162
ISNR 20 th Annual Conference September 1923, 2012 Pre Conference Workshops September 1719 Schedule and Abstracts

th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

Page 1: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

ISNR  20th  Annual  Conference  

September  19-­‐23,  2012  Pre  Conference  Workshops  September  17-­‐19  

Schedule  and  Abstracts  

         

Page 2: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

SCHEDULE  Pre-­‐Conference  Workshops  Schedule  (Monday-­‐Wednesday)  

*ISNR does not offer CEUs for this workshop. CEUs may be offered by the Sponsor directly.

Time   Monday  September  17,  2012  Preconference  Workshop  Schedule  

10:00 AM-1:00 PM & 2:30-6:00 PM

Pre-Conference Workshop 1.1 (Day 1) LENS Foundation Training (3 day workshop) – Michael Beasley & Len Ochs

10:00 AM-1:00 PM & 2:30-6:00 PM

Pre-Conference Workshop 2.1 (Day 1) Advanced LENS Training (3 day workshop) – Len Ochs & Cathy Wills

Time   Tuesday  September  18,  2012  Preconference  Workshop  Schedule  

10:00 AM-1:00 PM & 2:30-6:00 PM

Pre-Conference Workshop 1.2 (Day 2) LENS Foundation Training (3 day workshop) – Michael Beasley & Len Ochs

10:00 AM-1:00 PM & 2:30-6:00 PM

Pre-Conference Workshop 2.2 (Day 2) Advanced LENS Training (3 day workshop) – Len Ochs & Cathy Wills

8:00 AM-12:15 PM & 1:15-5:30 PM

Pre-Conference Workshop 3.1 (Day 1) Introduction to the Practice of Neurofeedback: Assessment leads to Appropriate Intervention (2 day workshop) – Lynda Thompson & Michael Thompson

1:15-5:30 PM Pre-Conference Workshop 8 – SPONSORED WORKSHOP* Integrating Norms-Based Neurofeedback within a Holistic Psychophysiological Treatment Approach – Linda Walker

Time   Wednesday  September  19,  2012  Preconference  Workshop  Schedule  

10:00 AM-1:00 PM & 2:30-6:00 PM

Pre-Conference Workshop 1.3 (Day 3) LENS Foundation Training (3 day workshop) – Michael Beasley & Len Ochs

10:00 AM-1:00 PM & 2:30-6:00 PM

Pre-Conference Workshop 2.3 (Day 3) Advanced LENS Training (3 day workshop) – Len Ochs & Cathy Wills

8:00 AM-12:15 PM & 1:15-5:30 PM

Pre-Conference Workshop 3.2 (Day 2) Introduction to the Practice of Neurofeedback: Assessment leads to Appropriate Intervention (2 day workshop) – Lynda Thompson & Michael Thompson

8:00 AM-12:15 PM & 1:15-5:30 PM

Pre-Conference Workshop 4 - Electrocerebral Abnormalities in EEG/QEEG: Subclinical Findings Redefined Treatment Implications and Considerations- Ron Swatzyna & Jay Gunkelman

1:15-5:30 PM Pre-Conference Workshop 5 - Enhancing Neurotherapy by Activating the Brainstem-cerebellum-midbrain-cortex Pathways Through Primary-Reflex Movements - Practical Workshop – Suzanne Day

8:00 AM-12:15 PM & 1:15-5:30 PM

Pre-Conference Workshop 6 - Biological Markers in Neurology and Psychiatry: Guidelines for Applying Event Related Potentials for Diagnosis and Treatment - Juri Kropotov

8:00 AM-12:15 PM & 1:15-5:30 PM

Pre-Conference Workshop 7 – SPONSORED WORKSHOP* – QEEG and Neurofeedback using the BrainAvatar, Live Zscores, Live sLORETA Projection (LLP) and Combined Protocols- Tom Collura, Mark Smith & Penijean Rutter

Page 3: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

   

Page 4: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Program  Schedule  (Wednesday)  

Time   Wednesday  September  19,  2012  Conference  Schedule  

8:00 AM-12:15 PM & 1:15-5:30 PM

Pre-Conference 8 Hour Workshops - See Workshop Schedule

8:00 AM-4:00 PM ISNR Golf Tournament (Off Site Golf course, Scramble format). Pre-registration required, please contact the ISNR office to register. A portion of proceeds go to the ISNR Research Foundation. Prizes awarded at banquet dinner. *Tee times will be arranged by the golf event coordinator after registration.

2:00-7:30 PM Vendor Setup in Vendor Area

5:30- 7:30 PM ISNR Board of Directors Meeting

7:30-9:30 PM Outdoor Welcome Dessert Reception (Inclement Weather provision in Vendor Area)

   

Page 5: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Program  Schedule  (Thursday)  

     

Time   Thursday  September  20,  2012  Conference  Schedule  

8:00-8:15 AM President’s Welcome – Richard E. Davis, MS

8:15-8:45 AM Potential Neurofeedback Side Effects, Adverse

Reactions & Recommendations for Liability Protection; Cory Hammond

QEEG Subtype Based Neurofeedback Effects on IQ, Attention, Socialization, Communication and Diffuse Tensor Imaging in Students with Autistic Spectrum Disorder); Michael Linden & Jaime Pineda

8:45-9:15 AM Enhancing Neurotherapy by Means of Brainstem Activation Through Primary-reflex Rhythmic Movements; Suzanne Day

9:15-9:25 AM Break

9:25-9:40 AM Student Presentation- Single Trial Time-Frequency Domain Analysis of Error Processing in Post-Traumatic Stress Disorder; Zachary Clemans, Ayman El-Baz, Christopher Stewart & Estate Sokhadze

Student Presentation- The Dynamics of Brain Networks Involved in Deep Relaxation Regulation Guided by EEG Neurofeedback; Siivan Kinreich, Iliana Podlipsky, Nathan Intrator & Talma Hendler

9:40-10:10 AM Investigation of Theta-Beta Neurofeedback for Adult ADHD: Session Data; Sarah Wyckoff

Biomarkers of Neurological and Psychiatric Dysfunctions: Clinical Applications for Diagnosis and Treatment; Juri Kropotov

10:10-10:40 AM Training Performance and Effects of Slow Cortical Potential Neurofeedback for Adult Attention Deficit/Hyperactivity Disorder; Kerstin Mayer, Sarah Wyckoff & Ute Strehl

10:40-10:55 AM Break

10:55-11:45 AM Invited Speaker- C. Shawn Green, PhD; Video Games, Learning to Learn and Brain Plasticity

11:45-11:55 AM Break

11:55-12:55 PM KEYNOTE Speaker- Mark Jensen, PhD; Effects of Non-pharmacological Pain Treatment on Brain States

12:55-1:30 PM Lunch Available for Purchase

12:55-8:30 PM Break - Visit our Vendor Area

1:30-2:30 PM Small Group Discussion – Exercise and it's effects on the brain/complimentary to NFB training- Dan Williams

Small Group Discussion – EEG imaging and NFB treatment of pain- Sarah Prinsloo

Small Group Discussion- BCIA Certification- Judy Crawford

Small Group Discussion – Neurofeedback for Addictions- Richard E. Davis & Genie Davis

2:45-6:00 PM Workshops - See Workshop Schedule

6:30-8:30 PM Poster Session & Cocktail Reception- See Program for Poster Listings

8:30-10:00 PM By invitation only- International Attendee Reception (hosted by ISNR President)

Page 6: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Program  Schedule  (Friday)    

Time   Friday  September  21,  2012  Conference  Schedule  

8:00-8:30 AM The Enhancement of Neurofeedback with a Low Cost and Easy-To-Use NeuroSky EEG Biofeedback Training Device: The MindReflector Protocols; Thomas Fink

Crossing The Bar: Neurofeedback as an Adjunct Therapy to Addiction Recovery; Judith Miller

8:30-9:00 AM Functional Disconnections in Trauma and Abuse: From Victimized Children to Murderers on Death Row; David Kaiser

9:00-9:10 AM Break

9:10-10:00 AM Invited Speaker- Christine Moravec, PhD; Self-Regulation in the Treatment of Chronic Heart Failure

10:00-10:15 AM Student Presentation- Investigation of Unspecific Placebo Effects in Slow Cortical Potential Neurofeedback for Adult Attention Deficit/Hyperactivity Disorder (AD/HD); Kerstin Mayer, Sarah Wyckoff & Ute Strehl

Student Presentation- An Event-Related Potential Study of Visual Spatial Attention Deficits in Autism; Guela Sokhadze, Lonnie Sears, Ayman El-Baz, Estate Sokhadze & Manuel Casanova

10:15-10:25 AM Break

10:25-11: 25 AM Keynote Speaker- Erik Peper, PhD; An Evolutionary Approach to Return to Health

11:25-11:35 AM Break

11:35-12:35 PM Keynote Speaker- Israel Liberzon, PhD; Functional Neuroanatomy of Emotions and Stress

12:35-1:15 PM Lunch Available for Purchase

12:35-5:00 PM Break - Visit our Vendor Area

1:00-2:00 PM Small Group Discussion – Annual ISNR Research Foundation Update –David Trudeau & Cynthia Kerson  

Small Group Discussion- Call for Professionals - helping students and mentoring- Sarah Wyckoff and Judy Crawford

Small Group Discussion – Updates in Autism- Rob Coben  

Small Group Discussion – The impact of medications on neurofeedback – Mike Cohen

2:15-5:30 PM Workshops - See Workshop Schedule

2:15-5:15 PM BCIA Exams - Must be pre-registered with BCIA to sit for exam

5:30-6:30 PM ISNR Committees meet independently (Scheduled by Committee Chairs)

6:30-9:00 PM Featured Speaker Experience, Reception and Book Signing. Limited space with required pre-purchased registration. This function has an additional charge of $20 (purchase in the ISNR online store) and tickets are required for entry. Featuring Steven Kotler New York Times best-selling author and award-winning journalist. His books include the non-fiction works “Abundance,” “A Small Furry Prayer” and “West of Jesus” and the novel “The Angle Quickest for Flight.” His articles have appeared in over 60 publications, including The New York Times Magazine, Atlantic Monthly, Wired, Forbes, GQ, National Geographic, Popular Science, Discover and the LA Times. He also writes Far Frontiers, a blog about disruptive technology, guerilla neuroscience and adrenaline sport for Forbes.com, and The Playing Field, a blog about the science of sport and culture for PsychologyToday.com.

6:00-8:00 PM Wine and Cheese Reception hosted by Nexalin Technology

7:00-9:00 PM Sponsored Reception hosted by BrainMaster, Inc

9:00-11:30 PM By invitation only- Student Reception hosted by the ISNR Student Committee

Page 7: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

 Program  Schedule  (Saturday)  

 

Time Saturday September 22, 2012 Conference Schedule

8:00-9:00 AM Comparison of the Effectiveness of Z-Score Surface/LORETA 19-Electrode Neurofeedback to Standard 1-Electrode Neurofeedback; Lucas Koberda, Andrew Moses, Paula Koberda & Laura Koberda

Heart - Brain Connections: Neuroanatomy Underlies the Effectiveness of Interventions that Combine Neurofeedback with Biofeedback; Lynda Thompson & Michael Thompson

9:00-9:10 AM Break

9:10-9:40 AM Combining Neuroeconomics with LORETA Biofeedback to Improve Self-Control and Promote Health Behavior; Jordon Silberman

Comparing the Effects of Neurofeedback and Hyperbaric Oxygen Therapy in Autism Spectrum Disorder: A Case Series; Robert Coben, & Patrick Elliott

9:40-10:10 AM

Self Regulation of Slow Cortical Potentials in Patients with Intractable Epilepsy - Eight Years After; Ute Strehl, Sarah Birkle, Boris Kotchoubey

10:10-10:20 AM

Break

10:20-10:50 AM

An EEG Interface for Continuous Performance Testing and Event-Related Potentials; Andrew Greenberg, Chris Cholder & Tom Collura

In Search of Depression; Kelly Callaway, Rex Cannon, Kenneth Phillips, Gregory Stuart, Deborah Baldwin & Deborah Welsh

10:50-11:20 AM

Randomized, Controlled Cross-Over Research of Performance Brain Training™ Effects in Elite College Golfers; Noel Larson, Leslie Sherlin, Ashley Baker, & Jeff Troesch

11:20-11:30 AM

Break

11:30-12:20 PM

Invited Speaker-, David Cantor, PhD; Neurotoxins: Effects on Brain & Behavior & Therapy

12:20-12:30 PM

Break

12:30-1:30 PM

Keynote Speaker- Mario Beauregard, PhD; Neurofeedback Training Induces Changes in Grey and White Matter

1:30-2:00 PM Lunch Available for Purchase

1:30-5:00 PM Break- Visit the Vendor Area

2:00-3:00 PM Small Group Discussion – BCIA Recertification & Mentoring – Judy Crawford

Small Group Discussion- QEEG Application in Forensics and findings in Murderers- Jim Evans

Small Group Discussion – High Performance Training with Athletes- Leslie Sherlin

Small Group Discussion – Cognitive decline in the elderly – Helen Budzynski & Jean Tang

3:15-6:30 PM Workshops - See Workshop Schedule

7:00-7:30 PM Members’ Meeting

7:30-8:45 PM Banquet Dinner & Recognitions

8:45-11:00 PM

After Dinner Entertainment

Page 8: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

   

Page 9: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Program  Schedule  (Sunday)  

       

Time   Sunday  September  23,  2012  Conference  Schedule  

8:00-8:30 AM Real-time Functional Magnetic Resonance Imaging Neurofeedback to Attain Volitional Control Over Brain Activity and Associated Mental Functions: A Systematic Review; Gunther Meinlschmidt, Seung-Schik Yoo, & Marion Tegethoff

On the Relation Between α and Θ in Specific Parieto-frontal Networks in Adult Attention Deficit/ Hyperactivity Disorder (ADHD); Rex Cannon, Deborah Baldwin, Cynthia Kerson, Tiffany Shaw, Dominic Diloreto, Sherman Phillips & Coleman Garner

8:30-9:00 AM Multi-Modal Treatment of Stuttering: A Case Study Showing Neurofeedback Coupled with Traditional Speech Therapy; Becky Bingham

9:00-9:05 AM Break

9:05-9:35 AM The Impact of an Eight Week Heart Rate Variability Biofeedback (HRV) Training on Quantitative EEG and LORETA Following a Ccognitive Stressor; Jeffrey Tarrant, Heather Eastman-Mueller, Ae Kyung Jung, Laura Sinquefield, Brett Woods & Chad Cross

60 Minutes on the LENS Effects; Len Ochs

9:35-10:05 AM In Pursuit of Happiness; Sarah Fischer & Rex Cannon

10:05-10:15 AM Break

10:15-10:30 AM Student Presentation- Theta-Beta Neurofeedback for Adult ADHD: EEG and Behavioral Changes; Sarah Wyckoff, Kerstin Mayer, & Ute Strehl

10:30-11:00 AM Combined Neuromodulation Method Aimed to Improve Frontal Functions in Autism; Estate Sokhadze, Ayman El-Baz, Allan Tasman, Lonnie Sears & Manuel Casanova

Role of QEEG Guided Neurofeedback in the Overall Treatment of Fetal Alcohol Spectrum Disorder (FASD); Ajeet Charate & James Kowal

11:00-11:30 AM Neurofeedback Protocol for the Treatment of Phonetic and Expressive Speech Impediments: Report of Two Cases; Jorge Palacios

11:30-11:45 AM Closing Remarks - Incoming President – Randall Lyle, PhD

9:00 AM-2:00 PM Last Chance to Visit the Vendor Area *Note Closing hour

12:00-6:00 PM Vendor Seminar/Workshops - See Vendor Seminar Schedule for exact meeting times and location

12:00 -3:00 PM ISNR Board Meeting

Page 10: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Workshop  Schedule  (Thursday  -­‐  Saturday)  

Time   Thursday  September  20,  2012  Workshop  Schedule  

2:15-5:30 PM Workshop 1 - Fundamentals in Research Methodology: An ISNR Research Foundation Workshop – David Trudeau, Estate Sokhadze, & Rex Cannon

Workshop 2 - Autism Spectrum Disorders: Integrating Clinical Knowledge and Individual Symptoms and Neurophysiology in the Formation of Neurofeedback Treatment Plans – Robert Coben

Workshop 3 - Video Games As Exceptional Learning Environments- C. Shawn Green

Workshop 4 - Neurofeedback Intermediate - Advanced (BCIA Review Course)- Lynda Thompson & Michael Thompson

Workshop 5 - A Clinician’s Guide to Understanding Recent Developments in Neurofeedback: Amplitude, Live Z-score and sLORETA Training Explained- Tom Collura & Penijean Rutter

Workshop 6 - Psychopharmacology of Depression- Fred Shaffer

Time   Friday  September  21,  2012  Workshop  Schedule  

3:15-6:30 PM Workshop 7 – (Day 1 of 2) Setting up for Success with Aspergers and Autism Spectrum Disorders (2 day WS)- Michael Thompson & Lynda Thompson

Workshop 8 - Ethics and Neurofeedback: Thoughtful Discussions – Rex Cannon

Workshop 10 - Breaking Down Barriers to Peak Performance Brain Training™ in Elite Athletes – Leslie Sherlin & Noel Larson

Workshop 11 - Infra-low Frequency Training in Clinical Practice – Mark Smith

Workshop 12 - EEG Trend Screen Analysis: Implications of Compensatory Mechanisms for qEEG Analysis and Protocol Development- Richard Souter

Time   Saturday  September  22,  2012  Workshop  Schedule  

2:45-6:00 PM Workshop 7.2 (Day 2 of 2) - Setting up for Success with Aspergers and Autism Spectrum Disorders (2 day WS)- Michael Thompson & Lynda Thompson

Workshop 13 - ADHD and Learning Disabilities: Integrating Clinical Knowledge and Individual Symptoms and Neurophysiology in the Formation of Neurofeedback Treatment Plans- Robert Coben & Anne Stevens

Workshop 14 - Biofeedback and Neurofeedback with Professional and Olympic Athletes – Michael Linden, Penny Werthner, Wes Sime & Sanford Silverman

Workshop 15 - sLORETA and Z Score Neurofeedback: A Clinical Symbiosis- Mark Smith

Workshop 16 - HRV Biofeedback Training Strategies- Fred Shaffer

Workshop 17 – Validating Emotionally Charged Ipsative Assessments Using EEG Gamma Asymmetry- Tom Collura & Ronald Bonnstetter

Page 11: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

ISNR 2012 Pre-Conference Workshops  

Monday,  September  17,  2012    

Pre  WS  1.1:  LENS  Foundations  Training  (Day  1  of  3)  (Lecture,  Experiential,  Demonstration)  

Michael  Beasley,  MS,  Private  Practice,  [email protected]  Len  Ochs,  PhD,  Ochs  Labs,  [email protected]  

 Credits:  6.5    Level  of  Difficulty:  Basic    Abstract  This  3-­‐day  workshop  is  a  learning  arena  for  the  practitioner,  which  includes  essential  concepts,  core  paradigms,  principles,  and  areas  of  applicability  of  the  Low  Energy  Neurofeedback  System  (LENS)  and  how  to  integrate  the  concepts  into  the  practitioner’s  practice.  The  workshop  will  offer  hands-­‐on  training  in  the  LENS  in  addition  to  a  foundational  knowledge  in  assessing  the  client,  development  of  a  treatment  plan,  using  the  concepts  presented  and  how  to  reevaluate  the  effectiveness  of  the  treatment  plan.  

References  Carter,  J.  L.  and  H.  L.  Russell  (1981).  "Changes  in  verbal  performance  of  IQ  discrepancy  scores  after  left  hemisphere  EEG  frequency  control  training."  American  Journal  of  Clinical  Biofeedback,  4:  66-­‐68.  

Carter,  J.  L.  and  H.  L.  Russell  (1984).  Application  of  biofeedback  relaxation  procedures  to  handicapped  children:  Final  report.  Washington,  DC,  Bureau  of  Education  for  the  Handicapped.  

Carter,  J.  L.  and  H.  L.  Russell  (1993).  "A  pilot  investigation  of  auditory  and  visual  entrainment  of  brain  wave  activity  in  learning  disabled  boys."  Texas  Researcher  4:  65-­‐  73.  

Cripe,  C.  (2007).  "Effective  Use  of  LENS  Unit  as  an  Adjunct  to  Cognitive  Neuro-­‐  Developmental  Training."  Journal  of  Neurotherapy  10(2-­‐3):  79-­‐87.  

Donaldson,  C.  C.  S.,  Sella,  G,  Mueller,  H.  (2001).  "The  Neural  Plasticity  Model  of  Fibromyalgia.  Theory,  Assessment,  &  Treatment."  Practical  Pain  Management  Part  One  May/June.  

Donaldson,  C.  C.  S.,  D.  V.  Nelson,  et  al.  (1998).  "Disinhibition  in  the  gamma  motoneuron  circuitry:  A  neglected  mechanism  for  understanding  myofascial  pain  syndromes."  Applied  Physiology  &Biofeedback  23:  43-­‐58.  

Donaldson,  C.  C.  S.,  G.  E.  Sella,  et  al.  (1988).  "Fibromyalgia:  A  retrospective  study  of  252  consecutive  referrals."  Canadian  journal  of  Clinical  Medicine  5(6):  116-­‐127.  

Esty,  M.  L.  (2007).  "Reflections  on  FMS  Treatment,  Research,  and  Neurotherapy:  Cautionary  Tales."  Journal  of  Neurotherapy  10(2-­‐3):  63-­‐68.  

Hammond,  D.  C.,  Editor  (2007).  LENS;  The  Low  Energy  Neurofeedback  System.  Binghamton,  NY,  The  Hawthorne  Medical  Press.  

Hammond,  D.C.  (2010).  “LENS  Neurofeedback  Treatment  of  Anger:  Preliminary  Report.”  Journal  of  Neurotherapy,  14:  2,  162-­‐169.  

Page 12: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Hammond.  D.C.  (2010).  “QEEG  Evaluation  of  the  LENS  Treatment  of  TBI.”  Journal  of  Neurotherapy,  14:2,  170-­‐177.  

Hammond,  D.  C.,  S.  Stockdale,  et  al.  (2001).  "Adverse  reactions  and  potential  iatrogenic  effects  in  neurofeedback  training."  Journal  of  Neurotherapy  4(4):  57-­‐69.  

Hammond,  D.  C.  (2007).  Can  LENS  neurofeedback  treat  anosmia  resulting  from  a  head  injury?  Journal  of  Neurotherapy,  11(1),  57-­‐62  

Kravitz,  H.  M.,  M.  L.  Esty,  et  al.  (2007).  "Treatment  of  Fibromyalgia  Syndrome  Using  Low-­‐Intensity  Neurofeedback  with  the  Flexyx  Neurotherapy  System:  A  Randomized  Controlled  Clinical  Trial."  Journal  of  Neurotherapy  10(2-­‐3):  41-­‐58.  

Larsen,  S.  (2001).  The  use  of  Flexyx  treatment  modality  with  patients  with  multiple  brain  and  spinal  cord  injuries.  Future  Health  Winter  Brain  Conference.  Miami,  FL.  

Larsen,  S.  (2006).  The  Healing  Power  of  Neurofeedback:  The  Revolutionary  LENS  Technique  for  Restoring  Optimal  Brain  Function.  Rochester,  VT,  Healing  Arts  Press.  

Larsen,  S.  (2007).  "The  LENS  Neurofeedback  with  animals."  Journal  of  Neurotherapy  10(2-­‐3):  89-­‐101.  

Larsen,  S.,  K.  Harrington,  et  al.  (2007).  "The  LENS  (Low  Energy  Neurofeedback  System):  A  Clinical  Outcomes  Study  on  One  Hundred  Patients  at  Stone  Mountain  Center,  NY."  Journal  of  Neurotherapy  10(2-­‐3):  69-­‐78.  

Larsen,  S.,  R.  Larsen,  et  al.  (2004).  The  LENS  with  Animals:  Preliminary  Observations.  International  Society  for  Neuronal  Regulation,  National  Conference.  Ft.  Lauderdale.  

Marcus,  L.  (2001).  EEG  Amplitude  and  Variability  Changes  Following  Low-­‐Intensity  Neurofeedback-­‐Based  Stimulation  for  Fibromyalgia.  Palo  Alto,  CA,  Western  Graduate  School  of  Psychology.  Ph.D.  

Mueller,  H.  H.,  C.  C.  S.  Donaldson,  et  al.  (2001).  "Treatment  of  fibromyalgia  incorporating  EEG-­‐Driven  stimulation:  A  clinical  out-­‐comes  study."  Journal  of  Clinical  Psychology  57(7):  933-­‐952.  

Ochs,  L.  (1993).  "New  light  on  lights,  sound,  and  the  brain."  Megabrain  Reports:  Journal  of  Mind  Technology  2:  48-­‐52.  

Ochs,  L.  (1997).  EDS:  Background  and  operation,  EEG-­‐driven  pico-­‐photic  stimulation.  Walnut  Creek,  CA,  Flexyx,  LLC.  

Ochs,  L.  (2006).  Thoughts  about  EEG-­‐Driven  stimulation  after  three  years  of  its  uses:  Ramifications  for  concepts  of  pathology,  recovery  ,  and  brain  function.  

Ochs,  L.  (2007).  "Comment  on  the  Treatment  of  Fibromyalgia  Syndrome  Using  Low-­‐  Intensity  Neurofeedback  with  the  Flexyx  Neurotherapy  System:  A  Randomized  Controlled  Clinical  Trial,  or  How  to  Go  Crazy  Over  Nearly  Nothing."  Journal  of  Neurotherapy  10(2-­‐3):  59-­‐61.  

Ochs,  L.  (2007).  "The  Low  Energy  Neurofeedback  System  (LENS):  Theory,  Background  and  Introduction."  Journal  of  Neurotherapy  10(2-­‐3):  5-­‐37.  

Ochs,  L.  (2007).  “Comment  on  "neurofeedback  overtraining  and  the  vulnerable  patient.  Journal  of  Neurotherapy,  11(3),  67-­‐71.  

Ochs,  L.  (2010)  Underlying  Treatment  Issues  in  Neurofeedback  as  Exemplified  by  Treatment  of  

Page 13: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Seizure  Disorders.  Journal  of  Neurotherapy,  Spring.  29-­‐33.  

Ochs,  L.  (2010).  “Working  with  Latent  and  Actual  Seizures.”  Journal  of  Neurotherapy,  Summer.  30-­‐32.  

Schoenberger,  N.  E.,  S.  C.  Shiflett,  et  al.  (2001).  "Flexyx  neurotherapy  system  in  the  treatment  of  traumatic  brain  injury:  An  initial  evaluation."  Journal  of  Head  Trauma  Rehabilitation  16(3):  260-­‐274.  

Learning  Objective  

Define  the  core  clinical  principles  of  the  LENS  approach  so  that  the  central  elements,  issues,  approaches,  and  practices  make  sense  to  the  attendees    

To  have  participants  start  and  stop  LENSware,  and  manipulate  the  essential  controls.    

Learn  how  to  conduct  an  initial  evaluation.    

Understand  the  concepts  of  sensitivity,  hardiness  and  reactivity,  as  will  be  the  CNS  questionnaire,  and  cover  the  basics  of  topographic  map  reading  as  one  of  the  cornerstones  of  treatment.    

Internalize  the  theoretical  and  conceptual  overview  of  the  LENS  approach,  especially  in  relation  to  the  theory,  concepts,  and  practices  of  traditional  neurofeedback.  To  define  the  core  paradigms  and  principles  of  the  LENS  approach  so  that  the  central  elements,  issues,  approaches,  and  practices  make  sense  to  the  attendees  

Provide  experience  of  skin  preparation,  electrode  attachment,  good-­‐impedance  recognition,  and  knowledge  of  10-­‐20  sites    

Summarize  work  with  the  evaluation  to  form  a  basis  for  considering  topographic  mapping.

Outline  

10:00-­‐11:00  (1  hour) Introduction to concepts, core paradigms, principles,  and  areas  of  applicability.    

11:00-­‐11:30  (1/2  hour)  Basic  features  of  the  LENS  software.  

11:30-­‐11:45  (1/4  hour)  Break  

11:45-­‐1:00  (1  1⁄4  hours)  Introduction  of  concepts  of  sensitivity,  hardiness,  reactivity,  and  suppression.  Conduction  of  initial  evaluation.    

1:00-­‐2:30  (1  1⁄2  hours)  Lunch    

2:30-­‐4:00  (1  1⁄2  hours)  Practicum:  first  session  with  participants.  4:00-­‐4:15  (1/4  hour)  Break  

4:15-­‐6:00  (1  3⁄4  hours)  Practicum  continues.  Clinical  decision  making  when  using  the  LENS  

Financial   Interest:   Mike   Beasley   has   no   financial   interest   or   relationship   other   than   as   an  independent   occasional   trainer   for   OchsLabs,   Inc.   Len   Ochs   continues   to   design   systems   on   a  volunteer  basis,  receiving  no  moneys  or  position  from  OchsLabs,  Inc.      

Pre  WS  2.1:  Advanced  LENS  Training  (Day  1  of  3)  

Page 14: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

 (Lecture,  Experiential,  Demonstration)  Len  Ochs,  PhD,  Ochs  Labs,  [email protected]        

Cathy  Wills,  MSN,  Ochs  Labs,  [email protected]    

Credits:  6.5  

Level  of  Difficulty:  Advanced  

Abstract  This  3-­‐day  Advanced  LENS  Training  will  begin  with  a  review  of  fundamentals;  Treatment  flow  from  evaluations  to  treatment  and  re-­‐evaluations;  Understanding  Maps  and  their  significance;  Advanced  offset  management;  In-­‐depth  analysis  of  LENS  Application  components  and  how  they  relate  to  the  concepts  of  Sensitivity,  Reactivity,  Incompletely  resolved  childhood  problems,  Advanced  management  of  suppression  and  over  stimulation  with  time  spent  on  Suppression  Maps;  Clarification  of  differences  between  aberrant  reactions,  background  medical  problems,  and  releases  of  suppression/necessary  transitional  states.  The  core  for  discussions  will  be  the  new  settings  screen,  which  will  serve  as  a  focus  for  settings  relevant  to  the  LENS.  

References  Carter,  J.  L.  and  H.  L.  Russell  (1981).  "Changes  in  verbal  performance  of  IQ  discrepancy  scores  after  left  hemisphere  EEG  frequency  control  training."  American  Journal  of  Clinical  Biofeedback,  4:  66-­‐68.  

Carter,  J.  L.  and  H.  L.  Russell  (1984).  Application  of  biofeedback  relaxation  procedures  to  handicapped  children:  Final  report.  Washington,  DC,  Bureau  of  Education  for  the  Handicapped.  

Carter,  J.  L.  and  H.  L.  Russell  (1993).  "A  pilot  investigation  of  auditory  and  visual  entrainment  of  brain  wave  activity  in  learning  disabled  boys."  Texas  Researcher  4:  65-­‐  73.  

Cripe,  C.  (2007).  "Effective  Use  of  LENS  Unit  as  an  Adjunct  to  Cognitive  Neuro-­‐  Developmental  Training."  Journal  of  Neurotherapy  10(2-­‐3):  79-­‐87.  

Donaldson,  C.  C.  S.,  Sella,  G,  Mueller,  H.  (2001).  "The  Neural  Plasticity  Model  of  Fibromyalgia.  Theory,  Assessment,  &  Treatment."  Practical  Pain  Management  Part  One  May/June.  

Donaldson,  C.  C.  S.,  D.  V.  Nelson,  et  al.  (1998).  "Disinhibition  in  the  gamma  motoneuron  circuitry:  A  neglected  mechanism  for  understanding  myofascial  pain  syndromes."  Applied  Physiology  &Biofeedback  23:  43-­‐58.  

Donaldson,  C.  C.  S.,  G.  E.  Sella,  et  al.  (1988).  "Fibromyalgia:  A  retrospective  study  of  252  consecutive  referrals."  Canadian  journal  of  Clinical  Medicine  5(6):  116-­‐127.  

Esty,  M.  L.  (2007).  "Reflections  on  FMS  Treatment,  Research,  and  Neurotherapy:  Cautionary  Tales."  Journal  of  Neurotherapy  10(2-­‐3):  63-­‐68.  

Hammond,  D.  C.,  Editor  (2007).  LENS;  The  Low  Energy  Neurofeedback  System.  Binghamton,  NY,  The  Hawthorne  Medical  Press.  

Hammond,  D.C.  (2010).  “LENS  Neurofeedback  Treatment  of  Anger:  Preliminary  Report.”  Journal  of  Neurotherapy,  14:  2,  162-­‐169.  

Hammond.  D.C.  (2010).  “QEEG  Evaluation  of  the  LENS  Treatment  of  TBI.”  Journal  of  Neurotherapy,  14:2,  170-­‐177.  

Hammond,  D.  C.,  S.  Stockdale,  et  al.  (2001).  "Adverse  reactions  and  potential  iatrogenic  effects  in  neurofeedback  training."  Journal  of  Neurotherapy  4(4):  57-­‐69.  

Page 15: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Hammond,  D.  C.  (2007).  Can  LENS  neurofeedback  treat  anosmia  resulting  from  a  head  injury?  Journal  of  Neurotherapy,  11(1),  57-­‐62  

Kravitz,  H.  M.,  M.  L.  Esty,  et  al.  (2007).  "Treatment  of  Fibromyalgia  Syndrome  Using  Low-­‐Intensity  Neurofeedback  with  the  Flexyx  Neurotherapy  System:  A  Randomized  Controlled  Clinical  Trial."  Journal  of  Neurotherapy  10(2-­‐3):  41-­‐58.  

Larsen,  S.  (2001).  The  use  of  Flexyx  treatment  modality  with  patients  with  multiple  brain  and  spinal  cord  injuries.  Future  Health  Winter  Brain  Conference.  Miami,  FL.  

Larsen,  S.  (2006).  The  Healing  Power  of  Neurofeedback:  The  Revolutionary  LENS  Technique  for  Restoring  Optimal  Brain  Function.  Rochester,  VT,  Healing  Arts  Press.  

Larsen,  S.  (2007).  "The  LENS  Neurofeedback  with  animals."  Journal  of  Neurotherapy  10(2-­‐3):  89-­‐101.  

Larsen,  S.,  K.  Harrington,  et  al.  (2007).  "The  LENS  (Low  Energy  Neurofeedback  System):  A  Clinical  Outcomes  Study  on  One  Hundred  Patients  at  Stone  Mountain  Center,  NY."  Journal  of  Neurotherapy  10(2-­‐3):  69-­‐78.  

Larsen,  S.,  R.  Larsen,  et  al.  (2004).  The  LENS  with  Animals:  Preliminary  Observations.  International  Society  for  Neuronal  Regulation,  National  Conference.  Ft.  Lauderdale.  

Marcus,  L.  (2001).  EEG  Amplitude  and  Variability  Changes  Following  Low-­‐Intensity  Neurofeedback-­‐Based  Stimulation  for  Fibromyalgia.  Palo  Alto,  CA,  Western  Graduate  School  of  Psychology.  Ph.D.  

Mueller,  H.  H.,  C.  C.  S.  Donaldson,  et  al.  (2001).  "Treatment  of  fibromyalgia  incorporating  EEG-­‐Driven  stimulation:  A  clinical  out-­‐comes  study."  Journal  of  Clinical  Psychology  57(7):  933-­‐952.  

Ochs,  L.  (1993).  "New  light  on  lights,  sound,  and  the  brain."  Megabrain  Reports:  Journal  of  Mind  Technology  2:  48-­‐52.  

Ochs,  L.  (1997).  EDS:  Background  and  operation,  EEG-­‐driven  pico-­‐photic  stimulation.  Walnut  Creek,  CA,  Flexyx,  LLC.  

Ochs,  L.  (2006).  Thoughts  about  EEG-­‐Driven  stimulation  after  three  years  of  its  uses:  Ramifications  for  concepts  of  pathology,  recovery  ,  and  brain  function.  

Ochs,  L.  (2007).  "Comment  on  the  Treatment  of  Fibromyalgia  Syndrome  Using  Low-­‐  Intensity  Neurofeedback  with  the  Flexyx  Neurotherapy  System:  A  Randomized  Controlled  Clinical  Trial,  or  How  to  Go  Crazy  Over  Nearly  Nothing."  Journal  of  Neurotherapy  10(2-­‐3):  59-­‐61.  

Ochs,  L.  (2007).  "The  Low  Energy  Neurofeedback  System  (LENS):  Theory,  Background  and  Introduction."  Journal  of  Neurotherapy  10(2-­‐3):  5-­‐37.  

Ochs,  L.  (2007).  “Comment  on  "neurofeedback  overtraining  and  the  vulnerable  patient.  Journal  of  Neurotherapy,  11(3),  67-­‐71.  

Ochs,  L.  (2010)  Underlying  Treatment  Issues  in  Neurofeedback  as  Exemplified  by  Treatment  of  Seizure  Disorders.  Journal  of  Neurotherapy,  Spring.  29-­‐33.  

Ochs,  L.  (2010).  “Working  with  Latent  and  Actual  Seizures.”  Journal  of  Neurotherapy,  Summer.  30-­‐32.  

Schoenberger,  N.  E.,  S.  C.  Shiflett,  et  al.  (2001).  "Flexyx  neurotherapy  system  in  the  treatment  of  traumatic  brain  injury:  An  initial  evaluation."  Journal  of  Head  Trauma  Rehabilitation  16(3):  260-­‐274.  

Page 16: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Learning  Objective  Demonstrate  knowledge  of  the  LENS  basics  principles  and  practices.      Demonstrate  deepening  knowledge  of  mapping  analysis  in  order  to  better  track  patient  changes.    Demonstrate  deepening  knowledge  brain  access  systems  via  the  variety  of  LENS  maps.    Increase  knowledge  of  brain  and  vascular  physiology  in  relation  to  components  of  the  LENS  applications  and  signal  types.    Discuss  Sensitivity  and  the  Reactivity/Suppression/Hardiness/and  Behavioral  Suppression  questionnaire.    Have  an  in-­‐depth  discussion  of  components  of  LENS  Applications  as  related  to  the  above  concepts  in  the  Sensitivity  questionnaire.    Demonstrate  capability  of  discussing  several  aspects  of  EEG  suppression  and  suppression  mapping.    Outline  ·  Review,  What’s  New,  Treatment  Strategies:  –  8  hours  

Objective:  To  have  participants  demonstrate  knowledge  of  the  LENS  basics  principles  and  practices    

Content:  

·    Review  of  basic  certification  exam  (40)  -­‐  experiential    

·    Discussion  of  answers  to  the  exam  (40)  -­‐  experiential      

Objective:  Participants  demonstrate  deepening  knowledge  of  mapping  analysis  in  order  to  better  track  patient  changes.    

Content:    

·  Descriptive  review  of  sequences  of  maps  (60)  –  didactic  and  experiential  

Objective:  Participants  demonstrate  deepening  knowledge  of  EEG  dynamics  in  order  to  better  track  patient  changes.    

Content:  ·  Review  of  Band  and  Frequency  transformations  in  sequences  of  maps  (90)  -­‐  experiential  

Objective:  To  increase  flexibility  of  therapist  functioning  during  evaluation  and  treatment  sessions  Content:  

·    Working  with  patients  in  sessions:  interview,  evaluations  and/or  treatment  sessions,  anticipating    and  predicting  problems  (120)  –  demonstration,  didactic    

·    Classification  of  session  content  by  participants,  as  options,  keyed  to  outcome  enhancement  (60)  -­‐    experiential      

Objective:  Discussion  of  Sensitivity  and  the  Reactivity/Suppression/Hardiness  questionnaire    

Content:    

Page 17: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

·  Material  on  Reactivity/Suppression/Hardiness,  as  well  as  transition  states  as  different  from  over  

stimulation  reactions  (70)  -­‐  experiential  

Financial   Interest:  Len  Ochs  is  the  inventor  and  developer  of  the  LENS.    I  have  no  ownership,  paid  or  unpaid  position  with  OchsLabs,  Inc.  as  my  entire  income  is  from  Social  Security  retirement;  I  am  not  an  employee  of  OchsLabs,  Inc.  Cathy  Wills  is  an  employee  of  OchsLabs.    

Tuesday,  September  18,  2012      

Pre  WS  1.2:  LENS  Foundations  Training  (Day  2  of  3)  (Lecture,  Experiential,  Demonstration)  

Michael  Beasley,  MS,  Private  Practice,  [email protected]  Len  Ochs,  PhD,  Ochs  Labs,  [email protected]  

 Credits:  6.5  

Level  of  Difficulty:  Basic  

Abstract  This  3-­‐day  workshop  is  a  learning  arena  for  the  practitioner,  which  includes  essential  concepts,  core  paradigms,  principles,  and  areas  of  applicability  of  the  Low  Energy  Neurofeedback  System  (LENS)  and  how  to  integrate  the  concepts  into  the  practitioner’s  practice.  The  workshop  will  offer  hands-­‐on  training  in  the  LENS  in  addition  to  a  foundational  knowledge  in  assessing  the  client,  development  of  a  treatment  plan,  using  the  concepts  presented  and  how  to  reevaluate  the  effectiveness  of  the  treatment  plan.  

