گـردد

Feb. 2019 IPS

28

گذاري خط لوله حفاظت و علامت

و آب و هوائي ه از صدمات مكانيكي، شرايط محيطي

اند، معمولاً خطوط لوله را در زير خاك دفـن مـي ها كاملاً مهار شده غيره و جهت اطمينان از اينكه آن

مدفون بودن يا نبودن خط لوله مي كننده تعيين ،عنوان يك قاعده كلي ارزيابي ريسك و مهندسي

شوند مگر آنكه شرايط زمين، دفن لولـه را و بيشتر دفن مي) اينچ 16( 400ي معمولاً خطوط لوله با قطر اسم

قدري كوتاه باشد كه مزايـاي دفـن كـردن قابـل توجيـه نباشـد غير عملي سازد و يا اينكه طول خط لوله به

ها و كمتر و با عمر كوتاه در تمام اندازه) اينچ 12( 300

مگر آنكه دلايل قابل قبولي مثل الزامات فرآيندي، حفاظت در برابر تغييرات روزانـه دمـا يـا

.هاي مسكوني و نظاير آن براي دفن وجود داشته باشد

كانال لوله

ترتيـب در ج ـ حداقل عمق دفن توصيه شده براي خطوط لوله نفت و گاز مـدفون بـه

حداقل عمق دفن توصيه شده براي خطوط لوله نفت مدفون -3جدول

كانال لوله در نواحي غير

زراعي و غير صخره

mm

كانال لوله در نواحي

اي صخره

mm

حداقل عمق خاك روي لوله 600 900

كانال علاوه بر قطر لوله 400 400

حداقل عمق دفن توصيه شده براي خطوط لوله - 4جدول

حداقل عمق دفن در زمي هاي معمولي در زمين حداقل عمق دفن

m

9/0

0/1

2/1

.باشد تا سطح روي لوله مي منظور از عمق دفن فاصله سطح طبيعي زمين

فاصله سطح تا سطح منظـور گـردد m 9/0 شود بين خط لوله و ساير تأسيسات مدفون حداقل

).مراجعه شود 4-3-11لوله به بند

IPS-E-PI-140(2)

حفاظت و علامت 10

فلسفه دفن 1- 10

ه از صدمات مكانيكي، شرايط محيطيبراي حفاظت خط لول

غيره و جهت اطمينان از اينكه آن

عنوان يك قاعده كلي ارزيابي ريسك و مهندسي به

معمولاً خطوط لوله با قطر اسم

غير عملي سازد و يا اينكه طول خط لوله به

300خطوط با قطر اسمي

مگر آنكه دلايل قابل قبولي مثل الزامات فرآيندي، حفاظت در برابر تغييرات روزانـه دمـا يـا . رو زميني باشند

هاي مسكوني و نظاير آن براي دفن وجود داشته باشد گذر از مكان

كانال لوله هاي اندازه 2- 10

حداقل عمق دفن توصيه شده براي خطوط لوله نفت و گاز مـدفون بـه

.است

جدول

عنوان

حداقل عمق خاك روي لوله

كانال علاوه بر قطر لوله پهناي اضافي

جدول

حداقل عمق دفن محل

1كلاس

2كلاس

4و 3گلاس

منظور از عمق دفن فاصله سطح طبيعي زمين -1يادآوري

شود بين خط لوله و ساير تأسيسات مدفون حداقل توصيه مي -2يادآوري

لوله به بند تقاطع با ساير خطوط

Page 75: Technical requirements and engineering recommendations …

جـائي كـه هـاي زراعتـي هاي مشخص ممكن است نياز به عمق بيشتري براي دفن باشد مثل زمين

براي عمق m 2/1 در بيشتر حالات عمقي برابر

اي حـداقل هـاي صـخره ها از جملـه زمـين

،بنـدي شـده يا عايق/شده و براي خطوط لوله پوشش داده

. در نظر گرفته شود شود قطر خارجي روكش يا عايق براي محاسبه حداقل عمق دفن

يا ساير مواد نرم مورد تأييـد كارفرمـا،

.باشد

وجـود آمـده بـر اثـر علت نيروي فشاري بالاي به

لوله اضافه شود در چنين حالاتي توصيه مي شود عمق دفن

اي طور كلي ضخامت خاك روي لوله بـه انـدازه

باشد كه بتواند اثرات نيروهاي حاصل از انبساط و انقباض و ساير نيروهاي وارده بر اثر فشار داخلي و نيز وزن

بـه دو انتهاي خط لوله دفن شده و ساير نقاطي كـه خـط جهـت اتصـال

و تغييرات دما را MAIPاين مهار بايد براي كاربرد مخصوص به خود طراحي شود تا بتواند نيروهاي وارده از

هاي فصلي و يا مجـاري آب خشـك شـده،

.نمايد، مناسب باشد

هاي غير مدفون خط لوله بايد بر اساس شرايط مختص به خود مورد توجه قرار گرفته و از اين رو

. لوگيري شـود ها با زمين ج نحوي نصب شوند كه هميشه از تماس آن

حدي باشند كه كـف خـط شود به ها بايد مناسب با شرايط محلي انتخاب شوند اما توصيه مي

به شكل زيگزاك نصب شوند تا از اثرات انبساط و انقبـاض

هر حال در شرايط خـاص توصـيه ه

هاي جايگزين مثل مهـار كامـل خـط

كـار گرفتـه شـود تـا از ه، ب ـ)عنوان مثال در فواصل مناسب اسـتفاده از مهـار كـافي

.يروهاي متداول غالب جلوگيري شود

Feb. 2019 IPS

29

هاي مشخص ممكن است نياز به عمق بيشتري براي دفن باشد مثل زمين

در بيشتر حالات عمقي برابر. عمق شيار شخم و سيستم زهكشي بايد در نظر گرفته شوند

ها از جملـه زمـين شود عرض كانال در تمام زمين توصيه مي.

براي خطوط لوله پوشش داده. بيشتر از قطر خارجي خط لوله باشد

شود قطر خارجي روكش يا عايق براي محاسبه حداقل عمق دفن

يا ساير مواد نرم مورد تأييـد كارفرمـا، mm 10 ريزي اوليه اطراف لوله بايد با خاك نرم با مش حداكثر

باشد IPS-C-PI-140 ساير الزامات خاكريزي بايد مطابق استاندارد

مهار براي خطوط لوله

علت نيروي فشاري بالاي به هائي با دماي بالا ممكن است به در سرويس

در چنين حالاتي توصيه مي شود عمق دفن. انبساط حرارتي تحت كمانش فاحش قرار گيرند

طور كلي ضخامت خاك روي لوله بـه انـدازه هشود كه ب توصيه مي. شود تا از اين كمانش فاحش جلوگيري

باشد كه بتواند اثرات نيروهاي حاصل از انبساط و انقباض و ساير نيروهاي وارده بر اثر فشار داخلي و نيز وزن

دو انتهاي خط لوله دفن شده و ساير نقاطي كـه خـط جهـت اتصـال . خط لوله در سرازيري را مهار نمايد

.وسيله مهار ثابت شوند آيند بايد به تأسيسات روي زمين مي

اين مهار بايد براي كاربرد مخصوص به خود طراحي شود تا بتواند نيروهاي وارده از

هاي فصلي و يا مجـاري آب خشـك شـده، تحمل نموده و براي شرايط زمين مخصوصاً در مسيرهاي سيلاب

نمايد، مناسب باشد هاي طولي مي حلي كه وزن خط لوله توليد تنش

خطوط لوله غير مدفون

هاي غير مدفون خط لوله بايد بر اساس شرايط مختص به خود مورد توجه قرار گرفته و از اين رو

نحوي نصب شوند كه هميشه از تماس آن علت جلوگيري از خوردگي خارجي به

.طراحي شوند IPS-G-PI-280هاي لوله بايد بر اساس استاندارد

ها بايد مناسب با شرايط محلي انتخاب شوند اما توصيه مي

.بالاتر باشد mm 300 لوله از بالاترين سطح سيل ثبت شده

به شكل زيگزاك نصب شوند تا از اثرات انبساط و انقبـاض كه معمولاً خطوط لوله غير مدفون

هب. باشد 1شكل زيگزاك ممكن است مطابق با شكل

.با طراحي مناسب تعيين شود شود كه شكل صحيح

هاي جايگزين مثل مهـار كامـل خـط شود كه روش از شكل زيگزاك نتوان استفاده نمود، توصيه مي

