24
TFUG Seminar Resistive Switching Memory Technologies An Chen Strategic Technology Group Advanced Micro Devices (AMD)

TFUG Seminar - American Vacuum Society · TFUG Seminar Resistive Switching Memory Technologies An Chen Strategic Technology Group Advanced Micro Devices (AMD) 10/16/2008 2 Outline

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: TFUG Seminar - American Vacuum Society · TFUG Seminar Resistive Switching Memory Technologies An Chen Strategic Technology Group Advanced Micro Devices (AMD) 10/16/2008 2 Outline

TFUG Seminar

Resistive Switching Memory Technologies

An ChenStrategic Technology Group

Advanced Micro Devices (AMD)

Page 2: TFUG Seminar - American Vacuum Society · TFUG Seminar Resistive Switching Memory Technologies An Chen Strategic Technology Group Advanced Micro Devices (AMD) 10/16/2008 2 Outline

10/16/2008 2

Outline

• Memory technologies Category and characteristics

• Resistive switching memories Resistive switching mechanisms

Device characteristics

• Ionic memory Resistive switching in solid-state electrolytes

Device and array characteristics

Advantages vs. challenges

• Resistive switching devices for logic applications

• Summary

Page 3: TFUG Seminar - American Vacuum Society · TFUG Seminar Resistive Switching Memory Technologies An Chen Strategic Technology Group Advanced Micro Devices (AMD) 10/16/2008 2 Outline

10/16/2008 3

Memory Technologies

MemoryMemory

PrototypicalPrototypicalMatureMatureDRAMDRAM

Phase-changePhase-change

Charge-trappingCharge-trapping

SRAMSRAM

FeRAMFeRAM

Resistive-switch

Resistive-switch

VolatileVolatileNon-

volatileNon-

volatile

Flash Flash

MRAMMRAM

EmergingEmerging

PolymerPolymer

Nano-mechanical

Nano-mechanical

MolecularMolecular

NORNOR NANDNAND

Page 4: TFUG Seminar - American Vacuum Society · TFUG Seminar Resistive Switching Memory Technologies An Chen Strategic Technology Group Advanced Micro Devices (AMD) 10/16/2008 2 Outline

10/16/2008 4

Baseline and Prototypical Memory Technologies

• Mature non-volatile memories (e.g., NAND, NOR) are relatively slow in speed, have limited cycling endurance, and high operating voltage

• Novel memory technologies have certain advantages, but also face challenges

speed – cycling endurance – write energy – operation voltage – size

1.E-12

1.E-09

1.E-06

1.E-03

1.E+00

1.E+03 1.E+06 1.E+09 1.E+12 1.E+15 1.E+18

Cycle

Spee

d (s

)

charge-trapping

NAND

NOR

PCMFeRAM

SRAM

MRAM DRAM

1.E-18

1.E-15

1.E-12

1.E-09

0.0 3.0 6.0 9.0 12.0 15.0 18.0

Voltage (V)

Writ

e en

ergy

(J/b

it)

charge-trapping

NANDNOR

PCM

FeRAM

SRAM

MRAM

DRAM

* The symbol size is proportional to the cell size of each memory device ITRS Emerging Research Device Report (2007)

Page 5: TFUG Seminar - American Vacuum Society · TFUG Seminar Resistive Switching Memory Technologies An Chen Strategic Technology Group Advanced Micro Devices (AMD) 10/16/2008 2 Outline

10/16/2008 5

Early Report of Resistive Switching in Oxides

NiO

NbxO

J.G. Zhang, et al., J. Appl. Phys. 64(2), 729 (1988)

V2O5Fe3O4

Al2O3T.W. Hickmott, J. Appl. Phys. 33(9), 2669 (1962)

TiOx

F. Argall, Solid State Electron. 11, 535 (1968)

K.L. Chopra, J. Appl. Phys. 16(1), 184 (1965)

J.C. Bruyere, et al., Appl. Phys. Lett. 16(1), 40 (1970) P.J. Freud, et al., Phys. Rev. Lett.