References  Carter,  J.  L.  and  H.  L.  Russell  (1981).  "Changes  in  verbal  performance  of  IQ  discrepancy  scores  after  left  hemisphere  EEG  frequency  control  training."  American  Journal  of  Clinical  Biofeedback,  4:  66-­‐68.  

Carter,  J.  L.  and  H.  L.  Russell  (1984).  Application  of  biofeedback  relaxation  procedures  to  handicapped  children:  Final  report.  Washington,  DC,  Bureau  of  Education  for  the  Handicapped.  

Carter,  J.  L.  and  H.  L.  Russell  (1993).  "A  pilot  investigation  of  auditory  and  visual  entrainment  of  brain  wave  activity  in  learning  disabled  boys."  Texas  Researcher  4:  65-­‐  73.  

Cripe,  C.  (2007).  "Effective  Use  of  LENS  Unit  as  an  Adjunct  to  Cognitive  Neuro-­‐  Developmental  Training."  Journal  of  Neurotherapy  10(2-­‐3):  79-­‐87.  

Donaldson,  C.  C.  S.,  Sella,  G,  Mueller,  H.  (2001).  "The  Neural  Plasticity  Model  of  Fibromyalgia.  Theory,  Assessment,  &  Treatment."  Practical  Pain  Management  Part  One  May/June.  

Donaldson,  C.  C.  S.,  D.  V.  Nelson,  et  al.  (1998).  "Disinhibition  in  the  gamma  motoneuron  circuitry:  A  neglected  mechanism  for  understanding  myofascial  pain  syndromes."  Applied  Physiology  &Biofeedback  23:  43-­‐58.  

Donaldson,  C.  C.  S.,  G.  E.  Sella,  et  al.  (1988).  "Fibromyalgia:  A  retrospective  study  of  252  consecutive  referrals."  Canadian  journal  of  Clinical  Medicine  5(6):  116-­‐127.  

Esty,  M.  L.  (2007).  "Reflections  on  FMS  Treatment,  Research,  and  Neurotherapy:  Cautionary  Tales."  Journal  of  Neurotherapy  10(2-­‐3):  63-­‐68.  

Hammond,  D.  C.,  Editor  (2007).  LENS;  The  Low  Energy  Neurofeedback  System.  Binghamton,  NY,  The  

Page 18: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Hawthorne  Medical  Press.  

Hammond,  D.C.  (2010).  “LENS  Neurofeedback  Treatment  of  Anger:  Preliminary  Report.”  Journal  of  Neurotherapy,  14:  2,  162-­‐169.  

Hammond.  D.C.  (2010).  “QEEG  Evaluation  of  the  LENS  Treatment  of  TBI.”  Journal  of  Neurotherapy,  14:2,  170-­‐177.  

Hammond,  D.  C.,  S.  Stockdale,  et  al.  (2001).  "Adverse  reactions  and  potential  iatrogenic  effects  in  neurofeedback  training."  Journal  of  Neurotherapy  4(4):  57-­‐69.  

Hammond,  D.  C.  (2007).  Can  LENS  neurofeedback  treat  anosmia  resulting  from  a  head  injury?  Journal  of  Neurotherapy,  11(1),  57-­‐62  

Kravitz,  H.  M.,  M.  L.  Esty,  et  al.  (2007).  "Treatment  of  Fibromyalgia  Syndrome  Using  Low-­‐Intensity  Neurofeedback  with  the  Flexyx  Neurotherapy  System:  A  Randomized  Controlled  Clinical  Trial."  Journal  of  Neurotherapy  10(2-­‐3):  41-­‐58.  

Larsen,  S.  (2001).  The  use  of  Flexyx  treatment  modality  with  patients  with  multiple  brain  and  spinal  cord  injuries.  Future  Health  Winter  Brain  Conference.  Miami,  FL.  

Larsen,  S.  (2006).  The  Healing  Power  of  Neurofeedback:  The  Revolutionary  LENS  Technique  for  Restoring  Optimal  Brain  Function.  Rochester,  VT,  Healing  Arts  Press.  

Larsen,  S.  (2007).  "The  LENS  Neurofeedback  with  animals."  Journal  of  Neurotherapy  10(2-­‐3):  89-­‐101.  

Larsen,  S.,  K.  Harrington,  et  al.  (2007).  "The  LENS  (Low  Energy  Neurofeedback  System):  A  Clinical  Outcomes  Study  on  One  Hundred  Patients  at  Stone  Mountain  Center,  NY."  Journal  of  Neurotherapy  10(2-­‐3):  69-­‐78.  

Larsen,  S.,  R.  Larsen,  et  al.  (2004).  The  LENS  with  Animals:  Preliminary  Observations.  International  Society  for  Neuronal  Regulation,  National  Conference.  Ft.  Lauderdale.  

Marcus,  L.  (2001).  EEG  Amplitude  and  Variability  Changes  Following  Low-­‐Intensity  Neurofeedback-­‐Based  Stimulation  for  Fibromyalgia.  Palo  Alto,  CA,  Western  Graduate  School  of  Psychology.  Ph.D.  

Mueller,  H.  H.,  C.  C.  S.  Donaldson,  et  al.  (2001).  "Treatment  of  fibromyalgia  incorporating  EEG-­‐Driven  stimulation:  A  clinical  out-­‐comes  study."  Journal  of  Clinical  Psychology  57(7):  933-­‐952.  

Ochs,  L.  (1993).  "New  light  on  lights,  sound,  and  the  brain."  Megabrain  Reports:  Journal  of  Mind  Technology  2:  48-­‐52.  

Ochs,  L.  (1997).  EDS:  Background  and  operation,  EEG-­‐driven  pico-­‐photic  stimulation.  Walnut  Creek,  CA,  Flexyx,  LLC.  

Ochs,  L.  (2006).  Thoughts  about  EEG-­‐Driven  stimulation  after  three  years  of  its  uses:  Ramifications  for  concepts  of  pathology,  recovery  ,  and  brain  function.  

Ochs,  L.  (2007).  "Comment  on  the  Treatment  of  Fibromyalgia  Syndrome  Using  Low-­‐  Intensity  Neurofeedback  with  the  Flexyx  Neurotherapy  System:  A  Randomized  Controlled  Clinical  Trial,  or  How  to  Go  Crazy  Over  Nearly  Nothing."  Journal  of  Neurotherapy  10(2-­‐3):  59-­‐61.  

Ochs,  L.  (2007).  "The  Low  Energy  Neurofeedback  System  (LENS):  Theory,  Background  and  Introduction."  Journal  of  Neurotherapy  10(2-­‐3):  5-­‐37.  

Page 19: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Ochs,  L.  (2007).  “Comment  on  "neurofeedback  overtraining  and  the  vulnerable  patient.  Journal  of  Neurotherapy,  11(3),  67-­‐71.  

Ochs,  L.  (2010)  Underlying  Treatment  Issues  in  Neurofeedback  as  Exemplified  by  Treatment  of  Seizure  Disorders.  Journal  of  Neurotherapy,  Spring.  29-­‐33.  

Ochs,  L.  (2010).  “Working  with  Latent  and  Actual  Seizures.”  Journal  of  Neurotherapy,  Summer.  30-­‐32.  

Schoenberger,  N.  E.,  S.  C.  Shiflett,  et  al.  (2001).  "Flexyx  neurotherapy  system  in  the  treatment  of  traumatic  brain  injury:  An  initial  evaluation."  Journal  of  Head  Trauma  Rehabilitation  16(3):  260-­‐274.  

Learning  Objective  

Practice  doing  topographic  maps.  

Concretize  the  paradigms  and  principles  by  the  use  of  the  Report  Generator  to  show  how  it  becomes  a  tool  to  generate  treatment  plans  and  treatment  re-­‐evaluations.    

Illustrate  issues  important  in  the  conduct  of  the  LENS  approach  so  that  the  clinician  can  more  intelligently  inform  the  prospective  client  about  the  risks  and  benefits  of  his/her  particular  involvement.  

Introduce  EEG  suppression  through  the  use  of  the  suppression  maps,  showing  site  sorts  according  to  the  coefficient  of  variation.  

Demonstrate  the  use  of  the  Report  Generator  in  relation  to  mapping,  data  management,  and  treatment  planning    

Integration  of  data  related  to  dose,  patient  characteristics,  and  patient  education  

Demonstrate  the  management  of  data  from  its  export  from  LENSware2,  to  its  import  and  generation  of  information,  treatment  plans,  and  treatment  evaluation  in  the  Report  Generator.    

Outline  10:00-­‐11:30  (1  1⁄2  hours) Principles of Dominant Frequency, frequency offset, feedback frequency, sensitivity, hyper- and hypo-reactivity to stimulation, cortical permeability and integration, and structural vs.  functional  impairments  and  improvements.  

11:30-­‐11:45  (1/4  hour)  Break    

11:45-­‐1:00  (1  1⁄4  hours)  Practicum  with  participants.  Use  of  evaluation  with  clients  for  development  of  treatment  plan.    

1:00-­‐2:30  (1  1⁄2  hours)  Lunch    

2:30-­‐4:00  (1  1⁄2  hours)  Practicum  continues.  Treatment  plan  reevaluation.    

4:00-­‐4:15  (1/4  hour)  Break  

4:15-­‐6:00  (1  3⁄4  hours)  Practice  in  performing  topographic  brain  maps  and  producing  reports.  Introduction  of  suppression  concepts.  

Page 20: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Financial   Interest:   Mike   Beasley   has   no   financial   interest   or   relationship   other   than   as   an  independent   occasional   trainer   for   OchsLabs,   Inc.   Len   Ochs   continues   to   design   systems   on   a  volunteer  basis,  receiving  no  moneys  or  position  from  OchsLabs,  Inc.    

Pre  WS  2.2:  Advanced  LENS  Training  (Day  2  of  3)    (Lecture,  Experiential,  Demonstration)  

Len  Ochs,  PhD,  Ochs  Labs,  [email protected]        Cathy  Wills,  MSN,  Ochs  Labs,  [email protected]  

 Credits:  6.5    Level  of  Difficulty:  Advanced    Abstract  This  3-­‐day  Advanced  LENS  Training  will  begin  with  a  review  of  fundamentals;  Treatment  flow  from  evaluations  to  treatment  and  re-­‐evaluations;  Understanding  Maps  and  their  significance;  Advanced  offset  management;  In-­‐depth  analysis  of  LENS  Application  components  and  how  they  relate  to  the  concepts  of  Sensitivity,  Reactivity,  Incompletely  resolved  childhood  problems,  Advanced  management  of  suppression  and  over  stimulation  with  time  spent  on  Suppression  Maps;  Clarification  of  differences  between  aberrant  reactions,  background  medical  problems,  and  releases  of  suppression/necessary  transitional  states.  The  core  for  discussions  will  be  the  new  settings  screen,  which  will  serve  as  a  focus  for  settings  relevant  to  the  LENS.  

References  Carter,  J.  L.  and  H.  L.  Russell  (1981).  "Changes  in  verbal  performance  of  IQ  discrepancy  scores  after  left  hemisphere  EEG  frequency  control  training."  American  Journal  of  Clinical  Biofeedback,  4:  66-­‐68.  

Carter,  J.  L.  and  H.  L.  Russell  (1984).  Application  of  biofeedback  relaxation  procedures  to  handicapped  children:  Final  report.  Washington,  DC,  Bureau  of  Education  for  the  Handicapped.  

Carter,  J.  L.  and  H.  L.  Russell  (1993).  "A  pilot  investigation  of  auditory  and  visual  entrainment  of  brain  wave  activity  in  learning  disabled  boys."  Texas  Researcher  4:  65-­‐  73.  

Cripe,  C.  (2007).  "Effective  Use  of  LENS  Unit  as  an  Adjunct  to  Cognitive  Neuro-­‐  Developmental  Training."  Journal  of  Neurotherapy  10(2-­‐3):  79-­‐87.  

Donaldson,  C.  C.  S.,  Sella,  G,  Mueller,  H.  (2001).  "The  Neural  Plasticity  Model  of  Fibromyalgia.  Theory,  Assessment,  &  Treatment."  Practical  Pain  Management  Part  One  May/June.  

Donaldson,  C.  C.  S.,  D.  V.  Nelson,  et  al.  (1998).  "Disinhibition  in  the  gamma  motoneuron  circuitry:  A  neglected  mechanism  for  understanding  myofascial  pain  syndromes."  Applied  Physiology  &Biofeedback  23:  43-­‐58.  

Donaldson,  C.  C.  S.,  G.  E.  Sella,  et  al.  (1988).  "Fibromyalgia:  A  retrospective  study  of  252  consecutive  referrals."  Canadian  journal  of  Clinical  Medicine  5(6):  116-­‐127.  

Esty,  M.  L.  (2007).  "Reflections  on  FMS  Treatment,  Research,  and  Neurotherapy:  Cautionary  Tales."  Journal  of  Neurotherapy  10(2-­‐3):  63-­‐68.  

Hammond,  D.  C.,  Editor  (2007).  LENS;  The  Low  Energy  Neurofeedback  System.  Binghamton,  NY,  The  Hawthorne  Medical  Press.  

Hammond,  D.C.  (2010).  “LENS  Neurofeedback  Treatment  of  Anger:  Preliminary  Report.”  Journal  of  Neurotherapy,  14:  2,  162-­‐169.  

Page 21: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Hammond.  D.C.  (2010).  “QEEG  Evaluation  of  the  LENS  Treatment  of  TBI.”  Journal  of  Neurotherapy,  14:2,  170-­‐177.  

Hammond,  D.  C.,  S.  Stockdale,  et  al.  (2001).  "Adverse  reactions  and  potential  iatrogenic  effects  in  neurofeedback  training."  Journal  of  Neurotherapy  4(4):  57-­‐69.  

Hammond,  D.  C.  (2007).  Can  LENS  neurofeedback  treat  anosmia  resulting  from  a  head  injury?  Journal  of  Neurotherapy,  11(1),  57-­‐62  

Kravitz,  H.  M.,  M.  L.  Esty,  et  al.  (2007).  "Treatment  of  Fibromyalgia  Syndrome  Using  Low-­‐Intensity  Neurofeedback  with  the  Flexyx  Neurotherapy  System:  A  Randomized  Controlled  Clinical  Trial."  Journal  of  Neurotherapy  10(2-­‐3):  41-­‐58.  

Larsen,  S.  (2001).  The  use  of  Flexyx  treatment  modality  with  patients  with  multiple  brain  and  spinal  cord  injuries.  Future  Health  Winter  Brain  Conference.  Miami,  FL.  

Larsen,  S.  (2006).  The  Healing  Power  of  Neurofeedback:  The  Revolutionary  LENS  Technique  for  Restoring  Optimal  Brain  Function.  Rochester,  VT,  Healing  Arts  Press.  

Larsen,  S.  (2007).  "The  LENS  Neurofeedback  with  animals."  Journal  of  Neurotherapy  10(2-­‐3):  89-­‐101.  

Larsen,  S.,  K.  Harrington,  et  al.  (2007).  "The  LENS  (Low  Energy  Neurofeedback  System):  A  Clinical  Outcomes  Study  on  One  Hundred  Patients  at  Stone  Mountain  Center,  NY."  Journal  of  Neurotherapy  10(2-­‐3):  69-­‐78.  

Larsen,  S.,  R.  Larsen,  et  al.  (2004).  The  LENS  with  Animals:  Preliminary  Observations.  International  Society  for  Neuronal  Regulation,  National  Conference.  Ft.  Lauderdale.  

Marcus,  L.  (2001).  EEG  Amplitude  and  Variability  Changes  Following  Low-­‐Intensity  Neurofeedback-­‐Based  Stimulation  for  Fibromyalgia.  Palo  Alto,  CA,  Western  Graduate  School  of  Psychology.  Ph.D.  

Mueller,  H.  H.,  C.  C.  S.  Donaldson,  et  al.  (2001).  "Treatment  of  fibromyalgia  incorporating  EEG-­‐Driven  stimulation:  A  clinical  out-­‐comes  study."  Journal  of  Clinical  Psychology  57(7):  933-­‐952.  

Ochs,  L.  (1993).  "New  light  on  lights,  sound,  and  the  brain."  Megabrain  Reports:  Journal  of  Mind  Technology  2:  48-­‐52.  

Ochs,  L.  (1997).  EDS:  Background  and  operation,  EEG-­‐driven  pico-­‐photic  stimulation.  Walnut  Creek,  CA,  Flexyx,  LLC.  

Ochs,  L.  (2006).  Thoughts  about  EEG-­‐Driven  stimulation  after  three  years  of  its  uses:  Ramifications  for  concepts  of  pathology,  recovery  ,  and  brain  function.  

Ochs,  L.  (2007).  "Comment  on  the  Treatment  of  Fibromyalgia  Syndrome  Using  Low-­‐  Intensity  Neurofeedback  with  the  Flexyx  Neurotherapy  System:  A  Randomized  Controlled  Clinical  Trial,  or  How  to  Go  Crazy  Over  Nearly  Nothing."  Journal  of  Neurotherapy  10(2-­‐3):  59-­‐61.  

Ochs,  L.  (2007).  "The  Low  Energy  Neurofeedback  System  (LENS):  Theory,  Background  and  Introduction."  Journal  of  Neurotherapy  10(2-­‐3):  5-­‐37.  

Ochs,  L.  (2007).  “Comment  on  "neurofeedback  overtraining  and  the  vulnerable  patient.  Journal  of  Neurotherapy,  11(3),  67-­‐71.  

Ochs,  L.  (2010)  Underlying  Treatment  Issues  in  Neurofeedback  as  Exemplified  by  Treatment  of  

Page 22: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Seizure  Disorders.  Journal  of  Neurotherapy,  Spring.  29-­‐33.  

Ochs,  L.  (2010).  “Working  with  Latent  and  Actual  Seizures.”  Journal  of  Neurotherapy,  Summer.  30-­‐32.  

Schoenberger,  N.  E.,  S.  C.  Shiflett,  et  al.  (2001).  "Flexyx  neurotherapy  system  in  the  treatment  of  traumatic  brain  injury:  An  initial  evaluation."  Journal  of  Head  Trauma  Rehabilitation  16(3):  260-­‐274.  

Learning  Objective  Name  and  define  the  elements  of  the  LENS  applications    List  elements  of  the  considerations  of  customizing  the  LENS  applications  for  those  of  different  degrees  of  sensitivity    List  elements  of  the  considerations  of  customizing  the  LENS  applications  for  treatment-­‐resistant  problems    Describe  different  types  of  sensitivity  as  a  biological  and  perceptual  trait,  rather  than  as  the  culturally  familiar  one  of  reactivity,  and  detail  the  consequences  of  different  types  of  sensitivity  as  they  interact  with  different  components  of  the  LENS  approach.    Describe  different  types  of  reactivity  as  a  biological  trait,  rather  than  as  the  culturally  familiar  one  of  sensitivity,  and  detail  the  significance  that  reactivity  holds  for  those  administering  and  receiving  LENS  sessions.    Describe  the  incomplete  resolution,  energy  as  it  pertains  to  anxiety  and  seizure  spectrum  problems,    and  the  use  of  the  trait  of  hardiness.    Outline  Objective: Participants  demonstrate  deepening  knowledge  of  mapping  analysis  in  order  to  better  track  patient  changes.  

Content:  • Descriptive  review  of  sequences  of  maps  (60)  -­‐  experiential

Objective: Participants  demonstrate  deepening  knowledge  of  EEG  dynamics  in  order  to  better  track  patient  changes.    

Content:  • Review  of  Band  and  Frequency  transformations  in  sequences  of  maps  (120)  -­‐  experiential

Objective: To  increase  flexibility  of  therapist  functioning  during  evaluation  and  treatment  sessions    

Content:

• €Working  with  patients  in  sessions:  interview,  evaluations  and/or  treatment  sessions  (120)  -­‐   ���demonstration  

• €Classification  of  session  content  by  participants,  as  options,  keyed  to  outcome  enhancement  (90)  -­‐   ���experiential    

���Objective: Discussion  of  Sensitivity  and  the  Reactivity/Suppression/Hardiness  questionnaire    

Content:  

• €Material  on  Reactivity/Suppression/Hardiness,  as  well  as  transition  states  as  different  from  over   ���stimulation  reactions  (90  –  didactic  

Page 23: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Financial   Interest:  Len  Ochs  is  the  inventor  and  developer  of  the  LENS.    I  have  no  ownership,  paid  or  unpaid  position  with  OchsLabs,  Inc.  as  my  entire  income  is  from  Social  Security  retirement;  I  am  not  an  employee  of  OchsLabs,  Inc.  Cathy  Wills  is  an  employee  of  OchsLabs.    

Pre  WS  3.1:  Introduction  to  the  Practice  of  Neurofeedback:    Assessment  Leads  to  Appropriate  Intervention  (Day  1  of  2)  

(Lecture,  Experiential,  Demonstration)  Lynda  Thompson,  Ph.D.,  The  ADD  Centre,  [email protected]  Michael  Thompson,  M.D.,  The  ADD  Centre,  [email protected]  

 Credits:  8    Level  of  Difficulty:  Basic   Special Note: Participants who wish to obtain their BCIA certification will earn 16 hours of credits for the didactic material (rubrics I, II, and III) of the Biofeedback Certification International Alliance Blueprint of Knowledge, by completing this two day workshop. BCIA Rubrics I, II, III.

I. Orientation to Neurofeedback (During the morning of day 1. It includes learning theory as it is applied to NFB training sessions)  

II. Basic Neurophysiology and Neuroanatomy (During the morning of day 2. It includes an emphasis on how understanding functions of cortical Brodmann Areas can lead to designing your NFB intervention. )

III. Instrumentation & Electronics (Afternoons, with demonstrations, both days. It includes details of reading the raw EEG, rejecting artifacts, graphing your data, and how assessment procedures lead to decisions concerning appropriate intervention.)

For  detail  as  to  the  content  for  these  rubrics,  go  to  www.BCIA.org.    Abstract  Note:  Participants  are  welcome  to  sign  up  for  one  day  or  two  days.  The  purpose  of  the  first  day  is  to  introduce  new  practitioners  to  the  basics  of  EEG  biofeedback  (Neurofeedback).  The  second  day  will  review  and  expand  on  the  basics  of  EEG  assessment  and  Neurofeedback  and  introduce  how  to  combine  Neurofeedback  with  peripheral  Biofeedback  and  metacognitive  strategies  for  common  disorders.

Day  1:

Introduction:  scientific  basis  for  Neurofeedback  (NFB),  basic  terms  &  definitions,  understanding  the  EEG,  artifacts,  single  channel  assessment,  learning  theory  (operant  &  classical  conditioning)  as  it  applies  to  NFB,  designing  training  sessions,  tracking  results.

This  introductory  workshop  begins  with  a  brief  history  of  the  scientific  basis  of  NFB  followed  by  defining  the  basic  terms  and  concepts  including:  the  electroencephalogram  (EEG)  and  understanding  brainwaves  (frequency,  morphology,  amplitude,  magnitude,  power,  location,  reactivity  and  origin);  artifacts;  impedance;  high  and  low  pass  filters,  the  differential  amplifier;  international  10-­‐20  sites  and  relation  to  Brodmann  Areas  (BAs);  basic  functional  neuroanatomy,  such  as  how  networks  involve  specific  functional  areas  of  the  cortex  and  their  specific  connections  through  the  basal  ganglia  to  thalamus  and  back  to  functionally  related  areas  of  the  cortex.  This  provides  a  basic  understanding  of  why  you  train  at  particular  sites.  Montages  discussed  include:  referential,  sequential  and  Laplacian.  This  discussion  will  note  how  these  are  used  for  EEG  assessment  and  training  decisions.  Discussion  of  these  terms  is  enhanced  by  hands-­‐on  demonstration  to  show  in  detail  how  electrodes  are  applied,  impedance  is  checked,  artifacts  are  identified  and  removed,  and  how  the  single  channel  EEG  results  in  one  Hz  bins  (1  to  60  Hz)  with  key  ratios  (e.g.,  theta/beta)  are  evaluated  and  graphed.  For  the  graphing  we  use  Excel  because  this  is  available  to  most  practitioners  regardless  of  the  equipment  

Page 24: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

used  as  long  as  their  equipment  can  show  the  raw  EEG  and  do  statistics.  (Graphing  learning  curves  is  also  shown  for  training  sessions.)  We  explain  the  logic  of  combining  EEG  assessment  results,  with  knowledge  of  functions  of  relevant  areas  (BAs)  and  the  client’s  key  symptoms,  to  plan  for  successful  NFB  intervention.  ADHD  and  learning  difficulties  will  be  used  as  the  first  examples  and  case  examples  of  clients’  EEGs  will  be  shown.

There  will  be  discussion  of  symptom  pictures  that  require  a  19  channel  EEG  assessment  that  a  beginning  practitioner  could  ask  an  experienced  colleague  to  do  in  order  guide  treatment.  Beginners  in  NFB  need  to  be  able  to  understand  presentations  at  the  ISNR  meeting,  therefore  we  will  show  data  from  19  channel  (full  cap)  EEG  assessments,  including  LORETA  analysis,  to  introduce  this  more  advanced  level  of  assessment  and  intervention.  With  both  single  channel  and  19  channel  assessments,  the  EEG  findings,  knowledge  of  functional  neuroanatomy,  and  the  client’s  symptom  picture  are  all  used  to  determine  the  site  and  frequency  ranges  for  training.

The  afternoon  will  emphasize  how  to  do  NFB  using  operant  and  classical  conditioning,  shaping,  measurement  of  sustaining  desired  EEG  activity,  tracking  the  percentage  of  time  “in  the  zone”,  and  doing  amplitude  training  of  each  targeted  frequency  band.  Graphing  of  progress  during  the  session  (and  across  sessions)  using  Excel  will  be  shown.  Designing  appropriate  interventions  is  stressed  and  discussion  will  center  on  how  the  triad  of  symptom  picture,  neuroanatomy,  and  EEG  findings  leads  to  a  logical  placement  of  electrodes  for  enhancement  or  inhibition  of  specific  frequency  bands.  There  will  be  mention  of  z-­‐score  training  in  addition  to  the  usual  amplitude  and  coherence  training  paradigms.

We  want  the  workshop  participants  to  learn  to  avoid  the  pitfall  of  expecting  the  machine  to  do  the  work.  Their  coaching  is  an  important  component  of  their  client’s  success,  so  we  explain  how  to  combine  NFB  with  work  on  metacognitive  strategies  and  show  how  to  combine  simple  biofeedback  methods,  especially  respiration  and  heart  rate  variability  training,  to  encourage  the  client  to  relax  while  remaining  alert  and  focused.

We  do  not  wish  to  frighten  the  new  comers  but  we  want  them  to  be  realistic  about  how  much  time  and  effort  it  really  takes  to  get  excellent  results.  We  ourselves  are  still  learning  from  every  client,  and  that  is  one  reason  why  applied  neuroscience  is  such  an  interesting  field.

References  Thompson,  M.  &  Thompson,  L.  (2003).  The Neurofeedback Book: An Introduction to Basic Concepts in ATpplied Psychophysiology, Wheat  Ridge,  Colorado:  Association  for  Applied  Psychophysiology,

Fisch,  B.J.,  (1999).  Fisch and Spehlmann’s EEG Primer. New  York:  Elsevier.    

Hirshberg,  Laurence  M.,  Chiu,  Sufen,  Frazier,  Jean  A.,  (2005)  Emerging  Interventions,  Child  and Adolescent Psychiatric Clinics of North America, Vol  14,  Number  1.    

Devinsky,  Orin.,  Morrell,  Martha,  Vogt,  Brent,  (1995).  Contributions  of  Anterior  Cingulate    Cortex  to  behaviour,  Brain, 118, 279-­‐306.    

Thompson,  M.  &  Thompson,  L.  (2007).  Neurofeedback  for  Stress  Management.  In  P.   ���Lehrer,  Woolfolk  and  W.  Sime  (Eds.)  Principles and Practice of Stress Management, 3rd ���Edition. New  York:  Guilford  Publications  

Yucha,  C.,  Gilbert,  C.  (2004),  Evidence-based practice in biofeedback and neurofeedback. ���Wheat  Ridge,  Colorado:  Association  for  Applied  Psychophysiology.  

Thompson,  M.  &  Thompson,  L.,  (2009)  Chapter  14:  Treatment  of  Attention  Deficit   ���Disorders.  In  T.  

Page 25: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Budzynski,  H.  Budzynski,  J.  Evans,  A.  Abarbanel,  (Eds.)  Introduction to Quantitative EEG and Neurofeedback: Advanced Theory and Applications (second edition). NY:  Academic  Press,  337-­‐364.  

Goals/Objectives  

Define  the  International  10  –  20  system  Electrode  Placement  System.    

List  standard  EEG  bandwidths  and  describe  typical  mental  states  associated  with  each  of  these    band  widths  at  the  Cz  site.    

Explain  how  the  practitioner  uses  the  basic  principles  of  learning  theory  during  each  training    session  with  a  client.    

Explain  how  the  differential  amplifier  allows  the  practitioner  to  accurately  assess  brain  waves    while  excluding  major  artifacts  that  are  in-­‐common  to  each  site.    

Identify  the  common  EEG  findings  in  children  who  have  a  diagnosis  of  ADHD.    

Put  electrodes  on  to  the  scalp  (CZ)  and  ears  with  good  impedance  readings.    

Do  a  single  Hertz  bin  EEG  assessment,  identify  common  artifacts  in  the  EEG  such  as  eye-­‐blink    and  muscle  and  make  an  appropriate  decision  as  to  which  bandwidths  to  enhance  or  to  inhibit    for  training  that  client.    

Do  a  neurofeedback  training  session  with  a  volunteer  “client”  to  appropriately  enhance  and    inhibit  particular  bandwidth  amplitudes.    

Outline  History:  includes  major  contributions  to  what  a  practitioner  does  in  day-­‐to-­‐day  NFB  plus  BFB  practice.  Learning  theory  as  the  basis  of  a  NFB  practitioner’s  day  to  day  practice.  

Essential  Terminology  Including:  Frequency  (Hz),  Amplitude  (μV),  Magnitude,  Power  (pW),  Impedance,  Differential  Amplifier,  Z-­‐scores.  

EEG  Waves  including:  Delta,  Theta,  Alpha  (low  &  high),  SMR,  Beta,  Beta  Spindling,  Gamma,  in  terms  of  their  Frequency,  Morphology,  Amplitude,  Location,  and  Reactivity  as  well  as  their  correlations  with  mental  states  

10-­‐20  System;  Commonly  used  montages:  referential,  sequential  and,  for  19-­‐channel  assessments,  Laplacian.  Describe  single  channel  QEEG  assessment  and  discuss  its  utility.  

Provide  examples  of  EEG  patterns  using  examples  from  clients  with  ADHD  and  explain  how  to  read  the  raw  EEG  (time  vs.  amplitude),  an  EEG  spectrum  (frequency  vs.  magnitude),  and  line  graphs.  Show  examples  of:  Delta,  Theta,  Alpha  (low  and  high),  Beta  (low  frequency  and  high  frequency),  Gamma.    

Begin  hands-­‐on  demonstration  of  assessment  (one  channel  single  Hz  ‘bins’  from  1  to  60  Hz)  and  simple  training  using  a  volunteer  from  among  the  workshop  participants.  This  will  include  instruction  regarding  attachment  of  electrodes,  choice  of  sites,  choice  of  reference  and  rationale  for  it,  checking  impedance  and  importance  of  this.  

Demonstrate  Quantitative  EEG  Assessment  using  data  collected  during  the  hands-­‐on  demonstration,  

Page 26: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

including  how  to  recognize  and  remove  artifacts,  statistical  analysis,  and  graphing  of  results.  Discuss  and  demonstrate  training  techniques,  pretending  that  the  volunteer  is  a  child  with  ADHD.  Calculation  of  important  ratios  from  the  data  collected,  and  discuss  the  research  that  helps  understand  their  meaning  (e.g.,  theta  /  beta  power  ratios).  

Explanation  of  more  advanced  terms  that  the  beginner  should  be  able  to  recognize  and  understand  when  they  are  found  in  the  literature  or  heard  in  lectures.  This  includes  definition  and  explanation  of  Brodmann  Areas,  coherence  and  phase,  LORETA.  

Financial  Interest:  Lynda  Thompson  is  co-­‐author  of  THE  A.D.D.  BOOK.  Michael  and  Lynda  are  co-­‐authors  of  SETTING  UP  FOR  CLINICAL  SUCCESS.  Michael  and  Lynda  Thompson  are  co-­‐authors  of  THE  NEUROFEEDBACK  BOOK.  It  is  likely  that  these  books  may  be  on  sale  at  the  meeting.  The  authors  will  state  their  interest  in  these  books  at  the  workshop.  

 Pre  WS  8:  Integrating  Norms-­‐Based  Neurofeedback  within  a  

Holistic  Psychophysiological  Treatment  Approach  Preconference  Sponsor  Workshop  –  Thought  Technology  

(Lecture,  Demonstration)  Linda  Walker,  LPC,  Private  Practice,  [email protected]  

Credits:  ISNR  does  not  provide  CEUs  for  this  workshop.  CEUs  may  be  offered  by  the  Sponsor  directly.  

Level  of  Difficulty:  Basic  to  Intermediate  

Abstract  As  norms-­‐based  neurofeedback  shows  increasing  promise  as  a  treatment  tool,  integrating  it  into  a  full  psychophysiological  program  can  increase  its  impact  on  whole-­‐person  optimization.        Also  known  as  Z-­‐Score  neurofeedback,  norms-­‐based  EEG  treatment  has  shown  promise  in  holistically  treating  and  balancing  the  brain  in  a  variety  of  conditions.  Adding  biofeedback  methods  -­‐-­‐  especially  heart  rate  variability  and  EMG  training  -­‐-­‐  can  help  the  client  balance  underlying  physiological  systems  that  may  contribute  to  dysregulation.    Combining  neurofeedback  and  biofeedback  interventions  is  certainly  nothing  new.  What  makes  the  discussion  relevant  to  Z-­‐score  neurofeedback,  with  its  potential  to  train  248  metrics  simultaneously  over  four  10-­‐20  sites,  is  helping  the  client  integrate  feedback  in  a  way  that  is  helpful,  and  not  overwhelming.    This  workshop  will  review  the  foundations  and  application  of  Z-­‐score  neurofeedback  as  it  is  implemented  on  the  Thought  Technology  platform  and  consider  strategies  to  effectively  implement  this  intervention  alongside  biofeedback  interventions.  Case  studies,  as  well  as  treatment  examples,  methods  and  rationales  will  be  discussed.    References  Collura,  T.  F.  (2008b,  July).    Whole-­‐head  normalization  using  live  Z-­‐scores  for  connectivity  training  (Part  2).    NeuroConnections  Newsletter,  9-­‐12.  

Collura, T. F. (2008). Whole-head normalization using live Z-scores for connectivity training, Part 1. NeuroConnections Newsletter, April 2008, 12, 15, 18-19. San Rafael, California; ISNR

Gevirtz, Richard N. and Schwartz, Mark S. (2003). The Respiratory System in Applied Psychophysiology. In Schwartz, Mark S. and Andrasik, Frank (Eds.), Biofeedback a Practitioner’s Guide, (3rd Ed.,pp. 245-250). New York, NY: Guilford Press.

Page 27: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Hammer, Barbara; Colbert, Agatha; Brown, Kimberly; Ilioi, Elena (2011). Neurofeedback for Insomnia: A Pilot Study of Z-Score SMR and Individualized Protocols. Applied Psychophysiology and Biofeedback, 36 (4) 251-264.

McCraty, R., Atkinson, M, & Tiller, W A. (1995). The effects of emotion on short term heart rate variability using power spectrum analysis. American Journal of Cardiology, 76 (14), 1089-1093.

Moss,  Don  and  Shaffer,  Fred.  (2006).  Psychophysiology  and  General  Health:  Heart  Rate  Variability  (HRV).  Biofeedback  Foundation  of  Europe.    Reiner,  Robert.  (2008).  Patients  with  Anxiety  Disorders:  Results  of  a  Pilot  Study.  Applied  Psychophysiology  and  Biofeedback,  33  (1),  55-­‐61.    Stein,  P.K.  and  Kleiger,  R.E.  (1999).  Insights  from  the  Study  of  Heart  Rate  Variability.  Annual  Review  of  Medicine,  50,  249-­‐261.  

Smith, M. (2008). A father finds a solution: Z-score training. NeuroConnections Newsletter, April 2008, 22, 24-25. San Rafael, California; ISNR

Thatcher, R. W. (2008). Z-score EEG biofeedback: Conceptual foundations. NeuroConnections Newsletter, April 2008, 9, 11, 20. San Rafael, California; ISNR

 Thayer,  Julian  F.  and  Friedman,  Bruce  H.  (2002).  Stop  that!  Inhibition,  sensitization  and  their  neurovisceral  concomitants.  Scandinavian  Journal  of  Psychology,  43,  123-­‐130.    Zucker,  T.L.,  Samuelson,  K.W.,  Muench,  F.,  Greenberg,  M.A.  and  Gevirtz,  R.N.  (2009).  The  Effects  of  Respiratory  Sinus  Arrhythmia  Biofeedback  on  Heart  Rate  Variability  and  Posttraumatic  Stress  Disorder  Symptoms:  A  Pilot  Study.  Applied  Psychophysiology  and  Biofeedback,  34  (2),  135-­‐43.    

Outline  A  review  of  Z-­‐score  training  and  the  present  state  of  research.  An  overview  of  psychophysiological  assessment  and  examples  of  useful  assessments  to  help  clinicians  integrate  Z-­‐score  nfb  and  psychophysiological  approaches  for  treating  the  client's  symptoms  and  complaints.  A  discussion  of  case  studies  and  examples  to  illustrate  how  Z-­‐score  training  and  biofeedback  are  woven  together  in  the  treatment  session  to  create  the  greatest  impact.   Financial  Interest:  Certain  portions  of  this  presenter's  travel  and  conference  expenses  were  sponsored  by  Thought  Technology.    ISNR  does  not  provide  CEUs  for  this  workshop.  CEUs  may  be  offered  by  the  Sponsor  directly.    

 Wednesday,  September  19,  2012    

Pre  WS  1.3:  LENS  Foundations  Training  (Day  3  of  3)  (Lecture,  Experiential,  Demonstration)  

Michael  Beasley,  MS,  Private  Practice,  [email protected]  Len  Ochs,  PhD,  Ochs  Labs,  [email protected]  

 Credits:  6.5  

Page 28: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Level  of  Difficulty:  Basic  

Abstract  This  3-­‐day  workshop  is  a  learning  arena  for  the  practitioner,  which  includes  essential  concepts,  core  paradigms,  principles,  and  areas  of  applicability  of  the  Low  Energy  Neurofeedback  System  (LENS)  and  how  to  integrate  the  concepts  into  the  practitioner’s  practice.  The  workshop  will  offer  hands-­‐on  training  in  the  LENS  in  addition  to  a  foundational  knowledge  in  assessing  the  client,  development  of  a  treatment  plan,  using  the  concepts  presented  and  how  to  reevaluate  the  effectiveness  of  the  treatment  plan.  

References  Carter,  J.  L.  and  H.  L.  Russell  (1981).  "Changes  in  verbal  performance  of  IQ  discrepancy  scores  after  left  hemisphere  EEG  frequency  control  training."  American  Journal  of  Clinical  Biofeedback,  4:  66-­‐68.  

Carter,  J.  L.  and  H.  L.  Russell  (1984).  Application  of  biofeedback  relaxation  procedures  to  handicapped  children:  Final  report.  Washington,  DC,  Bureau  of  Education  for  the  Handicapped.  

Carter,  J.  L.  and  H.  L.  Russell  (1993).  "A  pilot  investigation  of  auditory  and  visual  entrainment  of  brain  wave  activity  in  learning  disabled  boys."  Texas  Researcher  4:  65-­‐  73.  

Cripe,  C.  (2007).  "Effective  Use  of  LENS  Unit  as  an  Adjunct  to  Cognitive  Neuro-­‐  Developmental  Training."  Journal  of  Neurotherapy  10(2-­‐3):  79-­‐87.  

Donaldson,  C.  C.  S.,  Sella,  G,  Mueller,  H.  (2001).  "The  Neural  Plasticity  Model  of  Fibromyalgia.  Theory,  Assessment,  &  Treatment."  Practical  Pain  Management  Part  One  May/June.  

Donaldson,  C.  C.  S.,  D.  V.  Nelson,  et  al.  (1998).  "Disinhibition  in  the  gamma  motoneuron  circuitry:  A  neglected  mechanism  for  understanding  myofascial  pain  syndromes."  Applied  Physiology  &Biofeedback  23:  43-­‐58.  

