21
SINTEF Energy Research 1 Testing of a gas turbine oxy-fuel burner Mario Ditaranto, Inge Saanum, Petter E. Røkke - SINTEF Energi AS Jacek Janczewski - SIEMENS Industrial Turbomachinery AB 5th Meeting of the IEAGHG International Oxyfuel Combustion Research Network Wuhan, Hubei, China 26 - 29 October 2015

Testing of a gas turbine oxy-fuel burner

  • Upload
    others

  • View
    14

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Testing of a gas turbine oxy-fuel burner

SINTEF Energy Research 1

Testing of a gas turbine oxy-fuel burner

Mario Ditaranto, Inge Saanum, Petter E. Røkke - SINTEF Energi ASJacek Janczewski - SIEMENS Industrial Turbomachinery AB

5th Meeting of the IEAGHG InternationalOxyfuel Combustion Research Network

Wuhan, Hubei, China26 - 29 October 2015

Page 2: Testing of a gas turbine oxy-fuel burner

SINTEF Energy Research

Outline

2

• Motivation

• Oxy-fuel NGCC power plant concept (OXYGT)

• Combustion concept

• Experimental set-up

• Results

• Conclusions and next step

Ditaranto et al, Testing oxy‐fuel gas turbine combustion5th Oxyfuel Comb. Resear. Network Meeting, Wuhan China, Oct. 2015

Page 3: Testing of a gas turbine oxy-fuel burner

SINTEF Energy Research

• The 2DS sets the target of cutting energy‐ and process‐related CO2 emissions by almost 60% by 2050 (compared with 2012) and ensuring they continue to decline thereafter

• 370 kgCO2/MWh for NG vs. 750 – 900 for coal

3

Motivation: CCS from coal only?

2014 Key World Energy Statistics, IEA

Ditaranto et al, Testing oxy‐fuel gas turbine combustion5th Oxyfuel Comb. Resear. Network Meeting, Wuhan China, Oct. 2015

Page 4: Testing of a gas turbine oxy-fuel burner

SINTEF Energy Research

• EU 2050 Roadmap to a low carbon economy: CO2 emissions from the power sector should be nearly eliminated by 2050

4

Motivation: CCS from coal only?

Ditaranto et al, Testing oxy‐fuel gas turbine combustion5th Oxyfuel Comb. Resear. Network Meeting, Wuhan China, Oct. 2015

Page 5: Testing of a gas turbine oxy-fuel burner

SINTEF Energy Research

• Flexible technology with quick response to demand fluctuations• Increased use of NG due to shale gas• GROWING SHARE OF NG in the WORLD  ENERGY SUPPLY

5

Introduction: CCS from coal only?

Ditaranto et al, Testing oxy‐fuel gas turbine combustion5th Oxyfuel Comb. Resear. Network Meeting, Wuhan China, Oct. 2015

Page 6: Testing of a gas turbine oxy-fuel burner

SINTEF Energy Research

Power plant concept

6Ditaranto et al, Testing oxy‐fuel gas turbine combustion5th Oxyfuel Comb. Resear. Network Meeting, Wuhan China, Oct. 2015

Page 7: Testing of a gas turbine oxy-fuel burner

SINTEF Energy Research

Power plant concept - Possible layouts

OCC* HMOC*

7

Compressors Turbines OCCLP HP O2 Fuel HP LP PT Generator HP LP Generator

Cooling Fluid

Heater HRSG Scrubber/ DeaeratorCondenser

CO2 Compression Bleed

* Sundkvist et al, Jour. Eng. Gas Turb. Pow. 136:101513 (2014)

Compressors Turbines HMOCLP HP O2 Fuel HP LP PT Generator HP LP Generator

Cooling Fluid

Heater

Bleed

Scrubber/Condenser HRSG Deaerator

CO2 Compression

Ditaranto et al, Testing oxy‐fuel gas turbine combustion5th Oxyfuel Comb. Resear. Network Meeting, Wuhan China, Oct. 2015