23(25), 1440 (1969)

Page 6: TFUG Seminar - American Vacuum Society · TFUG Seminar Resistive Switching Memory Technologies An Chen Strategic Technology Group Advanced Micro Devices (AMD) 10/16/2008 2 Outline

10/16/2008 6

Recent Progress in Resistive Switching Devices

Transitional metal oxide (NiO, TiO2, HfO2, ZrO2)

Ti/Pr0.7Ca0.3MnO3/SrRuO3

A. Sawa, et al, APL 85, 4073 (2004)

I.G.Baek, et al, IEDM 2004

Au/SrZrO3/SrRuO3

A. Beck, et al, APL 77, 139 (2000)

Ti/Cu2O/Cu

A. Chen, et al, IEDM 2005

Pt/TiO2/Ru

B. J. Choi, et al, JAP 98, 033715 (2005)

Ag/Pr0.7Ca0.3MnO3/YBa2Cu3O7-x

S.Q. Liu, et al, APL 76, 2749 (2000)

Page 7: TFUG Seminar - American Vacuum Society · TFUG Seminar Resistive Switching Memory Technologies An Chen Strategic Technology Group Advanced Micro Devices (AMD) 10/16/2008 2 Outline

10/16/2008 7

Signatures of Switching Mechanisms

Materials

• Composition/processing effect on switching

• Electrode-dependence

Operation

• Forming process

• Switching polarity-dependence (bipolar vs. unipolar)

• Symmetry in I-V and switching characteristics

• Interface effect (rectifying vs. ohmic I-V)

• Frequency-dependence

• Device size-dependence

• Temperature effect

……

Page 8: TFUG Seminar - American Vacuum Society · TFUG Seminar Resistive Switching Memory Technologies An Chen Strategic Technology Group Advanced Micro Devices (AMD) 10/16/2008 2 Outline

10/16/2008 8

Resistive Switching Mechanisms

ResistiveSwitching

mechanisms

ResistiveSwitching

mechanisms

Thermaleffects

Thermaleffects

Electroniceffects

Electroniceffects

IoniceffectsIonic

effects

PhasechangePhasechange

Conductive filament

induced by partial dielectric breakdown

Conductive filament

induced by partial dielectric breakdown

ChargetrappingChargetrapping

Insulator-metaltransition

Insulator-metaltransition

Modulatebulk

electrostatics

Modulatebulk

electrostatics

Modulateinterface

barrier

Modulateinterface

barrier

CationmigrationCation

migrationAnion

migrationAnion

migration

R. Waser, et al, Nat. Mater. 6, 833 (2007)

Page 9: TFUG Seminar - American Vacuum Society · TFUG Seminar Resistive Switching Memory Technologies An Chen Strategic Technology Group Advanced Micro Devices (AMD) 10/16/2008 2 Outline

10/16/2008 9

RRAM Comparison with Other Memories

1.E-12

1.E-09

1.E-06

1.E-03

1.E+00

1.E-18 1.E-15 1.E-12 1.E-09

Write energy (J/bit)

Spee

d (s

)

charge-trapping

NAND

NOR

PCM

FeRAMSRAM

MRAM

DRAM

Ionic effect

Electronic effect

Thermal effect

RRAM advantages:

• Non-volatile

• Low voltage

• Low energy

• Fast speed

• Scalable

• Stackable

• CMOS compatible

speed – write energy – operation voltage

* The symbol size is proportional to the operation voltage of each memory device

ITRS Emerging Research Device Report (2007)

Page 10: TFUG Seminar - American Vacuum Society · TFUG Seminar Resistive Switching Memory Technologies An Chen Strategic Technology Group Advanced Micro Devices (AMD) 10/16/2008 2 Outline

10/16/2008 10

Resistive Switching in Solid-State Electrolytes

Typical switching I-V

Ag

Ag2S

Pt

OFF ON

N. Banno, et al, IEIC Trans. Electron. E89, 1492 (2006)

A quantized conductance switch is formed by electrochemical formation and annihilation of an atomic bridge between an inert electrode and an oxidizable electrode.