عنوان مثال در فواصل مناسب اسـتفاده از مهـار كـافي هب(

يروهاي متداول غالب جلوگيري شودگذاري انبساط و انقباض حرارتي و نيز ساير ن

IPS-E-PI-140(2)

هاي مشخص ممكن است نياز به عمق بيشتري براي دفن باشد مثل زمين در محل

عمق شيار شخم و سيستم زهكشي بايد در نظر گرفته شوند

. دفن كافي خواهد بود

mm 400 بيشتر از قطر خارجي خط لوله باشد

شود قطر خارجي روكش يا عايق براي محاسبه حداقل عمق دفن توصيه مي

ريزي اوليه اطراف لوله بايد با خاك نرم با مش حداكثر خاك

ساير الزامات خاكريزي بايد مطابق استاندارد. انجام شود

مهار براي خطوط لوله 3- 10

در سرويسهاي مدفون لوله

انبساط حرارتي تحت كمانش فاحش قرار گيرند

تا از اين كمانش فاحش جلوگيري

باشد كه بتواند اثرات نيروهاي حاصل از انبساط و انقباض و ساير نيروهاي وارده بر اثر فشار داخلي و نيز وزن

خط لوله در سرازيري را مهار نمايد

تأسيسات روي زمين مي

اين مهار بايد براي كاربرد مخصوص به خود طراحي شود تا بتواند نيروهاي وارده از

تحمل نموده و براي شرايط زمين مخصوصاً در مسيرهاي سيلاب

حلي كه وزن خط لوله توليد تنشهاي تند، م شيب

خطوط لوله غير مدفون 4- 10

هاي غير مدفون خط لوله بايد بر اساس شرايط مختص به خود مورد توجه قرار گرفته و از اين رو كليه قسمت

علت جلوگيري از خوردگي خارجي به به

هاي لوله بايد بر اساس استاندارد نگهدارنده

ها بايد مناسب با شرايط محلي انتخاب شوند اما توصيه مي ارتفاع نگهدارنده

لوله از بالاترين سطح سيل ثبت شده

كه معمولاً خطوط لوله غير مدفون شود توصيه مي

شكل زيگزاك ممكن است مطابق با شكل . حرارتي مصون باشند

شود كه شكل صحيح مي

از شكل زيگزاك نتوان استفاده نمود، توصيه مي جايي كه

(لوله از هرگونه حركت

گذاري انبساط و انقباض حرارتي و نيز ساير ن اثر

Page 76: Technical requirements and engineering recommendations …

در كليه نقاط اتصال نهائي لوله هاي غير مدفون به ساير تأسيسات و يا در نقاطي كه نياز به مهار كردن خـط

كـان بايد لنگرهايي طراحي و نصب شوند تـا از تغييـر م

در. هاي تركيبي در ديواره خط لولـه را در محـدوده قابـل قبـول نگـه دارد

هاي طولي بوجود آمده در ديواره لوله بر اثـر وزن خـط و

براي خطوط لوله روي زميني

طول مستقيم

)متر(

) متر(جابجايي

)حداقل

60 116 9.1

100 6.5

116 9.1

100 6.5

116 9.5

100 6.5

116 9.5

100 6.5

116 7.1

100 6.5

116 7.1

100 6.5

عنوان يك قاعده كلي در شرايط آب و هوائي خشك نيازي به اعمال پوشش ضد خوردگي روي لولـه هـايي

كه امكان خـوردگي به هر حال وقتي شرايط جوي يا خاك طوري باشند

Feb. 2019 IPS

30

در كليه نقاط اتصال نهائي لوله هاي غير مدفون به ساير تأسيسات و يا در نقاطي كه نياز به مهار كردن خـط

.هاي خط لوله استفاده شود شود كه از مهاركننده

بايد لنگرهايي طراحي و نصب شوند تـا از تغييـر م ،ها و در هر محلي كه مورد نياز است

هاي تركيبي در ديواره خط لولـه را در محـدوده قابـل قبـول نگـه دارد خط لوله جلوگيري نموده و تنش

هاي طولي بوجود آمده در ديواره لوله بر اثـر وزن خـط و شود كه تنش محاسبه تنش هاي تركيبي توصيه مي

.محتوي آن نيز در نظر گرفته شود

براي خطوط لوله روي زمينينماي بالا از شكل زيگزاك - 1شكل

هاي شكل زيگزاك اندازه -5جدول

جابجايي

حداقل( گريد جنس لوله بر اساس

API 5L

اندازه لوله

DN

4 GR B Up to DN 300 (NPS 12)

9.1 GR B/ X 42 DN 400

6.5 X 52/ ×X 60 9.1 GR B/ X 42

DN 500 6.5 X 52/ X 60 9.5 GR B/ X 42

DN 550 6.5 X52/ X 60 9.5 GR B/ X 42

DN 600 6.5 X 52/ X 60 7.1 GR B/ X 42

DN 650 6.5 X 52/ X 60 7.1 GR B/ X 42

DN 750 6.5 X 52/ X 60

محافظت در برابر خوردگي

عنوان يك قاعده كلي در شرايط آب و هوائي خشك نيازي به اعمال پوشش ضد خوردگي روي لولـه هـايي

به هر حال وقتي شرايط جوي يا خاك طوري باشند . باشد نمي ،كه با زمين تماس ندارند

IPS-E-PI-140(2)

در كليه نقاط اتصال نهائي لوله هاي غير مدفون به ساير تأسيسات و يا در نقاطي كه نياز به مهار كردن خـط

شود كه از مهاركننده توصيه مي ،لوله است

ها و در هر محلي كه مورد نياز است در سرازيري تپه

خط لوله جلوگيري نموده و تنش

محاسبه تنش هاي تركيبي توصيه مي

محتوي آن نيز در نظر گرفته شود

اندازه لوله

(NPS)

Up to DN 300 (NPS 12)

(NPS 16)

(NPS 20)

DN 550 (NPS 22)

(NPS 24)

(NPS 26)

DN 750 (NPS 30)

محافظت در برابر خوردگي 5- 10

عنوان يك قاعده كلي در شرايط آب و هوائي خشك نيازي به اعمال پوشش ضد خوردگي روي لولـه هـايي به

كه با زمين تماس ندارند

ها گاه تكيه

Page 77: Technical requirements and engineering recommendations …

براي ديواره لوله در نظر ) خوردگي مجاز

، )اه آهن و يا رودخانه مثل تقاطع با جاده، راه

سـاير به و نسبت شدهحفاظت كاتدي

شـود توصـيه مـي ،شـوند ها عبـور داده مـي

.ها پوشش داده شوند دگي بر اثر ايجاد قطرات بخار آب، سطح خارجي آن

كه معمولاً در (شوند ها عبور داده مي

منظـور محافظـت در بـه ) باشـد هاي سطحي مـي

سطح خارجي كليه خطوط لوله فلزي مدفون از جمله از جـنس دوبلكـس بايـد تحـت پوشـش ضـدخوردگي

ها مناسب قرار گرفته و حفاظت كاتدي شوند و از نظر عبور جريان الكتريكي به واحدها يا تأسيساتي كه به آن

.انجام شود

انتخـاب IPS-E-TP-270هاي حفاظتي بايد با توجه به نوع خاك و شرايط محيطي و طبق استاندارد

هـايي كـه احتمـال صـدمه در محـل

،زيـاد اسـت ) ها در تقاطع با رودخانه

در . شـود شود كه علائم هشدار دهنده اضـافي نصـب

:هاي زير نشانگرهاي خط لوله نصب شوند

ات هـواگيري، انشـعابات تخليـه، طرفـه، انشـعاب

Feb. 2019 IPS

31

خوردگي مجاز(خارجي لوله وجود داشته باشد در اين صورت يا بايد ضخامت اضافي

.گرفت يا روي آن پوشش مناسب ضد خوردگي اعمال نمود

مثل تقاطع با جاده، راه(ند شو هايي از خطوط لوله روي زميني دفن مي

حفاظت كاتدي IPS-E-TP-820طبـق اده شـــده و د صورت مناسب پوشش

.شود عايق ،الكتريكيهاي خط لوله از لحاظ

ها عبـور داده مـي هايي از خط لوله كه از بالاي جريانات آبي و رودخانه

دگي بر اثر ايجاد قطرات بخار آب، سطح خارجي آنمنظور جلوگيري از خور

ها عبور داده مي هايي كه خطوط لوله رو زميني از داخل مجاري آبگذر يا زير پل

هاي سطحي مـي يا محل عبور آب/هاي اصلي و مواقع تقاطع خط لوله با جاده

.طور مناسب پوشش داده شوند هقابل پاشش آب يا ماسه و ساير ذرات ب

سطح خارجي كليه خطوط لوله فلزي مدفون از جمله از جـنس دوبلكـس بايـد تحـت پوشـش ضـدخوردگي