Page 8: Testing of a gas turbine oxy-fuel burner

SINTEF Energy Research

Power plant concept - Summary of performance

8

HMOC OCC 590 OCC 630Net power output MWel 125.0 125.0 125.0Heat input (LHV) MWth 298.7 259.8 260.8Plant net efficiency % 41.9 48.1 47.9Pressure ratio - 40.0 47.0 34.7GT power MW 98.5 106.6 101.0ST power MW 70.5 55.3 58.6ASU MW 17.6 16.7 16.7O2 compression MW 11.8 14.1 12.3CO2 compression MW 7.89 7.14 7.16

Inlet/boundary conditions identical for all cases

Ditaranto et al, Testing oxy‐fuel gas turbine combustion5th Oxyfuel Comb. Resear. Network Meeting, Wuhan China, Oct. 2015

Page 9: Testing of a gas turbine oxy-fuel burner

SINTEF Energy Research

Combustion concept

9Ditaranto et al, Testing oxy‐fuel gas turbine combustion5th Oxyfuel Comb. Resear. Network Meeting, Wuhan China, Oct. 2015

Page 10: Testing of a gas turbine oxy-fuel burner

SINTEF Energy Research

Combustion concept – Combustor input data (OCC)

10

Fuel streamCH4 vol-% 92.6C2H6 vol-% 4.5C3H8 vol-% 2.2N2 vol-% 0.7Temperature °C 10Oxidizer streamO2 vol-% 95.0N2 vol-% 2.0Ar vol-% 3.0Temperature °C 333WF streamCO2 vol-% 90.3H2O vol-% 1.8Ar vol-% 5.1N2 vol-% 2.7O2 vol-% 0.06Temperature °C 422Combustion chamberPressure bar(a) 37TIT °C 1400Equivalence Ratio -- 0.995O2 excess vol-% 0.5

Ditaranto et al, Testing oxy‐fuel gas turbine combustion5th Oxyfuel Comb. Resear. Network Meeting, Wuhan China, Oct. 2015

Page 11: Testing of a gas turbine oxy-fuel burner

SINTEF Energy Research 11

New set of parameters when going oxy‐fuel

Tflame, ?

WF distribution?

[O2]in?

[O2]out?

Tout?

Dilution?

Cooling ?

[NOx]out?[CO]out?

Stability?(Sturb)

Thermoacousticinstability?

Materials?

Ditaranto et al, Testing oxy‐fuel gas turbine combustion5th Oxyfuel Comb. Resear. Network Meeting, Wuhan China, Oct. 2015

Page 12: Testing of a gas turbine oxy-fuel burner

SINTEF Energy Research

Combustion concept – Design strategy

12

Primary zone targetKeep the

same laminar flame speedas in air case

Dilution zone targetKeep the

same adiabatic temperatureas in air case

Ditaranto et al, Testing oxy‐fuel gas turbine combustion5th Oxyfuel Comb. Resear. Network Meeting, Wuhan China, Oct. 2015

Page 13: Testing of a gas turbine oxy-fuel burner

SINTEF Energy Research

Combustion concept – Combustor flow estimates

13

AIR OCCPower input (fired heat) MW 260 260Fuel mass flow kg/s 5.4 5.4Combustor pressure bar a 22.75 37.0

Air mass flow to primary zone (PZ) kg/s 179.9 n/a

Working fluid mass flow to PZ (a1 + a2) kg/s n/a 86.4Oxidizer mass flow to PZ kg/s n/a 22.3

Air mass flow to dilution zone kg/s 45.0 n/a

Working fluid to dilution zone (a3) kg/s n/a 94.8Oxidizer to dilution zone kg/s n/a 0

Air for dilution / Air total - 0.20 n/a

WF for dilution (a3) / WF total - n/a 0.52

Burnt mixture leaving combustor kg/s 230.2 208.8m3/s 48.9 19.3

About 50/50 split between primary zone and dilution zone as a first estimate.