Multiple names for this type of devices• Atomic switch• Ionic Memory• NanoBridge (NEC/JST)• Solid-State Electrolytic Memory (Sony)• Programmable Metallization Cell (ASU)• Conductive Bridging RAM (Qimonda)

Source: M. Kozicki, ASU

Page 11: TFUG Seminar - American Vacuum Society · TFUG Seminar Resistive Switching Memory Technologies An Chen Strategic Technology Group Advanced Micro Devices (AMD) 10/16/2008 2 Outline

10/16/2008 11

Images of Formation and Annihilation of Conductive Channels

T. Sakamoto, et al, Symposium VLSI Tech., pp.38 (2007)

Y. Hirose, et al, JAP 47, 2767 (1976)

M. Kozicki, et al, NVMTS Proceedings, 111 (2006)

S. Kaeriyama, et al, IEEE J. Solid-State Circuits 40, 168 (2005)

Page 12: TFUG Seminar - American Vacuum Society · TFUG Seminar Resistive Switching Memory Technologies An Chen Strategic Technology Group Advanced Micro Devices (AMD) 10/16/2008 2 Outline

10/16/2008 12

Ionic Memory Based on Cation-Migration

Ag

Cu

Zn

Rea

ctin

g Io

ns

NEC/JST [6]

NEC/JST [1]

JST [2]

Sony [11]

Stanford [10]

Stanford [10]

Stanford [10]

ASU/Axon [8]

ASU/Axon [7]

ASU/Axon [4]ASU/Axon [3]

ASU/Axon [4]

Qimonda [5] Qimonda [5] Fujitsu Lab / Toshiba /

Stanford [9]

1kb memory array

2Mb memory array

4kb memory array

Solid State Electrolytes

ASU/Axon [7]

Cu2S Ag2S GeSe GeS Ta2O5 WO3 SiO2 TiO2 ZnCdS GdOx/Cu-Te

References:1. S. Kaeriyama, et al, IEEE J. Solid-State Circuits 40, 168 (2005); 2. K. Terabe, et al, Nature 433, 47 (2005);3. M.N. Kozicki, et al, IEEE Trans. Nanotech. 4, 331 (2005); 4. M.N. Kozicki, et al, NVMTS proceeding, pp.83 (2005);5. S. Dietrich, et al, IEEE J. Solid-State Circuits 42, 839 (2007); 6. T. Sakamoto, et al, Symposium VLSI Tech., pp.38 (2007);7. M.N. Kozicki, et al, NVMTS, pp.10 (2004); 8. C. Schindler, et al, IEEE Trans. Electron Dev. 54, 2762 (2007);9. K. Tsunoda, et al, Appl. Phys. Lett. 90, 113501 (2007); 10. Z. Wang, et al, IEEE Electron Dev. Lett. 28, 14 (2007);11. K. Aratani, et al, IEDM Tech. Dig., pp.783 (2007).

Ge-based Chalcogenides

Metal sulfides OthersOxides

Page 13: TFUG Seminar - American Vacuum Society · TFUG Seminar Resistive Switching Memory Technologies An Chen Strategic Technology Group Advanced Micro Devices (AMD) 10/16/2008 2 Outline

10/16/2008 13

Ionic Memory: Device Characteristics

1250156060~ 50~ 40-----------Thickness (nm)

d = 1µmd=240nmd=0.2-10µmd = 300nmd=240nmd = 75nmd =30nm150×100nm2Device size

1011

---------

104/107

< 10-7

< 10

< 0.5

10

~ 0.2

Ag/GeSe[3]

Chalcogenides

----------

> 105 s

104/1011

< 10-7

< 10

~ 0.25

10

~ 0.45

Ag/GeS[4]