مناسب قرار گرفته و حفاظت كاتدي شوند و از نظر عبور جريان الكتريكي به واحدها يا تأسيساتي كه به آن

.يق الكتريكي گردد

IPS-E-TP-820حفاظت كاتدي بايد طبق استـاندارد

هاي حفاظتي بايد با توجه به نوع خاك و شرايط محيطي و طبق استاندارد

نشانگرهاي خطوط لوله

در محـل . صورت واضح با نشانگرها شناسـايي شـوند ههاي مدفون بايد ب

در تقاطع با رودخانه(ها بردارهاي مكانيكي و يا لنگر قايق خطوط لوله توسط خاك

شود كه علائم هشدار دهنده اضـافي نصـب توصيه مي ،اين نوع صدمات جهت پايين آوردن احتمال

هاي زير نشانگرهاي خط لوله نصب شوند شود كه در محل مسير خطوط لوله مدفون توصيه مي

؛در فواصل يك كيلومتري

؛در تمام تغيير مسيرهاي عمده خط لوله

هاي زيرزميني؛ راه آب ها، راه آهن، در هر دو طرف تقاطع با جاده

وله؛هاي تغيير جنس يا ضخامت ديواره ل

طرفـه، انشـعاب در محل اتصالات و شيرهاي مـدفون مثـل شـيرهاي يـك

IPS-E-PI-140(2)

خارجي لوله وجود داشته باشد در اين صورت يا بايد ضخامت اضافي

گرفت يا روي آن پوشش مناسب ضد خوردگي اعمال نمود

هايي از خطوط لوله روي زميني دفن مي جايي كه قسمت

صورت مناسب پوشش بــايد به

هاي خط لوله از لحاظ قسمت

هايي از خط لوله كه از بالاي جريانات آبي و رودخانه براي قسمت

منظور جلوگيري از خور هب

هايي كه خطوط لوله رو زميني از داخل مجاري آبگذر يا زير پل در محل

مواقع تقاطع خط لوله با جاده

قابل پاشش آب يا ماسه و ساير ذرات بم

سطح خارجي كليه خطوط لوله فلزي مدفون از جمله از جـنس دوبلكـس بايـد تحـت پوشـش ضـدخوردگي

مناسب قرار گرفته و حفاظت كاتدي شوند و از نظر عبور جريان الكتريكي به واحدها يا تأسيساتي كه به آن

يق الكتريكي گرددعا ،شود ميوصل

حفاظت كاتدي بايد طبق استـاندارد هاي سيستمطراحي

هاي حفاظتي بايد با توجه به نوع خاك و شرايط محيطي و طبق استاندارد پوشش

.شوند

نشانگرهاي خطوط لوله 6- 10

هاي مدفون بايد ب محل لوله

خطوط لوله توسط خاكرسيدن به

جهت پايين آوردن احتمال

مسير خطوط لوله مدفون توصيه مي

در فواصل يك كيلومتري -الف

در تمام تغيير مسيرهاي عمده خط لوله -ب

در هر دو طرف تقاطع با جاده -ج

هاي تغيير جنس يا ضخامت ديواره ل در محل -د

در انشعابات؛ -ه

در محل اتصالات و شيرهاي مـدفون مثـل شـيرهاي يـك -و

.گيرها و غيره لجن

Page 78: Technical requirements and engineering recommendations …

IPS-D باشد.

ترين راه براي انجـام منظور تعيين مناسب

مئن طي عمر عمليـاتي آن و تقاطع بايد مطالعات دقيقي انجام شود كه توانايي خط لوله را براي كار كرد مط

تـرين محـل و نـوع تقـاطع بـر مبنـاي نتـايج

دست آمده از شرايط ژئوتكنيكي و وضعيت آب و ساير موضوعات زيست

.نيز مورد توجه خاص قرار گيرد

از بالاترين سطح mm 300 خط لوله حداقل

اگر احتمال اينكه اجسام شناور بزرگ همـراه

هـاي اين نگهدارنـده . شتيراني باشد اين فاصله بايد افزايش يابد

از طرف سيل قدري مقاوم باشند كه نيروهاي وارده

هـاي عـريض و در در رودخانـه . كنند را تحمـل نماينـد

هـاي منفـرد جاي نگهدارنده شود به

شود كه وسايل عايق كردن خـط بايد حفاظت كاتدي شود، توصيه مي

طبق استاندارد شود ميشود، توصيه

IPS-E-TP حفاظت كاتدي شوند.

شـوند هاي لوله در كف رودخانه خوابانده مـي

طوري كه خط لوله شناوري منفي لازم را داشته باشـد و در تمـام اوقـات، ضـمن

خـارج اسـت در محـل خـود زماني كه جهت بازرسي و تعمير از سرويس

.آورده شده است 14-

شود كه عمق دفن و انحناي خط لوله در ضمن خواباندن و بعـد از آن و نيـز در روش خوابانـدن،

.خصوصاً در موقع نصب جلوگيري گردد

هـاي قطـع خودكـار در طـرفين تقـاطع بـا

شـود اگر اين شيرها در حوضچه نصب شوند، توصيه مـي

الاتر باشد و اگر امكان نفوذ آب بـه داخـل حوضـچه

Feb. 2019 IPS

32

D-TP-712شود كه جزئيات ساخت و نصب طبق نقشه استاندارد

تقاطع با رودخانه

منظور تعيين مناسبوقتي كه خط لوله بايد يك رودخانه بزرگ را قطع كند، به

تقاطع بايد مطالعات دقيقي انجام شود كه توانايي خط لوله را براي كار كرد مط

تـرين محـل و نـوع تقـاطع بـر مبنـاي نتـايج انتخاب مناسـب . حداقل مشكلات نگهداري آنرا تضمين نمايد

دست آمده از شرايط ژئوتكنيكي و وضعيت آب و ساير موضوعات زيست ههاي انجام شده و اطلاعات ب

نيز مورد توجه خاص قرار گيردشود جابجايي مسير رودخانه ميتوصيه .

خط لوله حداقلحدي باشد كه ها به شود كه ارتفاع نگهدارنده

اگر احتمال اينكه اجسام شناور بزرگ همـراه . فاصله داشته باشد) قديمي ترين شرايط برگشت موجود

شتيراني باشد اين فاصله بايد افزايش يابدسيل حركت كنند و يا اينكه رودخانه قابل ك

قدري مقاوم باشند كه نيروهاي وارده مرتفع بايد مناسب با شرايط مخصوص طراحي شوند و به

كنند را تحمـل نماينـد ها برخورد مي و يا اجسام شناور همراه سيل كه با آن

شود به كه امكان وقوع جريانات سيل آسا وجود دارد، ترجيح داده مي

بايد حفاظت كاتدي شود، توصيه مي اگر خط لوله. لوله از پل استفاده شود

.لوله از نگهدارنده از نظر الكتريكي مد نظر قرار گيرد

شود، توصيه خط لوله كه زير بستر رودخانه خوابانده مي هايي از

TP-820پوشش و نوار پيچي شوند و نيز طبق استاندارد

هاي لوله در كف رودخانه خوابانده مـي هايي از خط لوله كه در كانال قسمت شود كه

طوري كه خط لوله شناوري منفي لازم را داشته باشـد و در تمـام اوقـات، ضـمن هاي داده شوند ب

زماني كه جهت بازرسي و تعمير از سرويسعمليات اجرايي، سرويس عملياتي و

-1-5-7بند زيرالزامات طراحي پايداري خط لوله در

شود كه عمق دفن و انحناي خط لوله در ضمن خواباندن و بعـد از آن و نيـز در روش خوابانـدن،

خصوصاً در موقع نصب جلوگيري گرددبراي كاربرد مخصوص به خود انتخاب شود تا از صدمه به خط لوله م

هـاي قطـع خودكـار در طـرفين تقـاطع بـا شيرهاي جداكننده مجهز به عمل كننده شود

اگر اين شيرها در حوضچه نصب شوند، توصيه مـي . رودخانه هاي بزرگ در محوطه محصور نصب شوند