Same velocity: DOCC = 0.63 * DAIR

Same Ma number: DOCC = 0.70 * DAIR

Same Re number: DOCC = 0.92 * DAIR

Ditaranto et al, Testing oxy‐fuel gas turbine combustion5th Oxyfuel Comb. Resear. Network Meeting, Wuhan China, Oct. 2015

Page 14: Testing of a gas turbine oxy-fuel burner

SINTEF Energy Research 14Ditaranto et al, Testing oxy‐fuel gas turbine combustion5th Oxyfuel Comb. Resear. Network Meeting, Wuhan China, Oct. 2015

Page 15: Testing of a gas turbine oxy-fuel burner

SINTEF Energy Research 15

6 m3 liquidCO2 tank

Burner and combustor

CO2 flow controland heaters

Experimental set up

Ditaranto et al, Testing oxy‐fuel gas turbine combustion5th Oxyfuel Comb. Resear. Network Meeting, Wuhan China, Oct. 2015

Page 16: Testing of a gas turbine oxy-fuel burner

SINTEF Energy Research 16

Source: OXYGT project, SINTEF

Results – Stability Mapping of effect of pressure, fuel distribution, and O2C

Ditaranto et al, Testing oxy‐fuel gas turbine combustion5th Oxyfuel Comb. Resear. Network Meeting, Wuhan China, Oct. 2015

Page 17: Testing of a gas turbine oxy-fuel burner

SINTEF Energy Research 17

Results – CO emissions, effect of O2C and EXO

Ditaranto et al, Testing oxy‐fuel gas turbine combustion5th Oxyfuel Comb. Resear. Network Meeting, Wuhan China, Oct. 2015

Page 18: Testing of a gas turbine oxy-fuel burner

SINTEF Energy Research

Results ‐ Reactor network calculations

18

CO Burn out CO Burn outEffect of O2 excess

Ditaranto et al, Testing oxy‐fuel gas turbine combustion5th Oxyfuel Comb. Resear. Network Meeting, Wuhan China, Oct. 2015

Page 19: Testing of a gas turbine oxy-fuel burner

SINTEF Energy Research 19

Next step: Oxy‐GT pilot plant DEMOXYT project

• Based on a derated 100 kWe T100 Turbec engine

• Norwegian contribution into the EU Infrastructure Programme ECCSEL

• Pilot for testing:

• Combustor unit

• Turbomachinery behaviour

• Cycle performance, dynamics

Ditaranto et al, Testing oxy‐fuel gas turbine combustion5th Oxyfuel Comb. Resear. Network Meeting, Wuhan China, Oct. 2015

Page 20: Testing of a gas turbine oxy-fuel burner

SINTEF Energy Research

Main findings• OCC cycle calculations

– Efficiency close to 48%– Pressure ratio ca 35; TIT 1340 °C; TET 630 °C 

• O2 concentration is an effective parameter to adjust burner stability, within limits of:– Heat transfer (temperature)– NO formation

• NOx emissions are:– Low as long as low temperature primary zone is avoided

• CO emissions are:– Generally high – Strongly dependent on excess O2

– Dependent on pressure

Residence times need to be higher than in conventional combustorsMixing of dilution flow needs carefully designed to avoid quenching of CO kinetics

20Ditaranto et al, Testing oxy‐fuel gas turbine combustion5th Oxyfuel Comb. Resear. Network Meeting, Wuhan China, Oct. 2015

Page 21: Testing of a gas turbine oxy-fuel burner

SINTEF Energy Research

Thanks to all project partners!

21

ACKNOWLEDGMENTSThe research leading to these results has received funding from the CLIMIT programme in Norway through project nr. 212784 OXYGT, in addition to own contribution from the partners. The authors acknowledge the partners SINTEF Energi AS, Siemens Industrial Turbomachinery AB, Siemens AS, Nebb Engineering AS, and Lund University.

Ditaranto et al, Testing oxy‐fuel gas turbine combustion5th Oxyfuel Comb. Resear. Network Meeting, Wuhan China, Oct. 2015