-----------

-----------

104/1010

< 10-7

< 2

< 0.1

10

~ 0.3

Cu/GeS[4]

107

> 105 s

104/107

< 10-6

~ 2

~ 0.15

5

~ 0.9

Cu/SiO2[7]

105

>104 s

105/109

----------

< 1

0.2

1

0.4

Cu/WO3[6]

104

10 yrs

102/106

10-5-10-4

~ 1000

~ 1.0

100

~ 2.5

Cu/Ta2O5[5]

Oxides

< 10-4< 10-6Switching time (s)

> 103105Cycle

0.25 yrs-----------Retention

102/104103/105Ron (Ω) / Roff (Ω)

1000-----------ISW (µA)

~ 0.1< 0.4VSW (V)

2500-----------ISW (µA)

~ 0.3< 0.4VSW (V)

Cu/Cu2S [2]

Ag/Ag2S [1]

Sulfides

Materials

HR

S →

LR

S (D

C)

LR

S →

HR

S (D

C)

* HRS: high resistance state; LRS: low resistance state

References:1. K. Terabe, et al, Nature 433, 47 (2005); 2. S. Kaeriyama, et al, IEEE J. Solid-State Circuits 40, 168 (2005);3. M.N. Kozicki, et al, IEEE Trans. Nanotech. 4, 331 (2005); 4. M.N. Kozicki, et al, NVMTS proceeding, pp.83 (2005);5. T. Sakamoto, et al, Symposium VLSI Tech., pp.38 (2007); 6. M.N. Kozicki, et al, IEEE Trans. Nanotech. 5, 535 (2006);7. C. Schindler, et al, IEEE Trans. Electron Dev. 54, 2762 (2007).

Page 14: TFUG Seminar - American Vacuum Society · TFUG Seminar Resistive Switching Memory Technologies An Chen Strategic Technology Group Advanced Micro Devices (AMD) 10/16/2008 2 Outline

10/16/2008 14

Ionic Memory: Array Characteristics

≥ 130°C

107 cycles

104 Ω / 106-108 Ω

10 years

100 hrs @ 130°C

1 ns

125 µA

1.7 V

5 ns

110 µA

3 V

1T-1R

D = 20 nm

180 nm CMOS

Cu-Te / GdOx

4 kbit

Sony [3]

104 Ω / 1011 Ω≤ 102 Ω / ≥ 103 ΩRon / Roff

105 s @ 70°C103 s under 35 mVMeasuredRetention

≤ 50 ns5 – 32 µsPulse width

10 years3 monthsProjected

20 µA---------------------Current

≤ 0.2 V1.1 VVoltageErasing

(LRS → HRS)

D = 20 nmD ~ 30 nmMinimum tested cell size

2 Mbit1 kbitTested array size

1T-1R1T-1RMemory structure

Ag / GeSe or GeSCu / Cu2SMaterial system

Qimonda [2]NEC/JSTA [1]Company

90 nm CMOS250 nm CMOSTechnology node

≥ 110°C---------------------Operating Temperature

106 cycles103 – 104 cyclesEndurance

≤ 50 ns5 – 32 µsPulse width

10 µA---------------------Current

≥ 0.6 V1.1 VVoltageProgramming

(HRS → LRS)

[1] S. Kaeriyama, IEEE JSSC 40, 168 (2005); [2] S. Dietrich, IEEE JSSC 42, 839 (2007); [3] K.Aratani, IEDM Tech. Dig., pp.783 (2007)

Page 15: TFUG Seminar - American Vacuum Society · TFUG Seminar Resistive Switching Memory Technologies An Chen Strategic Technology Group Advanced Micro Devices (AMD) 10/16/2008 2 Outline

10/16/2008 15

Compare with Other Resistive Switching Memories

300°C

106 cycles

~500 Ω / ~50 kΩ

10 years

8 months

< 5 µs

< 2 mA

< 1 V

< 10 ns

< 1 mA

< 3 V

1T-1R

D ~ 70 nm

180 nm CMOS

TMO (e.g., NiO)

---------------------

Samsung [1]

Many binary and complex metal oxides have been tested on resistive switching properties, e.g., TiOx, ZrO, Nb2O5, V2O5, SrTiO3, SrZrO3, LaMnO3, etc. The switching mechanisms are controversial.