الاتر باشد و اگر امكان نفوذ آب بـه داخـل حوضـچه كه سطح بالاي حوضچه از حداكثر ارتفاع ثبت شده آب ب

.وجود داشته باشد تسهيلاتي براي تخليه آب در نظر گرفته شود

IPS-E-PI-140(2)

شود كه جزئيات ساخت و نصب طبق نقشه استاندارد توصيه مي

ها تقاطع 11

تقاطع با رودخانه 11-1

وقتي كه خط لوله بايد يك رودخانه بزرگ را قطع كند، به 11-1-1

تقاطع بايد مطالعات دقيقي انجام شود كه توانايي خط لوله را براي كار كرد مط

حداقل مشكلات نگهداري آنرا تضمين نمايد

هاي انجام شده و اطلاعات ب بررسي

. محيطي متداول است

شود كه ارتفاع نگهدارنده توصيه مي 11-1-2

قديمي ترين شرايط برگشت موجود(سيل

سيل حركت كنند و يا اينكه رودخانه قابل ك

مرتفع بايد مناسب با شرايط مخصوص طراحي شوند و به

و يا اجسام شناور همراه سيل كه با آن

كه امكان وقوع جريانات سيل آسا وجود دارد، ترجيح داده مي هايي مكان

لوله از پل استفاده شود

لوله از نگهدارنده از نظر الكتريكي مد نظر قرار گيرد

هايي از قسمت براي 11-1-3

IPS-E-TP-270 پوشش و نوار پيچي شوند و نيز طبق استاندارد

شود كه توصيه مي 11-1-4

اي داده شوند ب پوشش وزنه

عمليات اجرايي، سرويس عملياتي و

الزامات طراحي پايداري خط لوله در . ثابت نگه داشته شود

شود كه عمق دفن و انحناي خط لوله در ضمن خواباندن و بعـد از آن و نيـز در روش خوابانـدن، توصيه مي

براي كاربرد مخصوص به خود انتخاب شود تا از صدمه به خط لوله م

شود توصيه مي 11-1-5

رودخانه هاي بزرگ در محوطه محصور نصب شوند

كه سطح بالاي حوضچه از حداكثر ارتفاع ثبت شده آب ب

وجود داشته باشد تسهيلاتي براي تخليه آب در نظر گرفته شود

Page 79: Technical requirements and engineering recommendations …

نحوي طراحي شوند كه در صورت شكست لوله و به دنبال

معمـول فشـار در ضـمن نوسـانات

شود كه اين طراحي مطمـئن سـازد كـه در صـورت تغييـر مسـير

.اندازد هاي جانبي رودخانه يكپارچگي نگهدارنده شير را به مخاطره نمي

) جديـد يـا موجـود (هـا هاي بتني و پل

به علت مشكلات خوردگي سطح خـارجي لولـه و تمـاس الكتريكـي بـين

مراجعه API RP 1102هايي درباره اين موضوع به

شـوند توصـيه اي كـه از جـاده منحـرف مـي

آهـن، هاي خـط لولـه بـا جـاده و راه

ث مطابق بـا نقشـه اسـتاندارد گردد جزئيات احدا

ها بايـد داراي ها يا پل اگر جاده اختصاصي براي عبور بيش از يك خط لوله در نظر گرفته شده باشد، گذرگاه

در اين حالت فاصله افقي بين دو خط لوله مجـاور نبايـد كمتـر از

.اين استاندارد مراجعه شود

mm 300 نماينـد حـداقل هاي رو زميني همديگر را قطع مي

نمايد افزايش ط لوله مدفون با خط لوله رو زميني موجود تقاطع مي

.يكساني در عمق دفن خط لوله براي تمام عرض جاده اختصاصي در نظر گرفته شود

شود جايي كه يك خط لوله رو زميني يـك خـط لولـه مـدفون موجـود را قطـع نمايـد

.ستفاده از جاده اختصاصي خط لوله مدفون را فراهم نمايد

خط لوله مدفون خط لوله مدفون موجود را قطع نمايد خط جديد بـا

) مسـتقيم يـا مقـاومتي (وند شود نقاط آزمايش پتانسيل، نقاط آزمايش جريان و نقاط پي

هـا بهـم هـاي حفاظـت كاتـدي آن

.، خط خط لوله جديد بايد دوبار نوارپيچي شود

Feb. 2019 IPS

33

نحوي طراحي شوند كه در صورت شكست لوله و به دنبال ههاي قطع خودكار ب شود كه عمل كننده

نوسـانات آن تغيير ناگهاني فشار عمل نموده و سبب بسته شدن شير شوند ولي در

شود كه اين طراحي مطمـئن سـازد كـه در صـورت تغييـر مسـير توصيه مي. عمليات تحت تاًثير قرار نگيرند

هاي جانبي رودخانه يكپارچگي نگهدارنده شير را به مخاطره نمي جريان آب و يا خراب شدن ديواره

تقاطع با جاده و راه آهن

هاي بتني و پل آهن ترجيحاً از گذرگاه يا محفظه ها و راه با جاده

به علت مشكلات خوردگي سطح خـارجي لولـه و تمـاس الكتريكـي بـين (استفاده از غلاف

هايي درباره اين موضوع به جهت ملاحظه توصيه. (شود توصيه نمي

اي كـه از جـاده منحـرف مـي جهت جلوگيري از صدمه به خط لوله توسط وسايل نقليه

هاي خـط لولـه بـا جـاده و راه در تقاطع. هاي مناسب در دو طرف جاده تعبيه گردد

m 2 گردد جزئيات احدا در نظر گرفته شود و توصيه مي

.انجام شود

اگر جاده اختصاصي براي عبور بيش از يك خط لوله در نظر گرفته شده باشد، گذرگاه

در اين حالت فاصله افقي بين دو خط لوله مجـاور نبايـد كمتـر از . پهناي كافي براي خطوط لوله آتي باشند

1-5-9بند زيراز 2براي تعيين زاويه تقاطع به يادآوري

تقاطع با ساير خطوط لوله

هاي رو زميني همديگر را قطع مي شود جايي كه خطوط لوله

.فاصله بين خطوط مجاور منظور گردد

ط لوله مدفون با خط لوله رو زميني موجود تقاطع ميشود جايي كه يك خ

يكساني در عمق دفن خط لوله براي تمام عرض جاده اختصاصي در نظر گرفته شود

شود جايي كه يك خط لوله رو زميني يـك خـط لولـه مـدفون موجـود را قطـع نمايـد

ستفاده از جاده اختصاصي خط لوله مدفون را فراهم نمايدشرايطي در نظر گرفته شود تا امكان تداوم ا

خط لوله مدفون خط لوله مدفون موجود را قطع نمايد خط جديد بـا شود جايي كه يك

.از زير خط لوله موجود عبور نمايد

شود نقاط آزمايش پتانسيل، نقاط آزمايش جريان و نقاط پي

هـاي حفاظـت كاتـدي آن روي هر دو خط كه در محل تقاطع نصب شوند تا درصورت نياز سيسـتم

m 15 خط خط لوله جديد بايد دوبار نوارپيچي شوداز طرفين محل تقاطع ،

IPS-E-PI-140(2)

شود كه عمل كننده توصيه مي

آن تغيير ناگهاني فشار عمل نموده و سبب بسته شدن شير شوند ولي در

عمليات تحت تاًثير قرار نگيرند

جريان آب و يا خراب شدن ديواره

تقاطع با جاده و راه آهن 11-2

با جادهبراي تقاطع خط لوله

استفاده از غلاف . شود استفاده مي

توصيه نمي) غلاف و خط لوله

جهت جلوگيري از صدمه به خط لوله توسط وسايل نقليه). شود

هاي مناسب در دو طرف جاده تعبيه گردد شود كه محافظ مي

حداقل عمق دفن بايد

IPS-D-PI-175 انجام شود

اگر جاده اختصاصي براي عبور بيش از يك خط لوله در نظر گرفته شده باشد، گذرگاه

پهناي كافي براي خطوط لوله آتي باشند

mm 400 براي تعيين زاويه تقاطع به يادآوري . باشد

تقاطع با ساير خطوط لوله 11-3

شود جايي كه خطوط لوله توصيه مي 11-3-1

فاصله بين خطوط مجاور منظور گردد

شود جايي كه يك خ توصيه مي 11-3-2

يكساني در عمق دفن خط لوله براي تمام عرض جاده اختصاصي در نظر گرفته شود

شود جايي كه يك خط لوله رو زميني يـك خـط لولـه مـدفون موجـود را قطـع نمايـد توصيه مي 11-3-3