Donaldson,  C.  C.  S.,  G.  E.  Sella,  et  al.  (1988).  "Fibromyalgia:  A  retrospective  study  of  252  consecutive  referrals."  Canadian  journal  of  Clinical  Medicine  5(6):  116-­‐127.  

Esty,  M.  L.  (2007).  "Reflections  on  FMS  Treatment,  Research,  and  Neurotherapy:  Cautionary  Tales."  Journal  of  Neurotherapy  10(2-­‐3):  63-­‐68.  

Hammond,  D.  C.,  Editor  (2007).  LENS;  The  Low  Energy  Neurofeedback  System.  Binghamton,  NY,  The  Hawthorne  Medical  Press.  

Hammond,  D.C.  (2010).  “LENS  Neurofeedback  Treatment  of  Anger:  Preliminary  Report.”  Journal  of  Neurotherapy,  14:  2,  162-­‐169.  

Hammond.  D.C.  (2010).  “QEEG  Evaluation  of  the  LENS  Treatment  of  TBI.”  Journal  of  Neurotherapy,  14:2,  170-­‐177.  

Hammond,  D.  C.,  S.  Stockdale,  et  al.  (2001).  "Adverse  reactions  and  potential  iatrogenic  effects  in  neurofeedback  training."  Journal  of  Neurotherapy  4(4):  57-­‐69.  

Hammond,  D.  C.  (2007).  Can  LENS  neurofeedback  treat  anosmia  resulting  from  a  head  injury?  Journal  of  Neurotherapy,  11(1),  57-­‐62  

Kravitz,  H.  M.,  M.  L.  Esty,  et  al.  (2007).  "Treatment  of  Fibromyalgia  Syndrome  Using  Low-­‐Intensity  Neurofeedback  with  the  Flexyx  Neurotherapy  System:  A  Randomized  Controlled  Clinical  Trial."  Journal  of  Neurotherapy  10(2-­‐3):  41-­‐58.  

Page 29: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Larsen,  S.  (2001).  The  use  of  Flexyx  treatment  modality  with  patients  with  multiple  brain  and  spinal  cord  injuries.  Future  Health  Winter  Brain  Conference.  Miami,  FL.  

Larsen,  S.  (2006).  The  Healing  Power  of  Neurofeedback:  The  Revolutionary  LENS  Technique  for  Restoring  Optimal  Brain  Function.  Rochester,  VT,  Healing  Arts  Press.  

Larsen,  S.  (2007).  "The  LENS  Neurofeedback  with  animals."  Journal  of  Neurotherapy  10(2-­‐3):  89-­‐101.  

Larsen,  S.,  K.  Harrington,  et  al.  (2007).  "The  LENS  (Low  Energy  Neurofeedback  System):  A  Clinical  Outcomes  Study  on  One  Hundred  Patients  at  Stone  Mountain  Center,  NY."  Journal  of  Neurotherapy  10(2-­‐3):  69-­‐78.  

Larsen,  S.,  R.  Larsen,  et  al.  (2004).  The  LENS  with  Animals:  Preliminary  Observations.  International  Society  for  Neuronal  Regulation,  National  Conference.  Ft.  Lauderdale.  

Marcus,  L.  (2001).  EEG  Amplitude  and  Variability  Changes  Following  Low-­‐Intensity  Neurofeedback-­‐Based  Stimulation  for  Fibromyalgia.  Palo  Alto,  CA,  Western  Graduate  School  of  Psychology.  Ph.D.  

Mueller,  H.  H.,  C.  C.  S.  Donaldson,  et  al.  (2001).  "Treatment  of  fibromyalgia  incorporating  EEG-­‐Driven  stimulation:  A  clinical  out-­‐comes  study."  Journal  of  Clinical  Psychology  57(7):  933-­‐952.  

Ochs,  L.  (1993).  "New  light  on  lights,  sound,  and  the  brain."  Megabrain  Reports:  Journal  of  Mind  Technology  2:  48-­‐52.  

Ochs,  L.  (1997).  EDS:  Background  and  operation,  EEG-­‐driven  pico-­‐photic  stimulation.  Walnut  Creek,  CA,  Flexyx,  LLC.  

Ochs,  L.  (2006).  Thoughts  about  EEG-­‐Driven  stimulation  after  three  years  of  its  uses:  Ramifications  for  concepts  of  pathology,  recovery  ,  and  brain  function.  

Ochs,  L.  (2007).  "Comment  on  the  Treatment  of  Fibromyalgia  Syndrome  Using  Low-­‐  Intensity  Neurofeedback  with  the  Flexyx  Neurotherapy  System:  A  Randomized  Controlled  Clinical  Trial,  or  How  to  Go  Crazy  Over  Nearly  Nothing."  Journal  of  Neurotherapy  10(2-­‐3):  59-­‐61.  

Ochs,  L.  (2007).  "The  Low  Energy  Neurofeedback  System  (LENS):  Theory,  Background  and  Introduction."  Journal  of  Neurotherapy  10(2-­‐3):  5-­‐37.  

Ochs,  L.  (2007).  “Comment  on  "neurofeedback  overtraining  and  the  vulnerable  patient.  Journal  of  Neurotherapy,  11(3),  67-­‐71.  

Ochs,  L.  (2010)  Underlying  Treatment  Issues  in  Neurofeedback  as  Exemplified  by  Treatment  of  Seizure  Disorders.  Journal  of  Neurotherapy,  Spring.  29-­‐33.  

Ochs,  L.  (2010).  “Working  with  Latent  and  Actual  Seizures.”  Journal  of  Neurotherapy,  Summer.  30-­‐32.  

Schoenberger,  N.  E.,  S.  C.  Shiflett,  et  al.  (2001).  "Flexyx  neurotherapy  system  in  the  treatment  of  traumatic  brain  injury:  An  initial  evaluation."  Journal  of  Head  Trauma  Rehabilitation  16(3):  260-­‐274.  

Learning  Objective  Learn  how  to  make  topographic  maps  and  offset  evaluations.  Establish  a  logical  thread  from  intake,  sensitivity  evaluations,  possible  offset  evaluation,  and  mapping  that  will  lead  to  the  choices  of  applications  and  settings  in  further  treatment.    

Page 30: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Understand  a  picture  of  the  energetic  diagnoses  (ADD,  ADHD,  Autism,  Asperger’s,  Anxiety,  Seizure  Spectrum,  clinical,  and  EEG  data  into  something  that  makes  sense  to  the  clinician  and  prospective  client.  Conceptualize  detail  of  the  range  of  seizure  spectrum  problems  that  don’t  look  like  actual  seizure  problems,  but  which  require  specific  applications  to  which  actual  seizures  respond  well.  Integrate  data  related  to  dose,  patient  characteristics,  and  patient  education  Establish  the  beginnings  of  a  rationale  by  which  the  Provider  can  begin  to  refer  his  or  her  clients  out  to  another  healthcare  provider,  based  on  some  of  the  data  already  obtained.  Learn  how  to  talk  about  the  LENS  to  clients  and  other  professionals,  what  not  to  say,  and  to  catch  in  their  errors  of  speaking  the  provider  from  making  fools  of  themselves.    Outline  10:00-­‐11:30  (1  1⁄2  hours)  Clinical  decisions:  Putting  together  Offset  and  Map  Evaluations  for  treatment  plan.    

11:30-­‐11:45  (1/4  hour)  Break    

11:45-­‐1:00  (1  1⁄4  hours)  Practicum,  using  integration  of  above  information  

1:00-­‐2:30  (1  1⁄2  hours)  Lunch  

2:30-­‐4:00  (1  1⁄2  hours)  Relationship  of  dose  to  sensitivity,  reactivity,  suppression,  and  hardiness  related  to  treatment  plan  

4:00-­‐4:15  (1/4  hour)  Break    

4:15-­‐6:00  (  1  3⁄4  hours)  Review  and  Integration  of  all  concepts  presented.  Questions,  Discussion,  Exam  and  Evaluation.  

Financial   Interest:   Mike   Beasley   has   no   financial   interest   or   relationship   other   than   as   an  independent   occasional   trainer   for   OchsLabs,   Inc.   Len   Ochs   continues   to   design   systems   on   a  volunteer  basis,  receiving  no  moneys  or  position  from  OchsLabs,  Inc.    

Pre  WS  2.3:  Advanced  LENS  Training  (Day  3  of  3)  (Lecture,  Experiential,  Demonstration)  

Len  Ochs,  PhD,  Ochs  Labs,  [email protected]        Cathy  Wills,  MSN,  Ochs  Labs,  [email protected]  

 Credits:  6.5    Level  of  Difficulty:  Advanced    Abstract  This  3-­‐day  Advanced  LENS  Training  will  begin  with  a  review  of  fundamentals;  Treatment  flow  from  evaluations  to  treatment  and  re-­‐evaluations;  Understanding  Maps  and  their  significance;  Advanced  offset  management;  In-­‐depth  analysis  of  LENS  Application  components  and  how  they  relate  to  the  concepts  of  Sensitivity,  Reactivity,  Incompletely  resolved  childhood  problems,  Advanced  management  of  suppression  and  over  stimulation  with  time  spent  on  Suppression  Maps;  Clarification  of  differences  between  aberrant  reactions,  background  medical  problems,  and  releases  of  suppression/necessary  transitional  states.  The  core  for  discussions  will  be  the  new  settings  screen,  which  will  serve  as  a  focus  for  settings  relevant  to  the  LENS.  

References  Carter,  J.  L.  and  H.  L.  Russell  (1981).  "Changes  in  verbal  performance  of  IQ  discrepancy  scores  after  left  hemisphere  EEG  frequency  control  training."  American  Journal  of  Clinical  Biofeedback,  4:  66-­‐68.  

Page 31: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Carter,  J.  L.  and  H.  L.  Russell  (1984).  Application  of  biofeedback  relaxation  procedures  to  handicapped  children:  Final  report.  Washington,  DC,  Bureau  of  Education  for  the  Handicapped.  

Carter,  J.  L.  and  H.  L.  Russell  (1993).  "A  pilot  investigation  of  auditory  and  visual  entrainment  of  brain  wave  activity  in  learning  disabled  boys."  Texas  Researcher  4:  65-­‐  73.  

Cripe,  C.  (2007).  "Effective  Use  of  LENS  Unit  as  an  Adjunct  to  Cognitive  Neuro-­‐  Developmental  Training."  Journal  of  Neurotherapy  10(2-­‐3):  79-­‐87.  

Donaldson,  C.  C.  S.,  Sella,  G,  Mueller,  H.  (2001).  "The  Neural  Plasticity  Model  of  Fibromyalgia.  Theory,  Assessment,  &  Treatment."  Practical  Pain  Management  Part  One  May/June.  

Donaldson,  C.  C.  S.,  D.  V.  Nelson,  et  al.  (1998).  "Disinhibition  in  the  gamma  motoneuron  circuitry:  A  neglected  mechanism  for  understanding  myofascial  pain  syndromes."  Applied  Physiology  &Biofeedback  23:  43-­‐58.  

Donaldson,  C.  C.  S.,  G.  E.  Sella,  et  al.  (1988).  "Fibromyalgia:  A  retrospective  study  of  252  consecutive  referrals."  Canadian  journal  of  Clinical  Medicine  5(6):  116-­‐127.  

Esty,  M.  L.  (2007).  "Reflections  on  FMS  Treatment,  Research,  and  Neurotherapy:  Cautionary  Tales."  Journal  of  Neurotherapy  10(2-­‐3):  63-­‐68.  

Hammond,  D.  C.,  Editor  (2007).  LENS;  The  Low  Energy  Neurofeedback  System.  Binghamton,  NY,  The  Hawthorne  Medical  Press.  

Hammond,  D.C.  (2010).  “LENS  Neurofeedback  Treatment  of  Anger:  Preliminary  Report.”  Journal  of  Neurotherapy,  14:  2,  162-­‐169.  

Hammond.  D.C.  (2010).  “QEEG  Evaluation  of  the  LENS  Treatment  of  TBI.”  Journal  of  Neurotherapy,  14:2,  170-­‐177.  

Hammond,  D.  C.,  S.  Stockdale,  et  al.  (2001).  "Adverse  reactions  and  potential  iatrogenic  effects  in  neurofeedback  training."  Journal  of  Neurotherapy  4(4):  57-­‐69.  

Hammond,  D.  C.  (2007).  Can  LENS  neurofeedback  treat  anosmia  resulting  from  a  head  injury?  Journal  of  Neurotherapy,  11(1),  57-­‐62  

Kravitz,  H.  M.,  M.  L.  Esty,  et  al.  (2007).  "Treatment  of  Fibromyalgia  Syndrome  Using  Low-­‐Intensity  Neurofeedback  with  the  Flexyx  Neurotherapy  System:  A  Randomized  Controlled  Clinical  Trial."  Journal  of  Neurotherapy  10(2-­‐3):  41-­‐58.  

Larsen,  S.  (2001).  The  use  of  Flexyx  treatment  modality  with  patients  with  multiple  brain  and  spinal  cord  injuries.  Future  Health  Winter  Brain  Conference.  Miami,  FL.  

Larsen,  S.  (2006).  The  Healing  Power  of  Neurofeedback:  The  Revolutionary  LENS  Technique  for  Restoring  Optimal  Brain  Function.  Rochester,  VT,  Healing  Arts  Press.  

Larsen,  S.  (2007).  "The  LENS  Neurofeedback  with  animals."  Journal  of  Neurotherapy  10(2-­‐3):  89-­‐101.  

Larsen,  S.,  K.  Harrington,  et  al.  (2007).  "The  LENS  (Low  Energy  Neurofeedback  System):  A  Clinical  Outcomes  Study  on  One  Hundred  Patients  at  Stone  Mountain  Center,  NY."  Journal  of  Neurotherapy  10(2-­‐3):  69-­‐78.  

Larsen,  S.,  R.  Larsen,  et  al.  (2004).  The  LENS  with  Animals:  Preliminary  Observations.  International  

Page 32: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Society  for  Neuronal  Regulation,  National  Conference.  Ft.  Lauderdale.  

Marcus,  L.  (2001).  EEG  Amplitude  and  Variability  Changes  Following  Low-­‐Intensity  Neurofeedback-­‐Based  Stimulation  for  Fibromyalgia.  Palo  Alto,  CA,  Western  Graduate  School  of  Psychology.  Ph.D.  

Mueller,  H.  H.,  C.  C.  S.  Donaldson,  et  al.  (2001).  "Treatment  of  fibromyalgia  incorporating  EEG-­‐Driven  stimulation:  A  clinical  out-­‐comes  study."  Journal  of  Clinical  Psychology  57(7):  933-­‐952.  

Ochs,  L.  (1993).  "New  light  on  lights,  sound,  and  the  brain."  Megabrain  Reports:  Journal  of  Mind  Technology  2:  48-­‐52.  

Ochs,  L.  (1997).  EDS:  Background  and  operation,  EEG-­‐driven  pico-­‐photic  stimulation.  Walnut  Creek,  CA,  Flexyx,  LLC.  

Ochs,  L.  (2006).  Thoughts  about  EEG-­‐Driven  stimulation  after  three  years  of  its  uses:  Ramifications  for  concepts  of  pathology,  recovery  ,  and  brain  function.  

Ochs,  L.  (2007).  "Comment  on  the  Treatment  of  Fibromyalgia  Syndrome  Using  Low-­‐  Intensity  Neurofeedback  with  the  Flexyx  Neurotherapy  System:  A  Randomized  Controlled  Clinical  Trial,  or  How  to  Go  Crazy  Over  Nearly  Nothing."  Journal  of  Neurotherapy  10(2-­‐3):  59-­‐61.  

Ochs,  L.  (2007).  "The  Low  Energy  Neurofeedback  System  (LENS):  Theory,  Background  and  Introduction."  Journal  of  Neurotherapy  10(2-­‐3):  5-­‐37.  

Ochs,  L.  (2007).  “Comment  on  "neurofeedback  overtraining  and  the  vulnerable  patient.  Journal  of  Neurotherapy,  11(3),  67-­‐71.  

Ochs,  L.  (2010)  Underlying  Treatment  Issues  in  Neurofeedback  as  Exemplified  by  Treatment  of  Seizure  Disorders.  Journal  of  Neurotherapy,  Spring.  29-­‐33.  

Ochs,  L.  (2010).  “Working  with  Latent  and  Actual  Seizures.”  Journal  of  Neurotherapy,  Summer.  30-­‐32.  

Schoenberger,  N.  E.,  S.  C.  Shiflett,  et  al.  (2001).  "Flexyx  neurotherapy  system  in  the  treatment  of  traumatic  brain  injury:  An  initial  evaluation."  Journal  of  Head  Trauma  Rehabilitation  16(3):  260-­‐274.  

Learning  Objective    Demonstrate  adjustment  of  the  Offset  on  LENSware2  software  and  list  the  considerations  as  a  fine-­‐tuning  adjustment  

 List  uses  of  the  Photonic  Stimulator  as  a  blocker  of  sympathetic  activity  and  as  a  tool  for  assisting  in  the  return  mitochondrial  learning  and  adaptation  in  relation  to  client  sensitivity,  hardiness  and  reactivity,  especially  in  relation  to  treatment-­‐resistant  problems  across  the  age  spectrum    List  uses  of  the  LENS  with  pain  management  issues,  focusing  on  migraine  and  other  vascular  pain,  diabetic  neuropathy,  fibromyalgia,  phantom  limb  pain,  and  painful  swelling    Demonstrate  an  understanding  of  multiple  ways  to  address  the  problems  with  the  LENS  approach,  adding  the  advantages  and  disadvantages  of  the  different  approaches.  

 Discuss  the  range  of  Seizure  Spectrum  Disorders  and  attach  elements  of  these  problems  to  elements  of  the  LENS  settings  in  LENSware2.    

Page 33: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

List   the   effects  of   inflammation,   infections,   and   trauma  on   the  degree  of   spiking  and   fast  waves   as  measured  on  the  scalp,  and  how  these  may  be  shown  and  hidden  in  relation  to  the  kinds  and  degrees  of  EEG  suppression.    Outline  Objective:  Participants  demonstrate  deepening  knowledge  of  mapping  analysis  and  mapping  dynamics  in  order  to  better  track  patient  changes.    

Content:    

·  Explaining  maps  to  patients  (60)  –  didactic  and  experiential  

Objective:  To  increase  flexibility  of  therapist  functioning  during  evaluation  and  treatment  sessions  Content:  

·    Working  with  patients  in  sessions:  interview,  evaluations  and/or  treatment  sessions  (120)  –    demonstration  and  experiential    

·    More  classification  of  session  content  by  participants,  as  options,  keyed  to  outcome  enhancement    (60)  -­‐  experiential    

·    Tying  mapping  changes  to  both  suppression  release  and  behavioral  changes  (60)  -­‐  didactic    

·    Managing  difficult  patients  and  difficult  problems,  while  appreciating  the  easy  ones  (60)  -­‐  didactic      

Objective:  Participants  demonstrate  scope  of  advanced  knowledge    

·    Examination  and  Discussion  of  both  questions  and  responses  (150)  -­‐  experiential    

·    Course  evaluation  (30)  –  Experiential    

Financial   Interest:  Len  Ochs  is  the  inventor  and  developer  of  the  LENS.    I  have  no  ownership,  paid  or  unpaid  position  with  OchsLabs,  Inc.  as  my  entire  income  is  from  Social  Security  retirement;  I  am  not  an  employee  of  OchsLabs,  Inc.  Cathy  Wills  is  an  employee  of  OchsLabs.      

Pre  WS  3.2:  Introduction  to  the  Practice  of  Neurofeedback:    Assessment  Leads  to  Appropriate  Intervention  (Day  2  of  2)  

(Lecture,  Experiential,  Demonstration)  Lynda  Thompson,  Ph.D.,  The  ADD  Centre,  [email protected]  Michael  Thompson,  M.D.,  The  ADD  Centre,  [email protected]  

 Credits:  8    Level  of  Difficulty:  Intermediate    Special Note: Participants who wish to obtain their BCIA certification will earn 16 hours of credits for the didactic material (rubrics I, II, and III) of the Biofeedback Certification International Alliance Blueprint of Knowledge, by completing this two day workshop. BCIA Rubrics I, II, III.

I. Orientation to Neurofeedback (During the morning of day 1. It includes learning theory as it is applied to NFB training sessions)

Page 34: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

II. Basic Neurophysiology and Neuroanatomy (During the morning of day 2. It includes an emphasis on how understanding functions of cortical Brodmann Areas can lead to designing your NFB intervention. )

III. Instrumentation & Electronics (Afternoons, with demonstrations, both days. It includes details of reading the raw EEG, rejecting artifacts, graphing your data, and how assessment procedures lead to decisions concerning appropriate intervention.)

For  detail  as  to  the  content  for  these  rubrics,  go  to  www.BCIA.org.    Abstract  First  we  will  answer  questions  arising  from  Day  1.  We  will  then  introduce  the  participants  to  basic  neurophysiology  and  neuroanatomy  and  how  this  knowledge  contributes  to  designing  your  NFB  intervention.  This  covers  basic  functional  neuroanatomy,  such  as  how  networks  involve  specific  functional  areas  of  the  cortex  and  their  specific  connections  through  the  basal  ganglia  to  thalamus  and  back  to  functionally  related  areas  of  the  cortex.  This  provides  a  basic  understanding  of  why  you  train  at  particular  sites.  We  will  then  cover  more  advanced  definitions  of  terms  used  in  the  field  of  biofeedback,  including  autonomic  nervous  system,  heart  rate,  respiration  rate,  electrodermal  response  (EDR)  ,  electromyography  (EMG);  peripheral  skin  temperature.  These  are  all  ‘TONIC’  measures  related  to  sympathetic  nervous  system  tone.  More  time  will  be  spent  on  heart  rate  variability,  which  measures  an  ‘OSCILLATING’  system  that  also  reflects  parasympathetic  activity.  There  will  be  some  emphasis  on  the  synergy  inherent  in  combining  BFB  training  with  the  NFB  training.  The  demonstrations  on  the  second  day  will  combine  the  EEG  assessment  with  a  psycho-­‐physiological  stress  assessment  that  measures  all  of  these  biofeedback  modalities.  We  emphasize  how  single  and  two  channel  assessments  can  be  done  to  do  a  reliability  check  on  19  channel  findings.  A  hands-­‐on  demonstration  will  show  how  single  channel  NFB  is  combined  with  BFB  and  with  learning  strategies  to  address  basic  disorders  such  as  ADHD  where  anxiety  can  be  an  important  comorbidity.  Children  with  Asperger’s  are  often  initially  diagnosed  as  having  ADHD;  thus  this  disorder,  that  has  ADHD  symptoms  plus  anxiety,  executive  functioning  problems,  and  major  social  difficulties  will  be  discussed.  The  emphasis  is  on  the  importance  of  accurate  diagnosis  and  being  able  to  address  both  the  ADHD  symptoms  plus  the  other  accompanying  symptoms  using  a  combination  of  NFB  +  BFB  +  learning  strategies.    As  time  allows  and  according  to  participants’  interest,  we  can  touch  upon  other  disorders  such  as  seizure  disorders,  different  types  of  depression,  Tourette’s  syndrome,  head  injury  (TBI)  and  pain  management.  However,  this  will  remain  an  ‘introductory’  workshop  and  we  cover  some  other  disorders  in  more  advanced  detail  in  another  workshop.    References  Thompson,  M.  &  Thompson,  L.  (2003).  The Neurofeedback Book: An Introduction to Basic Concepts in ATpplied Psychophysiology, Wheat  Ridge,  Colorado:  Association  for  Applied  Psychophysiology,

Fisch,  B.J.,  (1999).  Fisch and Spehlmann’s EEG Primer. New  York:  Elsevier.    

Hirshberg,  Laurence  M.,  Chiu,  Sufen,  Frazier,  Jean  A.,  (2005)  Emerging  Interventions,  Child  and Adolescent Psychiatric Clinics of North America, Vol  14,  Number  1.    

Devinsky,  Orin.,  Morrell,  Martha,  Vogt,  Brent,  (1995).  Contributions  of  Anterior  Cingulate    Cortex  to  behaviour,  Brain, 118, 279-­‐306.    

Thompson,  M.  &  Thompson,  L.  (2007).  Neurofeedback  for  Stress  Management.  In  P.   ���Lehrer,  Woolfolk  and  W.  Sime  (Eds.)  Principles and Practice of Stress Management, 3rd ���Edition. New  York:  Guilford  Publications.

Yucha,  C.,  Gilbert,  C.  (2004),  Evidence-based practice in biofeedback and neurofeedback. ���Wheat  Ridge,  Colorado:  Association  for  Applied  Psychophysiology.  

Page 35: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Thompson,  M.  &  Thompson,  L.,  (2009)  Chapter  14:  Treatment  of  Attention  Deficit   ���Disorders.  In  T.  Budzynski,  H.  Budzynski,  J.  Evans,  A.  Abarbanel,  (Eds.)  Introduction to Quantitative EEG and Neurofeedback: Advanced Theory and Applications (second edition). NY:  Academic  Press,  337-­‐364.  

Goals/Objectives    Carry  out  a  basic  psychophysiological  stress  assessment  and  identify  basic  psychophysiological  responses  to  stress  and  patterns  found  during  recovery  from  stress.    

Do  a  neurofeedback  training  combined  with  basic  biofeedback  training  session  with  a  volunteer.    

Integrate  metacognitive  strategies  (on-­‐task  training)  into  the  neurofeedback  training  session.    

Outline  some  characteristics  of  clients  who  would  require  a  19-­‐channel  EEG  assessment    and  understand  how  these  are  interpreted,  including  coherence  measures  and  LORETA.    

Define  the  term  „Brodmann  Areas‟  and  describe  their  general  location  on  the  cortex.    

List  potential  side  effects  of  NFB  and  of  BFB  with  an  emphasis  on  over-­‐breathing.    

Discuss  the  efficacy  guidelines  for  research  on  NFB  and  BFB  as  developed  by  the  joint    ISNR/AAPB  committee  and  state  for  which  two  disorders  NFB  has  the  highest  level  of    efficacy.    

Define  “z-­‐score”  and  explain  how  z-­‐scores  are  used  in  EEG  assessment  and  training.    

Define  “coherence”  and  describe  how  to  train  coherence  between  two  sites.    

Outline    Review  with  the  participants  the  highlights  from  Day  One  including:  basic  terms,  waves,  examples  of  child  then  adult  ADHD  EEGs.  Review  the  importance  of  collection  of  baseline  data  during  each  session  and  how  to  graph  session  statistics  to  show  learning  curves  within  and  across  sessions.  Emphasize  importance  of  tracking  client  progress  during  each  session  and  between  sessions  to  show  their  ability  for  self-­‐regulation.    

Review  EEG  artifacts.  Review  the  EEG  Instrument  including:  filters,  impedance,  differential  amplifier,  

optical  isolation,  etc.    

EEGs  of  seizure  disorders,  emphasis  on  cases  incorrectly  referred  by  physicians  as  ADHD  (Ethics  of  appropriate  practice  are  emphasized  here:  these  cases  must  be  sent  back  to  appropriate  physicians  for  reassessment  and  decisions  concerning  medical  treatment  of  the  seizures).      

Basic  terms  and  measurements  in  biofeedback:  Autonomic  Nervous  System  -­‐  Heart  Rate  &  Respiration  Rate;  Electrodermal  Response  (EDR)  –  used  to  be  called  the  Galvanic  Skin  Response  (GSR)    

Electromyography  (EMG);  Peripheral  Skin  Temperature.  These  are  all  ‘tonic’  measures  related  to  ‘sympathetic’  tone  versus  Heart  Rate  Variability  (HRV),  which  measures  an  ‘oscillating’  system  and  parasympathetic  activity.  Discuss,  briefly,  anabolic  and  catabolic  states.    

Hands-­‐on  demonstration  with  audience  participation  of  a  psychophysiological  stress  assessment  

Page 36: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

followed  by  demonstration  of  combined  operant  conditioning  of  both  NFB  (EEG)  and  BFB  modalities.  The  Demonstration  will  show  Heart  Rate  Variability  training  combined  with  peripheral  skin  temperature,  electrodermal,  and  electromyogram  (EMG)  feedback  with  the  emphasis  being  on  reduction  and  control  of  anxiety  and  tension  plus  how  to  generalize  the  work  done  in  a  session  to  everyday  life.    

Continue  with  demonstration  and  audience  participation,  showing  graphing  results  of  assessment  and  of  the  training  sessions.  Discuss  how  a  2-­‐channel  assessment  is  carried  out  and  when  it  is  appropriate,  with  patterns  found  in  depression  and/or  ADHD  plus  dyslexia  as  the  example(s).    

Discuss  how  NFB  ‘top-­‐down’  training  works  synergistically  with  HRV  ‘bottom-­‐up’  training,  providing  explanations  of  the  neuroanatomical  connections  that  support  the  combination.  Discuss  how  the  addition  during  training  sessions  of  metacognitive  strategies  assists  in  two  ways:  (1)  directing  the  neural  networks  being  affected  by  the  training  and  (2)  promoting  generalization  to  everyday  functioning.  Recognize  which  clients  require  a  19-­‐channel  EEG  assessment  and  understand  how  these  are  interpreted,  including  overview  of  what  a  brain  map  is  and  what  it  looks  like  and  what  a  LORETA  image  looks  like  and  means.    

Results  of  NFB  +  BFB  with  statistics  from  our  clinical  research  with  ADHD  and  with  Asperger’s  Syndrome.  Delineation  of  efficacy  levels  and  discussion  of  levels  of  efficacy  attributed  to  Neurofeedback  for  various  disorders.  Time  for  further  review  of  topics  covered,  as  desired  by  the  participants,  and  answering  of  participants’  questions.    

Financial  Interest:  Lynda  Thompson  is  co-­‐author  of  THE  A.D.D.  BOOK.  Michael  and  Lynda  are  co-­‐authors  of  SETTING  UP  FOR  CLINICAL  SUCCESS.  Michael  and  Lynda  Thompson  are  co-­‐authors  of  THE  NEUROFEEDBACK  BOOK.  It  is  likely  that  these  books  may  be  on  sale  at  the  meeting.  The  authors  will  state  their  interest  in  these  books  at  the  workshop.    

Pre  WS  4:  Electrocerebral  Abnormalities  in  EEG/QEEG:  Subclinical  Findings  Redefined  Treatment  Implications  and  Considerations  

(Lecture,  Demonstration)  Ron  Swatzyna,  PhD,  Tarnow  Center,  [email protected]  

Jay  Gunkelman,  QEEG-­‐T,  Brain  Science  International,  [email protected]      

Credits:  8    Level  of  Difficulty:  Intermediate    Abstract  Introduction  

The  utility  of  conventional  EEG  has  been  discounted  for  years  and  supported  by  the  old  adage  that  “you  do  not  treat  the  EEG.”  Although  this  misnomer  is  widely  accepted  in  the  field  of  neurology,  failure  to  properly  scrutinize  the  raw  EEG  can  greatly  inhibit  responsible  analysis  and  accurate  diagnosis.  We  have  found  that  EEG  combined  with  QEEG  analysis  provides  a  treasure  trove  of  supporting  evidence  of  underlying  pathology.  

The  overarching  reason  for  doing  an  EEG  is  to  find  evidence  of  organic  brain  abnormalities  (Hughes,  1996)  and  link  it  to  cerebral  dysfunction  (Daly  &  Pedley,  1997)  and  psychological  pathology  (Asokan,  Pareja  &  Niedermeyer  1987).  However,  certain  abnormal  EEGs  can  be  very  elusive.  Those  in  which  the  occurrence  is  intermittent  and/or  the  severity  very  mild,  miss  “clinical  threshold.”  Many  encephalographers  dismiss  these  "borderline"  rhythms  as  being  insignificant  when  in  fact  they  are  

Page 37: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

(Hughes,  1994).  

Decades  ago,  Ernst  Niedermeyer  found  that  there  was  insufficient  data  to  identify  the  value  of  “borderline”  EEG  rhythms  which  remain  controversial  to  this  day.  There  was  not  sufficient  proof.  William  Cowper,  a  great  and  widely  read  18th  century  English  poet  wrote  "The  absence  of  evidence  is  not  evidence  of  absence."  To  that  end,  Niedermeyer  started  the  collection  of  evidence  that  supports  the  importance  and  utility  of  EEG  and  QEEG  technology.  In  his  1987  paper  Niedermeyer  concluded:  “Modern  views  in  clinical  electroencephalography  tend  to  minimize  or  even  ignore  such  minor  

deviations.  Such  trends  can  be  detrimental  to  EEG  by  depriving  the  electroencephalographer  of  important  clinical-­‐electrical  correlations  and  withholding  valuable  information  form  the  referring  clinician”.  The  linking  of  abnormal  electrocerebral  activity  to  observable  pathology  has  come  of  age.  Methods:  

The  presenters  of  this  workshop  just  completed  a  case  series  study  of  over  200  clinical  patients.  Approximately  40  percent  of  their  EEG/qEEGs  were  identified  as  abnormal.  Conclusion:  

A  number  of  cases  will  be  presented  to  demonstrate  the  utility  and  value  of  EEG/QEEG  in  “evidence-­‐based”  diagnosis,  medication  selection,  developing  personalized  neuromodulation  treatment  protocols  and  at  times  suggesting  further  testing  which  may  be  critical  to  a  patient’s  health  and  wellbeing.  

 References  Asokan,  G.,  Paraja,  J.  &  Niedermeyer,  E.  (1987).  Temporal  Minor  Slow  and  Sharp  EEG  Activity  and  Cerebrovascular  Disorder.  Clinical Electroencephalography. 18  (4):  201-­‐210.

Daly,  D.D.  &  Pedley,  T.A.  (1997).  Clinical Practice of Clinical Electroencephalography, Second  Edition.  Lippincott-­‐Raven  Publishers,  Philadelphia.  Hughes,  J.R.  (1994).  EEG in Clinical Practice, Second  Edition.  Butterworth-­‐  Heinemann,  Boston.

Hughes,  J.R..  (1996).  A  review  of  the  usefulness  of  the  standard  EEG  in  psychiatry.  Clinical  Electroencephalography.  27:  35-­‐39.

Visser,  S.L.,  Hooijer,  C.,  Jonker,  C.,  Van  Tilburg,  W.  &  DeRijke,  W.  (1987).  Anterior  Temporal  Focal  Abnormalities  in  EEG  in  Normal  Aged  Subjects,  Correlations  With  Psychological  and  CT  Brain  Scan  Findings.  Electroenceph. Clin. Neurophysiol., 66:  1-­‐7.

Goals/Objectives  Explain  the  rationale  for  identifying  electrocerebral  abnormalities.

Identify  the  different  types  of  commonly  seen  abnormalities.  

Explain  the  link  between  ischemic  migraine  and  paroxysmal  discharges.    

Know  how  to  locate  the  source  of  paroxysms.  

Understand  how  medication  recommendations  can  be  based  on  the  EEG/QEEG.  

Know  when  to  refer  for  further  testing.  

Use  methods  taught  to  unravel  difficult  cases.  

Know  where  to  go  to  learn  more  about  cerebral  dysrhythmias.

Page 38: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Outline  Introduction  and  literature  review  (JG)

Case  1  (RS)    

Case  2  (RS)  

Case  3  (JG)  

Discussion  (RS  &  JG)    

Cautions  and  Clinical  implications  (RS)    

Q  &  A  (RS  &  JG)

Summary  (RS)

Financial  Interest:  Ron  Swatzyna  has  no  financial  interest  with  any  commercial  supporter,  product  or  service.  Jay  Gunkelman  is  a  stockholder  and  the  Chief  Science  Officer  for  Brain  Science  International,  Inc,  a  California  Corporation  which  provides  EEG/ERP  analysis  and  educational/mentoring  services.    I  am  a  stockholder  along  with  my  siblings  of  an  LLC  called  "FJJCSB"  with  which  we  manage  and  pay  our  elderly  parent's  living  expenses.    I  provide  independent  consultations  on  EEG  technical  issues  internationally.  He  is  on  various  non-­‐profit  boards,  including  the  Behavioral  Medicine  Research  and  Training  Foundation  and  the  Biofeedback  Society  of  California,  though  none  with  financial  interests  in  the  field.  We  will  not  directly  promote,  market  or  sell  any  service  or  product  at  the  workshop.      

Pre  WS  5:  Enhancing  Neurotherapy  by  Activating  the  Brainstem-­‐Cerebellum-­‐Midbrain-­‐Cortex  Pathways  Through  Primary-­‐Reflex  Movements  -­‐  Practical  Workshop  (Half  Day  PM  Workshop)  

                             (Experiential)  Suzanne  Day,  Master  Psych,  Wise  Choice  Educational  Services,  [email protected]  

 Credits:  4    Level  of  Difficulty:  Basic    Abstract  Neurologists  agree  that  the  lack  of  inhibition  (or  integration)  of  primary  reflexes,  and  consequently  lack  of  brain  development  results  in  developmental  delay  and  other  mental  problems.  Such  a  disruption  not  only  interferes  with  brainstem  function,  but  also  with  basal  ganglia-­‐cerebellum  networking  and  cortical  processing,  thus  affecting  learning,  movement  and  attention.  A  lesser  known  fact  is  that  these  primary  reflexes  can  be  re-­‐  activated  and  integrated  through  specific  rhythmic  movements,  “rebooting  the  brain’s  software”  and  giving  brain  maturity  a  “second  chance”.  Michael  Merzenich  argued  that,  “The  key  in  developing  exercises  is  to  give  the  brain  the  right  stimuli  in  the  right  order  with  the  right  timing  to  drive  plastic  change”.  Norman  Doidge  stated:  “...many  ‘circuits’  and  even  basic  reflexes  that  we  think  are  hardwired  are  not”.  

The  main  goal  of  this  practical  workshop  is  to  enable  neurofeedback  practitioners  to  learn  and  practice  some  of  these  vital  reflex  movements  so  that  they,  in  turn,  may  be  more  confident  in  include  this  intervention  to  their  usual  neurofeedback  training  practice.  The  first  section  of  this  workshop  introduces  the  neurology  of  the  primary  reflexes  based  in  the  brainstem,  the  functions  of  the  cerebellum,  as  well  as  some  postural  reflexes  based  in  the  midbrain.  

Page 39: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

For  the  past  20  years,  the  presenter  has  witnessed  significant  improvements  in  her  clients  as  she  has  implemented  these  movements  as  an  initial  intervention  before  adding  neurofeedback  training.  Case  studies  using  qEEG,  academic  performance,  and  continuous  performance  data  will  be  provided  in  order  to  support  the  validity  of  using  Primary-­‐Reflex  Rhythmic  Movements  as  a  viable,  adjunct  intervention  to  neurofeedback.  

References  Bloomberg,  Harald  M.D.  (2011)  Movements  that  Heal,  N.Y.  BookPal,  Australia  

Doidge,  Norman  (2007).  The  Brain  that  Changes  Itself,  New  York  :  Penguin  Group.  

Goddard,  Sally  (2002).  Reflexes,  Learning  and  Behavior,  Oregon  :  Fern  Ridge  Press.  

Goddard,  Sally  Blythe  (2009).  Attention,  Balance  and  Coordination,  The  A.B.C.  of  Learning  Success,  Chichester  :  Wiley-­‐Blackwell.  

Le  Winn,  E.B.  and  E.W.  Thomas  (1969)  Human  Neurological  Organization,  Charles  C.  Thomas  Publisher,  Springfield  Illinois.  

Masgutova,  Svetlana  and  Denis  Masgutov  (2002-­‐2009),  Archetype  Movements,  A  Blueprint  for  Movement  and  Cognitive  Development,  Dr.  Svetlana  Masgutova  Institute  (Polland).  

O’Dell,  NE  &  Cook,  PA  (1997)  Stopping  Hyperactivity.  A  new  solution.  New  York:  Avery  Publishing  Group,  Inc.  

Ratey,  JJ  &  Hagerman,  E,  (2009)  Spark!  How  Exercise  will  improve  the  Performance  of  your  Brain.  London:Quercus.  

Goals/Objectives  Understand  the  importance  of  the  integration  of  the  primary  reflexes  and  be  able  to  teach  some  the  movements  to  their  clients  in  order  to  better  integrate  these  reflexes  

Familiarize  themselves  to  the  sequential  development  of  the  central  nervous  system  in  term  of  functions.    Understand  the  benefits  of  the  integration  of  the  primary  reflexes  for  learning  and  attention  span.    Be  confident  with  the  sequence  of  the  movements  in  order  to  be  better  prepared  to  teach  them  to  their  clients.      Outline  90  minutes  on  the  neurology  of  the  primary  reflexes  and  the  need  for  their  integration.  More  detailed  explanation  of  4  main  primary  reflexes

150  minutes  of  experiential  learning  some  rhythmic  movements  (mainly  on  the  floor  )  

Financial   Interest:   I   do   not   have   any   financial   interest   not   relationship   with   commercial   or  manufacturer  that  is  discussed  in  this  presentation.      