Many others

< 100 kΩ / > 1M Ω< 50 kΩ / > 1 MΩRon / Roff

-----------------105 s @ 90°CMeasuredRetention

~ 10 ns< 50 nsPulse width

-----------------10 yearsProjected

< 200 µA< 100 µACurrent

~ 5 V< 1.5 VVoltageErasing

(LRS → HRS)

D = 0.8 µmD ~ 180 nmMinimum tested cell size

64 bit64 kbitTested array size

1T-1R1T-1RMemory structure

Pr0.7Ca0.3MnOTMO (e.g., Cu2O)Material system

Sharp [3]Spansion [2]Company

0.5 µm CMOS180 nm CMOSTechnology node

> 200°C> 90°COperating Temperature

105 cycles (?)> 103 cyclesEndurance

~ 20 ns< 50 nsPulse width

< 200 µA < 100 µACurrent

~ 5 V~ 3 VVoltageProgramming

(HRS → LRS)

[1] I.G. Baek, IEDM Tech. Dig., pp.587 (2004); [2] A. Chen, IEDM Tech. Dig., pp.765 (2005); [3] W.W. Zhuang, IEDM Tech. Dig., pp.193 (2002)

Page 16: TFUG Seminar - American Vacuum Society · TFUG Seminar Resistive Switching Memory Technologies An Chen Strategic Technology Group Advanced Micro Devices (AMD) 10/16/2008 2 Outline

10/16/2008 16

Ionic Memory: Advantages vs. Challenges

• Reliability / endurance

• Switching speed

• Operating temperature

• Defect/fault tolerance

• Mixed mechanisms

• Scalable

• Compatible with CMOS

• Low switching voltage/current

• Nonvolatile switching states

• Stackable for 3D IC

• (Relatively) well-understood mechanism

ChallengesAdvantages

Other features

• Low processing temperature

• Potential for novel architectures

Page 17: TFUG Seminar - American Vacuum Society · TFUG Seminar Resistive Switching Memory Technologies An Chen Strategic Technology Group Advanced Micro Devices (AMD) 10/16/2008 2 Outline

10/16/2008 17

Ionic Memory: Reliability Issues

• Variation in switching parameters• Random diffusion of migrating ions

• Ron variation; retention failure• Diffusion of metal atoms

• Material degradation; switching failure• Temperature sensitivity

• Poor uniformity; instability• Inherent impurities

• Ron/Roff variation; cycling failure• Over-programming or over-erasing

Possible effectsReliability concerns

Possible cause: metal atoms diffusion

Ag/GeS, d=300nm

Cu/WO3d=500nm

Retention

Endurance

M.N. Kozicki, et al, IEEE Trans. Nanotech. 5, 535 (2006)M.N. Kozicki, et al, NVMTS proceeding, pp.83 (2005)

Page 18: TFUG Seminar - American Vacuum Society · TFUG Seminar Resistive Switching Memory Technologies An Chen Strategic Technology Group Advanced Micro Devices (AMD) 10/16/2008 2 Outline

10/16/2008 18

Ionic Memory: Reliability Issues

S. Dietrich, et al, IEEE JSSC 42, 839 (2007)

Ag / GeSe or GeS

M.N. Kozicki, et al, IEEE Trans. Nanotech. 5, 535 (2006)

Cu/WO3d=5µm

Temperature effect

Mixed switching types

C. Schindler, et al, IEEE Trans. Electron Dev. 54, 2762 (2007)

Bipolar to unipolar

Cu/SiO2d=1µm

Page 19: TFUG Seminar - American Vacuum Society · TFUG Seminar Resistive Switching Memory Technologies An Chen Strategic Technology Group Advanced Micro Devices (AMD) 10/16/2008 2 Outline