شرايطي در نظر گرفته شود تا امكان تداوم ا

شود جايي كه يك توصيه مي 11-3-4

از زير خط لوله موجود عبور نمايد mm 900 فاصله

شود نقاط آزمايش پتانسيل، نقاط آزمايش جريان و نقاط پي ميتوصيه 11-3-5

روي هر دو خط كه در محل تقاطع نصب شوند تا درصورت نياز سيسـتم

.متصل گردند

mحداقلبراي 11-3-6

Page 80: Technical requirements and engineering recommendations …

متعلق بـه شـركت ديگـري را قطـع نمايـد

.طراحي تقاطع و حفاظت كاتدي با الزامات شركت مذكور همخواني داشته باشد

سيسـتم اتخـاذ ضـرورت شود مي توصيه

معرفـي زمـين شـناس يا كارفرما شناسي

.شود

يك با تقاطع به مجبور لوله خط حال

محافظت براي كه شود مي توصيه باشد،

طور قابل ملاحظه در عملكرد خط لوله واقع در معـرض حركـات گسـل دخالـت دارنـد

بي گسل، زاويه تقاطع خط لولـه بـا گسـل، خـواص

، هندسه خط لوله و فشار داخلي خط؛

بايست طوري قرار داده كند مي اي كه يك گسل لغزنده را قطع مي

هـاي رب كه تا حد ممكن كوچك باشد قطع شوند تـا تـنش

صـورتي بايسـت بـه اگر ميزان جابجايي لغزنده قابل ملاحظه است، زاويه تقـاطع مـي

ارتفاع قرارگيري خط لوله، در تمامي نـواحي كـه

زمين استعداد گسيختگي دارد، خط لوله مي بايست در قطعات مستقيم و عمود بر گسل يا نزديك بـه عمـود

بايسـت وله مـي همچنين تا جايي كه امكان دارد خط ل

ار كردن خط لوله دارند احداث شود؛

. باشـد هاي منجر بـه كشـش، ضـخامت لولـه مـي

از سـوي ديگـر بـراي . شـود كاهش تـنش كششـي در تقـاطع گسـل مـي

زيرا اين نسبت، تأثير مسـتقيم . باشد

از اطراف پهنه گسل از ضرايب طراحي شبيه ضـرايب تعيـين شـده

ايـن اسـتاندارد 2-2-5-7بنـد زيراز

Feb. 2019 IPS

34

متعلق بـه شـركت ديگـري را قطـع نمايـد كه خط لوله يك خط لوله موجود شود جايي

طراحي تقاطع و حفاظت كاتدي با الزامات شركت مذكور همخواني داشته باشد

هاي زمين

توصيه نمايد، برخورد مي فعال غير گسل يك با اجباراً

شناسي زمين واحد ي توسطشناس زمين مطالعات از

شود گرفته نظر در ها هاي آن توصيه و شده گيري تصميم

حال به هر كه وقتي .شود پرهيز بايد گسل فعال با تقاطع

باشد، مي وجود دارد آن شدن فعال انتظار كه فعال گسل غير

:شود گرفته نظر در زير موارد ها تقاطع

طور قابل ملاحظه در عملكرد خط لوله واقع در معـرض حركـات گسـل دخالـت دارنـد

بي گسل، زاويه تقاطع خط لولـه بـا گسـل، خـواص عمق دفن، شكل كانال، مقدار تغيير مكان نس

، هندسه خط لوله و فشار داخلي خط؛هاي مهار نشده خط لوله

اي كه يك گسل لغزنده را قطع مي در جايي كه عملي باشد خط لوله

كشش قرار گيرد؛شود كه خط لوله تحت

رب كه تا حد ممكن كوچك باشد قطع شوند تـا تـنش د در يك زاويه موهاي معكوس باي

اگر ميزان جابجايي لغزنده قابل ملاحظه است، زاويه تقـاطع مـي . فشاري به حداقل برسد

؛انتخاب شود كه افزايش طول كششي خط را تسهيل نمايد

ارتفاع قرارگيري خط لوله، در تمامي نـواحي كـه منظور جلوگيري از تغييرات ناگهاني در جهت و

زمين استعداد گسيختگي دارد، خط لوله مي بايست در قطعات مستقيم و عمود بر گسل يا نزديك بـه عمـود

همچنين تا جايي كه امكان دارد خط ل. قرار گيرد) با توجه به ظرفيت افزايش طول خط لوله

ار كردن خط لوله دارند احداث شود؛ايل به مههايي كه تم

هاي منجر بـه كشـش، ضـخامت لولـه مـي كننده در مقاومت خط لوله در تقاطع

كاهش تـنش كششـي در تقـاطع گسـل مـي افزايش ضخامت خط لوله منجر به

باشد كننده مي ل كنترلهاي منجر به فشار، نسبت قطر به ضخامت عام

هاي چروكيدگي و فشاري آن دارد؛ بر بيضوي شدن مقطع لوله و كرنش

از اطراف پهنه گسل از ضرايب طراحي شبيه ضـرايب تعيـين شـده m300شود در فاصله

از 2دول ج ـبـه . (هاي شني و سواحل استفاده گردد

IPS-E-PI-140(2)

شود جايي توصيه مي 11-3-7

طراحي تقاطع و حفاظت كاتدي با الزامات شركت مذكور همخواني داشته باشد

هاي زمين تقاطع با گسل 11-4

لوله خط يك كه زماني

پس مناسب محافظتي

تصميم از سوي كارفرما، شده

تقاطع از امكان صورت در

گسل غير يا و گسل فعال

تقاطع نوع اين لوله در خط

طور قابل ملاحظه در عملكرد خط لوله واقع در معـرض حركـات گسـل دخالـت دارنـد عواملي كه به 11-4-1

عمق دفن، شكل كانال، مقدار تغيير مكان نس: عبارتند از

هاي مهار نشده خط لوله خاك، طول

در جايي كه عملي باشد خط لوله 11-4-2

شود كه خط لوله تحت

هاي معكوس باي گسل 11-4-3

فشاري به حداقل برسد

انتخاب شود كه افزايش طول كششي خط را تسهيل نمايد

منظور جلوگيري از تغييرات ناگهاني در جهت و به 11-4-4

زمين استعداد گسيختگي دارد، خط لوله مي بايست در قطعات مستقيم و عمود بر گسل يا نزديك بـه عمـود

با توجه به ظرفيت افزايش طول خط لوله(

هايي كه تمها و قيد بدون خم

كننده در مقاومت خط لوله در تقاطع نعامل تعيي 11-4-5

افزايش ضخامت خط لوله منجر به

هاي منجر به فشار، نسبت قطر به ضخامت عام تقاطع

بر بيضوي شدن مقطع لوله و كرنش

شود در فاصله توصيه مي 11-4-6

هاي شني و سواحل استفاده گردد ها، تپه براي رودخانه

؛)شود مراجعه

Page 81: Technical requirements and engineering recommendations …

ها، شـيرها راهي ها، سه ها، فلنج از هر دو طرف پهنه گسل از خم

منظور كاهش قيد خاك بـر خـط لولـه در طـي

خاكريزي شده اطراف لولـه در فاصـله

باشد؛از پهنه گسل به نحوي انتخاب شود تا خطوط لوله داراي حداقل قيد و بند

از هـر m 250هاي قطع اضطراري خودكار بايد در فاصله

شود كه با طراحي قيد و بند كافي، اين شيرها در برابر حركت خـط

ه از مسير جايگزين و يا دور زدن آن منطقـه،

شـود كـه ميتوصيه . يك مجموعه جامع از مدارك طراحي بايد تهيه و تا پايان عمر خط لوله نگهداري شود

اين مدارك تمام معيارهاي طراحي، محاسبات و برآوردهايي را كه در طراحي مفهومي و طراحـي خـط لولـه

هاي راهنماي عمليات و تعمير اين مدارك بايد شامل دفترچه

ها محتوي تمام شـرايط عمليـاتي كليـدي

.ه و غيره باشندقابل تصور در تمام دوره عمر خط، خصوصيات اصلي، پارامترها، و موارد غير منتظر