                             Pre  WS  6:  Biological  Markers  in  Neurology  and  Psychiatry:  Guidelines  for  Applying  Event  Related  Potentials  for  Diagnosis  and  Treatment                                                                                            (Lecture,  Demonstration)  

Page 40: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

                                                     Juri  Kropotov,  PhD,  Institute  of  the  Human  Brain,  [email protected]    Credits:  8      Level  of  Difficulty:  Intermediate    Abstract  Multi-­‐channel  Event  Related  Potentials  (ERPs)  provide  the  only  neuroscience  method  that  allows  clinicians  to  assess  brain  functions  at  high  temporal  resolution.  ERPs  are  quite  independent  of  spontaneous  EEG  oscillations  –  indexes  of  cortical  self  regulation.  The  effect  size  in  ERP  discriminating  power  (patients  vs.  healthy)  is  much  higher  than  the  effect  size  in  quantitative  EEG.  The  workshop  is  intended  to  introduce  the  ERP  methodology  to  those  who  want  to  extend  their  clinical  practice.  The  methodology  of  recording  and  analysis  of  ERPs  will  be  presented.  The  focus  will  be  made  on  recently  emerged  tools  such  as  Independent  Component  Analysis,  sLORETA  imaging  and  HBI  reference  database  for  ERPs.  Application  of  ERP  for  diagnosing  different  psychiatric  conditions  such  as  ADHD,  dyslexia,  autism,  schizophrenia,  OCD,  depression,  stroke  and  TBI  will  be  discussed.  ERP  based  endophenotypes  of  these  conditions  as  well  as  application  of  biomarkers  for  constructing  protocols  of  medication  and  neurotherapy  of  different  neurological  and  psychiatric  conditions  will  be  presented.

References  Kropotov  J.D.  2009.  Quantitative  EEG,  event  related  potentials  and  neurotherapy.  Academic  Press,  Elsevier.

Kropotov  JD,  Ponomarev  VA,  Hollup  S,  Mueller  A.  (2011)  Dissociating  action  inhibition,  conflict  monitoring  and  sensory  mismatch  into  independent  components  of  event  related  potentials  in  GO/NOGO  task.  Neuroimage.  57(2):565-­‐575.

Goals/Objectives  Describe  biological  markers  (MRI,  PET,  EEG/ERP)  markers  of  psychiatric  and  neurological  conditions.    Learn  the  basics  of  ERP  recoding  and  analysis.  

Understand  the  differences  between  quantitative  EEG  and  ERPs.  

Explain  the  physiological  meaning  of  different  ERP  waveforms  such  as  MMN,  P3a,  P3b,  P3  NOGO  etc,    

Describe  independent  component  analysis  as  the  method  of  artifact  correction.  

Understand  independent  component  analysis  as  the  method  of  extracting  functionally  meaningful  components  from  a  collection  of  ERPs.  

Learn  the  discriminative  power  of  independent  components  of  ERPs  in  diagnosis  of  ADHD,  schizophrenia,  TBI,  OCD,  dyslexia.  

Be  able  to  practice  assessment  of  brain  dysfunction  by  means  of  comparing  individual  ERP  with  the  normative  data.      Outline  General  description  of  biological  markers  in  psychiatry  and  neurology  (0.5  hour)    

Methods  of  recording,  computation  and  analysis  of  ERPs  (0.5  hour)    

Page 41: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Extraction  independent  components  associated  with  different  psychological  operation  (0.5    hour).    

Association  of  ERPs  components  with  functioning  of  brain  systems  (0.5  hour).    

Reflection  of  dysfunctioning  of  brain  systems  in  ERPs  components  (1  hour).    

Recommendations  for  neurotherapy  and  medication  on  the  basis  of  ERP  assessment.  (1  hour)    

Demonstration  of  application  of  ERP  methodology  for  assessment  of  various  cases  (TBI,    ADHD,  OCD,  schizophrenia,  depression,  stroke,  anxiety,  autism).    

Financial  Interest:    I  am  a  co-­‐founder  of  HBImed,  a  Swiss  company.    

Pre  WS  7:  QEEG  and  Neurofeedback  using  the  BrainAvatar,  Live  Z-­‐Scores,  Live  sLORETA  Projection  (LLP),  and  Combined  Protocols    

(Lecture,  Demonstration)    Pre-­‐Conference  Sponsor  Workshop  

 Thomas  Collura,  PhD,  BrainMaster  Technologies,  Inc.,  [email protected]  

Mark  Smith,  MSW,  Private  Practice,  [email protected]  

Penijean  Rutter,  LMHC,  Stress  Therapy  Solutions,  [email protected]  

Ronald  Bonnstetter,  University  of  Nebraska,  [email protected]    

Credits:  ISNR  does  not  provide  CEUs  for  this  workshop.  CEUs  may  be  offered  by  the  Sponsor  directly.      Level  of  Difficulty:  Intermediate    Abstract    This  full-­‐day  workshop  will  present  a  combination  of  clinical  data  and  practical  demonstrations  showing  the  use  of  basic  and  advanced  protocols  that  combine  existing  and  emerging  methods.  The  emphasis  will  be  on  neurofeedback  that  is  simple,  easy  to  understand  and  use,  yet  addresses  brain  function  in  terms  of  connectivity  and  global  behavior.  Research  describing  brain  functional  hubs  and  functional  connectivity  will  be  presented,  with  data  relating  to  fMRI,  QEEG,  sLORETA,  and  behavioral  data.  Application  to  protocol  design  and  application  will  be  emphasized.  Clinical  case  study  results  will  be  shown,  using  QEEG,  behavioral,  and  clinical  outcomes  to  support  results.  Practical  design  and  use  of  protocols  will  be  described,  along  with  clinical  criteria  used  to  determine  optimal  designs  and  selections  of  protocol  sets.  Disorders  including  autism,  depression,  anxiety,  and  PTSD  will  be  discussed  as  specific  applications.  

No  CEs  or  CMEs  are  available  for  this  preconference  sponsor  workshop.  

References  Collura,TF,  Guan,  J.,  Tarrant,  J.,  Bailey,  J.,  and  Starr,  F.  (2010)  EEG  Biofeedback  Case  Studies  Using  Live  Z-­‐  Score  Training  (LZT)  and  a  Normative  Database  ,  Journal  of  Neurotherapy  14(2),  22-­‐46.  

Collura,  T.F.,  Thatcher,  R.W.,  Smith,  M.L.,  Lambos,  W.A.,  and  C.R.  Stark  (2009)  EEG  Biofeedback  training  using  Z-­‐scores  and  a  normative  database,  in:  (Evans,  W.,  Budzynski,  T.,  Budzynski,  H.,  and  A.  Arbanal,  eds)  Introduction  to  QEEG  and  Neurofeedback  :  Advanced  Theory  and  Applications,  Second  Edition.  New  York:  Elsevier.  

Page 42: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Festa,  E.K.,  Heindel,  W.C.,  Connors,  N.C.,  Hirshberg,  L.,  Ott,  B.R.  (2009)  Neurofeedback  training  enhances  the  efficiency  of  cortical  processing  in  normal  aging.  Cognitive  Neuroscience  Society  Meeting,  San  Francisco,  CA.  

Pascual-­‐Marqui,  R.D.  (2002).  Standardized  low  resolution  brain  electromagnetic  tomography  (sLORETA):  technical  details.  Methods  &  Findings  in  Experimental  &  Clinical  Pharmacology.  24D:5-­‐12  

Rutter,  P.J.  (2012)  Five  case  studies  using  live  z-­‐score  training  percent-­‐z  ok  on  individuals  diagnosed  with  PTSD.  Neuroconnections,  Spring  2012:  28-­‐30.  

Sherlin,  L.H.  (2009)  Diagnosing  and  treating  brain  function  through  the  use  of  low  resolution  brain  electromagnetic  tomography  (LORETA).  In:  T.  Budzynski,  H.  Budzynski,  J.  Evans,  and  A.  Abarbanal  (Eds.),  Quantitative  EEG  and  Neurofeedback.  pp.  83-­‐104.  

Smith,  M.L.  (2008)  A  Father  Finds  a  Solution:  Z-­‐Score  Training,  NeuroConnections,  April,  22-­‐25.  

Goals/Objectives  Design  protocols  using  live  z-­‐scores,  sLORETA,  conventional,  and  new  methods.

Conduct  neurofeedback  sessions  using  the  above  methods.  

Determine  the  best  protocols  based  upon  QEEG  clinical  evaluations.  

Assess  the  results  of  neurofeedback  using  the  above  protocols  using  QEEG  and  behavioral  data.  

Outline  Brain  physiology,  functional  hubs,  and  connectivity  (1  Hr)

QEEG  methods  to  assess  brain  function  and  connectivity  (1  Hr)  

Case  studies  showing  QEEG  pre  and  post  assessment  and  QEEG  data  (2  Hr)    

Design  of  Combined  Protocols  (1  Hr)    

Examples  of  advanced  protocols  and  their  clinical  sue  (2  Hr)  

Experiential  and  Demonstration  of  advanced  combined  protocols  (1  Hr)

Financial  Interest:  Dr.  Collura  has  a  financial  interest  in  BrainMaster  Technologies  Inc.    Part  of  the  workshop  will  describe  products  provided  by  BrainMaster  Technologies,  along  with  other  providers.  Mark  Smith  receives  no  financial  benefit  from  nor  do  I  have  any  financial  interest  in  BrainMaster  

Technologies,  Inc.  As  part  of  StressTherapy  Solutions,  Inc.  faculty,  Penijean  Rutter  has  no  financial  gain  or  interest  in  BrainMaster  Technologies.  Dr.  Bonnstetter  is  a  Senior  Vice  President  of  Target  Training  International.    ISNR  does  not  provide  CEUs  for  this  workshop.  CEUs  may  be  offered  by  the  Sponsor  directly.      

Page 43: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

ISNR 2012 Conference

Oral  Presentation  Abstracts    Please  note:  Authors  are  responsible  for  their  submissions.  The  Student  Scholarship  abstracts  are  included  in  this  section.    The  category  of  presentations  is  indicated  by  “C”  for  Clinical  Application  or  Clinical  Experience,  “R”  for  Research,  and  “T”  for  Theoretical.    The  abstracts,  learning  objective  and  agenda  are  presented  in  order  according  to  the  conference  schedule.  Where  possible,  the  oral  presentations  have  been  grouped  by  theme  to  facilitate  the  Continuing  Education  process.  Note  the  number  given  to  the  presentation(s).  Full  information  for  obtaining  CMEs,  American  Psychological  Association  (APA),  National  Board  of  Certified  Counselors  (NBCC),  American  Social  Work  Board  (ASWB),  and  California  Board  of  Behavioral  Sciences  credits  and  Biofeedback  Certification  Institute  of  America  (BCIA)  recertification  credits  is  in  your  conference  packet.    

Thursday, September 20, 2012

 Plenary  Room  1  

 

Potential  Neurofeedback  Side  Effects,  Adverse  Reactions,  &  Recommendations  for  Liability  Protection  (R,C)  

D.  Corydon  Hammond,  PhD,  University  of  Utah  School  of  Medicine,  [email protected]  

Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: .5  Abstract  This  presentation  will  review  previously  published  research  and  clinical  reports  of  side  effects  and  more  serious  adverse  reactions  to  neurofeedback  training.  Some  of  these  problems  have  included  seizures,  increased  anxiety  and  agitation,  panic  attacks,  manic-­‐like  behavior,  headaches,  nausea,  fatigue,  sleep  disturbance,  anger  and  irritability,  crying  and  emotional  lability,  incontinence,  enuresis,  an  increase  in  depression,  decline  in  cognitive  functioning  (decreased  concentration,  mental  fogginess),  increase  in  obsessional  rumination  and  OCD  symptoms,  increase  in  somatic  symptoms,  Tourette’s  tics  (physical  and  vocal),  slurred  speech,  loss  of  previous  symptomatic  improvements,  and  temporary  disorientation  or  dissociation.  Afterward  this  review  further  case  reports  will  be  presented,  followed  by  practical  recommendations  for  minimizing  adverse  effects,  informed  consent,  and  for  practitioner  liability  protection.  

References  Hammond,  D.  C.  (2010).  The  need  for  individualization  in  neurofeedback:  Heterogeneity  in  QEEG  patterns  associated  with  diagnoses  and  symptoms.  Applied  Psychophysiology  &  Biofeedback,  35(1),  31-­‐36.  Hammond,  D.  C.,  Gluck,  G.,  Bodenhamer-­‐Davis,  G.,  Stokes,  D.,  Harper,  S.  H.,  Trudeau,  D.,  Kirk,  L.,  

Page 44: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

&  Swingle,  P.  (in  press).  Guidelines  for  best  practices  in  neurofeedback  and  neurotherapy:  A  position  paper  of  the  International  Society  for  Neurofeedback  &  Research.  Journal  of  Neurotherapy.  

Hammond,  D.  C.,  Bodenhamer-­‐Davis,  G.,  Gluck,  G.,  Stokes,  D.,  Harper,  S.  H.,  Trudeau,  D.,  MacDonald,  M.,  Lunt,  J.,  &  Kirk,  L.  (2011).  Standards  of  practice  for  neurofeedback  and  neurotherapy:  A  position  paper  of  the  International  Society  for  Neurofeedback  &  Research.  Journal  of  Neurotherapy,  15,  54-­‐64.  

Hammond,  D.  C.,  &  Kirk  L.  (2008).  First,  do  no  harm:  Adverse  effects  and  the  need  for  practice  standards  in  neurofeedback.  Journal  of  Neurotherapy,  12(1),  79-­‐88.  Hammond,  D.  C.,  Stockdale,  S.,  Hoffman,  D.,  Ayers,  M.  E.,  &  Nash,  J.  (2001).  Adverse  reactions  and  potential  iatrogenic  effects  in  neurofeedback  training.  Journal  of  Neurotherapy,  4(4),  57-­‐69.  

Hammond,  D.  C.,  Walker,  J.,  Hoffman,  D.,  Lubar,  J.  F.,  Trudeau,  D.,  Gurnee,  R.,  &  Horvat,  J.  (2004).  Standards  for  the  use  of  QEEG  in  neurofeedback:  A  position  paper  of  the  International  Society  for  Neuronal  Regulation.  Journal  of  Neurotherapy,  8(1),  5-­‐26.  Lubar,  J.  F.,  Shabsin,  H.  S.,  Natelson,  S.  E.  et  al.  (1981).  EEG  operant  conditioning  in  intractible  epileptics.  Archives  of  Neurology,  38,  700-­‐704.  

Lubar,  J.  F.  &  Shouse,  M.  N.  (1976).  EEG  and  behavioral  changes  in  a  hyperactive  child  concurrent  with  training  of  the  sensorimotor  rhythm  (SMR):  A  preliminary  report.  Biofeedback  &  Self-­‐Regulation,  1(3),  293-­‐306.  Lubar,  J.  F.,  &  Shouse,  M.  N.  (1977).  Use  of  biofeedback  in  the  treatment  of  seizure  disorders  and  hyperactivity.  Advances  in  Clinical  Child  Psychology,  1,  204-­‐251.  Striefel,  S.  (2000).  The  role  of  aspirational  ethics  and  licensing  laws  in  the  practice  of  neurofeedback.  Journal  of  Neurotherapy,  4,  43-­‐55.  Striefel,  S.  (2003).  The  applications  of  ethics  and  law  in  daily  practice.  Chapter  in  M.  S.  Schwartz  &  F.  Andrasik  (Eds.),  Biofeedback:  A  practitioners  guide.  (3rd  Edition).  New  York:  Guilford,  pp.  835-­‐880.  Striefel,  S.  (2004).  Practice  guidelines  and  standards  for  practitioners  of  biofeedback  and  Applied  psychophysiological  services.  Wheat  Ridge,  CO:  Association  for  Applied  Psychophysiology  and  Biofeedback.  Todder,  D.,  Levine,  J.,  Dwolatzky,  T.,  &  Kaplan,  Z.  (2010).  Case  report:  impaired  memory  and  disorientation  induced  by  delta  band  down-­‐training  over  the  temporal  brain  regions  by  neurofeedback  treatment.  Journal  of  Neurotherapy,  14(2),  153-­‐155.  Whitsett,  S.  F.,  Lubar,  J.  F.,  Holder,  G.  S.,  &  Natelson,  S.  (1982).  A  double-­‐blind  investigation  of  the  relationship  between  seizure  activity  and  the  sleep  EEG  following  EEG  biofeedback  training.  Biofeedback  &  Self-­‐Regulation,  7,  193-­‐209.  

Learning  Objective  Understand  the  potential  for  side  effects  and  adverse  reactions  from  neurofeedback.  

Be  aware  of  several  steps  that  practitioners  can  take  for  liability  protection.  

Outline  Review  research  and  clinical  reports  of  both  side  effects  and  more  serious  adverse  reactions  that  have  occurred.    

Make  recommendations  for  liability  protection.  

Financial  Interest:  No  financial  interests.    

Enhancing  Neurotherapy  by  Means  of  Brainstem  Activation  Through  Primary-­‐Reflex  Rhythmic  Movements  (C)  

 Suzanne  Day,  Master  Psych,  Wise  Choice  Educational  Services,  [email protected]  

Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: .5

Page 45: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

 Abstract  Piaget  argued  that  the  “sensorimotor  stage”  is  the  first  stage  of  development,  facilitating  all  cognitive  functions.  Hebb  proposed  that  neural  structures,  which  he  termed  „cell  assemblies‟,  constituted  the  material  basis  of  mental  concepts.  Rita  Levi-­‐Montalcini  discovered  nerve  growth  factors  which  causes  axonal  growth.  Michael  Merzenich  argued  that,  “The  key  in  developing  exercises  is  to  give  the  brain  the  right  stimuli  in  the  right  order  with  the  right  timing  to  drive  plastic  change.”  Norman  Doidge  concludes:  “...many  ‘circuits’  and  even  basic  reflexes  that  we  think  are  hardwired  are  not.”  

Neurologists  agree  that  the  lack  of  inhibition  (or  integration)  of  primary  reflexes  and  lack  of  brain  development  are  the  causes  of  developmental  delays  and  other  mental  problems.  Such  a  disruption  not  only  interferes  with  the  brainstem  functions  but  also  with  the  basal  ganglia-­‐cerebellum  networking  and  cortical  processing,  thus  affecting  learning,  movement  and  attention.  What  is  less  known  is  how  to  re-­‐activate  these  reflexes  in  order  to  ease  their  integration  with  rhythmic  movements  that  gives  brain  maturitya“second  chance”,“re-­‐bootingthebrainsoftware”.  This  session  introduces  the  concept  of  a  “bottom-­‐up  approach”  (from  brainstem  to  midbrain  to  cortex).  

For  the  past  20  years,  the  author  has  witnessed  significant  improvements  in  her  clients  as  she  teaches  her  clients  these  movements  as  an  initial  intervention  before  adding  neurofeedback  training.  Case  studies  using  qEEG,  academic  performance  and  continuous  performance  data  will  be  provided  in  order  to  support  the  validity  of  using  primary-­‐reflex  rhythmic  movements  as  a  viable  adjunct  intervention  to  neurofeedback.  

References  Bloomberg,  Harald  M.D.  (2011)  Movements  that  Heal,  N.Y.  BookPal,  Australia  

Doidge,  Norman  (2007).  The  Brain  that  Changes  Itself,  New  York  :  Penguin  Group.  

Goddard,  Sally  (2002).  Reflexes,  Learning  and  Behavior,  Oregon  :  Fern  Ridge  Press.  

Goddard,  Sally  Blythe  (2009).  Attention,  Balance  and  Coordination,  The  A.B.C.  of  Learning  Success,  Chichester  :  Wiley-­‐Blackwell.  

Le  Winn,  E.B.  and  E.W.  Thomas  (1969)  Human  Neurological  Organization,  Charles  C.  Thomas  Publisher,  Springfield  Illinois.  

Masgutova,  Svetlana  and  Denis  Masgutov  (2002-­‐2009),  Archetype  Movements,  A  Blueprint  for  Movement  and  Cognitive  Development,  Dr.  Svetlana  Masgutova  Institute  (Polland).  

O’Dell,  NE  &  Cook,  PA  (1997)  Stopping  Hyperactivity.  A  new  solution.  New  York:  Avery  Publishing  Group,  Inc.  

Ratey,  JJ  &  Hagerman,  E,  (2009)  Spark!  How  Exercise  will  improve  the  Performance  of  your  Brain.  London:Quercus.  

Learning  Objective  Recognize  the  important  role  of  the  primary-­‐reflexes  rhythmic  movements  in  the  neurodevelopment  of  the  CNS  and  the  benefit  in  using  these  movements  as  part  of  a  neurotherapy  intervention  in  order  to  mature  the  brain.  

Outline  (3  min)  Introduction  

(5  min)  Profile  of  development    

Page 46: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

(8  min)  TLR,  ATNR,  STNR    (8  min)  4  Case  studies    

(2  min)  Example  of  movements    

(1  min)  Conclusion  

Financial  Interest:  I  do  not  have  any  significant  financial  interest  or  relationship  you  may  have  with  the  commercial  supporter(s)  or  manufacturer(s)  of  any  commercial  product  or  service  that  is  discussed  as  part  of  your  presentation.    

STUDENT  PRESENTATION    

Single  Trial  Time-­‐Frequency  Domain  Analysis  of  Error  Processing  in  Post-­‐Traumatic  Stress  Disorder  (R)  

Zachary  Clemans,  BS,  University  of  Louisville,  [email protected]  Ayman  El_baz,  PhD,  University  of  Louisville  

Christopher  Stewart,  MD,  University  of  Louisville  Estate  Sokhadze,  PhD,  University  of  Louisville  

 Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: .25  Abstract  Introduction:  Post-­‐traumatic  stress  disorder  (PTSD)  causes  deficiencies  in  the  error  

processing  system.  Electroencephalography  (EEG)  recordings  of  individuals  with  PTSD  are  often  used  to  study  error  monitoring  and  correction  deficits.  Traditionally,  many  error  trials  are  collected  during  a  task  with  EEG  systems  and  averaged  together  to  obtain  an  estimate  of  a  measure  known  as  an  event-­‐related  potential  (ERP).  Two  ERPs  are  often  used  to  study  error  processing,  those  being  the  error-­‐related  negativity  and  positivity  (ERN  and  Pe)  (Sokhadze  et  al.,  2008;  Yeung  &  Cohen,  2006).  We  have  developed  an  alternate  time-­‐frequency  domain  single-­‐  trial  analysis  technique  to  assist  in  analyzing  data  sets  with  low  numbers  of  error  trials  and  examining  the  contribution  that  single  error  trials  make  in  PTSD.  

Methods:  A  wavelet  transform  of  the  single  trial  information  collected  from  PTSD  subjects  (n  =  10)  and  controls  (n  =  10)  during  an  Eriksen’s  flanker  test  was  carried  out  using  a  custom  MATLAB  script.  A  measure  of  the  ERN  and  Pe  in  the  time-­‐frequency  domain  (time-­‐frequency  ERN  and  Pe)  was  found  in  each  single  trial  using  a  wavelet  transform,  and  statistical  analysis  was  carried  out  to  determine  if  any  significant  differences  between  groups  in  latency  or  amplitude  of  the  time-­‐frequency  measures  were  present.  Behavioral  analysis  was  also  conducted.  

Results:  It  was  found  that  the  PTSD  group  exhibited  attenuated  time-­‐frequency  ERN  and  Pe  amplitudes  as  compared  to  the  controls.  Specifically,  they  exhibited  less  negative  amplitudes  in  the  time-­‐frequency  ERN  and  less  positive  amplitudes  in  the  time-­‐frequency  Pe.  Behavioral  deficiencies  such  as  slower  reaction  time  and  lower  accuracy  of  responses  were  also  revealed  in  the  PTSD  group.  

Discussion:  The  averaging  process  to  obtain  the  ERN  and  Pe  can  be  difficult  if  not  enough  error  trials  are  present  in  the  data  collection  and  can  destroy  information  in  the  single  trial  recordings.  To  rectify  this,  we  developed  a  new  method  of  measuring  single  trial  error  trials  in  the  time-­‐frequency  domain  using  a  wavelet  analysis  technique.  It  was  shown  that  this  analysis  technique  was  able  to  differentiate  the  between  the  single  trial  errors  of  the  control  group  and  PTSD  group.  The  differences  

Page 47: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

in  the  time-­‐frequency  ERN  and  Pe  amplitudes  found  were  posited  to  occur  due  to  the  hypofunctionality  of  the  anterior  cingulate  cortex  in  the  PTSD  group  (Woodward  et  al.,  2006).  

Conclusion:  The  time-­‐frequency  domain  analysis  technique  can  be  used  to  find  single  trial  error  differences  in  the  time-­‐frequency  ERN  and  Pe  measure  of  a  control  and  PTSD  population.  

 References  Sokhadze,  E.,  et  al.  (2008)  Event-­‐Related  Potential  study  of  executive  dysfunctions  in  a  speeded  reaction  task  in  cocaine  addiction.  Journal  of  Neurotherapy,  12(4):  185-­‐204.  

Yeung,  N.  and  Cohen,  J.D.  (2006).  The  impact  of  cognitive  deficits  on  conflict  monitoring.  Predictable  dissociations  between  the  error-­‐related  negativity  and  N2.  Psychological  Sciences,  17(2):  164-­‐  171.  

Woodward,  S.H.,  et  al.  (2006)  Decreased  anterior  cingulate  volume  in  combat-­‐related  PTSD.  Biological  Psychiatry,  59(7):  582-­‐587.  

Learning  Objective  Learn  about  a  time-­‐frequency  domain  analysis  technique  that  is  used  in  quantifying  error  processing  in  PTSD.  

Outline  Introduction  –  4  min  Methods  -­‐  4  min  

Results  and  discussion  -­‐4  min  Questions  and  answers  –  3  min  

Financial  Interest:  No  financial  interests  for  any  authors.    

Investigation  of  Theta-­‐Beta  Neurofeedback  for  Adult  ADHD:    Session  Data  (R,C)  

Sarah  Wyckoff,  MA,  University  of  Tübingen,  [email protected]  Kerstin  Mayer,  MSc,  University  of  Tübingen  Ute  Strehl,  PhD,  University  of  Tübingen  

 Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: .5  Abstract  Objectives  

Attention–Deficit/Hyperactivity  Disorder  (ADHD)  is  one  of  the  most  common  disorders  of  childhood  and  persists  into  adulthood  for  approximately  5%  of  the  population  worldwide  (Polanczyk,  de  Lima,  Horta,  Biederman,  &  Rohde,  2007).  The  primary  symptoms  of  ADHD  include  inattentiveness,  impulsivity,  and  hyperactivity.  Analysis  of  resting  state  EEG  from  adults  with  ADHD  has  produced  a  variety  of  activity  patterns  in  power,  coherence,  and  asymmetry  measures,  as  well  as  the  typical  increases  in  theta/beta  ratios  seen  in  pediatric  populations  (Bresnahan,  Anderson,  &  Barry,  1999;  Bresnahan  &  Barry,  2002;  Clarke  et  al.,  2008a).  Neurofeedback  training  is  a  treatment  method  that  utilizes  operant  conditioning  to  reinforce  specific  EEG  activity.  In  a  recent  meta-­‐analysis,  a  large  effect  size  (ES)  was  found  for  neurofeedback  on  impulsivity  and  inattention  in  controlled  studies  and  pre-­‐  and  post-­‐designs  (Arns,  de  Ridder,  Strehl,  Breteler,  &  Coenen,  2009).  Studies  indicated  that  ADHD  children  are  able  to  self-­‐regulate  cortical  activity  (Drechsler  et  al.,  2007;  Leins  et  al.,  2006;  Strehl  et  al.,  2006),  which  lead  to  changes  in  spontaneous  EEG  activity  (Gevensleben  et  al.,  2009;  Monastra,  Monastra,  &  George,  2002).  However,  limited  research  has  investigated  the  efficacy  of  neurofeedback  as  a  treatment  for  adult  ADHD.  This  study  will  investigate  whether  adults  with  ADHD  

Page 48: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

are  able  to  learn  self-­‐regulation  of  theta-­‐beta  activity  and  if  mastery  of  this  skill  produces  changes  in  core  ADHD  symptomatology.  

Methods  

Adult  participants  that  met  DSM-­‐IV  criteria  for  ADHD  (combined,  inattentive,  or  hyperactive  type),  without  additional  serious  physical,  neurological,  or  psychiatric  disorders,  and  a  full  scale  IQ  >  80  agreed  to  receive  30  sessions  of  neurofeedback  training  in  which  theta  (4-­‐8Hz)  activity  was  inhibited  and  beta  (13-­‐21Hz)  activity  was  augmented  at  CZ  (referenced  to  A1,  ground  A2).  Each  session  consisted  of  a  2-­‐minute  baseline,  (3)  7-­‐minute  blocks  of  continuous  feedback  of  theta  and  beta  frequency  band  amplitudes,  and  (1)  7-­‐minute  transfer  block  in  which  amplitude  feedback  was  not  presented.  EEG  amplitudes  were  calculated  for  each  training  task  (theta,  beta),  condition  (baseline,  feedback,  transfer),  and  assessment  point  (sessions  2+3;  sessions  15+16,  session  29+30).  Self-­‐assessed  symptom  questionnaires  were  administered  pre/mid/post  training  and  were  correlated  to  training  performance.  

Results  

This  investigation  is  in  progress.  Session  performance  and  self-­‐assessed  questionnaire  data  will  be  examined  by  a  repeated  measure  ANOVA.  The  most  current  data  will  be  presented  at  the  time  of  the  conference.  

Conclusion  

Treatment  implications,  study  limitations,  and  future  directions  in  research  will  be  addressed.  

References  Arns,  M.,  de  Ridder,  S.,  Strehl,  U.,  Breteler,  M.,  &  Coenen,  A.  (2009).  Efficacy  of  neurofeedback  treatment  in  ADHD:  The  effects  on  inattention,  impulsivity  and  hyperactivity:  A  meta-­‐analysis.  Clin  EEG  Neuroscience,  40(3),  180-­‐189.  

Bresnahan,  S.  M.,  Anderson,  J.  W.,  &  Barry,  R.  J.  (1999).  Age-­‐related  changes  in  quantitative  EEG  in  attention-­‐deficit/hyperactivity  disorder.  Biol  Psychiatry,  46(12),  1690-­‐1697.  

Bresnahan,  S.  M.,  &  Barry,  R.  J.  (2002).  Specificity  of  Quantitative  EEG  analysis  in  adults  with  attention  deficit  hyperactivity  disorder.  Psychiatry  Res,  112(2),  133-­‐144.  

Clarke,  A.  R.,  Barry,  R.  J.,  Heaven,  P.  C.,  McCarthy,  R.,  Selikowitz,  M.,  &  Bryne,  M.K.  (2008a).  EEG  coherence  in  adults  with  attention-­‐deficit/hyperactivity  disorder.  International  Journal  of  Psychophysiology,  76(1),  35-­‐40.  

Clarke,  A.  R.,  Barry,  R.  J.,  Heaven,  P.  C.,  McCarthy,  R.,  Seilkowitz,  M.,  &  Bryne,  M.K.  (2008b).  EEG  in  adults  with  attention-­‐deficit/hyperactivity  disorder.  Int  J  Psychophysiology,  70(3),  176-­‐183.  

Drechsler,  R.,  Straub,  M.,  Doehnert,  M.,  Heinrich,  H.,  Steinhausen,  H.C.,  &  Brandeis,  D.  (2007).  Controlled  evaluation  of  a  neurofeedback  training  of  slow  cortical  potentials  in  children  with  attention  deficit/hyperactivity  disorder  (ADHD).  Behav.  Brain  Funct.  3,  (35).  

Gevensleben,  H.,  Holl,  B.,  Albrecht,  B.,  Schlamp,  D.,  Kratz,  O.,  Studer,  P.,  Wangler,  S.  Rothernberger,  A.,  Moll,  G.  H.,  &  Heinrich,  H.  (2009).  Distinct  EEG  effects  related  to  neurofeedback  training  in  children  with  ADHD:  A  randomized  controlled  trial.  International  Journal  of  Psychophysiology,  74,  149-­‐157.  

Leins,  U.,  Hinterberger,  T.,  Kaller,  S.,  Schober,  F.,  Weber,  C.,  &  Strehl,  U.  (2006).  Neurofeedback  for  children  with  ADHD:  A  comparison  of  SCP-­‐  and  theta/beta-­‐protocols.  Prax.  Kinderpsychol.  

Page 49: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Kinderpsychiatr.  55,  384–407.  

Monastra,  V.J.,  Monastra,  D.M.,  &  George,  S.  (2002).  The  effects  of  stimulant  therapy,  EEG  biofeedback,  and  parenting  style  on  the  primary  symptoms  of  attention-­‐deficit/hyperactivity  disorder.  Appl.  Psychophysiol.  Biofeedback,  27,  231–249.  

Polanczyk,  G.,  de  Lima,  M.  S.,  Horta,  B.  L.,  Biederman,  J.,  &  Rohde,  L.  A.  (2007).  The  worldwide  prevalence  of  ADHD:  A  systematic  review  and  metaregression  analysis.  Am  J  Psychiatry,  164  (6):  942–48.  

Strehl,  U.,  Leins,  U.,  Goth,  G.,  Klinger,  C.,  Hinterberger,  T.,  &  Birbaumer,  N.  (2006).  Self-­‐regulation  of  slow  cortical  potentials:  A  new  treatment  for  children  with  attention-­‐deficit/hyperactivity  disorder.  Pediatrics  118,  e1530–e1540.  

Learning  Objective  Understand  and  report  protocol  and  disorder  specific  EEG  and  behavioral  outcomes  extracted  from  a  30-­‐session  course  of  theta-­‐beta  neurofeedback  for  adult  ADHD  

Assess  if  adult  ADHD  patients  are  able  to  learn  to  self-­‐regulate  neurofeedback  parameters  and  determine  if  mastery  of  this  skill  correlates  with  core  symptom  changes.  

Outline  Background  on  EEG  and  session  data  findings  in  adult  ADHD;  description  of  neurofeedback  protocol/collection  methods:  (15  min)  Study  population  demographics,  EEG/session  data  processing  methods,  and  results:  (10  min)  Discussion  of  treatment  implications,  study  limitations,  and  future  directions:  (5  min)  

Financial  Interest:  I  have  no  significant  financial  interest  or  relationship  with  the  commercial  supporter(s)  or  manufacturer(s)  of  any  commercial  product  or  service  that  is  discussed  as  part  of  my  presentation.    

Training  Performance  and  Effects  of  Slow  Cortical  Potential  Neurofeedback  for  Adult  Attention-­‐Deficit/Hyperactivity  Disorder  

(R,C)  

Kerstin  Mayer,  MSc,  University  of  Tübingen,  kerstin.mayer@uni-­‐tuebingen.de  

Sarah  Wyckoff,  MA,  University  of  Tübingen  

Ute  Strehl,  PhD,  University  of  Tübingen    

Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: .5  Abstract  Objectives  

Attention  deficit/hyperactivity  disorder  (ADHD)  is  characterized  by  symptoms  of  inattention,  impulsivity,  and  hyperactivity  (Faraone,  Biederman,  &  Mick,  2006).  Compared  to  ADHD  in  children,  only  a  few  studies  have  investigated  ADHD  in  an  adult  population,  and  even  less  have  investigated  new  forms  of  treatment  such  as  neurofeedback.  Neurofeedback  has  been  applied  effectively  in  various  areas,  especially  in  the  treatment  of  children  with  ADHD  (Arns,  De  Ridder,  Strehl,  Breteler,  &  Coenen,  2009;  Strehl  et  al.,  2006).  This  study  is  designed  to  assess  whether  adults  with  ADHD  are  

Page 50: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

able  to  learn  self-­‐regulation  with  Slow  Cortical  Potentials  (SCP)  neurofeedback  training  and  whether  this  is  correlated  with  changes  in  symptomatology.  

Methods  

Participants  received  30  sessions  of  SCP  neurofeedback  training  at  Cz  (referenced  to  A1,  ground  A2)  in  which  participants  had  to  move  the  feedback  object  in  the  cued  direction  up  for  an  activation  (negativation)  and  down  for  deactivation  (positivation)  20  times  each.  Each  session  consisted  of  four  8min  blocks  SCP-­‐training,  in  which  the  third  block  was  always  a  transfer  block  without  visual  feedback.  For  analysis  the  training  performance  was  assessed  by  time  over  and  under  the  midline  and  differentiation  between  activation  and  deactivation  trials  (see:  Mayer,  Wyckoff,  Schulz,  &  Strehl  (2012)  for  a  full  description).  Self-­‐assessed  symptom  questionnaires  were  administered  before,  after  15  sessions,  and  post  training  and  were  correlated  to  training  performance.  

Results  

This  investigation  is  in  progress.  Training  data  and  correlations  between  training  performance  and  symptom  reduction  will  be  presented  at  the  time  of  the  conference.  Conclusion.  SCP  neurofeedback  training  has  not  been  previously  conducted  for  adult  ADHD  and  may  yield  valuable  findings  about  an  alternative  treatment.  Treatment  implications,  study  limitations,  and  future  directions  in  research  will  be  addressed.  

References  Arns,  M.,  De  Ridder,  S.,  Strehl,  U.,  Breteler,  M.,  &  Coenen,  A.  (2009).  Efficacy  of  neurofeedback  treatment  in  ADHD:  the  effects  on  inattention,  impulsivity  and  hyperactivity:  a  meta-­‐analysis.  Clinical  EEG  and  neuroscience  official  journal  of  the  EEG  and  Clinical  Neuroscience  Society  ENCS,  40(3),  180-­‐189.  Retrieved  from  http://www.ncbi.nlm.nih.gov/pubmed/19715181  

Faraone,  S.  V.,  Biederman,  J.,  &  Mick,  E.  (2006).  The  age-­‐dependent  decline  of  attention  deficit  hyperactivity  disorder:  a  meta-­‐analysis  of  follow-­‐up  studies.  Psychological  medicine,  36(2),  159-­‐65.  doi:10.1017/S003329170500471X  

Mayer,  K.,  Wyckoff,  S.  N.,  Schulz,  U.,  &  Strehl,  U.  (2012).  Neurofeedback  for  Adult  Attention-­‐  Deficit/Hyperactivity  Disorder:  Investigation  of  Slow  Cortical  Potential  Neurofeedback—  Preliminary  Results.  Journal  of  Neurotherapy,  16(1),  37-­‐45.  Routledge.  doi:10.1080/10874208.2012.650113  

Strehl,  U.,  Leins,  U.,  Goth,  G.,  Klinger,  C.,  Hinterberger,  T.,  &  Birbaumer,  N.  (2006).  Self-­‐  regulation  of  slow  cortical  potentials:  a  new  treatment  for  children  with  attention-­‐  deficit/hyperactivity  disorder.  Pediatrics,  118(5),  e1530.  Am  Acad  Pediatrics.  doi:10.1542/peds.2005-­‐2478  

Learning  Objective  Understand  the  prospects  of  slow  cortical  potential  neurofeedback  in  the  treatment  of  adult  ADHD.  

Outline  Neurofeedback  for  Adult  Attention-­‐deficit  /  Hyperactivity  Disorder  (ADHD):  Investigation  of  Slow  Cortical  Potential  Feedback  (20min  of  background  and  result  presentation,  10min  of  discussion  of  treatment  implications,  study  limitations,  and  future  directions)  

Financial  Interest:  No  financial  interests  for  any  authors.    

INVITED  PRESENTATION    

Video  Games,  Learning  to  Learn  and  Brain  Plasticity  (R)  C.  Shawn  Green,  PhD,  University  of  Wisconsin,  [email protected]  

Page 51: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

 Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: 1  Abstract  As  video  games  have  grown  in  popularity,  so  too  has  scientific  interest  in  the  behavioral  and  neural  consequences  of  video  game  play  (Bavelier,  Green,  &  Dye,  2010;  Greenfield,  2009).  However,  although  popular  culture  tends  to  lump  all  video  games  into  a  single  unitary  construct  (i.e.  Are  “video  games”  bad  for  children?),  the  scientific  evidence  strongly  indicates  that  because  different  games/game  genres  have  different  characteristics  and  processing  demands,  they,  not  surprisingly,  have  different  effects  on  the  brain  and  behavior.  The  effects  of  online  role-­‐playing  games  (Martin  &  Steinkuehler,  2010)  differ  from  the  effects  of  real-­‐time  strategy  games  (Basak,  Boot,  Voss,  &  Kramer,  2008),  which  differ  from  the  effects  of  pro-­‐social  games  (Greitemeyer  &  Osswald,  2010).  