10/16/2008 19

Ionic Memory: Switching Speed

Ion migration in solid electrolyte Electrochemical reaction at cathode+Switching =

• Switching speed is determined by the speed of ion migration and electrochemical reaction

• Large variation on switching speed across different material systems (maybe due to parasitic RC delay)

• Switching speed on the order of ns has been demonstrated in chip-level measurement

Cu/Ta2O5

T. Sakamoto, et al, Symposium VLSI Tech., 38 (2007)

S. Dietrich, et al, IEEE J. Solid-State Circuits 42, 839 (2007)

Cu-Te/GdOx

Ag / GeSeor GeS

K. Aratani, et al, IEDM Tech. Dig., pp.783 (2007)

Page 20: TFUG Seminar - American Vacuum Society · TFUG Seminar Resistive Switching Memory Technologies An Chen Strategic Technology Group Advanced Micro Devices (AMD) 10/16/2008 2 Outline

10/16/2008 20

Ionic Memory: Over-Programming, Over-Erasing

Over-programming and over-erasing lead to long switching time, large variation on switching parameters, and short endurance. Sensing/control circuits are needed to alleviate this problem.

Cu/Cu2S

S. Kaeriyama, et al, IEEE J. Solid-State Circuits 40, 168 (2005)

Page 21: TFUG Seminar - American Vacuum Society · TFUG Seminar Resistive Switching Memory Technologies An Chen Strategic Technology Group Advanced Micro Devices (AMD) 10/16/2008 2 Outline

10/16/2008 21

Quantitative Modeling of Ionic Memory

• Energy

• Speed

• Scalability

• Endurance

• Retention

Solid-State Electrochemistry

Switching Voltage

Switching Time

State Retention

Switching Current

Size Effect

Failure Mechanisms

When nanoelectronics meet nanoionics …

Benchmark and projection

Device/process optimization

Architecture design

Ion migration dominates switching voltageLower

switching V at higher T

Cu/Cu2SCu/Cu2S

Many questions to be addressed:• Microscopic nature of the cation

conduction paths? • Details of electrode reactions?• Impact of thermal effects?• Fundamental speed limits?• Fundamental scaling limits?• Temperature effects?• Failure mechanisms?… N. Banno, et al, Jpn J. Appl. Phys.

45, 3666 (2006)

Page 22: TFUG Seminar - American Vacuum Society · TFUG Seminar Resistive Switching Memory Technologies An Chen Strategic Technology Group Advanced Micro Devices (AMD) 10/16/2008 2 Outline

10/16/2008 22

Novel Logic Gates Based on Hysteretic Resistors

Crossbar NAND gateLogic gates based on atomic switch

Operation

K. Terabe, et al, Nature 433, 47 (2005) G. Snider, Appl.Phys. A 80,1165 (2005)

Page 23: TFUG Seminar - American Vacuum Society · TFUG Seminar Resistive Switching Memory Technologies An Chen Strategic Technology Group Advanced Micro Devices (AMD) 10/16/2008 2 Outline

10/16/2008 23

Novel Architectures

Crossbar switch

Reconfigurable IC

Defect-tolerant architectures

J.R. Heath, et al, Science 280, 1716 (1998)

S. Kaeriyama, et al, IEEE J. Solid-State Circuits 40, 168 (2005);

Page 24: TFUG Seminar - American Vacuum Society · TFUG Seminar Resistive Switching Memory Technologies An Chen Strategic Technology Group Advanced Micro Devices (AMD) 10/16/2008 2 Outline

10/16/2008 24

Summary

• Resistive switching memories involves multiple switching mechanisms.

• Ionic memory devices have the advantages in scalability, energy efficiency, and compatibility with CMOS.

• The major challenges of ionic memory are reliability and speed.

• Novel logic gates and architectures may be possible for resistive switching devices, e.g., reconfigurable IC, stackable memory, defect-tolerant architecture, etc .