Feb. 2019 IPS

35

از هر دو طرف پهنه گسل از خم m200شود كه در حداقل

ي بتني، در خط لوله استفاده نشود؛ها يا قيد و بندهايي مشابه، نظير وزنه

منظور كاهش قيد خاك بـر خـط لولـه در طـي اي گسل بهه بايست در پهنه عمق دفن خط لوله مي

خاكريزي شده اطراف لولـه در فاصـله شود ابعاد كانال و مواد همچنين توصيه مي. حركت گسل كمينه گردد

از پهنه گسل به نحوي انتخاب شود تا خطوط لوله داراي حداقل قيد و بند

هاي قطع اضطراري خودكار بايد در فاصله هكنند اي قطع جريان مجهز به فعال

شود كه با طراحي قيد و بند كافي، اين شيرها در برابر حركت خـط ميتوصيه . طرف پهنه گسل نصب گردد

.صورت ثابت مهار شوند لوله در قسمت تقاطع با گسل، به

ه از مسير جايگزين و يا دور زدن آن منطقـه، عبور از نزديكي مناطقي كه رانش زمين مشهود است با استفاد

اسناد و سوابق

يك مجموعه جامع از مدارك طراحي بايد تهيه و تا پايان عمر خط لوله نگهداري شود

اين مدارك تمام معيارهاي طراحي، محاسبات و برآوردهايي را كه در طراحي مفهومي و طراحـي خـط لولـه

اين مدارك بايد شامل دفترچه. شود را شامل شوند ث يك انتخاب فني مي

ها محتوي تمام شـرايط عمليـاتي كليـدي شود كه اين دفترچه و نگهداري خط لوله نيز باشند كه توصيه مي

قابل تصور در تمام دوره عمر خط، خصوصيات اصلي، پارامترها، و موارد غير منتظر

IPS-E-PI-140(2)

شود كه در حداقل توصيه مي 11-4-7

يا قيد و بندهايي مشابه، نظير وزنه

عمق دفن خط لوله مي 11-4-8

حركت گسل كمينه گردد

m200 از پهنه گسل به نحوي انتخاب شود تا خطوط لوله داراي حداقل قيد و بند

اي قطع جريان مجهز به فعالشيره 11-4-9

طرف پهنه گسل نصب گردد

لوله در قسمت تقاطع با گسل، به

رانش زمين 11-5

عبور از نزديكي مناطقي كه رانش زمين مشهود است با استفاد

.شودبايد پرهيز

اسناد و سوابق 12

يك مجموعه جامع از مدارك طراحي بايد تهيه و تا پايان عمر خط لوله نگهداري شود

اين مدارك تمام معيارهاي طراحي، محاسبات و برآوردهايي را كه در طراحي مفهومي و طراحـي خـط لولـه

ث يك انتخاب فني ميباع

و نگهداري خط لوله نيز باشند كه توصيه مي

قابل تصور در تمام دوره عمر خط، خصوصيات اصلي، پارامترها، و موارد غير منتظر

Page 82: Technical requirements and engineering recommendations …

Feb. 2019 IPS

36

پيوست الف

)آگاهي دهنده(

فرمول سرعت بحراني

:آل سرعت بحراني براي گازهاي ايده

دماي مطلق گاز، كلوين

m/secسرعت بحراني

نسبت گرماي ويژه

m/secشتاب ثقل 2 81/9

J /(K.mol) 314/8 : ثابت عمومي گازها

وزن ملكولي، كيلوگرم

kgRTVc =

IPS-E-PI-140(2)

سرعت بحراني براي گازهاي ايده

:كه در آن

T دماي مطلق گاز، كلوين

Vc سرعت بحراني

Cv

Cp K= نسبت گرماي ويژه

g شتاب ثقل

R=Rο/M گاز ثابت

:كه در آن

Rο ثابت عمومي گازها

M وزن ملكولي، كيلوگرم

Page 83: Technical requirements and engineering recommendations …

براي عمليات مستمر

در فشار و دماي عملياتي

ρ

Feb. 2019 IPS

37

بپيوست

)آگاهي دهنده(

فرمول سرعت سايشي

:شود سرعت سايشي در مواقعي كه مخلوط گاز و مايع منتقل مي

ρm

e 1.22C/V =

m/secسرعت سايشي،

براي عمليات مستمر 100براي عمليات غير مستمر و 125

در فشار و دماي عملياتي kg/m³چگالي مخلوط گاز و مايع بر حسب

:دست آورده شود تواند از فرمول زير به

ρm = Z T R 10.12 P 28.82

P G R 35.22 P S 28829.6 L

××+

××+×

)1=آب(چگالي نسبي نفت

)كيلوپاسكال مطلق

)مترمكعب نفت در شرايط استاندارد متريك/ مترمكعب گاز(

9.28

MW در شرايط استاندارد

متر جيوه ميلي 760گراد و درجه سانتي 20وزن ملكولي گاز در

)درجه كلوين

IPS-E-PI-140(2)

سرعت سايشي در مواقعي كه مخلوط گاز و مايع منتقل مي

:كه در آن

Ve ،سرعت سايشي

C 125= ثابت تجربي

ρm چگالي مخلوط گاز و مايع بر حسب

تواند از فرمول زير به مي ρmمقدار -يادآوري

:كه در آن

SL چگالي نسبي نفت

P كيلوپاسكال مطلق(فشار عملياتي

R نسبت گاز به نفت

G چگالي نسبي گاز

MW وزن ملكولي گاز در

T درجه كلوين(دماي عملياتي

Z ضريب تراكم گاز

Page 84: Technical requirements and engineering recommendations …

محاسبات طراحي هيدروليكي

معادلـه ني ـا. معتبـر اسـت عيهـر مـا

ني ـهنگـام اسـتفاده از ا . ص اسـتفاده شـود

-دارسـي معادله. ي در نظر گرفتبرنول

اسـت، در آن بخش ثابت عيما يچگال

جـاد يا روابط تجربـي يتعداد عيما

براي نفت خامي كه در حال حاضر در اكثر منابع نفتي جنوب

بـه هـر حـال بـراي نفـت . اند نتايج دقيقي ارائه داده

حد كافي دقيق نباشـند؛ بنـابراين ها به

1 - Darcy-Weisbach

Feb. 2019 IPS

38

پپيوست

)آگاهي دهنده(

محاسبات طراحي هيدروليكي

فاز خطوط لوله تك

وايسباخ-دارسيمعادله هـر مـا متلاطمو آرام انيجر يبرا1

ص اسـتفاده شـود خا يها تيمحدود در نظر گرفتن گازها با ي

برنول هيبا استفاده از قضچگالي را ايدر ارتفاع، سرعت

چگالاز خط لوله كه مطمئناً كوتاه يبه اندازه كافي ها

:باشد شرح زير مي به وايسباخ،

kPa/km(

دانسيته نسبي، بدون واحد

)پيوست د( ، بدون واحد)يا مودي( ضريب اصطكاك دارسي

انتقالخطوط كيدروليمحاسبات ه ي، براوايسباخ-

.اند خلاصه شده 1-پدر جدول روابط متداول مورد استفاده

براي نفت خامي كه در حال حاضر در اكثر منابع نفتي جنوب ،1-پدر جدول هاي مربوط به نفت خام

نتايج دقيقي ارائه داده) 34و 30بين APIبندي با شماره

ها به باشد ممكن است اين فرمول خامي كه داراي خواصي كاملاً مختلف مي

.براي تعيين ضريب اصطكاك بايد از اصول هيدروليكي پايه استفاده شود

IPS-E-PI-140(2)