My  own  research  has  focused  primarily  on  so-­‐called  “action”  video  games  (Bavelier,  Green,  Pouget,  &  Schrater,  2012;  Green  &  Bavelier,  2012;  Spence  &  Feng,  2010).  Over  the  past  decade,  action  video  games  have  been  shown  to  enhance  a  wide  variety  of  basic  visual,  visual  attentional,  and  visuo-­‐motor  abilities.  Action  video  game  experience  leads  to  better  visual  resolution  and  sensitivity,  more  effective  allocation  of  attentional  resources,  an  enhancement  in  the  ability  to  process  visual  information  over  time,  better  perceptual  decision  making,  increased  visual  capacity,  and  speeds  responses  to  visual  stimuli,  more  effect  task-­‐switching,  and  less  susceptibility  to  distraction  (Chisholm,  Hickey,  Theeuwes,  &  Kingstone,  2010;  Dye,  Green,  &  Bavelier,  2009;  Green  &  Bavelier,  2003,  2006,  2007;  Green,  Pouget,  &  Bavelier,  2010;  Green,  Sugarman,  Medford,  Klobusicky,  &  Bavelier,  2012;  R.  Li,  Polat,  Makous,  &  Bavelier,  2009).  

These  findings  stand  in  contrast  with  much  of  the  literature  on  cognitive  training,  wherein  subjects  show  improvements  on  the  trained  task,  but  demonstrate  no  transfer  of  learning  to  even  seemingly  highly  similar  tasks.  For  example,  subjects  trained  to  differentiate  between  a  field  of  dots  moving  +3°  and  -­‐3°  from  vertical  will  quickly  move  from  chance  to  ceiling  levels  of  performance.  However,  when  they  are  then  asked  to  differentiate  between  the  same  dots  moving  +3°  and  -­‐3°  from  horizontal,  their  performance  returns  to  chance  levels  (i.e.  they  have  to  learn  the  new  task  essentially  from  scratch).  Such  specificity  has  been  a  major  obstacle  for  those  who  have  sought  to  use  behavioral  training  interventions  to  treat  real-­‐world  visual  deficits  (such  as  in  amblyopia  –  or  “lazy  eye”)  and  thus,  the  highly  general  learning  brought  on  by  action  video  game  training  has  lead  to  a  host  of  new  interventions  to  address  such  real-­‐world  practical  problems  (R.  W.  Li,  Ngo,  Nguyen,  &  Levi,  2011;  McKinley,  McIntire,  &  Funke,  2011;  Schlickum,  Hedman,  Enochsson,  Kjellin,  &  Fellander-­‐Tsai,  2009).  

The  current  focus  of  my  lab  is  on  the  question  of  “why”  action  video  games  result  in  such  broad  enhancements  in  cognitive  and  perceptual  function  with  the  roles  of  arousal,  motivation,  and  reward  being  of  particular  interest.  However,  the  overarching  hypothesis  being  tested  is  that  rather  than  teaching  myriad  individual  skills  (i.e.  one  for  each  laboratory  task  that  has  been  examined),  what  action  video  games  “do”  is  teach  individuals  to  quickly  and  efficiently  perform  new  tasks  –  or  in  other  words,  to  “learn  to  learn”  (Bavelier  et  al,  2012;  Green  et  al,  2010).  

References  Basak,  C.,  Boot,  W.  R.,  Voss,  M.  W.,  &  Kramer,  A.  F.  (2008).  Can  training  in  a  real-­‐time  strategy  video  game  attenuate  cognitive  decline  in  older  adults.  Psychology  and  Aging,  23(4),  765-­‐777.  

Bavelier,  D.,  Green,  C.  S.,  &  Dye,  M.  W.  G.  (2010).  Children,  wired  -­‐  for  better  and  for  worse.  Neuron,  67,  692-­‐701.  

Bavelier,  D.,  Green,  C.  S.,  Pouget,  A.,  &  Schrater,  P.  (2012).  Brain  plasticity  through  the  life  span:  Learning  to  learn  and  action  video  games.  Annual  Review  of  Neuroscience,  35,  391-­‐416.  

Chisholm,  J.  D.,  Hickey,  C.,  Theeuwes,  J.,  &  Kingstone,  A.  (2010).  Reduced  attentional  capture  in  action  

Page 52: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

video  game  players.  Atten  Percept  Psychophys,  72(3),  667-­‐671.  

Dye,  M.  W.  G.,  Green,  C.  S.,  &  Bavelier,  D.  (2009).  Increasing  speed  of  processing  with  action  video  games.  Current  Directions  in  Psychological  Science,  18,  321-­‐326.  

Green,  C.  S.,  &  Bavelier,  D.  (2003).  Action  video  game  modifies  visual  selective  attention.  Nature,  423(6939),  534-­‐537.  

Green,  C.  S.,  &  Bavelier,  D.  (2006).  Enumeration  versus  multiple  object  tracking:  The  case  of  action  video  game  players.  Cognition,  101(1),  217-­‐245.  

Green,  C.  S.,  &  Bavelier,  D.  (2007).  Action-­‐video-­‐game  experience  alters  the  spatial  resolution  of  vision.  Psychological  Science,  18(1),  88-­‐94.  

Green,  C.  S.,  &  Bavelier,  D.  (2012).  Learning,  attentional  control  and  action  video  games.  Current  Biology,  In  press.  

Green,  C.  S.,  Pouget,  A.,  &  Bavelier,  D.  (2010).  Improved  probabilistic  inference  as  a  general  mechanism  for  learning  with  action  video  games.  Current  Biology,  23,  1573-­‐1579.  

Green,  C.  S.,  Sugarman,  M.  A.,  Medford,  K.,  Klobusicky,  E.,  &  Bavelier,  D.  (2012).  The  effect  of  action  video  games  on  task  switching.  Computers  in  Human  Behavior,  12,  984-­‐994.  

Greenfield,  P.  M.  (2009).  Technology  and  informal  education:  What  is  taught,  what  is  learned.  Science,  323,  69-­‐71.  

Greitemeyer,  T.,  &  Osswald,  S.  (2010).  Effects  of  prosocial  video  games  on  prosocial  behavior.  J  Pers  Soc  Psychol,  98(2),  211-­‐221.  doi:  10.1037/a0016997  

Li,  R.,  Polat,  U.,  Makous,  W.,  &  Bavelier,  D.  (2009).  Enhancing  the  contrast  sensitivity  function  through  action  video  game  training.  Nature  Neuroscience,  12(5),  549-­‐551.  

Li,  R.  W.,  Ngo,  C.,  Nguyen,  J.,  &  Levi,  D.  M.  (2011).  Video-­‐game  play  induces  plasticity  in  the  visual  system  of  adults  with  amblyopia.  PLoS  Biol,  9(8),  e1001135.  

Martin,  C.,  &  Steinkuehler,  C.  (2010).  Collective  information  literacy  in  massively  multiplayer  online  games.  eLearning  and  Digital  Media,  7(4),  355-­‐365.  

McKinley,  R.  A.,  McIntire,  L.  K.,  &  Funke,  M.  A.  (2011).  Operator  selection  for  unmanned  aerial  systems:  comparing  video  game  players  and  pilots.  Aviat  Space  Environ  Med,  82(6),  635-­‐642.  

Schlickum,  M.  K.,  Hedman,  L.,  Enochsson,  L.,  Kjellin,  A.,  &  Fellander-­‐Tsai,  L.  (2009).  Systematic  video  game  training  in  surgical  novices  improves  performance  in  virtual  reality  endoscopic  surgical  simulators:  a  prospective  randomized  study.  World  J  Surg,  33(11),  2360-­‐2367.  

Spence,  I.,  &  Feng,  J.  (2010).  Video  games  and  spatial  cognition.  Review  of  General  Psychology,  14(2),  92-­‐104.  

Learning  Objective  Understand  the  neural  and  behavioral  effects  of  action  video  game  experience.    Outline  Not  all  games  are  created  equal    

Page 53: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Effects  of  action  video  games  –behavioral

Effects  of  action  video  games  -­‐  neural    

Contrast  with  typical  learning  environments    

Action  video  games  and  learning  to  learn

Financial  Interest:  One  patent  pending  for  action-­‐video  game  based  on  mathematics  training.  Bavelier,  D.,  Halberda,  J.,  Green,  CS,  and  Pouget,  A.  (2010).  Game  Design  for  Number-­‐sense  Training  via  Action-­‐Packed  Video  Games.  Invention  Disclosure  on  file  with  the  U.  of  Rochester,  patent  pending."    

KEYNOTE  PRESENTATION    

Effects  of  Non-­‐Pharmacological  Pain  Treatment  on  Brain  States  (R,C)  

Mark  Jensen,  PhD,  University  of  Washington,  [email protected]    Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: 1  Abstract  Chronic  pain  is  a  significant  problem  for  many  individuals,  and  available  treatments  are  often  inadequate.  Non-­‐invasive  neuromodulatory  treatments,  such  as  neurofeedback  (NF),  have  the  potential  to  benefit  individuals  with  chronic  pain.  However,  little  research  has  examined  the  neurophysiological  mechanisms  of  these  treatments.  Knowledge  concerning  these  mechanisms  is  critical  for  knowing  how  to  develop  effective  interventions.  To  address  this  knowledge  gap,  31  individuals  with  spinal  cord  injury  and  chronic  pain  were  given  single  20-­‐minute  sessions  of  four  neuromodulation  procedures  (meditation,  hypnosis,  a  NF  protocol  reinforcing  alpha  and  inhibiting  beta  activity  at  T3  and  T4,  and  transcranial  direct  current  stimulation  (tDCS)),  as  well  as  a  single  session  of  sham  tDCS,  in  random  order.  EEG  activity  and  pain  intensity  were  assessed  just  before  and  just  after  each  session.  We  predicted  that  (1)  the  procedures  would  result  in  significant  decreases  in  pain,  (2)  the  procedures  would  result  in  changes  in  EEG  activity,  and  (3)  pre-­‐  to  post-­‐session  changes  in  EEG  activity  would  be  associated  with  decreases  in  pain  intensity.  Exploratory  analyses  allowed  us  to  determine  whether:  (1)  any  pain-­‐related  changes  in  EEG  activity  found  were  global  (i.e.,  similar  across  many  electrode  sites)  or  site-­‐specific;  (2)  the  different  procedures  had  similar  or  different  effects  on  EEG  (indicating  similar  or  different  mechanisms,  respectively),  and  (3)  pre-­‐  session  EEG  activity  predicts  treatment  response.  All  of  the  procedures  had  immediate  effects  of  EEG  activity,  two  of  the  procedures  (hypnosis  and  mediation)  had  significant  immediate  effects  on  pain  intensity,  and  a  third  (tDCS)  showed  a  non-­‐significant  trend  to  decrease  pain  for  participants  in  neuropathic  pain.  However,  (1)  each  procedure  had  different  effects  on  EEG,  (2)  other  than  some  indication  that  any  change  in  T3  activity  was  associated  with  improvements  in  pain,  the  bandwidths  and  electrode  sites  associated  with  treatment  response  were  not  consistent  across  the  procedures,  (3)  the  patterns  associated  with  outcome  and  changes  in  pain  differed  as  a  function  of  pain  type,  and  (4)  different  pre-­‐session  EEG  patterns  were  was  associated  with  treatment  response  different  for  each  procedure.  The  findings  indicate  that  (1)  different  neuromodulatory  treatments  have  different  mechanisms  for  producing  pain  relief  and  (2)  there  is  no  clear  EEG  activity  pattern  associated  with  greater  pain  relief  –  these  treatments  may  work  because  they  produce  a  change  in  activity  rather  than  a  change  in  specific  bandwidths  at  specific  sites.  Given  that  NF  training  is  known  to  alter  EEG  activity,  the  findings  support  NF  as  a  potential  treatment  of  refractory  pain.  If  the  current  findings  were  to  replicate  in  additional  samples,  they  suggest  that  NF  clinicians  treating  pain  should:  (1)  consider  including  the  T3  site  in  training;  (2)  tailor  treatment  to  each  patient’s  pain  condition;  and  (3)  think  in  terms  of  interrupting/changing  activity  patterns  (for  pain  treatment),  perhaps  using  training  

Page 54: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

protocols  that  improve  co-­‐morbid  symptoms  (e.g.,  cognitive  performance,  mood,  sleep  quality)  to  maximize  treatment  benefits.  

References  Jensen,  M.P.,  Grierson,  C.,  Tracy-­‐Smith,  V.,  Bacigalupi,  S.C.  Othmer,  S.  (2007).  Neurofeedback  treatment  for  pain  associated  with  Complex  Regional  Pain  Syndrome  Type  I:  A  case  series.  Journal  of  Neurotherapy,  11,  45-­‐53.  

Jensen,  M.P.,  Hakimian,  S.,  Sherlin,  L.H.,  &  Fregni,  F.  (2008).  New  insights  into  non-­‐pharmacological  and  noninvasive  neuromodulatory  approaches  for  the  treatment  of  pain.  Journal  of  Pain,  9,  193-­‐199.  

Jensen,  M.P.,  Sherlin,  L.H.,  Hakimian,  S.,  &  Fregni,  F.  (2009).  Neuromodulatory  approaches  for  chronic  pain  management:  Research  findings  and  clinical  implications.  Journal  of  Neurotherapy,  13,  196-­‐213..  Jensen,  M.P.  (2010).  A  neuropsychological  model  of  pain:  Research  and  clinical  implications.  Journal  of  Pain,  11,  2-­‐12.  

Tan,  G.,  Rintala,  D.H.,  Jensen,  M.P.,  Richards,  J.S.,  Holmes,  S.A.,  Parachuri,  R.,  Lashgari-­‐Saegh,  S.,  &  Price,  L.R.  (2011).  Efficacy  of  cranial  electrotherapy  stimulation  for  neuropathic  pain  following  spinal  cord  injury:  A  multi-­‐site  randomized  controlled  trial  with  a  secondary  6-­‐month  open-­‐label  phase.  Journal  of  Spinal  Cord  Medicine,  34,  285-­‐296.  

Tan,  G.,  Jensen,  M.J.,  Dao,  T.,  Stoelb,  B.,  &  Gunkelman  J.  (2010).  Nonpharmacological  neuromodulatory  approaches  to  pain  management.  In  R.  Kerns  &  M.  Ebert  (Eds),  Behavioral  and  psychopharmacological  therapeutics  in  pain  management  (pp.  201-­‐213).  Cambridge,  UK:  Cambridge  University  Press.  

Learning  Objective  Understand  the  associations  between  pain  and  EEG  bandwidth  activity  and  the  implications  of  this  for  providing  neurofeedback  pain  treatment.  

Outline  

Present  the  results  of  a  study  examining  the  impact  of  neuromodulatory  pain  treatment  procedures  on  spinal  cord-­‐related  pain  and  EEG  activity,  and  the  associations  between  EEG  activity  and  pain  intensity.    

Discuss  the  clinical  implications  of  the  findings.  

Financial  Interest:  Mark  P.  Jensen  has  received  consulting  fees  from  Endo  Phamaceuticals,  RTI  Health  Solutions,  Covidien,  Bristol-­‐Myers  Squibb,  Schwartz  Biosciences,  Depomed,  Eli  Lilly,  Pfizer,  Merck,  and  Smith  &  Nephew  within  the  past  36  months.    

Thursday, September 20, 2012

 Plenary  Room  2  

 

QEEG  Subtype  Based  Neurofeedback  Effects  on  IQ,  Attention,  Socialization,  Communication  and  Diffuse  Tensor  Imaging  in  

Students  with  Autistic  Spectrum  Disorder  (R,C)  

Page 55: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Michael  Linden,  PhD,  Attention  Learning  Center,  [email protected]  Jaime  Pineda,  PhD,  University  of  California  San  Diego  

 Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: .5  Abstract  This  paper  will  describe  the  use  of  QEEG  to  discover  which  subtype  of  Autistic  (6)  and  Aspergers  (2)  to  assist  in  diagnosis  and  to  guide  neurofeedback  protocol  selection.  Pre-­‐  and  post-­‐neurofeedback  QEEG  and  CPT  case  study  data  and  research  studies  will  be  explained  for  Autistic  and  Aspergers  patients.  Previous  QEEG  and  neurofeedback  research  with  ASD  will  be  reviewed.  

The  authors  will  present  new  data  from  their  multi-­‐site  study  of  the  effects  of  Mu  based  and  QEEG  Guided  Neurofeedback  on  IQ,  socialization,  attention,  communication  and  brain  imaging  (QEEG,  Diffuse  Tensor  Imaging/DTI).  The  study  consisted  of  both  ASD  and  typical  students  aged  8-­‐15  who  underwent  45  sessions  of  either  Mu  Suppression  or  QEEG  Guided  Neurofeedback.  Dependent  variables  of  TOVA,  WASI  IQ,  behavior  rating  scales,  QEEG  and  DTI  were  administered  and  analyzed  pre-­‐post  neurofeedback.  

To  date  the  post  DTI  results  show  greater  brain  functioning  improvement  in  ASD  vs  typical  students  who  completed  the  course  of  Neurofeedback.  

References  Amen,  Daniel.  Healing  ADD.  (2001).  

Chabot,  R.,  &  Serfontein,  G.  (1996).  QEEG  profiles  of  children  with  ADHD.  Biological  Psychiatry,  40,  951-­‐963.  

Coben,  Robert  &  Linden,  Michael  (2010).  Neurofeedback  for  Autistic  Spectrum  Disorder:  A  Review  of  the  Literature.  Journal  of  Applied  Psychophysiology  and  Biofeedback.  

Linden,  Habib,  &  Radojevic  (1996).  A  controlled  study  of  the  effects  of  EEG  biofeedback  on  cognition  &  behavior  of  children  with  ADD.  Biofeedback  &  Self-­‐Regulation,  21,  35-­‐49.  

Linden,  M.  (2005).  QEEG  Patterns  of  Students  with  Autistic  Spectrum  Disorder.  Presented  at  the  AAPB  Meeting,  Austin,  TX.  

Neubrander,  Linden,  Gunkelman  &  Kerson.  (2011)QEEG-­‐Guided  Neurofeedback:  New  Brain-­‐Based  Individualized  Evaluation  and  Treatment  for  Autism.  Autism  Science  Digest,  Issue  3.  

Learning  Objective  Understand  different  QEEG  subtypes  patterns  in  those  with  Autism  and  Asperger  and  review  new  research  on  QEEG  Guided  and  Mirror  Neuron  Neurofeedback  effects  with  ASD  on  behavior,  communication,  socialization  and  brain  imaging.  

Outline  EEG  and  QEEG  Subtype  patterns  with  ADD  and  ASD.  15  min    

QEEG  Guided  Amplitude  and  Coherence  Neurofeedback.  15  min  

New  research  by  the  presenters  in  the  areas  of  ASD.  30  min  

Financial  Interest:  Dr.  Linden  has  worked  part-­‐time  for  BSI  who  provided  the  QEEG  reporting  service  at  a  very  reduced  fee.  No  conflicts  of  interest  for  Dr.  Pineda.    

Page 56: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

STUDENT  PRESENTATION    

The  Dynamics  of  Brain  Networks  Involved  in  Deep  Relaxation  Regulation  Guided  by  EEG  Neurofeedback  (R,C)  

Sivan  Kinreich,  MA,  Tel  Aviv  University,  [email protected]  Iana  Podlipsky,  MSc,  Tel  Aviv  University  Nathan  Intrator,  PhD,  Tel  Aviv  University  

Talma  Hendler,  MD,  PhD,  Tel  Aviv  University    

Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: .25  Abstract  Introduction:  A  common  protocol  of  EEG-­‐NF  training  aims  to  guide  people  via  a  closed-­‐  loop  operation  shifting  from  high-­‐amplitude  of  alpha  (8-­‐14Hz)  to  high-­‐  amplitude  of  theta  (4-­‐7  Hz)  oscillations  resulting  in  greater  theta/alpha  ratio  (T/A)1.  The  induction  of  such  a  shift  in  EEG  oscillations  has  been  shown  to  be  useful  in  reaching  a  state  of  relaxation2.  However,  the  clinical  implication  of  this  practice  in  psychiatry  remained  elusive  and  considered  of  relatively  low  therapeutic  yield3,4,  possibly  due  to  its  wide  spread  cortical  representations.  The  current  project  aims  to  use  simultaneous  acquisition  of  Functional  Magnetic  Resonance  Imaging  (fMRI)  and  EEG  in  order  to  unfold  in  high  spatial  and  temporal  resolutions,  respectively  the  neural  modulations  of  the  mental  state  of  relaxation  induced  via  T/A  EEG-­‐NF.  We  used  signal  characteristics  and  temporal  modulation  of  theta  and  alpha  for  revealing  the  dynamics  of  brain  network  related  to  the  relaxation  process.  Three  main  networks  were  revealed  including  cortical  and  deep  limbic  brain  structures.  The  first  neural  network  involved  motor  inhibition,  the  second  in  managing  relaxation  and  the  third  in  relaxation  stabilization.  We  presume  that  better  understanding  of  the  neural  mechanism  underlying  the  T/A  NF  process  might  help  to  optimize  the  neurofeedback  procedure  at  the  individual  level  and  thus  will  increase  its  specificity  per  mental  condition.  

Methods:  50  healthy  subjects  participated  in  a  pre-­‐scanning  15  minutes  training  with  eyes  closed  to  apply  EEG-­‐neurofeedback  for  increasing  the  ratio  of  theta  to  alpha.  In  the  3T  MRI  scanner  subjects  followed  a  similar  EEG  neurofeedback  protocol  twice.  BrainVoyager,  EEG-­‐Lab  and  at-­‐home  software  packages  were  used  for  preprocessing  and  analyzing  the  raw  brain  signals  in  correspondence  to  induced  mental  states.  

Analysis  &  Results:  A  data  driven  algorithm  implemented  in  Matlab  (Mathworks,  Framingham,  MA)  employed  the  criteria  of  T/A  power  increase  above  1  ("crossover")  for  more  than  a  third  of  the  scan  to  classify  each  subject's  scan  as  a  responder  to  the  NF  procedure,  or  otherwise  as  a  non-­‐responder.  General  linear  model  for  the  whole  brain  using  the  modulating  power  of  theta,  alpha  and  the  theta/alpha  ratio  as  predictors  was  calculated.  Defined  contrast  between  responders  and  non  responders  for  each  of  the  bands  revealed  three  main  networks  involved  in  the  mental  dynamics  of  deep  relaxation.  The  first  revealed  the  motor  inhibition  network  (i.e.  bi  lateral  cerebellum,  right  BA47  and  left  caudate).  The  second  is  related  to  relaxation  management  (i.e.  dorsal  medial  prefrontal,  Thalamus  and  putamen)  and  the  third  related  to  the  relaxation  stabilization  (Insula  and  ventral  anterior  cingulate).  

Conclusions:  Simultaneous  fMRI  during  EEG  feedback  via  alpha/theta  ratio  modulation  probed  activation  variation  in  brain  networks  related  to  the  mental  process  of  deep  relaxation.  The  use  of  the  modulation  and  characteristics  of  the  bands  used  in  the  NF  procedure  enabled  identification  of  the  brain  networks  involved  in  deep  relaxation.  Altogether  our  results  clearly  demonstrate  the  advantage  in  combining  EEG  NF  and  fMRI  for  unfolding  the  brain  mechanism  underlying  mental  states.  Methodological  and  practical  aspects  of  such  approach  will  be  further  discussed.  

Page 57: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

References  Vogel,  G.,  D.  Foulkes,  et  al.  (1966),  'Ego  functions  and  dreaming  during  sleep  onset',  Arch  Gen  Psychiatry,  vol.  14,  no.  3,  pp.  238-­‐248.

Peniston,  E.G.,  Marrinan  D.A.,  Deming  W.A.,  Kulkosky  P.J.  (1993),  'EEG  alpha-­‐  theta  brainwave  synchronization  in  Vietnam  theater  veterans  with  combat-­‐related  post-­‐traumatic  stress  disorder  and  alcohol  abuse',  Advances  in  Medical  Psychotherapy,  vol.  6,  pp.  37–50.

Gevensleben  H.,  Holl  B.,  Albrecht  B.,  et  al.  (2009),  'Is  neurofeedback  an  efficacious  treatment  for  ADHD?  A  randomized  controlled  clinical  trial',  J  Child  Psychol  Psychiatry,  vol.  50,  no  7,  pp.780–789.

Lantz,  D.  L.  and  M.  B.  Sterman  (1988),  'Neuropsychological  assessment  of  subjects  with  uncontrolled  epilepsy:  effects  of  EEG  feedback  training',  Epilepsia,  vol.  29,  no  2,  pp.  163-­‐171.

Learning  Objective  Understand  the  research  setup  of  simultaneous  fMRI/EEG  neurofeedback.    

Learn  about  the  brain  mechanisms  underlying  the  mental  state  of  relaxation  guided  by  EEG  neurofeedback.    

Improve  EEG  protocol  based  on  new  discoveries  related  to  brain  networks.

Outline  Understand  the  research  setup  of  simultaneous  fMRI/EEG  neurofeedback.  

Learn  about  the  brain  mechanisms  underlying  the  mental  state  of  relaxation  guided  by  EEG  neurofeedback.    

Improve  EEG  protocol  based  on  new  discoveries  related  to  brain  networks.

Financial  Interest:  No  financial  conflicts  of  interest.    

Biomarkers  of  Neurological  and  Psychiatric  Dysfunctions:  Clinical  Applications  for  Diagnosis  and  Treatment  (R,C)  

Juri  Kropotov,  PhD,  Institute  of  the  Human  Brain,  [email protected]    Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: 1  Abstract  In  the  first  part  the  paper  reviews  studies  of  event  related  potentials  (ERPs)  in  the  normal  and  diseased  brain.  It  is  shown  that  the  ERP  negative  and  positive  fluctuations  such  as  N1,  mismatch  negativity  (MMN)  and  N2  waves  as  well  as  various  P300  waves  could  be  considered  as  biomarkers  of  neurological  and  psychiatric  conditions.  Indeed  these  indexes  information  flow  in  the  cortex  1)  have  high  test-­‐retest  reliability;  2)  consistently  reflect  experimental  manipulations  in  stimulus  sensory  and  emotional  modality,  probability,  behavioral  meaning  etc.  3)  are  associated  with  executive  functions  such  as  action  selection,  action  preparation,  action  suppression  and  monitoring  conflict  between  competing  actions.  The  ERP  waves  discriminate  a  selected  psychiatric  condition  from  healthy  population  with  quite  large  effect  sizes.  However,  majority  of  ERP  waves  appear  to  be  not  single  entities  but  can  be  further  decomposed  into  separate  components  with  distinct  functional  meanings.  In  the  same  time,  each  psychiatric  disease  appears  to  be  characterized  by  multiple  dysfunctions  in  complex  brain  systems,  and  consequently  must  be  indexed  by  multiple  ERP  components  obtained  in  different  behavioral  paradigms.  .  The  second  part  of  the  paper  deals  with  

Page 58: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

new  methodological  approaches  emerged  recently  to  overcome  these  hurdles  in  ERP  clinical  application.  They  are:  1)  ICA-­‐based  ERP  decomposition  into  separate  functionally  meaningful  components,  2)  non-­‐parametric  methods  for  mapping  generators  of  ERP  components  into  3D  tomograms;  3)  appearance  of  ERP  normative  database.  The  third  part  of  the  paper  presents  our  own  studies  on  application  of  the  Human  Brain  Index  (HBI)  database  for  discriminating  different  psychiatric  groups  from  healthy  controls  as  well  for  designing  protocols  of  treatment  the  corresponding  brain  dysfunctions.  

References  Kropotov  J.D.  2009.  Quantitative  EEG,  event  related  potentials  and  neurotherapy.  Academic  Press,  Elsevier.  

Kropotov  JD,  Ponomarev  VA,  Hollup  S,  Mueller  A.  (2011)  Dissociating  action  inhibition,  conflict  monitoring  and  sensory  mismatch  into  independent  components  of  event  related  potentials  in  GO/NOGO  task.  Neuroimage.  57(2):565-­‐575.  

Learning  Objective  learn  about  biological  markers  (MRI,  fMRI,  PET,  EEG,  QEEG,  ERP)  markers  of  psychiatric  and  neurological  conditions.  The  focus  will  be  made  on  recently  emerged  methodology  of  decomposing  Event  Related  Potentials  (ERPs)  into  functionally  meaningful  components.    

The  participant  will  learn  about  new  studies  of  applying  this  new  methodology  for  diagnosis  and  treatment  of  different  psychiatric  conditions  (such  as  ADHD,  schizophrenia,  OCD  and  depression).  

Outline  Overview  of  biomarkers  in  psychiatry  and  neurology:  MRI,  fMRI,  QEEG,  ERPs  (30  min)  

Description  of  a  new  methodology  for  decomposing  ERP  waves  into  functionally  meaningful  components.  Application  of  this  methodology  for  diagnosis  and  treatment  of  different  psychiatric  conditions  (such  as  ADHD,  schizophrenia,  OCD,  depression).  (30  min)  

Financial  Interest:  I  am  a  co-­‐founder  of  HBImed,  a  Swiss  company.      

Friday, September 21, 2012

 Plenary  Room  1  

 

The  Enhancement  of  Neurofeedback  with  a  Low  Cost  and  Easy-­‐To-­‐Use  NeuroSky  EEG  Biofeedback  Training  Device:  The  

MindReflector  Protocols  (R,C)  

Thomas  Fink,  PhD,  Acorn  Health  Associates,  PC,  [email protected]    Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: .5  Abstract  A  wireless,  dry,  inexpensive  and  easy  to  use  EEG  home  training  device,  adapted  from  the  NeuroSky  MindWave  headset,  will  be  presented,  along  with  proof  of  concept  data,  Beta  testing  reactions  and  preliminary  efficacy  findings.  Attention  will  be  given  to  the  development  of  the  device  and  its  use  of  

Page 59: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

four  power-­‐training  protocols  developed  from  the  available  NeuroSky  bandwidth  platform.  Training  and  control  screens  will  be  illustrated.  Finally,  the  benefits  and  limitations  of  the  device  will  be  discussed,  with  focus  on  its  ease  of  use  vs.  the  temporal,  bandwidth  and  site  restrictions  of  the  training  device.

References  Anderson, R. (2012). Why cognitive enhancement is in your future (and your past), The Atlantic, Retrieved from http://m.theatlantic.com/technology/archive/2012/02/why- cognitive-enhancement-is-in-your-future-and-your-past/252566/

Crowley, K, Sliney, A, Pitt, I, & Murphy, D. (2010). Evaluating a brain-computer interface to categorise human emotional response, paper presented at the 10th IEEE International Conference on Advanced Learning Technologies, pp 276 – 278.

Hammond, D.C., Bodenhamer-Davis, G., Gluck, G., Stokes, D., Harper, S.H., Trudeau, D., MacDonald, M., Lunt, J., & Kirk, L. (2011). Standards of practice for Neurofeedback and Neurotherapy: A position paper of the International Society for Neurofeedback and Research. Journal of Neurotherapy, 15:54 – 64.

Hammond, D.C. & Kirk, L. (2007). Negative effects and the need for standards of practice in Neurofeedback. Biofeedback, 35:4, 139 – 145.

John, E.R. (2002).  The  neurophysics  of  consciousness.  Brain  Research  Reviews  39  (1):1-­‐  28.

Luo, A & Sullivan, T. (2010). A user-friendly SSVEP-based brain-computer interface using a time-domain classifier. In Journal of Neural Engineering, 021010, pp. 1 – 10. Retrieved from: http://www.neurosky.com/Documents/Document.pdf?DocumentID=20214030-b4ec- 424e-9948-7633ca602743.

NeuroSky. (2009). Brain Wave Signal (EEG) of NeuroSky, Inc. Retrieved from:

http://www.neurosky.com/Documents/Document.pdf?DocumentID=77eee738-c25c- 4d63-b278-1035cfa1de92.

NeuroSky. (2009). NeuroSky’s eSense Meters and detection of mental state. Retired from: http://www.neurosky.com/Documents/Document.pdf?DocumentID=809fde40- 0fa6-4ab6-b7ad-2ec27027e4eb.

Tyszka, J.M., Kennedy, D.P, & Adolphs, R. & Paul, L.K. (2011). Intact bilateral resting- state networks in the absence of the corpus callosum, Journal of Neuroscience, October 19:31 (42), 15154 – 15162.

Learning  Objective  Describe  the  NeuroSky  MindWave  headset,  including  its  current  availability  for  EEG  games  (e.g.,  The  Force  Trainer)  and  its  underlying  EEG  bandwidth  platform.    

Understand  the  MindReflector  adaptation  of  the  MindWave  headset,  including  the  development  of  four  potentially  relevant  training  protocols.    

Explain  the  potential  benefits,  as  well  as  limitations,  of  the  current  MindReflector  system.    

Describe  proof  of  concept  data  demonstrating  the  use  of  the  MindReflector  device  to  train    changes  in  relevant  bandwidth  amplitudes.    

Discuss  responses  and  reactions  during  Beta  testing  with  the  four  MindReflector  protocols.    

Page 60: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Outline  the  usefulness  and  limitations  of  home  training  for  an  active  Neurofeedback  practice.  

Outline  Description  of  the  development  of  a  home  training  Neurofeedback  system  from  the  NeuroSky  MindWave  headset  –  15  minutes

Discussion  of  proof  of  concept  data,  beta  testing  responses  and  a  preliminary  efficacy  study  using  the  MindReflector  protocols  –  15  minutes

Financial  Interest:  The  author  has  a  business  relationship  with  NeuroSky,  the  manufacturer  of  the  EEG  headset,  and  he  is  a  50%  partner  in  MindReflector  Technologies,  LLC,  the  developer  of  the  EEG  training  software  that  is  used  with  the  NeuroSky  MindWave  headset.    Functional  Disconnections  in  Trauma  and  Abuse:  From  Victimized  

Children  to  Murderers  on  Death  Row  (R,C)  

David  Kaiser,  PhD,  Sterman-­‐Kaiser  Imaging  Laboratory,  Inc.,  [email protected]  

Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: .5  Abstract  Identification  of  the  default  mode  network  (resting,  inward  focus)  and  the  role  of  the  posterior  cingulate  in  this  network  has  been  one  of  the  major  accomplishments  of  functional  neuroimaging.  Posterior  cingulate  cortex  (PCC)  disturbances  are  observed  in  fMRI  recordings  of  individuals  suffering  PTSD,  and  similar  PCC  disconnections  are  seen  in  individuals  who  have  a  history  of  sexual,  emotional,  and/or  physical  abuse.  Twelve  death  row  inmates  with  a  history  of  abuse  and  witnessing  violence  were  shown  to  have  PCC  disconnections  in  their  EEG,  along  with  primary  auditory  and  right  dorsolateral  cortex  (Brodmann  area  44R),  an  area  involved  in  monitoring  intentions  and  emotions,  among  other  functions.  We  find  the  same  disconnections  in  children  with  chronic  history  of  abuse.  The  role  of  the  posterior  cingulate  in  emotional  functioning  will  be  discussed  in  this  context,  and  two  cases  where  children  underwent  successful  neurotherapy  to  treat  their  issues  will  be  discussed  along  with  its  implementation  in  real-­‐time  in  Brainmaster  Avatar.

References  Gatzke-­‐Kopp  LM,  Raine  A,  Buchsbaum  M,  &  LaCasse  L  (2001).  Temporal  lobe  deficits  in  murderers:  EEG  findings  undetected  by  PET.  Journal  of  Neuropsychiatry  &  Clinical  Neuroscience,  13,  486-­‐91.

Kaiser  DA  &  Meckley  A  (in  press).  Brain  function  and  neurotherapy  of  sexual  abuse.  In  RE  Longo,  J  Bergman,  K  Creeden,  &  Prescott  DS  Prescott  (eds),  Current Perspectives & Applications in Neurobiology: Working with Young Persons who are Victims and Perpetrators of Sexual Abuse. Fitchburg,  MA:  NEARI  Press.

Kaiser  DA  (2008).  Functional  connectivity  and  aging.  J Neurotherapy, 12 (2/3). ���Kaiser  DA  (2005).  School  Shootings,  High  School  Size,  and  Neurobiological  Considerations.  In

Evans  JR  (Ed).,  Forensic Applications of QEEG and Neurotherapy (pp  103-­‐117).  NY:  Haworth.  Weinstein  R  (2009).  QEEG  in  death  penalty  cases:  a  search  for  markers.  Presented  June  4,

Quebec  City,  Society  for  the  Advancement  of  Brain  Analysis.

Weinstein  J  &  Weinstein  R  (2002).  Neuropsychology  of  Child  Neglect.  Presented  May  28,  Saba  Island  Netherland  Antilles,  Society  for  the  Advancement  of  Brain  Analysis.

Page 61: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Weinstein  R  &  Sterman  MB  (2002).  Comparison  of  SKIL  QEEG  and  neuropsychological  evaluation  of  death  row  inmates.  Presented  May  30,  Saba  Island  Netherland  Antilles,  Society  for  the  Advancement  of  Brain  Analysis.

Learning  Objective  Describe  how  the  default  mode  network  and  the  posterior  cingulate  cortex's  role  in  it.  Describe  EEG  correlates  of  physical,  sexual,  and/or  emotional  abuse  Describe  the  relationship  between  a  history  of  abuse  and  perpetrators  of  abuse.

Outline  Effects  of  abuse  on  brain  function  (15  min)  Significance  of  Functional  disconnection  of  limbic  and  auditory  cortices  (15  min)

Financial  Interest:  Uses  SKIL  analysis  software,  which  I  co-­‐own.    

INVITED  PRESENTATION    Self-­‐Regulation  in  the  Treatment  of  Chronic  Heart  Failure  (R,C)  

Christine  Moravec,  PhD,  Cleveland  Clinic,  [email protected]  Dana  Schneeberger,  PhD,  Cleveland  Clinic  Elizabeth  Grossman,  BA,  Cleveland  Clinic  Alison  Reynard,  PhD,  Cleveland  Clinic  Gregory  Bolwell,  BA,  Cleveland  Clinic  Michael  McGee,  PhD,  Cleveland  Clinic  

 Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: 1  Abstract  Biofeedback  training  can  be  used  to  control  autonomic  input  to  the  cardiovascular  system.  It  has  been  well-­‐established  in  our  laboratory  and  others  that  heart  failure  is  accompanied  by  hyper-­‐activation  of  the  sympathetic  nervous  system,  and  decreasing  sympathetic  input  with  a  beta  blocker  or  left  ventricular  assist  device  improves  clinical  status  and  also  reverses  cellular  and  molecular  alterations  associated  with  heart  failure.  We  hypothesized  that  heart  failure  patients  could  be  trained  with  biofeedback  and  that  this  method  of  regulating  the  sympathetic  nervous  system  would  also  produce  myocardial  remodeling  in  the  direction  of  recovery.  In  order  to  test  this  hypothesis,  end-­‐stage  heart  failure  patients  at  the  Cleveland  Clinic  were  enrolled  in  a  research  study  which  included  an  initial  assessment  of  psychophysiologic  reactivity  to  mental  stress,  six  sessions  of  biofeedback-­‐mediated  stress  management  training  with  a  certified  biofeedback  therapist,  and  a  final  assessment  of  psychophysiologic  reactivity  to  mental  stress.  Quality  of  life  was  also  evaluated  before  and  after  biofeedback  training  using  the  SF-­‐36  and  Kansas  City  Cardiomyopathy  questionnaires.  Plasma  norepinephrine  and  six  minute  walk  distance  were  measured  before  and  after  biofeedback  training,  as  a  marker  of  clinical  status.  After  biofeedback  training,  at  the  time  of  heart  transplantation,  explanted  hearts  were  transported  to  the  laboratory  to  study  the  heart  failure  phenotype.  Left  ventricular  trabecular  muscles  were  dissected  and  studied  in  a  tissue  bath,  measuring  the  inotropic  response  to  sympathetic  stimulation.  A  single  dose  of  isoproterenol,  a  synthetic  norepinephrine  analogue,  was  used  as  an  index  of  sympathetic  nervous  system  recovery.  Beta  adrenergic  receptors  on  myocardial  cell  membranes  were  also  measured,  using  radioligand  binding  and  Scatchard  analysis.  Preliminary  data  suggest  that  biofeedback  produces  remodeling  of  the  heart  failure  phenotype,  in  the  direction  of  normal,  similar  to  what  we  have  previously  shown  in  hearts  supported  with  a  left  ventricular  assist  device.

References  Bernardi  L,  Porta  C,  Spicuzza  L,  Bellwon  J,  Spadacini  G,  Frey  AW,  Yeung  LYC,  Sanderson  JE,  Pedretti  R,  

Page 62: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Tramarin  R.  Slow  breathing  increases  arterial  baroreflex  sensitivity  in  patients  with  chronic  heart  failure.  Circulation  105:143-­‐  145,  2002.  

McKee  MG,  Moravec  CS.  Biofeedback  in  the  treatment  of  heart  failure.  Cleve  Clin  J  Med  77(3):S56-­‐S59,  2010.  

Moravec  CS.  Biofeedback  therapy  in  cardiovascular  disease:  rationale  and  research  overview.  Cleve  Clin  J  Med  75(2):  S35-­‐s38,  2008.  