خطوط لوله تك 1-پ

مايع 1-1-پ

معادله ع،يخطوط ما يبرا

يتواند برا يم نيهمچن

در ارتفاع، سرعت راتييتغ بايد ،معادله

ها بخش در ديبا وايسباخ

.كار گرفته شود به

وايسباخ،-دارسيدله معا

:كه در آن

∆P افت فشار)kPa/km

QL دبي)m³/h(

S دانسيته نسبي، بدون واحد

f ضريب اصطكاك دارسي

d قطر داخلي)mm(

دارسيه علاوه بر معادل

روابط متداول مورد استفاده . شده است

هاي مربوط به نفت خام فرمول

با شماره(شوند ايران توليد مي

خامي كه داراي خواصي كاملاً مختلف مي

براي تعيين ضريب اصطكاك بايد از اصول هيدروليكي پايه استفاده شود

Page 85: Technical requirements and engineering recommendations …

فاز مايع تك

پارامتر ملاحظات

محاسبه افت فشـار در - -

نفت خام

سنگين و مايعات گرم -

Rem = Re/7742

:)يكنواخت

f � 0.00207

f � 0.0018 0

قابـــل اســـتفاده بـــراي -

.خطوط لوله نفت خام

اثر زبري سـطح لولـه در -

.نظر گرفته نشده است

بــراي ايــن معادلــه بايــد -

روش آزمــــون و خطــــا

.استفاده شود

M � Log���d�

صـولات متداول براي مح -

.نفتي پالايش شده

محاسبات افت فشار براي -

.اينچ 12تا 8خطوط لوله

0.95تا 0.90

افت فشار در محصـولات -

نفتي پـالايش شـده ماننـد

.بنزين و ديزل

ــي - ــولا در طراحــ معمــ

وزيع آب اسـتفاده خطوط ت

.مي شود

Hazen-Williams C

Feb. 2019 IPS

39

مايع تكهاي خطوط لوله انتقال فرمول روابط و -1-پجدول

پارامتر فرمول

= Re/7742

يكنواخت(براي جريان ويسكوز -

00207 � 1Re��

:براي جريان متلاطم -

0.00662� 1Re��

�.���

∆P � 6.2191 ∗ 10�� ∗

� �S∆P/µ ! " 0.4965 Q � 3.996 ∗ 10'( ∗ M�d

0.90 معمولاً-K فاكتور

∆P� 8.888 ∗ 10*∗ +Q.µ�.��,. S�.,,*K. d .(�( .

-Williams Cفاكتور

Q � 9.0379 ∗ 10'*∗ Cd .(�

Re/7742

IPS-E-PI-140(2)

روابط

∗ f. s. Q1 d� SHELL/MIT

�d�∆P/S!�.� Miller

.�.*�

T.R Aude

(� �∆PS ��.�,

Hazen-

Williams

∆P :افت فشار (kPa/km)

QL :دبي (m³/h)

S :دانسيته نسبي، بدون واحد

d :قطر داخلي (mm)

µ(mu) :ويسكوزيته مطلق (cP)

Rem :عدد رينولدز اصلاح شدهRe/7742

M :پارامتر ميلر، بدون واحد

K :فاكتورT.R.Aude K-

C :فاكتورHazen-Williams C-

Page 86: Technical requirements and engineering recommendations …

:شود يم فيتعر ي مطابق زيركل يمعادله انرژ

Q �

يانـرژ ،يسـاز در فاكتور فشرده رات

دسـت آمـده حال، معادله بـه نيبا ا

اعتبار معادلـه براي اصطكاك فاكتور

ه خط لول كيگاز در انيجر ينيب ش

شده نيگزيجا يكل يمعادله انرژ در

Feb. 2019 IPS

40

معادله انرژ كيگاز در خطوط لوله، با انيجر پايدار و هم دماي

0.000562 �T3P3�14f5 +

P� " P ZSTL .�.�

d .�E

Sm³/d(

Air=1(

288.15 K(

(101.325 kPa)

(kPa) فشار مطلق گاز ورودي

(kPa) فشار مطلق گاز خروجي

(K)

تراكم پذيري متوسط گاز

ضريب اصطكاك فانينگ

راتييتغ يكافطور است و به پايدارحالت انيجر يبرا

با ا. گيرد در نظر مي الوله رخط خاص از هر بخش يفشار و دما برا

انتقال فاكتورمقدار نامشخص از �فاكتور نيدرست ا تعيين. است 458

شيپ ايمحاسبه يو در حال حاضر برا يخيكه از لحاظ تار

درانتقال است كه فاكتوراز يمختلف روابط تجربي جه

.اند خلاصه شده 2-پ در جدولروابط متداول مورد استفاده

IPS-E-PI-140(2)

گاز 2-1-پ

پايدار و هم دمايحالت رفتار

:كه در آن

Q دبي حجمي گاز)Sm³/d

S وزن مخصوص گاز )Air=1

L خط طول )km(

d قطرداخلي)mm(

K 288.15(دماي استاندارد :9

(kPa 101.325) فشار استاندارد :;

P1 فشار مطلق گاز ورودي

P2 فشار مطلق گاز خروجي

T سط گازدماي متو (K)

Z تراكم پذيري متوسط گاز

E راندمان خط لوله

ff ضريب اصطكاك فانينگ

< ضريب انتقال ==4

يطور كل معادله به ناي

فشار و دما برا ،يجنبش

مقدار نامشخص از كيشامل

.است ضروري

كه از لحاظ تار يتجرب يها روش

جهيشود، نت ياستفاده م

روابط متداول مورد استفاده . است

Page 87: Technical requirements and engineering recommendations …

فاز مول هاي خطوط لوله انتقال گاز تك

ضرايب انتقال ملاحظات

من

رياج

يجزئ

م لاط

ت

، E، ضــريب رانــدمان-

0,9در حدود

تخمـــين پـــايين از -

افـت فشـار اصــطكاك

.دارد

14f5 � 6.872Re�

ــبات - ــد محاس نيازمن

مكــــرر، محاســــبات

.ستدستي آسان ني

14f5 � 4log�� + Re

1/4

طملا

متلاً

ام ك

نريا

ج

ضريب رانـدمان - E ،

تــا 0,88بــين حــدود

.كند تغيير مي 0,94

14f5 � 16.49Re�

هــاي بينــي پــيش -

تخمين بالا از افـت

فشار

تر درجه دقت پايين -

نســبت بــه ســاير

.ها دارد معادله

ال را بـه ضريب انتق -

عنــوان تــابعي از قطــر

.كند مي فرض

14f5 � 6.523d

معادله توصيه شـده و

.متداول و پر كاربرد

14f5 � 4log�� �3

:رژيم جريان گاز طبيعي را مي توان با مراحل زير تعيين كرد

:محاسبه مي شود Nikuradseضريب انتقال با استفاده از معادله

14f5 � 4log�� �3.7dε �

:مشخص كرد Prandtl - Von Karmanدر منطقه گذار را مي توان با استفاده از معادله

14f5 � 4log�� + Re

1/4f5. " 0.6

Re محاسبه شده بزرگتر باشد، رژيم جريان كاملاً متلاطم خواهد بود

Feb. 2019 IPS

41

مول هاي خطوط لوله انتقال گاز تكروابط و فر -2-پجدول

فرمول ضرايب انتقال

�.�@��� Q � 0.00457�T3P3��.�@** + P� " P ZS�.*��ATL

Re4f5. " 0.6 Q � 0.000562�T3P3�

14f5 +

P� "ZSTL

�.��A(� Q � 0.01002�T3P3��.� + P� " P ZS�.A(�TL

d�/( Q � 0.00366T3P3 +P� " P ZSTL .

�3.7dε

� Q � 0.0023T3P3 log�� �3.7d

ε�+P� ZSTL

-يادآوري

رژيم جريان گاز طبيعي را مي توان با مراحل زير تعيين كرد

ضريب انتقال با استفاده از معادله

در منطقه گذار را مي توان با استفاده از معادله Reعدد

Reخط لوله از عدد Reاگرعدد

IPS-E-PI-140(2)

روابط

TL.�.��A,

d .(�* E Panhandle A

P ZSTL .�.�

d .�E AGA

Partially

Turbulent

TL.�.��

d .��E Panhandle B

.�.�

d .((@E Weymouth

+ " P ZSTL .�.�

d .�E AGA Fully

Turbulent

Q :دبي حجمي گاز (Sm³/d)

S :وزن مخصوص گاز (Air=1)

L :طول خط (km)

d :قطر داخلي (mm)

Ts :دماي استاندارد(288.15 K)

Ps :فشار استاندارد (101.325 kPa)

P1 :فشار مطلق گاز ورودي (kPa)

P2 :فشار مطلق گاز خروجي (kPa)

T :دماي متوسط گاز (K)

E :راندمان خط لوله

ɛ :زبري مطلق ديواره لوله (mm)