Moser  DK,  Dracup  K,  Woo  MA,  Stevenson  LW.  Voluntary  control  of  vascular  tone  by  using  skin-­‐temperature  biofeedback-­‐relaxation  in  patients  with  advanced  heart  failure.  Alt  Ther  in  Health  &  Med  3:51-­‐60,  1997.  

Swanson  KS,  Gevirtz  RN,  Brown  M,  Spira  J,  Guarneri  E,  Stoletniy  L.  The  effect  of  biofeedback  on  function  in  patients  with  heart  failure.  Appl  Psychophysiol  Biofeedback  34(2):  71-­‐91,  2009.  

Learning  Objective  Explain  the  role  of  the  autonomic  nervous  system  in  regulating  cardiovascular  function.  

Discuss  the  regulation  of  the  sympathetic  nervous  system  in  patients  with  heart  failure.

Clarify  the  potential  for  parasympathetic  regulation  in  heart  failure.  

Describe  the  role  of  biofeedback  in  treating  patients  with  heart  failure.

Outline  Ten  minutes  –  introduction  to  cardiovascular  disease    

Ten  minutes  –  role  of  the  autonomic  nervous  system  in  cardiovascular  disease    

Ten  minutes  –  rationale  and  design  for  using  biofeedback  in  patients  with  cardiovascular  disease    

Ten  minutes  –  results  of  biofeedback  studies  in  patients  with  cardiovascular  disease    

Ten  minutes  –  summary,  conclusions,  implications  of  our  studies

Financial  Interest:  No  financial  interests.    

STUDENT  PRESENTATION    

Investigation  of  Unspecific  Placebo  Effects  in  Slow  Cortical  Potential  Neurofeedback  for  Adult  Attention-­‐Deficit/Hyperactivity  

Disorder  (ADHD)  (R,C)  

Kerstin  Mayer,  MSc,  University  of  Tubingen,  kerstin.mayer@uni-­‐tuebingen.de  Sarah  Wyckoff,  MA,  University  of  Tubingen  Ute  Strehl,  PhD,  University  of  Tubingen  

 Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: .25  Abstract  Objectives:  

Page 63: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Neurofeedback  has  been  applied  effectively  in  various  areas,  especially  in  the  treatment  of  children  with  ADHD  (Arns,  De  Ridder,  Strehl,  Breteler,  &  Coenen,  2009).  However,  unspecific  treatment  effects  like  expectations  and  patient-­‐therapist  relationship  may  have  an  influence  on  therapy  outcome.  These  unspecific  effects  are  usually  hard  to  control  for  without  placebo  or  waiting  groups  (Gevensleben,  Rothenberger,  Moll,  &  Heinrich,  2012).  This  study  investigates  Slow  Cortical  Potentials  (SCP)  neurofeedback  training  for  adult  attention  deficit/hyperactivity  disorder  (ADHD)  and  its  possible  unspecific  effects  assessed  via  a  self-­‐rated  placebo  questionnaire  (Vollmann,  Hautzinger,  &  Strehl,  2009).  

Methods:  

Twenty  adult  participants  with  ADHD  received  30  sessions  of  SCP  neurofeedback  training  at  Cz  (referenced  to  A1,  ground  A2)  (see  Mayer,  Wyckoff,  Schulz,  &  Strehl  (2012)  for  he  methods).  Every  fifth  session  participants  filled  in  the  German  questionnaire  “Fragebogen  zur  Erfassung  relevanter  Therapiebedingungen”  (FERT)  which  is  a  self-­‐rated  questionnaire  to  assess  relevant  treatment  conditions,  patient  expectations,  and  patient-­‐  therapist  interactions  (Vollmann  et  al.,  2009).  The  FERT  was  analyzed  for  expectation  changes  over  the  time  course  of  the  neurofeedback  training,  as  well  as,  used  as  a  covariant  in  the  analysis  of  training  performance  and  symptom  changes.  

Results:    

This  investigation  is  in  progress.  Expectation  changes  over  the  time  course  of  the  feedback  and  correlations  between  FERT  and  training  performance,  as  well  as,  symptom  changes  will  be  presented  at  the  time  of  the  conference.  

Conclusion:  

Possible  placebo  effects  have  always  been  a  concern  in  neurofeedback.  Correlations  may  yield  valuable  findings  about  the  impact  of  unspecific  effects  on  neurofeedback.  Study  limitations,  and  future  directions  in  research  will  be  addressed.  

References  Arns,  M.,  De  Ridder,  S.,  Strehl,  U.,  Breteler,  M.,  &  Coenen,  A.  (2009).  Efficacy  of  neurofeedback  treatment  in  ADHD:  the  effects  on  inattention,  impulsivity  and  hyperactivity:  a  meta-­‐analysis.  Clinical  EEG  and  neuroscience  official  journal  of  the  EEG  and  Clinical  Neuroscience  Society  ENCS,  40(3),  180-­‐189.  Retrieved  from  http://www.ncbi.nlm.nih.gov/pubmed/19715181  

Gevensleben,  H.,  Rothenberger,  A.,  Moll,  G.  H.,  &  Heinrich,  H.  (2012).  Neurofeedback  in  children  with  ADHD:  validation  and  challenges.  Expert  review  of  neurotherapeutics,  12(4),  447-­‐60.  doi:10.1586/ern.12.22  

Mayer,  K.,  Wyckoff,  S.  N.,  Schulz,  U.,  &  Strehl,  U.  (2012).  Neurofeedback  for  Adult  Attention-­‐  Deficit/Hyperactivity  Disorder:  Investigation  of  Slow  Cortical  Potential  Neurofeedback—  Preliminary  Results.  Journal  of  Neurotherapy,  16(1),  37-­‐45.  Routledge.  doi:10.1080/10874208.2012.650113  

Vollmann,  K.,  Hautzinger,  M.,  &  Strehl,  U.  (2009).  Entwicklung  und  Überprüfung  eines  Fragebogens  zur  Erfassung  relevanter  Therapiebedingungen  (FERT)  [dissertation].  Tübingen  (Deutschland):  Eberhard-­‐Karls-­‐Universität  Tübingen.  

Learning  Objective  Understand  the  relation  of  slow  cortical  potential  neurofeedback  in  the  treatment  of  adult  ADHD  and  unspecific/placebo  effects.  

Outline  

Page 64: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Investigation  of  Unspecific  Placebo  Effects  in  Slow  Cortical  Potential  Neurofeedback  for  Adult  Attention-­‐Deficit  /  Hyperactivity  Disorder  (ADHD)  (10min  of  background  and  result  presentation,  5min  of  discussion  of  treatment  implications,  study  limitations,  and  future  directions)  

Financial  Interest:  None  for  any  authors.    

KEYNOTE  PRESENTATION    

An  Evolutionary  Approach  to  Return  to  Health  (R,C)  Erik  Peper,  PhD,  San  Francisco  State  University,  [email protected]  

 Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: 1  Abstract  We  are  biologically,  emotionally  and  socially  much  more  the  prehistoric  mammal  than  the  modern  24/7  human  being.    Many  of  the  factors  that  determine  health  and  illness  are  the  result  genetic  mutations  which  fostered  reproductive  fitness.  Whatever  fostered  reproductive  fitness  prevailed.  Our  biology  and  psychology  patterns  still  reflect  this  evolutionary  past.  For  most  of  our  past  we  were  “prey,”  thus  ongoing  vigilance  enhanced  survival.  Similarly,  our  digestive  system  reflects  our  million  year  old  history  of  eating  predominantly  leaves,  nuts,  tubers,  etc  and  not  the  recent  processed  foods.  Our  biological  rhythms  were  synchronized  by  natural  light  patterns  and  not  by  electric  lights  or  computer  screens.  By  recognizing  and  integrating  our  evolutionary  biological  and  social  roots  and  combining  this  with  the  teaching  self-­‐regulation  skills,  numerous  illnesses  may  be  reversed  and  health  improved.      References  Gorter,  R.  &  Peper,  E.  (2011).  Fighting  Cancer-­‐A  Non  Toxic  Approach  to  Treatment.  Berkeley:  North  

Atlantic/New  York:  Random  House.  Peper,  E.,  Harvey,  R.,  &  Takebayashi,  N.  (2009).    Biofeedback  an  evidence  based  approach  in  clinical  

practice.  Japanese  Journal  of  Biofeedback  Research,  36(1),  3-­‐10.  Available  on  the  web:  http://www.hypnosisresearchinstitute.org/index.cfm/Biofeedback  

Peper,  E.,  Harvey,  R.,  Takabayashi,  N.,  &  Hughes,  T.  (2009).  How  to  do  clinical  biofeedback  in  psychosomatic  medicine:  An  illustrative  brief  therapy  example  for  self-­‐regulation.  Japanese  Journal  of  Biofeedback  Research..36(2),  109-­‐126.  

Peper,  E.  &  Lin,  I-­‐M.  (in  press).  Increase  or  decrease  depression-­‐How  body  postures  influence  your  energy  level.    Biofeedback    Learning  Objective  Appreciate  an  evolutionary  perspective  of  health  and  healing.  Recognize  the  damage  of  stress  immobilization  syndrome.  Recognize  the  importance  of  movement  to  increase  energy  and  decrease  pathology.    Understand  the  important  role  of  somatic/body  factors  affecting  and  being  effected  by  neurofeedback.    Outline  Evolutionary  perspective  of  health  Options  of  how  to  reverse  some  chronic  disorders  Self-­‐care  approaches  to  mobilize  the  immune  system  in  the  treatment  of  cancer    Financial  Interest:  No  financial  interests  to  report.    

KEYNOTE  PRESENTATION    

Page 65: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Functional  Neuroanatomy  of  Emotions  and  Stress  (R)  Israel  Liberzon,  MD,  University  of  Michigan,  [email protected]  

 Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: 1  Abstract  The  emergence  of  affective  neuroscience  advanced  our  understanding  of  neuro-­‐circuits  involved  in  emotional  responses.  Functional  neuroimaging  methods  now  allow  to  study  complex  brain  function  in  humans  in  vivo.  Animal  studies  helped  to  elucidate  the  role  of  subcortical  regions  like  amygdala,  hippocampus  and  nucleus  accumbence  in  fear  and  reward  behavior,  and  functional  neuroimaging  expanded  our  knowledge  of  the  role  of  cortical  regions  in  complex  human  emotions.  Indeed,  abnormalities  in  the  functioning  of  many  of  these  regions  have  now  been  reported  in  disorders  characterized  by  abnormal  emotional  responses  like  depression  and  PTSD.  In  parallel,  decades  of  stress  studies  had  outlined  the  function  of  the  main  stress  response  system  –  hypothalamo,  pituitary  adrenal  (HPA)  axis.  Interestingly,  abnormalities  in  HPA  function  have  been  also  demonstrated  in  the  same  psychiatric  conditions.  Until  recently  however  the  precise  link  between  the  emotional  and  the  stress  response  systems  had  not  been  established.  In  the  last  decade,  studies  integrating  fMRI  and  neuroendocrine  methods  emerged.  They  allowed  identification  of  key  cortical  regions  like  insula,  medial  prefrontal  cortex  (mPFC)  and  anterior  cingulated,  that  link  emotional  and  stress  responses,  and  are  likely  critical  for  the  understanding  of  the  pathophysiology  of  stress.    Learning  Objective  Understand  the  principles  of  functional  neuroimaging  methodology.    Identify  key  brain  regions  and  circuits  involved  in  emotional  responses  and  stress  response.  Understand  the  application  of  functional  brain  imaging  methods  in  study  of  psychiatric  disorders.    Outline  Functional  neuroimaging  methods  -­‐  10-­‐15  minutes  Brain  circuits  of  emotional  and  stress  responses  -­‐  20-­‐25  minutes  Functional  imaging  in  study  of  psychiatric  disorders  (PTSD)  -­‐  15-­‐20  minutes    Financial  Interest:  No  financial  conflicts  of  interest.      

Friday, September 21, 2012

 Plenary  Room  2  

 Crossing  The  Bar:  Neurofeedback  as  an  Adjunct  Therapy  to  

Addiction  Recovery  (R,C)  Judith  Miller,  Courage  to  Change  Addiction  Recovery  Ranch,  [email protected]  

 Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: 1  Abstract  The  purpose  of  this  paper  is  threefold:  

To  present  a  historical  perspective  on  the  heralding  of  addiction  as  a  social/moral  disease  to  state-­‐of-­‐science-­‐based  evidence  that  addiction  is  a  disease  of  the  brain  that  can  be  managed  and  treated  with  

Page 66: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

the  use  of  holistic  therapies  including  neurofeedback  therapy  

To  present  an  analytical  case  study  that  reveals  neurotherapy  as  a  promising  adjunct  therapy  for  addiction  solutions  

To  present  an  analytical  synopsis  regarding  future  drug-­‐free  applications  of  a  neurological  approach  for  sustainable  addiction  recovery.  The  research  reported  in  this  paper  is  based  on  an  eight  month  study  (2011  to  2012)  of  100  addicted  clients  at  an  addiction  recovery  program.  Following  neurotherapy  100%  of  the  subject’s  experienced  profound  relief  from  the  symptoms  of  addiction  suffered  prior  to  treatment.  

Power  Point  Presentation  –  The  History  of  Addiction  Recovery  –  a  100  year  overview  of  how  addiction  therapy  began  to  the  present  state-­‐of-­‐the-­‐science  treatment  regime  that  includes  neurofeedback  as  an  adjunct  therapy  for  sustainable  addiction  recovery.  

References  Hammond,  D.  C.,  (2011).  What  is  neurofeedback:  An  update.  Journal  of  Neurotherapy  15:305-­‐336.  

Passini,  F.  T.,  C.  G.  Watson,  L.  Dehnel,  J,  Herder  &  B.  Watkins  (1977).  Alpha  wave  biofeedback  training  therapy  in  alcoholics.  Journal  of  Clinical  Psychology  33(1):292-­‐299.  

Peniston,  I.  E.,  &  P.  J.  Kulkosky  (1989).  Alpha-­‐theta  brainwave  training  and  beta  endorphin  levels  in  alcoholics.  Alcoholism:  Clinical  and  Experimental,  13:271-­‐279.  

Peniston,  I.  E..,  &  P.  J.  Kulkosky,  (1990).  Alcoholic  personality  and  alpha-­‐theta  brainwave  training.  Medical  Psychotherapy:  An  International  Journal,  3:37-­‐55.  

Scott,  W.,  D.  Kaiser,  S.  Othmer  &  S.  Sideroff,  (2005).  Effects  on  EEG  Biofeedback  Protocol  on  a  Mixed  Substance  Abusing  Population.  The  American  Journal  of  Drug  and  Alcohol  Abuse,  31:455-­‐469.  

Learning  Objective  Understand  the  dynamics  of  addiction  as  a  brain  disease.  

Learn  about  the  history  or  evolution  of  addiction  treatment  practices  from  the  early  treatment  attempts  to  current  State  of  the  Science.  

Learn  the  role  of  neurofeedback  as  an  adjunct  therapy  for  successful  addiction  recovery.  

Outline  The  concept  of  addiction  as  a  brain  disease  

History  of  Addiction  Treatment    

The  Role  of  Neurofeedback  in  the  treatment  of  addiction  

Financial  Interest:  No  financial  interest  whatsoever  with  anyone  or  any  company.    

STUDENT  PRESENTATION    

An  Event-­‐Related  Potential  Study  of  Visual  Spatial  Attention  Deficits  in  Autism  (R)  

Guela  Sokhadze,  BS,  University  of  Louisville,  [email protected]  Lonnie  Sears,  PhD,  University  of  Louisville  

Page 67: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Ayman  El-­‐Baz,  PhD,  University  of  Louisville  Estate  Sokhadze,  PhD,  University  of  Louisville  Manuel  Casanova,  MD,  University  of  Louisville  

 Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: .25  Abstract  Background and Aims:

Along  with  other  frontal  executive  functions  deficits  individuals  with  autism  present  abnormalities  of  spatial  attention  orienting.  The  proposed  study  aims  to  understand  the  abnormal  neural  and  functional  mechanisms  underlying  attention  abnormalities  in  autism  by  incorporating  event-­‐related  potential  (ERP)  and  behavioral  measures  of  visuo-­‐spatial  attention  (Gomez-­‐Gonzales  et  al.,  1994;  Di  Russo  et  al.,  2003).  The  aim  of  the  study  was  to  investigate  between  group  (autism  vs.  controls)  differences  in  behavioral  responses  and  frontal  and  centro-­‐parietal  ERPs  in  a  cued  Posner  spatial  attention  paradigm  (Posner  et  al.,  1982).

Methods:

Participants  for  the  study  were  recruited  from  the  pool  of  individuals  with  autism  spectrum  disorder  (ASD)  at  the  Weisskopf  Child  Evaluation  Center  at  the  University  of  Louisville.  From  30  screened  ASD  patients  21  were  high-­‐functioning  individuals  with  autism  diagnosis  who  complied  with  ERP  task  requirements  and  tolerated  dense-­‐array  EEG  recording.  Mean  age  of  subjects  was  15.5±5.2  years,  6  of  them  females.  Nineteen  typically  developing  children  were  recruited  by  advertisement  and  screened  to  rule  out  history  of  any  psychiatric  or  neurological  disorders.  Mean  age  of  control  group  was  16.2±  4.1  years  (7  females).  The  spatial  attention  task  was  programmed  in  E-­‐Prime  (Psychology  Software  Tools,  PA)  and  represented  a  modification  of  a  cued  Posner  spatial  attention  task.  The  task  had  2  blocks  –  one  with  horizontal,  while  the  second  with  diagonal  windows  where  target  appeared  either  at  the  left  or  the  right  side  of  the  screen.  Probability  of  correctly  cued  congruent  targets  was  80%  in  both  blocks.  EEG  was  recorded  by  a  128  channel  Electrical  Geodesics  Inc  system  (Eugene,  OR).  The  task  took  totally  20  min  to  complete  including  practice  block.  The  ERP  of  interest  included  early  (N100,  P200)  and  late  (N200,  P300)  components  at  the  frontal  and  centro-­‐parietal  areas  reflecting  spatial  attention  processes.  The  analysis  included  comparison  of  behavioral  performance  (reaction  time,  accuracy,  number  of  omission  and  commission  errors)  and  ERP  measures.  In  addition  to  the  second  cue  stimulus  (S2)  locked  ERPs,  we  analyzed  also  lateralized  readiness  potential  (LRP)  recorded  as  a  difference  wave  between  responses  at  motor  strip  (C3/C4)  starting  from  the  first  cue  (pre-­‐cue  S1)  (Leuthold,  2003).  ERP  data  set  was  analyzed  using  ANOVA  with  within  subject  factors  Cue Position (Horizontal,  Diagonal),  S1  Cue Congruence (valid,  invalid),  and  Hemisphere (left,  right)  and  between  group  factor  Group (Autism,  Controls).

Results:

Reaction  time  (RT)  analysis  showed  a  Congruence X  Group effect  (F=7.14,  p=0.011),  in  particular  the  ASD  group  had  similarly  slower  RT  both  in  valid  and  invalid  pre-­‐  cued  conditions,  while  controls  responded  faster  to  correctly  prompted  targets.  Accuracy  of  responses  was  lower  in  the  ASD  group  (F-­‐7.88,  p=0.008),  mostly  due  to  more  omission  error  rate  (F=6.17,  p=0.017).  Midline  frontal  N100  component  yielded  a  marginal  Position X Congruence X Group interaction  (F=4.14,  p=0.049),  where  ASD  group  had  more  negative  N100  amplitude  during  diagonal  target  condition  regardless  of  congruence  of  cues.  Furthermore  we  found  a  significant  Position X Congruence X Hemisphere X Group effect  (F=4.52,  p=0.040)  where  above  effect  was  more  pronounced  at  the  right  hemisphere.  Amplitude  of  the  midline  frontal  N200  component  showed  a  Position X Congruency X Group interaction  (F=4.13,  p=0.045).  The  group  differences  of  peak  latency  for  both  N100  and  N200  components  were  not  significant.  The  centro-­‐parietal  P300  (P3b)  component showed  between  group  differences  at  the  midline  (F=5.38,  p=0.026)  and  at  the  left  hemisphere  (F=4.80,  p=0.035)  in  invalidly  

Page 68: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

cued  diagonal  target  condition  and  was  significantly  prolonged  in  the  ASD  group.  Amplitude  of  the  LRP  in  the  ASD  group  was  lower  and  delayed  as  compared  to  the  control  group  (ps<0.05).

Discussion and Conclusions:

Most  of  ERP  differences  were  observed  at  the  frontal  sites  thus  pointing  at  the  possible  frontal  executive  deficits  in  autism.  Children  with  autism  had  more  impaired  responses  to  diagonal  targets  requiring  more  spatial  orienting  capacity.  Of  particular  interest  for  the  future  studies  are  frontal  hemispheric  differences  present  at  the  pre-­‐attentive  early  processing  stages  (N100),  and  less  discrimination  between  correctly  and  incorrectly  cued  targets  at  the  later  stages  of  processing.  This  was  manifested  in  the  enhanced  frontal  N200  component  resulting  in  a  delayed  cognitive  P3b  potential  (Polich  &  Herbst,  2003)  in  the  autism  group.  We  have  found  that  using  a  cued  Posner’s  spatial  attention  test  and  comparing  the  autistic  patients  behavioral  performance  and  ERPs  can  be  a  very  informative  approach  to  understand  the  mechanisms  of  spatial  orienting  impairments  and  motor  act  preparation  deficits  typical  for  autism.

References  Di  Russo,  F.,  Martinez,  A.,  &  Hillyard,  S.A.  (2003)  Source  Analysis  of  event-­‐related  cortical  activity  during  visuo-­‐spatial  attention.  Cerebral Cortex, 13,  486-­‐499.    

Gomez-­‐Gonzales,  C.M.,  Clark,  V.P.,  Luck,  S.J.,  &  Hillyard,  S.A.  (1994).  Sources  of  attention-­‐sensitive  visual  event-­‐related  potentials.  Brain Topography, 7,  41-­‐51.    

Leuthold,  H.  (2003)  Programming  of  expected  and  unexpected  movements:  effects  on  the  onset  of  the  lateralized  readiness  potential.  Acta Psychologica, 114,  83-­‐100.  

Polich,  J.,  &  Herbst,  K.L.  (2000)  P300  as  a  clinical  assay.  International Journal of Psychophysiology, 38,  3-­‐19.    

Posner,  M.I.,  Cohen,  Y.,  &  Rafal,  R.D..(1982).  Neural  systems  control  of  spatial orienting.  Transactions of the Royal Society of London. B298:187–198.

Learning  Objective  Learn  about  spatial  attention  deficits  in  autism,  and  about  assessment  of  spatial  attention  in  the  Posner  cued  attention  test  in  a  autism  and  typically  developing  individuals  using  event-­‐related  potential  technique.

Outline  Introduction  –  4  min    

Methods  -­‐  4  min

Results  and  discussion  -­‐5  min    

Questions  and  answers  –  2  min

Financial  Interest:  No  financial  interest  or  conflict  to  report.  

Saturday, September 22, 2012

 

Page 69: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Plenary  Room  1    

Comparison  of  the  Effectiveness  of  Z-­‐Score  Surface/LORETA  19-­‐Electrodes  Neurofeedback  to  Standard  1-­‐Electrode  Neurofeedback  

(R,C)  

J.  Lucas  Koberda,  MD,  PhD,  Tallahassee  NeuroBalance  Center,  [email protected]  

Andrew  Moses,  Tallahassee  NeuroBalance  Center    

Paula  Koberda,  Tallahassee  NeuroBalance  Center    

Laura  Koberda,  Tallahassee  NeuroBalance  Center  

Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: 1  Abstract  The  effectiveness  of  Z-­‐score  surface  and  low  resolution  electromagnetic  tomography  analysis  (LORETA)  Neurofeedback  (NFB)  has  been  retrospectively  compared  to  standard  (1-­‐electrode)  NFB  treatment.  This  is  multi-­‐case  report  based  on  the  analysis  of  40  patients  from  a  solo  neurology  practice  who  reported  either  improvement  of  symptoms  with  Z-­‐score  NFB  or  completed  at  least  10  Z-­‐score  (surface/LORETA)  sessions.  The  analysis  included  subjective  (self-­‐reported)  and  objective  (QEEG,  computerized  neuropsychological  testing)  response  to  NFB  therapy.  Quantitative  electroencephalography  (QEEG)  and  computerized  neurocognitive  testing  (in  selected  patients)  were  completed  before  and  after  NFB  treatment  and  analyzed  for  any  major  changes  in  frequency  bands  expression  or  an  improvement  in  a  cognitive  function.  Z-­‐score  surface/LORETA  NFB  patients  were  divided  into  four  groups  including  patients  suffering  from  headaches  (frequently  with  anxiety  and/or  chronic  pain),  cognitive-­‐,  behavioral-­‐  problems  as  well  as  focal  neurological  disorders  (stroke,  epilepsy).  The  average  Z-­‐score  NFB  number  of  sessions  per  patient  was  9  (range  between  3  to  24).  Patient’s  analysis  revealed  95%  subjective  improvement  rate  and  62.5%  objective  QEEG  improvement  rate  after  Z-­‐  score  NFB  therapy.  These  results  retrospectively  were  compared  to  25  patients  who  were  treated  in  the  same  practice  using  a  standard  1-­‐  electrode  NFB  technique  and  completed  in  at  least  20  sessions  with  84%  of  subjective  improvement  rate  and  75%  objective  QEEG  improvement  rate.  Above  results  indicate  similar  effectiveness  of  Z-­‐  score  NFB  and  1-­‐  electrode  standard  NFB  in  achieving  positive  response  to  EEG-­‐biofeedback.  However  Z-­‐score  NFB  seems  to  have  higher  potency  since  many  patients  required  fewer  sessions  to  achieve  a  desirable  subjective  response.  Therefore,  Z-­‐score  NFB  application  may  contribute  to  increase  patient’s  compliance  and  may  offer  a  more  cost  effective  treatment.  Several  cases  of  marked  improvement  with  Z-­‐score  NFB  treatment  will  be  discussed  including  a  patient  with  intractable  epilepsy  and  subsequent  complete  normalization  of  epileptoform  EEG  with  NFB  therapy.  Also,  two  cases  of  major  cognitive  enhancement  including  improved  verbal  function  and  information  processing  speed  will  be  presented.  

References  Aminoff  M.J.  (1999)  Electrodiagnosis  in  clinical  neurology.  Churchill  Livingstone.  Philadelphia.    

Arns  M,  Gunkelman  J,  Marinus  B,  Desiree  S.  (2008).  EEG  phenotypes  predict  treatment  outcome  to  stimulants  in  children  with  ADHD.  J.  Integrative  Neuroscience.  3;  421-­‐38.    

Budzynski  T.H.,  Budzynski  H.K.,  Evans  J.R.,  Abarbanel  A.(2009).  Introduction  to  quantitative  EEG  and  neurofeedback.  Academic  Press.    

Page 70: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Clark  C.R.,  Gallently  C.A.,  Ash  D.J.,  Moores  K.A.,  Penrose  R.A.,  McFarlane  A.C.  (2009).  Evidence-­‐based  medicine  evaluation  of  electrophysiological  studies  of  the  anxiety  disorders.  J.  Clin  EEG  Neurosci.  Apr;  40,(2):84-­‐112.    

Coben  R.  Clarke  AR,  Hudspeth  W,  Barry  RJ  (2008).  EEG  power  and  coherence  in  autistic  spectrum  disorder.  Clin.  Neurophysiol.  May,  119.    

Coburn  K.L,  Lauterbach  E.C.,  Boutros  N.N.,  Black  K.J.,  Arciniegas  D.B.,  Coffey  C.E.  (2006).  The  value  of  quantitative  electroencephalography  in  clinical  Psychiatry:  A  report  by  the  committee  on  research  of  the  American  Neuropsychiatric  Association.  J.  Neuropsychiatry  Clin.  Neurosci.  18:460-­‐500.    

Deslandes  A,  Veiga  H,  Cagy  M,  Fiszman  A,  Piedade  R,  Ribeiro  P.  (2004).  Quantitative  electroencephalography  (QEEG)  to  discriminate  primary  degenerative  dementia  from  major  depressive  disorder  (depression.  Arq.  Neuropsiquatr.  March,  62.    

Di  Michele  F,  Prichep  L,  John  E.R.,  Chabot  R.J.  (2005).  The  neurophysiology  of  attention-­‐deficit/hyperactivity  disorder.  Int  J  Psychophysiol.  Oct;  58;  81-­‐93.    

Holtmann  M,  Steiner  S,  Hohmann  S,  Poustka  L,  Banaschewski  T,  Bölte  S.  (2011).  Neurofeedback  in  autism  spectrum  disorders.  Dev  Med  Child  Neurol.  Nov;53(11):986-­‐93.    

Koberda  (2011)  Clinical  advantages  of  quantitative  electroencephalogram  (QEEG)  application  in  general  neurology  practice.  Neuroscience  Letters,  Volume  500,  Supplement,  July  2011,  Pages  e32.  

Lubar  J.O,  Lubar  J.F.(1984).  Electroencephalographic  biofeedback  of  SMR  and  beta  for  treatment  of  attention  deficit  disorders  in  a  clinical  setting.  Biofeedback  Self  Regul.  Mar;9(1):1-­‐23.  

Michel,  C.M.,  Koenig,  T.,  Brandeis,  D.,  Gianotti,  L.R.  and  Waxkerman,  J.  2009.  Electrical  Neuroimaging.  Cambridge  Univ.  Press,  New  York.  

Pascual-­‐Marqui  R.D.,  Michel  C.M.,  Lehmann  D.  (1994).  Low  resolution  electromagnetic  tomography:  a  new  method  for  localizing  electrical  activity  in  the  brain.  International  Journal  of  Psychophysiology.  1994,  18:49-­‐65.  

Rizzo  M,  Eslinger  P.J.,  (2004).  Behavioral  neurology  and  neuropsychology.  Saunders,  Philadelphia.  

Seagrave  R.A.  ,  Cooper  N.R.,  Thomson  R.H.,  Croft  R.J.,  Sheppard  D.M.,  Fitzgerald  P.B.  (2011).Individualized  alpha  activity  and  frontal  asymmetry  in  major  depression.  J.  Clin.  EEG  .  Neuroscience.  Jan.  

Sterman  M.B,  Egner  T.  (2006)  Foundation  and  practice  of  neurofeedback  for  the  treatment  of  epilepsy.  Appl  Psychophysiol  Biofeedback.  Mar;31(1):21-­‐35  

Walker  JE.  (2011).  QEEG-­‐guided  neurofeedback  for  recurrent  migraine  headaches.  J.  Clin.  EEG.  Neurosci.  Jan.  

Walker  J.E,  Kozlowski  G.P.  (2005).  Neurofeedback  treatment  of  epilepsy.  Child  Adolesc  Psychiatr  Clin  N  Am.  Jan;  14(1):163-­‐76.  

Learning  Objective  Become familiar with application and effectiveness of Z-score surface/LORETA 19-electrodes NFB in the

Page 71: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

treatment of neuro-psychiatric symptoms. The retrospective comparison to 1-electrode standard NFB will be made.

Outline  Z-­‐score  surface/LORETA  19-­‐electrodes  NFB-­‐10  min.      

Results  of  treatment  with  surface/LORETA  19-­‐electrode  NFB-­‐  will  include  the  analysis  of  40  patients  with  different  neuro-­‐psychiatric  problems.-­‐20  min.  

More  detailed  presentation  of  Z-­‐score  surface/LORETA  NFB  cases  (2-­‐3  cases)-­‐including  case  of  successful  cognitive  enhancement  and  epilepsy  treatment.-­‐10-­‐15  min.    

The  retrospective  comparison  of  the  effectiveness  of  Z-­‐score  surface/LORETA  NFB  to  previously  analyzed  group  of  25  patients  treated  with  1-­‐electrode  standard  NFB  (from  the  same  neurological  practice).-­‐15  min.    

Financial  Interest:  No  financial  relationships.    Combining  Neuroeconomics  with  LORETA  Biofeedback  to  Improve  

Self-­‐Control  and  Promote  Healthy  Behavior  (R)  Jordan  Silberman,  MA,  University  of  Rochester  School  of  Medicine  and  Dentistry,  

[email protected]  Miron  Zudkerman,  PhD,  University  of  Rochester  School  of  Medicine  and  Dentistry  

Peter  Manza,  BA,  University  of  Rochester  School  of  Medicine  and  Dentistry    

Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: .5  Abstract  Background:    

What  occurs  in  the  brain  when  a  person  foregoes  a  decadent  dessert,  and  instead  chooses  a  food  that  is  healthy  but  bland?  The  field  of  neuroeconomics  has  begun  to  answer  this  question.  Neuroeconomists  have  elucidated  some  of  the  neurophysiology  that  allows  people  to  save  rather  than  spend,  to  choose  the  gym  over  the  couch,  and  to  eat  carrots  rather  than  cookies.1-­‐9  Researchers  have  identified  neural  mechanisms  that  may  underlie  self-­‐control,  but  they  have  not  applied  this  knowledge  to  develop  tools  for  improving  self-­‐control  ability.  LORETA  biofeedback  (LB)  may  allow  us  to  harness  neuroeconomics  findings  in  order  to  develop  interventions  for  improving  self-­‐control.  We  define  self-­‐controlled  behaviors  simply  as  those  in  which  large  delayed  rewards  are  chosen  over  smaller  immediate  rewards.  Building  on  the  neuroeconomics  literature,  we  have  developed  an  LB  protocol  designed  to  strengthen  the  neurophysiology  underlying  self-­‐control.  This  protocol  may  improve  self-­‐control  ability,  and  thereby  increase  an  individual’s  capacity  to  exhibit  heath  behaviors  for  which  self-­‐control  is  required  (eg,  dieting  and  exercising).  LORETA  biofeedback  may  therefore  offer  a  novel  approach  to  health  behavior  promotion.  

Methods:    

A  randomized,  controlled,  single-­‐blind  study  was  conducted  to  assess  the  effects  of  the  LB  protocol  on  self-­‐  control.  Subjects  attended  4  study  sessions  on  4  consecutive  days.  A  self-­‐control  task  involving  food  choice  was  administered  during  the  first  and  last  sessions.  Subjects  rated  a  series  of  foods  on  health  and  taste;  subjects  then  chose  between  foods  they  had  rated  as  bland-­‐but-­‐healthy  and  foods  rated  as  tasty-­‐but-­‐unhealthy.  Self-­‐control  was  defined  as  choosing  bland-­‐but-­‐healthy  foods  over  tasty-­‐but-­‐unhealthy  foods.  Between  the  two  administrations  of  the  self-­‐control  food  choice  task,  

Page 72: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

treatment  group  subjects  completed  the  LB  protocol  that  was  designed  to  improve  self-­‐  control.  This  protocol,  which  was  tailored  for  each  subject,  involved  targeting  the  following  regions  of  interest:  right  dorsolateral  prefrontal  cortex  (dlPFC),  left  dlPFC,  dorsal  anterior  cingulate  cortex  (dACC),  and  left  supplementary  motor  area  (SMA).  Control  subjects  completed  an  LB  protocol  that  was  expected  to  have  no  effect  on  self-­‐control  performance.  Logistic  multilevel  modeling  was  used  to  compare  changes  over  time  in  self-­‐control  performance  of  the  treatment  group  to  those  of  the  control  group.  

Results:    

Eighty-­‐five  percent  of  sessions  have  been  completed;  results  from  the  full  study  sample  will  be  reported  at  the  conference  presentation.  In  our  current  dataset,  a  significant  time  X  condition  interaction  is  observed  (p  <  .01).  Consistent  with  predictions,  self-­‐control  performance  of  the  control  group  significantly  decreased  over  time  (p  <  .01),  while  that  of  the  treatment  group  did  not  change  over  time  (p  >  .5).  

Discussion:    

Preliminary  results  suggest  that  LB  may  be  useful  for  preventing  reductions  over  time  in  self-­‐control;  LORETA  biofeedback  may  therefore  offer  a  novel  approach  to  health  behavior  promotion.  Additional  research  is  needed  to  determine  whether  or  not  these  results—which  were  observed  solely  in  the  laboratory—can  be  replicated  in  real  world  contexts.  

References  Figner  B,  Knoch  D,  Johnson  EJ  et  al.  Lateral  prefrontal  cortex  and  self-­‐control  in  intertemporal  choice.  Nat  Neurosci.  2010;13:538-­‐539.    

Friedman  EH.  Neurobiology  of  cingulate  cortex  in  compulsivity  and  impulsivity.  Neuropsychiatry,  Neuropsychology,  &  Behavioral  Neurology.  1995;pp.    

Hall  PA,  Elias  LJ,  Fong  GT,  Harrison  AH,  Borowsky  R,  Sarty  GE.  A  social  neuroscience  perspective  on  physical  activity.  J  Sport  Exerc  Psychol.  2008;30:432-­‐  449.    

Hare  TA,  Camerer  CF,  Rangel  A.  Self-­‐control  in  decision-­‐making  involves  modulation  of  the  vmPFC  valuation  system.  Science.  2009;324:646-­‐648.    

Hare  TA,  Malmaud  J,  Rangel  A.  Focusing  attention  on  the  health  aspects  of  foods  changes  value  signals  in  vmPFC  and  improves  dietary  choice.  J  Neurosci.  2011;31:11077-­‐11087.    

Heatherton  TF.  Neuroscience  of  self  and  self-­‐regulation.  Annual  Review  of  Psychology.  2011;62:363-­‐390.    

Kable  JW,  Glimcher  PW.  The  neural  correlates  of  subjective  value  during  intertemporal  choice.  Nat  Neurosci.  2007;10:1625-­‐1633.    

McClure  SM,  Laibson  DI,  Loewenstein  G,  Cohen  JD.  Separate  neural  systems  value  immediate  and  delayed  monetary  rewards.  Science.  2004;306:503-­‐507.    

McClure  SM,  Ericson  KM,  Laibson  DI,  Loewenstein  G,  Cohen  JD.  Time  discounting  for  primary  rewards.  J  Neurosci.  2007;27:5796-­‐5804.    

Learning  Objective  Describe  the  current  evidence  regarding  application  of  LORETA  biofeedback  to  health  behavior  promotion.

Page 73: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Outline  Study protocol and design (10 mins.)

Study results and implications (15 mins.

Questions and answers (5 mins.)

Financial  Interest:  No  financial  conflicts  of  interest.    

In  Pursuit  of  Happiness  (R)  Sarah  Fischer,  MS,  University  of  Tennessee,  [email protected]  Rex  Cannon,  PhD,  University  of  Tennessee,  [email protected]  

 Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: .5  Abstract  Introduction:    

Besides  being  a  part  of  what  makes  life  worth  living,  positive  emotions  such  as  joy  and  happiness  have  been  shown  to  have  numerous  benefits  (Lyubomirsky,  King  &  Diener,  2005).  Resisting  the  common  cold  and  flu  are  linked  to  the  tendency  to  experience  positive  emotion  (Cohen  et  al.,  2003;  2006).  Positive  emotional  style  is  associated  with  lower  rates  of  stroke  (Ostir  et  al.,  2001)  and  better  coronary  recovery  (Middleton  et  al.,  1996  ).  The  lack  of  joy  was  found  to  be  one  of  the  most  important  symptoms  linked  with  risk  of  depression  after  age  60  (Hein  et  al.,  2003).  Higher  remission  in  major  depressive  disorder  was  found  when  engaging  in  positive  psychotherapy  than  with  regular  therapy  or  regular  therapy  plus  medications  (Seligman,  Rashid,  &  Parks,  2006).  In  addition  to  studies  on  benefits  of  emotion,  individual  differences  regarding  personality  and  emotional  processing  should  be  considered  in  behavioral  studies,  rather  than  attributing  them  to  "statistical  noise"  (Vuoskoski  &  Eerola,  2011;  Schiffer  et  al.,  2007).  Left  frontal  brain  areas  are  activated  during  emotions  that  are  characterized  by  approach,  such  as  joy,  happiness,  interest,  and  that  the  right  frontal  areas  are  activated  by  avoidance  or  withdrawal  emotions  such  as  disgust  or  distress  (Davidson  et  al.,  1990).  However,  individual  differences  are  seen  in  left-­‐sided  frontal  EEG  asymmetry,  indicative  of  greater  trait  approach  motivation  (Master  et  al.,  2009).  The  following  studies  will  discuss  personality  and  hemispheric  differences  in  the  context  of  the  basic  emotion  joy.  

Methods:    

Study  1.  After  providing  informed  consent,  a  non-­‐clinical  sample  of  twenty-­‐seven  university  students  underwent  continuous  EEG  recording  while  they  performed  two  tasks  designed  to  evoke  joy:  a)  read  self-­‐  referential  statements  of  benefit,  and  b)  recall  a  personal  experience  that  brought  them  maximal  joy.  After  baseline  and  task  EEG  recordings,  participants  also  completed  open-­‐ended  reports,  health  symptoms  inventory  (CHIPS)  and  optimism/pessimism  scale  (LOT-­‐R),  and  ratings  of  self-­‐referential  statements.  EEG  source  localization  using  sLORETA  was  performed  and  comparison  of  the  self  in  experience  of  joy  condition  to  baseline  was  made  using  all  voxel-­‐by-­‐voxel  t-­‐tests.  Voxels  of  significant  difference  were  mapped  onto  a  Montreal  Neurological  Institute  (MNI  )  atlas  containing  6,329  5mm  voxels.    

Results:    

Correlations  of  significant  differences  of  recall  task  to  eyes-­‐open  baseline  discussed  with  regard  to  regions  of  interest  and  frequency  bands.    

Study  2.  After  providing  informed  consent,  a  non-­‐clinical  sample  of  one  hundred  five  university  

Page 74: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

students  completed  a  packet  of  instruments  including  measures  of  personality  (NEO  Five  Factor  Inventory),  gratitude  (GQ-­‐6),  joy,  life  and  satisfaction.  Results:  Significant  correlations  with  joy  and  personality  facets  will  be  discussed.  

References  Cohen,  S.,  Doyle,  W.  J.,  Turner,  R.  B.,  Alper,  C.  M.,  &  Skoner,  D.  P.  (2003).  Emotional  style  and  susceptibility  to  the  common  cold.  Psychosomatic  Medicine,  65(4),  652-­‐657.  

Cohen,  S.,  Alper,  C.  M.,  Doyle,  W.  J.,  Treanor,  J.  J.,  &  Turner,  R.  B.  (2006).  Positive  emotional  style  predicts  resistance  to  illness  after  experimental  exposure  to  rhinovirus  or  influenza  a  virus.  Psychosom  Med,  68(6),  809-­‐815.  

Davidson,  R.  J.,  Ekman,  P.,  Saron,  C.  D.,  Senulis,  J.  A.,  &  Friesen,  W.  V.  (1990).  Approach-­‐withdrawal  and  cerebral  asymmetry:  emotional  expression  and  brain  physiology.  Inter  Journal  of  Personality  and  Social  Psychology,  58(2).  

Hein,  S.,  Bonsignore,  M.,  Barkow,  K.,  Jessen,  F.,  Ptok,  U.,  &  Heun,  R.  (2003).  Lifetime  depressive  and  somatic  symptoms  as  preclinical  markers  of  late-­‐onset  depression.  European  Archives  of  Psychiatry  and  Clinical  Neuroscience,  253(1),  16-­‐21.  

Jasper,  H.  H.  (1958).  The  Ten-­‐Twenty  Electrode  System  of  the  International  Federation.  Clinical  Neurophysiology.  10:  371-­‐375.  

Kiebel,  S.  J.  and  A.  P.  Holmes  (2004).  The  general  linear  model.  Human  Brain  Function,  2nd  Edition,  Part  II  -­‐  Imaging  Neuroscience  -­‐  Theory  and  Analysis.  K.  J.  Friston,  J.  Ashburner  and  W.  D.  Penny,  Elsevier.  

Lyubomirsky,  Sonja,  King,  Laura,  &  Diener,  Ed.  (2005).  The  Benefits  of  Frequent  Positive  Affect:  Does  Happiness  Lead  to  Success?  Psychological  Bulletin,  131(6),  803-­‐855.  doi:  10.1037/0096  -­‐  3445.108.4.441.  

Master,  S.  L.,  Amodio,  D.  M.,  Stanton,  A.  L.,  Yee,  C.  M.,  Hilmert,  C.  J.,  &  Taylor,  S.  E.  (2009).  Neurobiological  correlates  of  coping  through  emotional  approach.  Brain  Behav  Immun,  23(1),  27-­‐35.  doi:  S0889-­‐1591(08)00083-­‐4  [pii].  

Miller,  M.,  Mangano,  C.  C.,  Beach,  V.,  Kop,  W.  J.,  &  Vogel,  R.  A.  (2010).  Divergent  effects  of  joyful  and  anxiety-­‐provoking  music  on  endothelial  vasoreactivity.  Psychosom  Med,  72(4),  354-­‐356.  

Ostir,  G.  V.,  Markides,  K.  S.,  Peek,  M.  K.,  &  Goodwin,  J.  S.  (2001).  The  association  between  emotional  well-­‐being  and  the  incidence  of  stroke  in  older  adults.  Psychosomatic  Medicine,  63(2),  210-­‐215.  

Nichols,  T.E.,  Holmes,  A.P.,  2002.Nonparametric  permutation  tests  for  functional  neuroimaging:  a  primer  with  examples.  Hum  Brain  Map  15,  1-­‐25.  

Pascual-­‐Marqui,  R.  D.  (2002).  Standardized  low  resolution  electromagnetic  tomography  (sLORETA):  technical  details,  Methods  &  Findings  in  Experimental  &  Clinical  Pharmacology,  24,  pp.  5-­‐12.  

Schiffer,  F.,  Teicher,  M.  H.,  Anderson,  C.,  Tomoda,  A.,  Polcari,  A.,  Navalta,  C.  P.,  &  Andersen,  S.  L.  (2007).  Determination  of  hemispheric  emotional  valence  in  individual  subjects:  a  new  approach  with  research  and  therapeutic  implications.  Behavioral  and  Brain  Functions,  3,  13.  doi:  1744-­‐9081-­‐3-­‐13  [pii].  

Seligman,  Martin  E.  P.,  Rashid,  Tayyab,  &  Parks,  Acacia  C.  (2006).  Positive  psychotherapy.  American  Psychologist,  61(8),  774-­‐788.  doi:  10.1037/1089-­‐2680.5.4.323.  

Page 75: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Sheldon,  Kennon  M.,  &  Lyubomirsky,  Sonja.  (2006).  Achieving  Sustainable  Gains  in  Happiness:  Change  Your  Actions,  not  Your  Circumstances.  Journal  of  Happiness  Studies,  7(1),  55-­‐86.  doi:  10.1037/0022-­‐  3514.36.8.917.  

Vuoskoski,  Jonna  K.,  &  Eerola,  Tuomas.  (2011).  The  role  of  mood  and  personality  in  the  perception  of  emotions  represented  by  music.  Cortex:  A  Journal  Devoted  to  the  Study  of  the  Nervous  System  and  Behavior,  47(9),  1099-­‐1106.  doi:  10.1080/0929821042000317813.  

Learning  Objective  Describe  some  neural  regions,  personality  differences,  and  benefits  associated  with  positive  affect  vs  negative  affect.  

Outline  So  why  study  positive  affect?  (3-­‐5  min.)  -­‐  Depression  was  estimated  to  cost  83.1  billion  dollars  in  2000  (Greenberg,  et  al.,  2003),  and  lack  of  joy  was  found  to  be  one  of  the  most  important  symptoms  linked  with  risk  of  depression  after  age  60  (Hein,  et  al.,  2003).  -­‐Through  cross-­‐sectional  studies,  happy  people  appear  to  be  more  successful  in  work,  health,  and  relationships,  and  through  longitudinal  studies  happiness  precedes  important  outcomes  and  indicators  of  thriving  (Lyubomirsky,  King  &  Diener,  2005).  

Treatment/intervention  benefits:  -­‐  listening  to  self-­‐selected  joyful  music  associated  with  absolute  increase  in  brachial  artery  diameter  of  same  magnitude  seen  with  aerobic  exercise  and  also  with  statin  drug  therapy  commonly  given  to  decrease  cholesterol  levels  (Miller,  Mangano,  Beach,  Kop,  &  Vogel,  2010)  -­‐  higher  remission  in  major  depressive  disorder  when  engaging  in  positive  psychotherapy  than  with  regular  therapy  or  regular  therapy  plus  medications  (Seligman,  Rashid,  &  Parks,  2006).  -­‐  to  effect  a  sustained  change  in  happiness,  change  your  actions,  not  circumstances  (Sheldon  &  Lyubomirsky,  2006)  -­‐  tendency  to  experience  positive  emotion  linked  to  resisting  the  common  cold  and  flu  (Cohen  et  al.,  2003;  2006),  lower  rates  of  stroke  (Ostir  et  al.,  2001),  better  coronary  recovery  (Middleton  et  al.,  1996  )  

Selected  Neurological  and  Electrophysiological  Investigations  of  Affect  and  Hemispheric  Asymmetry  (5-­‐8  min.)  -­‐  Individual  differences  regarding  personality  and  emotional  processing  should  be  considered  in  behavioral  studies,  rather  than  attributing  them  to  "statistical  noise"  (Vuoskoski  &  Eerola,  2011;  Schiffer  et  al.,  2007).  

-­‐  Hemispheric  differences,  left-­‐sided  frontal  EEG  asymmetry,  indicative  of  greater  trait  approach  motivation  (Master  et  al.,  2009)  -­‐  Davidson  and  colleagues’  work  (1990)  -­‐  left  frontal  brain  areas  are  activated  during  emotions  that  are  characterized  by  approach,  such  as  joy,  happiness,  interest,  and  that  the  right  frontal  areas  are  activated  by  avoidance  or  withdrawal  emotions  such  as  disgust  or  distress.  

-­‐  Dawson  and  colleagues  (1992)  looked  at  frontal  lobe  activity  via  EEG  in  infants  with  mothers  presenting  with  depressive  symptoms  and  found  opposite  pattern  of  frontal  activations  during  approach  and  avoidance  emotions,  linked  an  idea  presented  by  Tronick  and  Gianino  (1986)  about  infants  exposed  to  maternal  depression  

Results  of  current  research  (S.  K.  Fischer,  2011-­‐2)  Personality  and  Neural  correlates  of  self  experience  of  joy  (10  min)  

Study  1  :  -­‐  Non-­‐clinical  convenience  sample  of  15  university  students  -­‐  Continuous  EEG  recording  during  2  tasks:  envisioning  a  recalled  personal  experience  of  maximal  joy  and  rating  statements  intended  to  evoke  joy  -­‐  Health,  optimism,  pessimism  and  affect  ratings  recorded  -­‐  Correlations  of  significant  differences  of  recall  task  to  eyes-­‐open  baseline  discussed  Study  2  :  -­‐  Non-­‐clinical  convenience  sample  of  105  university  students  -­‐  Personality,  joy,  gratitude,  life  satisfaction,  depression,  anxiety  measured  -­‐  Significant  correlations  discussed  Summary  and  Implications  5  min  

Page 76: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Financial  Interest:  No  financial  interests  or  relationships.    An  EEG  Interface  for  Continuous  Performance  Testing  and  Event-­‐

Related  Potentials  (R,C)  Andrew  Greenberg,  MSEE,  TOVA  Company  

Chris  Holder,  MA,  TOVA  Company  Thomas  Collura,  PhD,  BrainMaster  Technologies,  [email protected]  

 Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: .5  Abstract  A  new  interface  has  been  developed  between  the  Test  of  Variables  of  Attention  (T.O.V.A.)  continuous  performance  test  and  EEG  systems.  This  interface  supports  the  real  time  capture  of  events  by  EEG  systems  of  the  T.O.V.A.  test’s  stimuli  and  subject  responses.  With  this  combination,  it  is  possible  to  capture  event-­‐related  brain  activity  during  the  continuous  performance  test  as  part  of  a  standardized  assessment.  The  value  of  the  T.O.V.A.  has  been  established  in  assessing  attention,  and  its  usefulness  in  appraising  the  effects  of  neurofeedback  has  been  explored.  However,  no  studies  including  simultaneous  EEG  and  T.O.V.A.  performance  have  yet  been  published.  Initial  results  with  this  new  capability  demonstrate  the  feasibility  of  identifying  specific  brain  processes  associated  with  task  performance.  When  combined  with  live  sLORETA-­‐based  localization,  specific  brain  locations  can  be  further  monitored,  permitting  the  identification  of  detailed  processes  related  to  specific  task  activities.  Results  demonstrating  this  connection  and  these  relationships  will  be  described  in  this  talk.  

References  Kaiser,  D.  A.,  &  Othmer,  S.  (2000).  Effect  of  Neurofeedback  on  Variables  of  Attention  in  a  Large  Multi-­‐  Center  Trial.  Journal  Of  Neurotherapy,  4(1),  5-­‐15.  

Llorente,  A.  M.,  Voigt,  R.,  Jensen,  C.  L.,  Fraley,  J.,  Heird,  W.  C.,  &  Rennie,  K.  M.  (2008).  The  Test  of  Variables  of  Attention  (TOVA):  Internal  Consistency  (Q1  vs.  Q2  and  Q3  vs.  Q4)  in  Children  with  Attention  Deficit/Hyperactivity  Disorder  (ADHD).  Child  Neuropsychology,  14(4),  314-­‐322.  doi:10.1080/09297040701563578  

Monastra,  V.  J.,  Monastra,  D.  M.,  &  George,  S.  (2002).  The  Effects  of  Stimulant  Therapy,  EEG  Biofeedback,  and  Parenting  Style  on  the  Primary  Symptoms  of  Attention-­‐Deficit/Hyperactivity  Disorder.  Applied  Psychophysiology  &  Biofeedback,  27(4),  231-­‐249.  

Putman,  J.  A.,  Othmer,  S.  F.,  Othmer,  S.  S.,  &  Pollock,  V.  E.  (2005).  TOVA  Results  Following  Inter-­‐  Hemispheric  Bipolar  EEG  Training.  Journal  Of  Neurotherapy,  9(1),  37-­‐52.  doi:10.1300/J184v09n01-­‐04  

Rossiter,  T.  (2004).  The  Effectiveness  of  Neurofeedback  and  Stimulant  Drugs  in  Treating  AD/HD:  Part  II.  Replication.  Applied  Psychophysiology  &  Biofeedback,  29(4),  233-­‐243.  doi:10.1007/s10484-­‐004-­‐0383-­‐4  

Scott,  W.  C.,  Kaiser,  D.,  Othmer,  S.,  &  Sideroff,  S.  I.  (2005).  Effects  of  an  EEG  Biofeedback  Protocol  on  a  Mixed  Substance  Abusing  Population.  American  Journal  Of  Drug  &  Alcohol  Abuse,  31(3),  455-­‐469.  doi:10.1081/ADA-­‐200056807  

Weyandt,  L.  L.,  Mitzlaff,  L.,  &  Thomas,  L.  (2002).  The  Relationship  Between  Intelligence  and  Performance  on  the  Test  of  Variables  of  Attention  (TOVA).  Journal  Of  Learning  Disabilities,  35(2),  114.  

Learning  Objective  

Page 77: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Describe  how  continuous  performance  tasks  (CPT)  are  conducted  Describe  how  brain  function  is  related  to  CPT  performance

Describe  how  EEG  can  be  used  to  supplement  and  add  information  to  a  CPT  test.

Outline  The  TOVA  continuous  performance  task  system,  how  it  works.

How  EEG  can  be  added  to  the  TOVA  to  improve  continuous  performance  assessment  Case  examples  of  live  EEG  taken  during  performance  of  the  TOVA  illustrating  brain  function.

Financial  Interest:  Andrew  Greenberg  and  Chris  Holder  are  employees  of  The  TOVA  Company.  Thomas  Collura  has  a  financial  interest  in  BrainMaster  Technologies  Inc.          Randomized,  Controlled,  Cross-­‐Over  Research  of  Performance  

Brain  Training™  Effects  in  Elite  College  Golfers  (R,C)

Noel  Larsen,  MA,  Neurotopia,  Inc.,  [email protected]  Leslie  Sherlin,  PhD,  Neurotopia,  Inc.,  [email protected]  

Ashley  Baker,  MA,  Neurotopia,  Inc.  Jeff  Troesch,  MA,  Neurotopia,  Inc.  

 Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: .5  Abstract  Introduction:    

Over  the  years  there  has  been  a  continued  interest  in  the  use  of  neurofeedback  to  enhance  sports  performance  (e.g.,  Hammond,  2007;  Vernon,  2005)  and  some  have  suggested  this  may  be  the  next  frontier  of  peak  performance  training  (Harung  et  al.,  2011).  Despite  the  appeal,  few  studies  have  directly  tested  how  neurofeedback  influences  sport  performance  outcomes  (Arns,  Kleinnijenhuis,  Fallahpour,  &  Breteler,  2007;  Landers  et  al.,  1991).  There  is  also  limited  understanding  regarding  what  training  protocols  would  best  serve  an  athlete  population;  to  date,  no  standardized  training  protocol  exist  for  peak  performance  neurofeedback  training  (Vernon,  2005).  Previous  research  has  relied  strictly  on  personalized  electroencephalograph  (EEG)  profiles  (Arns  et  al.,  2007)  or  on  theory  drawn  from  EEG  profiles  of  experts  in  the  respective  field  (Landers  et  al.,  1991).  Each  reported  a  certain  degree  of  success,  signifying  that  a  combination  of  both  approaches  may  be  maximally  effective.  The  aim  of  the  current  study  was  multifaceted.  First  to  describe  the  EEG  profiles  of  Division  I  National  Collegiate  Athletic  Association  (NCAA)  golfers  and  second  to  understand  to  what  degree  Performance  Brain  TrainingTM  (a  specific  neurofeedback  training  paradigm  with  protocols  based  on  the  NeuroPerformance  ProfileTM)  could  alter  the  EEG  and  its  reflection  in  a  subsequent  NeuroPerformance  ProfileTM.  Third,  and  perhaps  most  relevant  to  sport  audiences,  to  demonstrate  the  effects  of  Performance  Brain  TrainingTM  on  sport  performance  related  outcomes.  

Method:    

Participants  included  16  Division  I  Pacific  Athletic  Conference  (PAC-­‐12)  golfers  (n  =  6  females)  ranging  in  age  from  18  to  22  years  of  age  (M  =  19.81  years)  randomly  divided  into  two  groups.  Quantitative  electroencephalographic  (QEEG)  data  was  collected  and  a  NeuroPerformance  ProfileTM  was  calculated  prior  to  randomization  (time  point  1).  Both  groups  continued  as  normal  with  team  practice,  tournament  play,  and  sport  related  coaching.  Group  1  additionally  received  20  sessions  of  Performance  Brain  TrainingTM  using  protocols  based  on  their  weakest  NeuroPerformance  ProfileTM  

Page 78: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

scale  conducted  over  the  course  of  5  weeks  with  2  to  3  sessions  per  week.  Group  2  did  not  receive  Performance  Brain  TrainingTM  during  this  time.  At  time  point  2,  a  second  QEEG  recording  conducted  and  another  NeuroPerformance  ProfileTM  was  calculated  for  all  participants.  Over  the  subsequent  five  weeks  both  groups  maintained  normal  team  activities  while  Group  2  also  completed  20  sessions  of  Performance  Brain  TrainingTM.  Group  1  did  not  complete  any  Performance  Brain  TrainingTM  sessions  during  this  time.  Following  this  training  period  (time  point  3),  all  golfers  underwent  the  third  and  final  QEEG  recording  and  a  NeuroPerformance  ProfileTM  was  calculated.  Sports  performance  data  (greens  in  regulation  [GIR],  fairways  in  regulation  [FIR],  putting  and  score  averages)  was  collected  at  each  time  point  in  the  study.  Group  central  tendencies  were  calculated  from  time  point  1  measures.  Additionally,  MANOVA  was  implemented  to  compare  QEEG,  NeuroPerformance  ProfileTM,  and  all  performance  data  from  time  point  1  to  time  point  2  and  from  time  point  2  to  time  point  3  for  each  group.  

Results:    

Analyses  will  be  conducted  once  the  trial  comes  to  an  end  the  final  week  of  May.  Findings  of  the  previously  described  analyses  will  be  presented  illustrating  1)  a  composite  description  of  the  EEG  activity  in  Division  I  golfers,  2)  changes  in  EEG  measures  and  3)  changes  in  performance  outcomes  following  Performance  Brain  TrainingTM.  

Discussion:    

This  research  is  an  initial  investigation  of  the  cortical  activity  of  elite  amateur  golfers  during  baseline  and  a  challenge  task.  Moreover,  this  study  has  illustrated  how  Performance  Brain  TrainingTM  can  influence  EEG  measures  and  specific  golf  performance  outcomes.  These  results  may  inform  future  research  in  the  field  of  peak  performance  neurofeedback  training.  

References  Arns,  M.,  Kleinnijenhuis,  M.,  Fallahpour,  K.,  &  Breteler,  R.  (2007).  Golf  performance  enhancement  and  real-­‐life  neurofeedback  training  using  personalized  event-­‐  locked  EEG  profiles.  Journal  of  Neurotherapy,  11,  11-­‐18.  

Harung,  H.  S.,  Travis,  F.,  Pensgaard,  A.  M.,  Boes,  R.,  Cook-­‐Greuter,  S.,  &  Daley,  K.  (2011).  Higher  psycho-­‐physiological  refinement  in  world-­‐class  Norwegian  athletes:  brain  measures  of  performance  capacity.  Scandinavian  Journal  of  Medical  Science  in  Sports,  21,  32  –  41.  

Hammond,  D.  C.  (2007).  Neurofeedback  for  the  enhancement  of  athletic  performance  and  physical  balance.  The  Journal  of  the  American  Board  of  Sport  Psychology,  1,  1-­‐9.  

Landers,  D.  M.,  Petruzzello,  S.  J.,  Salazar,  W.,  Crews,  D.  J.,  Kubitz,  K.  A.,  Gannon,  T.  L.,  &  Han,  M.  (1991).  The  influence  of  electrocortical  biofeedback  on  performance  in  pre-­‐elite  archers.  Medicine  &  Science  in  Sports  &  Exercise,  23,  123-­‐129.  

Vernon,  D.  J.  (2005).  Can  neurofeedback  training  enhance  performance?  An  evaluation  of  the  evidence  with  implications  for  future  research.  Applied  Psychophysiology  and  Biofeedback,  30,  347-­‐364.  

 Learning  Objective  

Identify  the  relevance  of  neurofeedback  training  to  sport  performance  application.    Outline  Basic  background  in  neurofeedback  for  sport

Page 79: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Design  of  current  study,  including  hypotheses  and  methods    

Study  Results    

Discussion  of  applicability  of  findings  to  future  research

Financial  Interest:  All  authors  are  employed  by  Neurotopia,  Inc.  and  this  research  was  funded  by  Neurotopia,  Inc.    

INVITED  PRESENTATION    Neurotoxins:  Effects  on  Brain  and  Behavior  and  Therapy  (R,C)  David  Cantor,  PhD,  Psychological  Sciences  Institute,  PC,  [email protected]  

 Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: 1  Abstract  Since  the  middle  of  the  20th  century,  the  rapid  proliferation  of  chemical  compounds  used  in  the  environment,  medical  treatment,  and  alternative  methods  used  for  food  production  have  led  to  grave  concerns  about  the  potential  effects  of  these  compounds  and  their  resultants  on  the  efficiency  of  the  electrochemical  workings  of  the  human  brain  and  its  development.  Some  of  these  concerns  were  published  in  the  popular  media  in  mid-­‐20th  century  by  such  authors  as  Rachel  Carson  in  her  now  famous  nonfunctional  work  “Silent  Spring”  and  from  publications  resulting  from  the  United  Nations  Environment  Programme  initiated  by  U  Thant,  3rd  Secretary-­‐General  of  the  United  Nations.  However  it  wasn’t  until  the  rise  of  large-­‐scale  lawsuits  against  the  offending  industries  coupled  with  the  near  epidemic  rise  of  health  problems  in  the  late  1980’s  and  into  the  21st  century  involving  neurocognitive  and  neuromuscular  disorders  that  there  has  been  a  global  interest  in  this  domain.  This  presentation  will  provide  an  overview  of  the  types  of  neurotoxic  intrusions  currently  present  that  are  likely  involving  health  risks  in  general  with  their  associated  economic  factors  but  on  the  functionality  of  humans  to  be  adaptive  and  optimally  functional  in  an  increasing  complex  and  demanding  world  for  cognitive  performance  efficiency.  Examples  of  studies  will  be  provided  to  illustrate  the  effects  of  exposure  to  metallotoxins  and  lipophilic  toxins  and  the  cascading  changes  of  biochemical  processes  ultimately  impacting  on  physiological  efficiencies  and  alterations  in  the  ways  cell  assemblies  in  the  brain  are  modified  leading  to  alterations  in  behavior  and  adaptive  capabilities.  Discussion  will  also  be  provided  on  how  these  effects  impact  significantly  in  the  ways  we  assess  and  treat  conditions  of  aberrant  human  behavior  but  also  have  implications  on  the  potential  limits  with  neurotherapies  attempting  to  compensate  for  central  nervous  system  functional  inefficiencies.  

References  Cantor,  D.S.,  Holder,  G.  ,Cantor,  W.,  Kahn,  P.,  Smoger,  G.,  Rodgers,  G.,  Swain,  W.,  and  Berger,  H.  In-­‐utero  and  postnatal  exposure  to  2,3,7,8  TCDD  in  Times  Beach,  Missouri:  2.  Impact  on  Neurophysiological  Functioning.  Proceedings  of  the  International  Symposium  on  Dioxin  and  Related  Compounds.  Vienna,  Austria,  1993.  

Edelson,  S.  and  Cantor,  D.  Autism:  Xenobiotic  Influences.  Toxicology  and  Industrial  Health,  Vol.  14,  No.  6,  1998,  799-­‐811.  

Edelson,  S.  and  Cantor,  D.  The  neurotoxic  etiology  of  autistic  spectrum  disorders:  a  replication  study.  Toxicology  and  Industrial  Health,  2000,  16,239-­‐247  

Heo,  Y.,  Parsons,  P.,  Lawrence  D.  Lead  Differentially  Modifies  Cytokine  Production  in  Vitro  and  in  Vivo.  Toxicology  and  Applied  Pharmacology,  1996,  138,  149-­‐157.  

Page 80: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Herbert,  M.  and  Ziegler,  D.  Volumetric  Neuroimaging  and  Low-­‐dose  Early  -­‐Life  Exposures:  Loose  Coupling  of  Pathogenesis-­‐Brain-­‐Behavior  Links.  Neurotoxicology,  2005,  Aug;26(4):565-­‐72.  

Lucena,  M.  ,  Carvajal,A.,  Andrade,  R.  ,  and  Valesco,  A.  Antidepressant  Induced  Hepatoxicity,  Expert  Opinion  and  Drug  Safety,  2003,  2(3),  249-­‐262.  

Thatcher,  R.W.,  McAlaster,  R.,  Lester,  M.,  and  Cantor,  D.S.  Comparisons  Among  EEG,  Hair  Minerals,  and  Diet  Predictions  of  Reading  Performance.  New  York  Acad.  of  Sciences,  1984,  433,  87-­‐96.  

Vernino  S,  Geschwind  M,  Boeve  B,  Autoimmume  encephalopathies.  Neurologist.  2007  May;  13(3):140-­‐7.    Learning  Objective  Identify  basic  elements  or  compounds  which  have  been  identified  to  affect  CNS  functioning  and  behavior.

Have  an  understanding  about  how  neurotoxic  agents  can  manifest  their  effects  adversely  in  the  course  of  a  lifetime.

Recognize  the  manner  that  body  burden  levels  of  neurotoxic  agents  can  influence  qEEG  findings  and  thwart  Neurofeedback  protocols.

Financial  Interest:  I  am  an  owning  partner  of  BrainDx,  LLC  which  produces  analytic  software  and  report  generation  of  electrophysiological  data  and  am  involved  in  ongoing  forensic  cases  involving  cases  in  litigation  due  to  toxin  exposure.    

KEYNOTE  PRESENTATION    

Neurofeedback  Training  Induces  Changes  in  Grey  and  White  Matter  (R)  

Mario  Beauregard,  PhD,  University  of  Montreal,  [email protected]    Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: 1  Abstract  We  demonstrated  some  time  ago  that  increasing  Beta1  band  through  neurofeedback  training  (NFT)  can  enhance  activity  in  brain  regions  involved  in  various  attentional  processes  (Beauregard  et  al.,  2006;  Lévesque  et  al.,  2006).  One  objective  of  this  structural  magnetic  resonance  imaging  (MRI)  study  was  to  investigate  whether  a  NFT  protocol  designed  to  improve  attention  might  induce  changes  in  grey  matter  volume  (GMV)  in  areas  known  to  be  implicated  in  attention.  Another  objective  was  to  explore  whether  such  a  NFT  protocol  might  lead  to  alterations  in  white  matter  tracts  involved  in  attention  processing.  

Thirty  university  students  (M:  22.2;  SD:  2.4)  with  no  history  of  neurological  or  psychiatric  disorders  were  recruited.  Participants  were  randomly  assigned  to  an  experimental  group  (EXP,  NFT;  n=12,  M:  22.4;  SD:  1.6),  a  sham  group  (SHAM,  to  control  for  a  possible  placebo  effect;  n=12,  9  M:  22.0;  SD:  3.1),  or  a  control  group  (CON,  to  control  for  the  passage  of  time;  n=6,  3  M:  20.7;  SD:  1.0).  NFT  was  conducted  over  a  period  of  13.5  weeks  for  a  total  of  40  sessions.  Participants  in  the  EXP  group  were  trained  to  enhance  the  amplitude  of  their  beta  1  waves  in  the  right  hemisphere.  Electrodes  were  placed  at  F4  and  P4.  MRI  data  were  acquired  one  week  before  (Time  1)  and  one  week  after  (Time  2)  NFT.  Regional  changes  in  GMV  were  analyzed  using  voxel-­‐based  morphometry  (VBM).  As  for  white  matter,  a  diffusion  tensor  model  was  fitted  to  diffusion  tensor  imaging  (DTI)  data  to  produce  whole  

Page 81: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

brain  maps  of  fractional  anisotropy  (FA)  that  were  compared  between  the  two  time  points  using  tract-­‐based  spatial  statistics  (TBSS)  (Smith  et  al.,  2006).  The  attentional  skills  of  all  participants  were  assessed  at  Time  1  and  Time  2  using  the  Integrated  Visual  Auditory  continuous  performance  test  (IVA).  

In  the  EXP  group,  the  scores  on  the  IVA  Full  Scale  Attention  Quotient  (which  is  based  on  measures  of  both  visual  and  auditory  attention)  significantly  increased  at  Time  2,  compared  to  Time  1  (P  <  0.005).  Scores  on  auditory  attention  were  also  significantly  higher  (P  <  0.005)  following  NFT.  For  participants  in  the  SHAM  group,  scores  on  visual  attention  were  greater  (P  <  0.005)  at  Time  2  relative  to  Time  1.  No  difference  in  attentional  performance  was  noted  at  Time  2,  compared  to  Time  1,  for  members  of  the  CON  group.  In  other  respects,  a  significant  (P  <  0.001  uncorrected)  grey  matter  volume  increase  was  found  in  the  EXP  group,  at  Time  2  relative  to  Time  1,  in  a  number  of  cortical  areas  located  in  the  right  hemisphere  [RH]  (inferior,  middle  and  superior  frontal  gyri;  inferior  parietal  lobule;  inferior  temporal  gyrus)  and  left  hemisphere  [LH]  (inferior  and  superior  frontal  gyri;  inferior  and  superior  temporal  gyri;  superior  parietal  lobule).  With  regard  to  white  matter,  significant  increases  in  FA  were  measured  in  the  superior  longitudinal  fasciculus  (left  hemisphere  [LH],  P  <  0.0001),  inferior  longitudinal  fasciculus  ([LH],  P  <  0.005),  anterior  limb  of  the  internal  capsule  (LH],  P  <  0.0005),  anterior  corona  radiata  (right  hemisphere  [RH],  P  <  0.005),  cingulum  ([RH]  and  [LH],  P  <  0.0001),  and  corpus  callosum  (genu:  P  <  0.005;  body:  P  <  0.001;  splenium:  P  <  0.0005).  No  change  in  grey  and  white  matter  was  noted  for  members  of  the  SHAM  and  CON  groups.  

These  findings  suggest  that  NFT  can  induce  changes  in  brain  regions  implicated  in  attention.  Our  findings  also  indicate  that  NFT  can  produce  modifications  in  white  matter  tracts  involved  in  attentional  processes.  

References  Beauregard  M,  Lévesque  J  (2006).  Functional  Magnetic  Resonance  Imaging  Investigation  of  the  Effects  of  Neurofeedback  Training  on  the  Neural  Bases  of  Selective  Attention  and  Response  Inhibition  in  Children  with  Attention-­‐Deficit/Hyperactivity  Disorder.  Applied  Psychophysiology  and  Biofeedback  31:  3-­‐20.  

Lévesque  J,  Beauregard  M,  Mensour  B  (2006).  Effect  of  neurofeedback  training  on  the  neural  substrates  of  selective  attention  in  children  with  attention-­‐deficit/hyperactivity  disorder:  a  functional  magnetic  resonance  imaging  study.  Neuroscience  Letters  394:  216-­‐  221.  

Smith  SM,  Jenkinson  M,  Johansen-­‐Berg  H,  Rueckert  D,  Nichols  TE,  Mackay  CE,  Watkins  KE,  Ciccarelli  O,  Cader  MZ,  Matthews  PM,  and  Behrens  TE  (2006).  Tract-­‐  based  spatial  statistics:  voxelwise  analysis  of  multi-­‐subject  diffusion  data.  Neuroimage  31:  1487-­‐1505.  

Learning  Objective  Learn  about  the  structural  brain  changes  (grey  matter  and  white  matter)  induced  by  neurofeedback  training.  

Outline  I  will  discuss  the  results  of  a  magnetic  resonance  imaging  study  (MRI)  recently  performed  by  my  research  team.  The  main  objective  of  this  study  was  to  investigate  whether  neurofeedback  training  can  lead  to  structural  changes  in  the  brain  related  to  grey  matter  and  white  matter.  First,  I  will  start  the  lecture  by  presenting  the  concept  of  neuroplasticity  (10  min).  Then,  I  will  present  the  objectives  of  the  study  (5  min)  and  describe  the  methods  used  in  this  investigation  (10  min).  Next,  I  will  present  the  results  (15  min).  Finally,  I  will  discuss  these  results  and  offer  a  few  concluding  remarks  (15  min).  

Financial  Interest:  The  study  was  supported  by  a  grant  from  the  Foundation  Denis  Guichard  (Paris,  France).    

Page 82: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Saturday, September 22, 2012

 Plenary  Room  2  

 Heart  -­‐  Brain  Connections  Neuroanatomy  Underlies  the  

Effectiveness  of  Interventions  that  Combine  Neurofeedback  with  Biofeedback  (C)  

Lynda  Thompson,  PhD,  ADD  Centre,  [email protected]  Michael  Thompson,  ADD  Centre,  [email protected]  

 Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: 1  Abstract  Heart  rate  variability  training  appears  to  have  direct  effects  on  many  of  the  same  basic  neural  structures  that  are  also  directly  influenced  by  EEG  biofeedback  training.  These  include  the  thalamus,  anterior  cingulate  cortex,  amygdala,  and  hypothalamus,  to  name  a  few.  Combining  EEG  biofeedback  /  neurofeedback  (NFB)  with  peripheral  biofeedback  (BFB)  appears  to  have  effects  not  only  on  the  neural  network(s)  concerned  with  emotions  (the  affect  network)  but  also  on  the  executive,  salience  and  default  networks  and  their  associated  functions.  In  our  experience,  attention  and  concentration,  as  well  as  other  executive  network  functions,  are  influenced  in  a  positive  manner.  In  addition  there  are  changes  in  social  behaviour.  

This  presentation  will  use,  for  the  most  part,  a  single  case  study  to  exemplify  how  decisions  are  made  concerning  interventions.  This  will  be  integrated  with  an  overview  of  the  neural  connections  that  underlie  our  hypothesis  that  BFB  &  NFB  act  on  neural  systems  in  a  synergistic  fashion.  The  patient  example  is  a  24  year  old  law  student  who  suffered  a  mild  traumatic  brain  injury  (TBI)  /  concussion  in  a  car  accident.  This  has  resulted  in  what  her  family  describes  as  a  severe  personality  change.  She  is  now  depressed,  anxious  and  impulsive.  She  suffers  from  frontal  migraine  headaches  almost  every  day.  She  has  labile  affect  that  can  range  rapidly  from  clinging  behaviour  to  sudden  rages.  After  these  outbursts  she  feels  very  badly  about  her  behaviour.  Perhaps  due  to  changes  in  the  „executive  network‟  functions  she  is,  for  the  first  time  in  her  life,  having  difficulty  with  attention,  concentration,  and  memory.  In  addition,  her  ability  to  understand  social  nuance  and  innuendo  appears  compromised.  The  raw  EEG,  brain  maps,  LORETA  source  correlations,  and  evoked  potentials  will  be  shown  and  differences  from  both  the  Neuroguide  and  WinEEG  data  bases  will  be  outlined.  

We  will  show  how  the  Neuroguide  findings  with  LORETA  analysis  correlate  with  her  symptoms.  These  correlations  are  used  for  planning  intervention  using  LORETA  NFB.  The  brain  map  findings  also  led  to  a  prescription  of  transcranial  direct  current  stimulation  (tDCS).  For  her  headaches  we  added  passive  infra-­‐red  feedback  (pIR).  The  psychophysiological  stress  assessment  findings,  which  showed  a  failure  to  recover  quickly  after  a  minor  stress,  paralleled  her  difficulties  self-­‐regulating  and  controlling  anxiety  in  stressful  situations.  These  measurements  led  to  decisions  regarding  the  use  of  peripheral  biofeedback  and  heart  rate  variability  (HRV)  training.  

The  combined  approach  reflects  the  ideas  published  several  years  ago  in  an  article  entitled,  A  Systems  Theory  of  Neural  Synergy.  The  concept  of  interactions  and  synergy  is  not  new.  Back  in  1949  Walter  Hess,  in  his  address  when  receiving  the  Nobel  Prize  for  Medicine  and  Physiology,  said:  “Every  living  organism  is  not  the  sum  of  a  multitude  of  unitary  processes,  but  is,  by  virtue  of  interrelationships  and  of  higher  and  lower  levels  of  control,  an  unbroken  unity”.  Our  work  reflects  this  basic  principle  and  helps  explain  the  effects  on  the  central  nervous  system  (CNS)  when  NFB  and  

Page 83: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

BFB  are  combined.  

One  example  is  that  HRV  training  gives  direct  afferent  input  to  the  solitary  nucleus  in  the  medulla,  and  that  nucleus  connects  with  the  locus  coeruleus  (where  norepinephrine  is  produced),  the  amygdala,  and  the  hypothalamus,  structures  that  have  a  direct  effect  on  the  hypothalamic-­‐pituitary-­‐adrenal  (HPA)  axis  and  on  the  ability  to  calm  one’s  self  to  control  anxiety  and  stress.  Perhaps  even  more  importantly,  the  solitary  nucleus  connects  to  the  posterior  region  of  the  thalamus.  This  may  be  why  we  have  observed  and  reported  on  a  rise  in  the  amplitude  of  sensorimotor  rhythm  (SMR)  when  we  do  HRV  training.  Clearly,  when  we  begin  our  NFB  training,  which  we  usually  do  over  the  central  midline  structures  (CMS)  and,  in  particular,  over  Cz,  which  lies  above  the  anterior  cingulate  gyrus,  Brodmann  area  (BA)  24  we  may  be  having  effects  on  the  affect,  executive,  salience  and  the  default  networks.  Whatever  else  we  may  enhance  or  inhibit,  we  almost  always  also  raise  SMR.  We  usually  do  the  peripheral  biofeedback  and  the  neurofeedback  training  procedures  simultaneously  during  sessions.  We  may  alternate  these  sessions  with  sessions  that  use  LORETA  NFB,  which  has  the  advantage  of  being  able  to  more  directly  target  CMS  that  are  deep  in  the  cortex.  LORETA  NFB  also  means  that  we  can  have  an  effect  on  multiple  nuclei  within  the  same,  or  within  more  than  one,  network  when  their  activity  deviates  outside  the  standard  deviation  (SD)  limits  that  we  set  for  that  client.  

This  is  a  clinical  presentation  that  we  hope  meets  the  goal  of  giving  a  rationale  for  combining  NFB  with  peripheral  BFB  interventions.  The  ideas  are  as  old  as  the  Latin  ideal  of  mens  sana  in  corpore  sano  (a  sound  mind  in  a  sound  body)  and  as  new  as  the  latest  neuroscience  discoveries.  The  goal  is  to  deepen  practitioners’  understanding  of  connections  so  they  can  plan  multi-­‐modal  interventions  that  achieve  success  with  every  client.  

References  Angelakis,  Efthymios  &  Evangalia,  Liouta,  (2011).  Transcranial  Electrical  Stimulation:  Methodology  and  Applications.  Journal  of  Neurotherapy,  15:  337-­‐357    

Congedo,  2006  Congedo,  M.  (2006).  Subspace  projection  filters  for  real-­‐time  brain  electromagnetic  imaging.  IEEE  Transactions  on  Bio-­‐Medical  Engineering,  53,  1624–  1634.    