Page 88: Technical requirements and engineering recommendations …

تفاده شودخط لوله اس انتقال تيظرف

.كنند يفرض م را ثابت اليمتوسط و خواص س

بـا افـت فشـار سـه يافـت فشـار را در مقا

براي اينقطه شبنم يفشار بالادر يك سيال

.ستنديشود، مناسب ن

.دگيرن نميرا در نظر

، پـذير نيسـت امكـان اني ـجرثابـت

وجـود بخار تـك فـاز اي عيما انيدر جر

ن،ي ـعـلاوه بـر ا . كنند تغيير ميمتفاوت

) هـا ( عين گاز و مـا يلغزش ب يك ،ي

جهيخط لوله و در نت مقاطعفازها در

Beggs&Brill، انتقـال مشـكلات ) غيـره

ه وجـود نـدارد ك ـ يكل ـ رابطه تجربـي

. بيني كنـد پيش انيجر طيتمام شرا

.است فازي

هنگام در نظر گرفتن فضا بامومنتوم جزئي،

هر فاز و يبرا ،گذرا يدو فاز انيجر

زبـا اسـتفاده ا طور عددي و نيز به بسته

اسـتفاده از باو ( انيدر جهت جر يي

انتقال، بسته به پروفيل خطوط لوله

، چـرا كـه خـط لولـه را وفيل خط لولـه اسـتفاده كـرد

Feb. 2019 IPS

42

ظرف هيبرآورد اول يتواند برا يتنها م ،و گاز عيما روابط تجربي ذكر شده براي

متوسط و خواص س يدما ،طول خط لولهدر رايز ؛دقت آنها محدود است

افـت فشـار را در مقا در گرانشمـذكور، فـاكتور يهـا گاز، روش انتقال

يك سيال انتقال يبرا هاي مذكور روش. گيرند ي ناچيز در نظر مي

شود، مناسب ن يم دار منتقل شيبخط لوله كي قياز طردر فشار خيلي بالا

را در نظر مانند موم اتذكر شده، رسوب روابط تجربي ع،

ثابـت دمـاي كـه فـرض يزمان اي مورد نياز استتر قيكه محاسبات دق

.شود انجام ديبا يوتريكامپ يها با استفاده از برنامه

خطوط لوله دو فازي

در جر ي وجود دارد كهاتيو عمل يمشكل طراح نيچند

متفاوت يار و دمافش درو هستندفازها كاملا متفاوت

ياختلاف در رفتار فاز به دليل. كند يمتفاوت عمل م

فازها در عيبر توز پديده نيا دهد؛ ند، رخ ميستين يكسان در جريان

.گذارد يم ريثأت و تشكيل مايع لوله

هاي كلاسيك براي جريان چند فازي

Eaton، Lockhart and Martinelli، Beggs&Brillمانند (

رابطه تجربـي چيو ه اند حل كرده محدود اريبس ميزان صحترا با

تمام شرا يمناسب برا دقت سطح كيدر را آب/ عيما تشكيل

فازيچند يها ميرژ يبرا اطمينانراه حل قابل كي ي

مومنتوم جزئي، پايه بقاي جرم و) 3D( يمعادلات سه بعد

جر يساز فضا و زمان، هنگام مدل در نظر گرفتنو با حالت پايدار

بسته ليفرانسيد ستميس. شوند نوشته مي انيجر يالگو

ييگام فضاهر يبراي مرز طيعنوان شرا به يو خروج

.شود يحل م) يهر مرحله زمان يگذرا برا

خطوط لوله يبرا. دهستن استفاده قابل ينديفرآ يها لوله يبرا

وفيل خط لولـه اسـتفاده كـرد توان براي كل پر يك رابطه تجربي را نمي

IPS-E-PI-140(2)

ها توصيه 3-1-پ

روابط تجربي ذكر شده براي

دقت آنها محدود است و

انتقال خطوط لوله يبرا

ي ناچيز در نظر مياصطكاك

در فشار خيلي بالا كه يگاز

ع،يما لوله خطوط يبرا

كه محاسبات دق يهنگام

با استفاده از برنامه انيجر يساز هيشب

خطوط لوله دو فازي 2-پ

چند فازي،دو انيجردر

يكيزيخواص ف. دندارن

متفاوت عمل م براي هر فازيگرانش

يكسان در جريانكه با سرعت

لوله خط عيما مقدار كل

هاي كلاسيك براي جريان چند فازي روش 1-2-پ

كيكلاس روابط تجربي

را با يچند فاز انيجر

تشكيل و همواره افت فشار

يكيروش مكان نيبنابرا

،يكيمدل مكان كي در

حالت پايدار يساز مدل

الگو ياصل بخشريهر ز

و خروج يورود نديفرآ شرايط

گذرا برا انيجر يساز مدل

ها توصيه 2-2-پ

يدو فاز روابط تجربي

يك رابطه تجربي را نمي ها، مسير آن

Page 89: Technical requirements and engineering recommendations …

رابطـه تجربـي هـر بخـش يبـرا شـود

روابط بر ينمبت يها برنامهجاي به حاً

خط لوله گاز مانندداشته باشد، ينقش مهم

اسـتفاده يسه فـاز يساز هيكد شب

يسـاز هيفقـط شـب گردد توصيه مي

مـورد توجـه قـرار يخاص ـ اريگذرا تنهـا در مـوارد بس ـ

كنتـرل سـتم يس يـان آن ي جركينـام

يبـرا اطلاعـات تهيـه يبـرا ،يطراح ـ

.گذرا استفاده شود يساز هيشببايد

Feb. 2019 IPS

43

شـود توصيه ميو در نظر گرفت يافق اي يخط عمود

.محاسبات استفاده شود

حاًيترج ،يكيمكان فازيچند يوتريكامپ يها باشد، برنامه

.دنريمورد استفاده قرار گ شود

نقش مهم انيجررفتار فاز آب آزاد در كي وجودرود كه

كد شب كي شود توصيه ميافتد، ياتفاق م آب عاناتيم جدايش

توصيه ميقبل از پروژه، اي هيدر مرحله اول ،فازي جريانچند

گذرا تنهـا در مـوارد بس ـ يساز هيدر آن مرحله، شب ؛استفاده شود

نـام يرفتـار د لهيوس ـ بـه خط لوله ياصل هاي بخشكه در آن اندازه

طراح ـ اتياز جزئ يبعض دأييت يبرا ،با جزئيات اي هياول

بايد ،ياتيعمل يها توسعه روش يبرا ي راهنماها دستورالعمل

IPS-E-PI-140(2)

خط عمود كيعنوان توان به ينم

محاسبات استفاده شود يمناسب برا

باشد، برنامه ريپذ امكان هرگاه

شود توصيه مي تصحيحي،

رود كه يم انتظاركه زماني

جدايشمرطوب كه در آن

.شود

چند ستميس يطراح يراب

استفاده شود داريحالت پا

كه در آن اندازه رديگ يم

.شود مي

يمرحله طراح كيدر

دستورالعمل اي ندآيكنترل فر

Page 90: Technical requirements and engineering recommendations …

)متر در ثانيه(سرعت سيال چگالي سيال )سانتي پويز(لزجت سيال

ε Absolute Pipe Roughness mm متر ميلي(بري مطلق لوله ز(

)يا دارسي

Feb. 2019 IPS

44

پيوست ت

)آگاهي دهنده(

اصطكاك مودينمودار ضريب

V Fluid Velocity m/s دياگرام مودي

ρ Fluid Density ناحيه تحول

µ Fluid Viscosity cp جريان يكنواخت

ε Absolute Pipe Roughness mm لاطم كاملت

لوله صاف و صيقلي ضريب اصطكاك زبري نسبي لوله عدد رينولدز بتون، خشن اف و صيقلي جديدبتون، ص تيوب كشيده شده پلاستيك نرم و شفاف شيشه، پلاستيك، گريآهن، ريخته مجاري فاضلاب، قديمي روكش داخلي بتوني فولاد، زنگ زده فولاد،

Steel, Structur فولاد،ساختماني يا چكش خوار هاي اصلي آب، قديميلوله )مترميلي(قطر لوله

يا دارسي(نمودار ضريب اصطكاك مودي - 1- شكل ت

IPS-E-PI-140(2)

Moody Diagram

Transition Region

Laminar Flow

Complete Turbulence

Smooth Pipe

Friction Factor

Relative Pipe Roughness

Reynolds Number

Concrete, Coarse

Concrete, New Smooth

Drawn Tubing

Glass,Plastic,Perspex

Iron, Cast

Sewers, Old

Steel, Mortar Lined

Steel, Rusted

Steel, Structural Or Forged

Water Mains, Old

d Pipe Diameter mm