De  Ridder,  Dirk  (2009).  An  evolutionary  approach  to  brain  rhythms  and  its  clinical  implications  for  brain  modulation.  Journal  of  Neurotherapy,  (13)1,  69-­‐70    

Gevirtz,  R.  (2010).  Autonomic  Nervous  System  Markers  for  Psychophysiological,  Anxiety,  and  Physical  Disorders,  Chapter  9,  in  Integrative  Neurosience  and  Personalized  Medicine  edited  by  Evian  Gordon  and  Stephen  H.  Koslow,  Oxford  Press  pp  164-­‐181.    

Kouijzer,  E.J.,  Jan  M.H.,  de  Moor,  B.,  Gerrits,  J.L.,  Congedo,  M.,  &  van  Schie,  H.  T.  (2009).  Neurofeedback  improves  executive  functioning  in  children  with  autism  spectrum  disorders.  Research  in  Autism  Spectrum  Disorders  3,  145–162.    

Porges  ,  S.  W.  (2007).  The  Polyvagal  Perspective  .  Biological  Psychiatry  ,  74  ,  116  –  143    

Reid,  Nihon,  Thompson  &  Thompson,  (2011).  Sensorimotor  Rhythm  increases  with    Heart  Rate  variability  Training.  Presentation,  ISNR  Annual  meeting,  September,  2011.    

Steriade,  Meircea  and  McCarley,  Robert  W.,  (2005).  Synchronized  Brain  Oscillations    Leading  to  Neuronal  Polasticity  During  Waking  and  Sleep  States,  chapter  7  in:  Brain    Control  of  Wakefulness  and  Sleep,  second  edition.  Springer,  2005.  For  SMR  PP  258-­‐259    

Page 84: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Task  Force  of  The  European  Society  of  Cardiology  and  The  North  American  Society  of    Pacing  and  Electrophysiology  (1996).  Heart  rate  variability  Standards  of  measurement,  physiological  interpretation,  and  clinical  use.  European  Heart  Journal  (1996)  17,  354-­‐  381    

Thatcher,  Robert  W.,  Ph.D.  (2010)  LORETA  Z  Score  Biofeedback.  Neuroconnections,  December  2010    

Thompson,  J.,  Sebastianelli,  W.,  Slobounov,  S.  (2005).EEG  and  Postural  Correlates  of  Mild  Traumatic  Brain  Injury  in  Athletes.  Neuroscience  Letters,  377,  158-­‐163    

Thompson,  J.,  Hagedorn,  D.,  (In  Press).  Multimodal  Analysis:  New  Approaches  to  the  Concussion  Conundrum.  Journal  of  Clinical  Sports  Psychology.  .    

DeFina,  P.,  Fellus,  J.,  Thompson,  J.,  Eller,  M.,  Moser,  R.,  Frisina,  P.,  Schatz,  P.,  DeLuca,  J.,  Zigarelli-­‐McNish,  M.,  Prestigiacomo,  C.  (2011).  Improving  Outcomes  of  Severe  Disorders  of  Consciousness.  Restorative  Neurology  and  Neuroscience    

Thompson,  M.  &  Thompson,  L.  (2003)  The  Neurofeedback  Book:  An  Introduction  to  Basic  Concepts  in  Applied  Psychophysiology,  Wheat  Ridge,  CO:  Association  for  Applied  Psychophysiology.    

Thompson,  M.  &  Thompson,  L.  (2007).  Neurofeedback  for  Stress  Management.  Chapter  in  Paul  M.  Lehrer,  Robert  L.  Woolfolk  and  Wesley  E.  Sime  (Eds.)  Principles  and  Practice  of  Stress  Management,  3rd  Edition.  New  York:  Guilford  Publications.    

Thompson,  M.  &  Thompson,  L.,  (2009).  Systems  Theory  of  Neural  Synergy:  Neuroanatomical  Underpinnings  of  Effective  Intervention  Using  Neurofeedback  plus  Biofeedback.  Journal  of  Neurotherapy,(13)1,  72-­‐74.    

Thompson,  M.  &  Thompson,  L.,  (2010)  Functional  Neuroanatomy  and  the  Rationale  for  Using  EEG  Biofeedback  for  Clients  with  Asperger’s  Syndrome.  Journal  of  Applied  Psychophysiology  and  Biofeedback,  35(1),  39-­‐61.    

Thompson,  M.,  Thompson,  L.,  Thompson,  J.,  Hagedorn,  D.,(2011)  Networks:  A  Compelling  Rationale  for  Combining  Neurofeedback,  Biofeedback  and  Strategies.  NeuroConnections,    

Uddin,  L.  Q,  Iacoboni,  M.,  Lange,  C.  &  Keenan,  J.P.  (2007).  The  self  and  social  cognition:  the  role  of  cortical  midline  structures  and  mirror  neurons.  Trends  in  Cognitive  Sciences,  (11)4,  153-­‐157    

Learning  Objective  List  reasons  why  initial  NFB  training  over  central  midline  structures,  based  on  QEEG  and  LORETA  assessment  findings,  is  likely  to  produce  improvement  in  some  of  the  core  symptoms  of  people  with  symptoms  related  affect  such  as  anxiety,  and  to  executive  functions  such  as  attention  span  and  concentration.    

Outline  with  reference  to  affect,  executive,  and  distress  networks,  and  the  hypothalamic-­‐  pituitary-­‐adrenal  axis  (HPA),  why  HRV  training  may  have  a  positive  influence  on  the  outcomes  of  patients  who  have  a  combination  of:  affect  difficulties  such  as  anxiety,  and  executive  problems  such  as  low  attention  span.    

Describe  a  neural  pathway  from  the  heart  to  the  thalamus  that  may  influence  production  of  SMR.    

Page 85: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Describe  the  most  likely  effect  on  cortical  function  of  doing  transcortical  direct  current  stimulation  with  the  anode  placed  over  the  left  prefrontal  cortex  and  the  cathode  over  the  right  orbit.    

Outline  2  postulated  advantages  for  using  LORETA  NFB  training.    

Outline  

First  15  Minutes:  Dr.  Lynda  Thompson  will  briefly  describe  the  presenting  symptoms  of  a  patient  who  suffered  a  mild  traumatic  brain  injury  (TBI)  /  concussion  in  a  car  accident.  Drs.  Lynda  and  Michael  Thompson  will  describe  the  assessment  results  including  the  raw  EEG  from  the  19  Channel  EEG,  brain  map,  LORETA  and  ERP  findings.  The  findings  of  a  psychophysiological  stress  assessment  and  the  basic  HRV  data  will  be  given.  ii.  15-­‐35  Minutes:  The  symptoms  will  be  related  (brief  overview)  to  possible  neural  networks  and  the  central  midline  structures  of  the  brain.  A  brief  outline  will  be  shown  of  the  neural  connections  of  the  heart  and  baroreceptors  to  the  medulla  and  the  links  to  the  CMS  of  the  brain.  This  overview  leads  to  answering  the  question  of  “why”  we  combine  NFB  with  BFB.  iii.  35-­‐50  Minutes:  The  presenters  will  describe  how  NFB  +  BFB  sessions  are  implemented  at  our  centre  including  descriptions  of  when  and  how  LORETA  NFB,  tDCS,  pIR,  strategies  and  counseling  are  integrated  into  the  sessions.  iv.  50-­‐60  Minutes:  Summary  and  results  v.  The  last  5  minutes  will  be  devoted  to  answering  questions.  

Financial  Interest:  Lynda  Thompson  is  co-­‐author  of  THE  A.D.D.  BOOK.  Michael  and  Lynda  are  co-­‐authors  of  SETTING  UP  FOR  CLINICAL  SUCCESS.  Michael  and  Lynda  Thompson  are  co-­‐authors  of  THE  NEUROFEEDBACK  BOOK.  It  is  likely  that  these  books  may  be  on  sale  at  the  meeting.  The  authors  will  state  their  interest  in  these  books  at  the  workshop.    Comparing  the  Effects  of  Neurofeedback  and  Hyperbaric  Oxygen  

Therapy  in  Autism  Spectrum  Disorder:  A  Case  Series  (R,C)  Robert  Coben,  PhD,  Private  Practice,  [email protected]  

Patrick  Elliott,  MD    

Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: 1  Abstract  The  prevalence  of  Autism  Spectrum  Disorders  (ASD)  continues  to  rise  at  an  alarming  rate  (CDC,  2012).  As  a  result,  the  need  for  empirically  validated  treatments  and  knowing  which  treatment  works  best  for  whom  becomes  all  the  more  pressing.  Due  to  a  dearth  of  this  knowledge,  Green  et  al.  (2006)  have  shown  that  most  children  with  ASD  utilized  multiple  treatments  and  there  is  no  guide  as  to  which  treatment  might  work  best.  We  now  present  data  on  a  comparison  of  two  popular  treatments  for  ASD  with  preliminary  empirical  support,  Neurofeedback  (NF)  (Coben  &  Wagner,  2011)  and  Hyperbaric  Oxygen  Therapy  (HBOT)  (Rossignol,  2007).  After  presenting  information  on  the  empirical  support  of  these  approaches,  data  will  be  presented  in  a  case  series  format.  These  data  will  present  symptom  and  neurophysiological  (QEEG)  changes  derived  from  NF  and  HBOT  delivered  to  separate  patients  with  ASD.  Lastly,  A-­‐B  and  A-­‐B-­‐A  design  data  will  be  presented  for  NF  and  HBOT  that  were  administered  to  the  same  patients  at  different  times.  This  gives  us,  for  the  first  time,  the  ability  to  compare  the  effects  of  these  treatments  in  the  same  patients.  The  findings  suggest  that,  while  HBOT  can  be  helpful  in  certain  cases,  NF  seems  to  help  more  often,  has  a  greater  effect  and  is  more  specific  in  the  changes  that  may  be  achieved.  Clearly,  more  empirically  based  research  is  needed  to  confirm  these  findings.  

References  Centers  for  Disease  Control  and  Prevention  (CDC)  (2012).  Prevalence  of  Autism  Spectrum  Disorders  —  Autism  and  Developmental  Disabilities  Monitoring  Network,  14  Sites,  United  States,  2008.  

Page 86: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Surveillance  Summaries,  61  (SS03),  1-­‐  19.  

Coben,  R.,  Wagner,  L.  (2011).  Emerging  empirical  evidence  supporting  connectivity  guided  Neurofeedback  for  Autistic  disorders.  In  Coben  &  Evans  (Ed.),  Neurofeedback  and  Neuromodulation  techniques  and  applications  (153-­‐182).  London,  UK:  Elsevier.  

Green,  V.A.,  Pituch,  K.A.,  Itchon,  J.,  Choi,  A.,  O’Reilly,  M.,  &  Sigafoos,  J.  (2006).  Internet  survey  of  treatments  used  by  parents  of  children  with  autism.  Research  in  Developmental  Disabilities,  27,  70-­‐84.  

Rossignol,  D.A.,  Rossignol,  L.W.,  James,  S.J.,  Melnyk,  S.,  &  Mumper,  E.  (2007).  The  effects  of  hyperbaric  oxygen  therapy  on  oxidative  stress,  inflammation,  and  symptoms  in  children  with  autism:  An  open-­‐label  pilot  study.  BMC  Pediatrics,  7,  36-­‐49.  

Learning  Objective  State  the  varying  neurophysiological  affects  that  Neurofeedback  and  HBOT  may  have  on  autistic  symptoms  and  brain  functioning.

Outline  Autism  symptoms  and  neurophysiology:  15  minutes

2.  Effects  of  Neurofeedback  on  Autism  neurophysiology:  15  minutes  

Effects  of  HBOT  on  Autism  neurophysiology:  15  minutes    

Comparing  the  effects  of  Neurofeedback  and  HBOT  –  theoretical  considerations:  15  minutes

Financial  Interest:  Dr.  Patrick  Elliott  is  the  medical  director  of  the  Autism  Treatment  Center  where  this  research  was  conducted.  Dr.  Coben  has  no  conflict  of  interests.    

In  Search  of  Depression  (R,C)  Kelly  Callaway,  BS,  University  of  Tennessee  

Rex  Cannon,  PhD,  University  of  Tennessee,  [email protected]  Kenneth  Phillips  RN,  PhD,  University  of  Tennessee  Gregory  Stuart,  PhD,  University  of  Tennessee  Debora  Baldwin,  PhD,  University  of  Tennessee  Deborah  Welsh,  PhD,  University  of  Tennessee  

 Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: 1  Abstract  The  DSM-­‐IV-­‐TR  proposes  that  patients  suffering  from  MDD  will  display  state-­‐dependent  irregularities  during  examination  by  electroencephalogram  and  other  experimental  methods.  This  study  sought  to  capture  this  state  dependency  by  utilizing  topographical  EEG  and  connectivity  and  LORETA  current  source  density  in  the  alpha  frequency  domain  would  differ  between  groups  as  would  pre-­‐post  task  salivary  cortisol  levels.  Methods:  This  study  was  conducted  with  23  (13  with  depression)  participants,  16  female  with  a  mean  age  of  20  ±  2.45.  Depressed  individuals  had  received  a  diagnosis  of  depression  within  the  past  year.  We  administered  the  SCID-­‐R  to  depressed  group.  We  collected  salivary  cortisol  prior  to  any  experimental  conditions.  Participants  then  provided  4  minute  eyes-­‐closed  and  eyes-­‐  opened  baseline  EEG  recordings.  The  participants  then  completed  the  Beck  Depression  Inventory  while  EEG  was  continuously  recorded.  Items  were  presented  for  8s  in  power  point  and  responses  were  marked  within  the  EEG  record.  These  segments  were  extrapolated  and  compared  for  significance  within  and  between  groups.  Post  session  cortisol  was  collected  and  

Page 87: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

analyzed.  Results:  Minimal  differences  are  seen  between  depressed  and  non-­‐clinical  groups  for  topographical  absolute  and  relative  power.  Significant  differences  were  found  in  asymmetry,  coherence  and  phase  measures  between  groups.  Current  source  density  in  alpha  differs  between  groups  with  depressed  showing  specific  regional  increases  in  right  prefrontal  regions.  Notably,  cortisol  decreased  relative  to  the  BDI  task  in  all  subjects,  with  differences  still  evident  between  groups.  Discussion:  As  with  many  other  studies  topographical  power  differences  are  sparse.  Connectivity  and  LORETA  current  source  density  measures  do  reveal  significant  differences  between  groups  and  may  provide  a  more  accurate  method  for  differential  diagnosis  of  depressive  disorder.  Several  studies  have  reported  blunted  cortisol  responsivity  in  depression  relative  to  stressors  and  our  data  appear  to  follow  these  results.  Diagnostic,  research  and  clinical  implications  are  discussed.  

References  H.  Alhaj,  G.  Wisniewski,  R.H.  McAllister-­‐Williams,  The  use  of  the  EEG  in  measuring  therapeutic  drug  action:  focus  on  depression  and  antidepressants,  J  Psychopharmacol  25  (2011)  1175-­‐1191.    

C.  Andreescu,  M.  Butters,  E.J.  Lenze,  V.K.  Venkatraman,  M.  Nable,  C.F.  Reynolds,  3rd,  H.J.  Aizenstein,  fMRI  activation  in  late-­‐life  anxious  depression:  a  potential  biomarker,  Int  J  Geriatr  Psychiatry  24  (2009)  820-­‐828.    

R.  Armitage,  R.F.  Hoffmann,  Sleep  EEG,  depression  and  gender,  Sleep  Med  Rev  5  (2001)  237-­‐  246.    

R.  Armitage,  H.P.  Roffwarg,  A.J.  Rush,  Digital  period  analysis  of  EEG  in  depression:  periodicity,  coherence,  and  interhemispheric  relationships  during  sleep,  Prog  Neuropsychopharmacol  Biol  Psychiatry  17  (1993)  363-­‐372.    

G.M.  Asnis,  E.J.  Sachar,  U.  Halbreich,  R.S.  Nathan,  H.  Novacenko,  L.C.  Ostrow,  Cortisol  secretion  in  relation  to  age  in  major  depression,  Psychosom  Med  43  (1981)  235-­‐242.    

D.  Begic,  M.  Mahnik-­‐Milos,  J.  Grubisin,  EEG  characteristics  in  depression,  "negative"  and  "positive"  schizophrena,  Psychiatr  Danub  21  (2009)  579-­‐584.    

J.P.  Bernstein,  S.Y.  Chung,  K.S.  Avila,  Cortisol  suppression  index:  a  new  approach  to  interpreting  the  DST  in  depression,  J  Clin  Psychiatry  43  (1982)  476-­‐478.    

C.  Bockting,  A.  Lok,  I.  Visser,  J.  Assies,  M.  Koeter,  A.  Schene,  Lower  cortisol  levels  predict  recurrence  in  remitted  patients  with  recurrent  depression:  A  5.5  year  prospective  study,  Psychiatry  Res  (2012).    

A.  Carvalho,  H.  Moraes,  H.  Silveira,  P.  Ribeiro,  R.A.  Piedade,  A.C.  Deslandes,  J.  Laks,  M.  Versiani,  EEG  frontal  asymmetry  in  the  depressed  and  remitted  elderly:  is  it  related  to  the  trait  or  to  the  state  of  depression?,  J  Affect  Disord  129  (2011)  143-­‐148.    

J.  Davidson,  C.  Turnbull,  R.  Strickland,  M.  Belyea,  Comparative  diagnostic  criteria  for  melancholia  and  endogenous  depression,  Arch  Gen  Psychiatry  41  (1984)  506-­‐511.    

J.R.  Davidson,  A  history  of  the  concept  of  atypical  depression,  J  Clin  Psychiatry  68  Suppl  3  (2007)  10-­‐15.    

K.W.  Davidson,  N.  Rieckmann,  M.A.  Rapp,  Definitions  and  distinctions  among  depressive  syndromes  and  symptoms:  implications  for  a  better  understanding  of  the  depression-­‐  cardiovascular  disease  association,  Psychosom  Med  67  Suppl  1  (2005)  S6-­‐9.    

P.M.  Furlan,  T.  Ten  Have,  M.  Cary,  B.  Zemel,  F.  Wehrli,  I.R.  Katz,  D.R.  Gettes,  D.L.  Evans,  The  role  of  stress-­‐induced  cortisol  in  the  relationship  between  depression  and  decreased  bone  mineral  density,  Biol  Psychiatry  57  (2005)  911-­‐917.    

Page 88: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

R.G.  Gomez,  S.H.  Fleming,  J.  Keller,  B.  Flores,  H.  Kenna,  C.  DeBattista,  B.  Solvason,  A.F.  Schatzberg,  The  neuropsychological  profile  of  psychotic  major  depression  and  its  relation  to  cortisol,  Biol  Psychiatry  60  (2006)  472-­‐478.    

P.O.  Harvey,  P.  Fossati,  J.B.  Pochon,  R.  Levy,  G.  Lebastard,  S.  Lehericy,  J.F.  Allilaire,  B.  Dubois,  Cognitive  control  and  brain  resources  in  major  depression:  an  fMRI  study  using  the  n-­‐back  task,  Neuroimage  26  (2005)  860-­‐869.    

Learning  Objective    Obtain  information  about  glucocorticoids,  EEG  and  LORETA  current  source  density  differences  in  depression.

Outline  Introduction  to  Depression  and  its  neural  correlates  (10  min)

Beck  Depression  Inventory  and  neuroanatomy  of  depression  (15  min)    

Application  for  neurofeedback  and  diagnoses  (10  min)    

Potential  implications  in  the  etiology  of  depression  (10  min)    

Conclusions  (10  min)

Questions  (5  min)

Financial  Interest:  No  financial  interests.    

Sunday, September 23, 2012

 Plenary  Room  1  

Real-­‐time  Functional  Magnetic  Resonance  Imaging  Neurofeedback  to  Attain  Volitional  Control  over  Brain  Activity  and  Associated  

Mental  Functions:  A  Systematic  Review  (R)  

Gunther  Meinlschmidt,  PhD,  Ruhr-­‐University  Bochum  ,  [email protected]  Dr.  Seung-­‐Schik  Yoo,  Brigham  &  Women's  Hospital;  Harvard  Medical  School  

Marion  Tegethoff,  Department  of  Psychology,  University  of  Basel    Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: .5  Abstract  Background:    

Technical  advances  have  allowed  processing  functional  magnetic  resonance  imaging  (fMRI)  data  in  real-­‐time  (RT)  (Cox,  Jesmanowicz,  &  Hyde,  1995),  enabling  its  use  for  neurofeedback  (NF)  applications  (Posse  et  al.,  2003;  Weiskopf  et  al.,  2003;  Yoo  &  Jolesz,  2002).  This  opened  the  way  to  conduct  studies  aiming  at  modulating  brain  activity  and  associated  mental  processes  by  RT-­‐fMRI-­‐NF,  based  on  accumulated  knowledge  on  brain  activity  related  to  mental  functions  (Caria,  Sitaram,  &  Birbaumer,  2011;  Weiskopf,  2011).  We  here  present  the  first  systematic  review  on  RT-­‐fMRI-­‐NF  for  

Page 89: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

volitional  control  attainment.  

Method:    

We  identified  articles  on  the  use  of  RT-­‐fMRI-­‐NF  to  attain  volitional  control  over  brain  activity  in  humans,  by  a  systematic  search  in  several  scientific  databases  (Medline,  Embase,  Psycinfo,  Web  of  Science).  Two  independent  reviewers  extracted  relevant  information.  We  assessed  the  study  quality  of  the  identified  articles  and  quantitatively  integrated  the  results.  The  systematic  review  was  conducted  in  accordance  with  the  Preferred  Reporting  Items  for  Systematic  reviews  and  Meta-­‐Analyses  (PRISMA)  guidelines  (Moher,  Liberati,  Tetzlaff,  &  Altman,  2009).  

Results:    

Nearly  all  identified  studies  reported  that  RT-­‐fMRI-­‐NF  was  associated  with  attainment  of  volitional  control  over  hemodynamic  brain  activity,  which  was  more  pronounced  than  in  control  conditions  (such  as  sham  feedback,  if  included  in  the  study  design).  Moreover,  attainment  of  volitional  control  was  mostly  associated  with  modulation  of  mental  functions  or  symptom  improvement  (e.g.  DeCharms  et  al.,  2005).  However,  the  identified  studies  substantially  varied  in  study  and  reporting  quality.  

Conclusion:    

The  accumulated  body  of  evidence  suggests  that  RT-­‐fMRI-­‐NF  can  be  used  to  attain  volitional  control  over  hemodynamic  brain  activity  (and  most  likely  associated  neuronal  activity),  and  thereby  over  associated  mental  functions.  However,  high  quality  studies,  including  randomized  controlled  trials,  are  highly  warranted.  Based  on  the  reviewed  articles,  we  suggest  a  gold  standard  for  conducting  and  reporting  high  quality  RT-­‐fMRI-­‐NF  studies.  

References  Caria,  A.,  Sitaram,  R.,  &  Birbaumer,  N.  (2011).  Real-­‐Time  fMRI:  A  Tool  for  Local  Brain  Regulation.  The  Neuroscientist  :  a  review  journal  bringing  neurobiology,  neurology  and  psychiatry.  doi:  10.1177/1073858411407205.  

Cox,  R.  W.,  Jesmanowicz,  A.,  &  Hyde,  J.  S.  (1995).  Real-­‐time  functional  magnetic  resonance  imaging.  Magnetic  Resonance  in  Medicine,  33(2),  230-­‐236.  

DeCharms,  R.  C.,  Maeda,  F.,  Glover,  G.  H.,  Ludlow,  D.,  Pauly,  J.  M.,  Soneji,  D.  (2005).  Control  over  brain  activation  and  pain  learned  by  using  real-­‐time  functional  MRI.  Proceedings  of  the  National  Academy  of  Sciences  of  the  United  States  of  America,  102(51),  18626-­‐18631.  

Moher,  D.,  Liberati,  A.,  Tetzlaff,  J.,  &  Altman,  D.  G.  (2009).  Preferred  reporting  items  for  systematic  reviews  and  meta-­‐analyses:  the  PRISMA  statement.  PLoS  medicine,  6(7),  e1000097.  doi:  10.1371/journal.pmed.1000097.  

Posse,  S.,  Fitzgerald,  D.,  Gao,  K.,  Habel,  U.,  Rosenberg,  D.,  Moore,  G.  J.  (2003).  Real-­‐time  fMRI  of  temporolimbic  regions  detects  amygdala  activation  during  single-­‐trial  self-­‐induced  sadness.  NeuroImage,  18(3),  760-­‐768.  

Weiskopf,  N.  (2011).  Real-­‐time  fMRI  and  its  application  to  neurofeedback.  NeuroImage.  Weiskopf,  N.,  Veit,  R.,  Erb,  M.,  Mathiak,  K.,  Grodd,  W.,  Goebel,  R.  (2003).  Physiological  self-­‐regulation  of  regional  brain  activity  using  real-­‐time  functional  magnetic  resonance  imaging  (fMRI):  Methodology  and  exemplary  data.  NeuroImage,  19(3),  577-­‐586.  

Yoo,  S.  S.,  &  Jolesz,  F.  A.  (2002).  Functional  MRI  for  neurofeedback:  Feasibility  study  on  a  hand  motor  

Page 90: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

task.  NeuroReport,  13(11),  1377-­‐1381.  

Learning  Objective  Evaluate  the  current  state  of  research  on  the  use  of  real-­‐time  fMRI  neurofeedback  to  attain  volitional  control  over  brain  activity  and  associated  mental  functions.

Outline  Background  and  basic  idea  of  real-­‐time  fMRI  neurofeedback  to  attain  volitional  control  (5-­‐10  minutes)

Current  state,  limitations,  and  future  directions  of  the  research  field  regarding  real-­‐time  fMRI  neurofeedback  to  attain  volitional  control  (20-­‐25  minutes)  

Financial  Interest:  No  conflicts  of  interest.    

Multi-­‐modal  Treatment  of  Stuttering:  A  Case  Study  Showing  Neurofeedback  Coupled  with  Traditional  Speech  Therapy  (C)    

Becky  Bingham,  RN,  NeuroSolution  Center,  Inc.,  [email protected]  

Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: .5  Abstract  A  growing  body  of  research  has  shown  Neurofeedback  to  be  effective  to  varying  degrees  for  numerous  disorders,  yet  little  research  has  been  conducted  for  stuttering.  Here  I  present  a  case  study  highlighting  the  effect  of  treatment  for  stuttering  using  Neurofeedback  combined  with  traditional  speech  therapy.  The  case  is  a  15-­‐year-­‐old  boy  rated  as  a  moderate  to  severe  stutterer.  He  had  received  extensive  speech  therapy  in  past  years  and  had  an  ebb  and  flow  in  symptoms  that  was  consistent  with  a  stereotypical  stuttering  profile.  Neurofeedback  began  with  baselines  established  using  IntegNeuro  assessment  coupled  with  a  QEEG  and  Hudspeth  analysis.  The  QEEG  showed  excessive  slow  wave  activity  from  5-­‐9Hz  and  excess  high  beta  from  18-­‐25Hz.  The  Hudspeth  coherence  map  showed  hypo-­‐connectivity  on  the  left  hemisphere  especially  between  F7  and  T5.  A  coherence  reward  was  therefore  targeted  from  3-­‐12Hz  with  the  sensors  placed  at  F7  and  T5.  Twenty  sessions  of  coherence  training  Neurofeedback  were  followed  by  a  repeat  QEEG.  In  spite  of  coincidental  decrease  in  frequency  of  speech  therapy,  therapist  rated  his  improvement  as  significant,  and  the  client  reported  significant  reduction  in  speech  blocks  and  those  that  are  more  mild  and  easier  to  overcome  using  speech  therapy  techniques.  A  NeuroRep  comparison  report  showed  textbook  changes  in  delta  not  only  in  the  area  we  are  working  on  but  also  throughout  the  head,  as  well  as  changes  in  theta  and  alpha  in  the  occipital  and  parietal  areas  in  eyes  closed.  Eyes  open  showed  improvement  theta  and  alpha  on  the  left  hemisphere  where  we  were  working.  Another  set  of  20  sessions  of  Neurofeedback  coherence  training  was  undertaken  with  sensors  remaining  at  F7  and  T5  reward  of  1-­‐19Hz  and  inhibit  of  4-­‐9Hz  and  19-­‐30Hz.  The  boy  reports  being  almost  completely  free  from  stuttering;  his  speech  therapist,  school  therapists  and  teachers  observed  only  minimal  stuttering.  

Clearly  there  is  significant  room  for  further  research  on  the  effect  of  Neurofeedback  and  especially  coherence  training  in  helping  stutterers  lead  normal  lives.  

References  Brenda  Ratcliff-­‐Baird  PhD  (2002):  ADHD  and  Stuttering:  Similar  EEG  Profiles  Suggest  Neurotherapy  as  an  Adjunct  to  Traditional  Speech  Therapies,  Journal  of  Neurotherapy:  Investigations  in  Neuromodulation,  Neurofeedback  and  Applied  Neuroscience,  5:4,  5-­‐22  

Page 91: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

André  Achim  PhD,  Claude  M.  J.  Braun  PhD  &  Isabelle  Collin  PhD  (2008):  Event-­‐Related  Potentials  Distinguish  Fluent  and  Stuttered  Speech,  Journal  of  Neurotherapy:  Investigations  in  Neuromodulation,  Neurofeedback  and  Applied  Neuroscience,  11:3,  15-­‐23  

D.  Corydon  Hammond  PhD  (2005):  Temporal  Lobes  and  Their  Importance  in  Neurofeedback,  Journal  of  Neurotherapy:  Investigations  in  Neuromodulation,  Neurofeedback  and  Applied  Neuroscience,  9:1,  67-­‐88  

Ozege,  A.,  Toros,  F.,  &  Comelekoglu,  U.  (2004).  The  Role  of  Hemispheral  Asymmetry  and  Regional  Activity  of  Quantitative  EEG  in  Children  with  Stuttering.  Child  Psychiatry  and  Human  Development,  Vol.  34(4),  Summer,  269-­‐280  

Learning  Objective  Describe  the  current  state  of  research  on  the  application  of  Neurofeedback  to  stuttering.  

Explain  how  Neurofeedback  can  potentially  be  used  to  improve  the  outcomes  of    traditional  speech  therapy.    

Outline  Summarize  research  on  the  potential  application  of  Neurofeedback  to  stuttering  5  minutes    

Presentation  of  case  study  15  minutes    

Discussion  of  protocols  used  5  minutes    

Questions  5minutes    

Financial  Interest:  No  outside  financial  interests.    The  Impact  of  an  8-­‐Week  Heart  Rate  Variability  Biofeedback  (HRV)  Training  on  Quantitative  EEG  and  LORETA  Following  a  Cognitive  

Stressor  (R)  

Jeffrey  Tarrant,  PhD,  University  of  Missouri,  [email protected]  Heather  Eastman-­‐Mueller,  PhD  

Ae  Kyung  Jung,  MA  Laura  Sinquefield,  MA  Brett  Woods,  M  Ed  Chad  Cross,  BA  

 Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: .5  Abstract  A  study  by  Sherlin,  Muench,  and  Wyckoff  (2010)  demonstrated  that  15  minutes  of  respiratory  sinus  arrhythmia  (RSA)  biofeedback  immediately  following  a  cognitive  stressor  resulted  in  significant  changes  in  both  alpha  and  beta  bands  in  certain  limbic  structures.  This  study  suggested  that  RSA  training  may  decrease  arousal  and  enhance  relaxation  through  impacting  areas  of  the  brain  critical  in  the  stress  response.  The  current  study  expands  on  previous  work  by  examining  the  impact  of  an  8-­‐week  breathing  based  biofeedback  program.

Page 92: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

The  sample  consisted  of  twenty-­‐seven  students  at  a  large  Midwestern  university.  Of  those,  seventeen  participants  were  enrolled  in  a  one-­‐hour  credit  class  entitled,  “Transforming  Stress:  Heart  Rate  Variability  Biofeedback”  and  considered  the  intervention  group.  A  control  group  (n=10)  consisted  of  students  enrolled  in  a  Learning  Strategies  course.  All  participants  in  the  study  had  to  complete  a  series  of  self-­‐report  questionnaires  to  examine  levels  of  generalized  anxiety  (GAD-­‐7;  Spitzer,  et.,  al.,  2006),  test  anxiety  (The  Westside  Test  Anxiety  Scale  (Driscoll,  2007)  and  coping  self-­‐efficacy  (Coping  Self-­‐Efficacy  Scale-­‐reduced  form  (Chesney,  et.,  al.,  2006).  In  addition,  students  were  asked  to  engage  in  a  series  of  physiological  recordings  that  included  EEG,  respiration  rate,  skin  temperature  and  conductance,  and  heart  rate  variability.  These  scales  and  measurements  were  completed  at  week  one  and  week  eight,  following  the  class.

Our  proposed  hypotheses:  1)  Significant  decreases  will  be  noticed  in  generalized  anxiety,  test  anxiety  and  improved  coping  skills.  This  will  be  assessed  through  conducting  a  paired  sample  t-­‐  test  to  determine  if  any  statistically  differences  existed  between  the  control  and  intervention  groups.

2)  Statistically  significant  reductions  in  physiological  activation  readings  will  be  reported  from  pre  to  post  intervention  for  those  members  of  the  intervention  group.  Multi-­‐comparison  tests  will  be  conducted  to  determine  if  any  significance  differences  existed  by  comparing  pre-­‐intervention  EEG  recordings  to  post-­‐intervention  recordings.  Separate  analyses  will  be  done  to  compare  baseline  recordings,  cognitive  challenge  (modified  Stroop  task;  Congedo,  2005)  recordings  and  recovery  recordings  in  the  following  ways.

a)  Power  means  within  the  standard  Neuroguide  frequency  bands  will  be  summed  across  all  electrode  sites  in  both  absolute  and  relative  power.  Within  and  between  group  differences  (compared  to  control  group)  will  be  assessed  using  an  ANOVA  analysis.

b)  Current  source  density  comparisons  between  pre-­‐intervention  baseline  and  post-­‐  intervention  baseline  will  be  completed  using  data  from  LORETA,  specifically  with  alpha  and  beta  bands  and  in  Brodmann  areas  consistent  with  the  anterior  cingulate  (25,

24,  32,  33,  10).  Within  and  between  group  differences  (compared  to  control  group)  will  be  assessed  using  a  ANOVA  analysis.

3)  Difference  scores  in  absolute  power  and  relative  power  (combining  all  sites  for  each  Neuroguide  band)  will  be  calculated  for  baseline  vs.  recovery  and  cognitive  challenge  vs.  recovery.  This  will  be  conducted  for  both  pre  and  post  intervention  scores.  The  pre-­‐post  difference  scores  will  then  be  compared  using  paired  sample  t-­‐tests  to  determine  if  students  improved  in  their  ability  to  recover  after  the  cognitive  challenge.

4)  We  hypothesize  that  the  greatest  benefits  noticed  in  the  intervention  group  will  be  exhibited  in  those  students  with  significantly  elevated  stress  and  anxiety  at  pre-­‐testing.  To  test  this  hypothesis,  subjects  will  be  subdivided  into  low  anxiety  and  moderate/high  anxiety  groups  based  on  criterion  scores  established  with  the  GAD-­‐7  (Spitzer,  et.  al.,  2006).  It  is  likely  that  the  number  of  subjects  in  each  group  will  be  insufficient  to  perform  a  meaningful  ANOVA.  Consequently,  this  comparison  will  be  descriptive.

5)  We  also  predict  a  direct  inverse  relationship  between  the  amount  of  time  students  practiced  biofeedback  and  their  self-­‐reported  stress,  anxiety,  and  coping  as  well  as  physiological  functioning,  meaning  the  longer  the  participant  practices  the  less  anxiety  they  will  exhibit.  This  will  be  examined  by  conducting  a  multiple  stepwise  regression  to  determine  if  amount  of  practice  was  significantly  associated  with  decreases  in  beta  power  (or  increases  in  alpha)  for  the  metrics  identified  above  as  well  as  self-­‐report  measures.

Limitations  of  the  study  include  a  small  sample  size  of  both  intervention  and  control  groups,  thus  precluding  generalizability.  Also,  we  only  tested  one  cognitive  stressor  and  therefore  generalization  

Page 93: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

to  other  cognitive  stressors  is  limited.  Future  directions  will  be  discussed  based  on  final  results.

References  Chesney,  M.A.,  Neilands,  T.B.,  Chambers,  D.B.,  Taylor,  J.M.  &  Folkman,  S.  (2006).  A  validity  and  reliability  study  of  the  coping  self-­‐efficacy  scale.  British Journal of Health Psychology, 11  (Pt.  3).  421-­‐437.

Congedo,  M.  (2005).  Marco’s  tools  (Version  1.3).  Mesa,  AZ:  Nova  Tech  EEG,  Inc.

Critchley,  H.D.,  Mathias,  C.J.,  Josephs,  O.,  O’Doherty,  J.,  Zanini,  S.,  &  Dewar,  B.K.  (2003).  Human  cingulated  cortex  and  autonomic  control:  Converging  neuroimaging  and  clinical  evidence.  Brain, 126,  2139-­‐2152.

Driscoll,  R.  (2007).  Westside  test  anxiety  scale  validation.  American  Test  Anxiety  Association  Peper,  E.,  Tylova,  H.,  Gibney,  K.H.,  Harvey,  R.  &  Combatalade,  D.  (2008).  Biofeedback

mastery: An experiential teaching and self-training manual. Association  for  Applied  Psychophysiology  and  Biofeedback.  Wheat  Ridge,  CO.

Sapolsky,  R.M.  (2004).  Why  zebras  don’t  get  ulcers,  3rd  ed.  St.  Martin’s  Griffin:  New  York.

Sherlin,  L,  Muench,  F.  &  Wyckoff,  S.  (2010).  Respiratory  sinus  arrhythmia  feedback  in  a  stressed  population  exposed  to  a  brief  stressor  demonstrated  by  Quantitative  EEG  and  sLORETA.  Applied Psychophysiology and Biofeedback, 35,  219-­‐228.

Spitzer,  R.L.,  Kroenke,  K.,  Williams,  J.B.W.,  Lowe,  B.  (2006).  A  brief  measure  for  assessing  generalized  anxiety  disorder.  Archives of Internal Medicine, 166,  1092-­‐1097.

Tarrant,  J.M.,  Eastman-­‐Mueller,  H.  &  Raynes,  D.  (2011).  The  effects  of  heart  rate  variability  biofeedback  on  college  student  anxiety,  stress  and  coping:  A  preliminary  examination.  Poster  session,  American  College  Health  Association  Annual  Meeting.

Learning  Objective  Clearly  articulate  the  ways  that  heart  rate  variability  biofeedback  impacts  physiological  recovery  from  a  cognitive  stressor.

Outline  Introduction  to  heart  rate  variability  biofeedback  (5  min)

Review  of  previous  research  using  hrv  and/or  rsa  biofeedback  for  stress  (5  min)  

Outline  of  current  research  study  (5  min)  

Description  of  results  (10  min)  

Conclusions/future  directions  (5  min)

Financial  Interest:  No  financial  interests  to  disclose.    

Self  Regulation  of  Slow  Cortical  Potentials  in  Patients  with  Intractable  Epilepsy  -­‐  Eight  Years  After  (R,C)  

Ute  Strehl,  PhD,  University  of  Tubingen,  ute.strehl@uni-­‐tuebingen.de  

Page 94: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Sarah  Birkle,  MD  Boris  Kotchoubey,  MD,  PhD  

 Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: .5  Abstract  Objective:  

The  aim  of  this  study  was  to  answer  the  question  whether  the  effects  of  a  behavior  therapy  program  for  patients  with  intractable  epilepsies  that  includes  self-­‐regulation  of  slow  cortical  potentials  (SCP)  were  still  present  more  than  eight  years  after  the  end  of  treatment  (Kotchoubey  et  al.,  2001).  In  the  main  study  the  experimental  group  (SCP  group)  received  a  training  of  SCP  regulation  while  the  two  control  groups  were  treated  either  with  respiratory  feedback  therapy  (RES)  or  adjustment  of  antiepileptic  medications  (MED)  in  combination  with  psychosocial  treatment.  

Methods:  

Seizure  frequency,  medication,  psychological  variables  and  neuropsychological  functions  of  the  patients  of  one  experimental  (SCP-­‐Feedback)  and  two  control  (Respiratory  Feedback  -­‐RESP-­‐  /  Adjustment  of  antiepileptic  medication  –MED-­‐)  groups  were  assessed  and  compared.  From  41  patients  in  the  experimental  group  19  patients  were  recruited  and  two  patients  from  each  control  group  (out  of  12  RESP  and  11  MED).  The  same  psychological  tests  (WAIS-­‐R;  WMS;  BDI;  MMPI-­‐2;  d2;  Locus  of  Control)  were  applied  as  in  the  original  study.  In  addition,  three  SCP-­‐training  sessions  were  conducted.  A  comparison  with  the  control  groups  was  not  feasible  due  to  a  lack  of  participants  out  of  these  groups.  

Results:  

A  statistically  significant  decrease  of  seizures  since  the  end  of  treatment  was  observed.  With  the  exemption  of  those  patients  that  underwent  neurosurgery,  participants  were  still  able  to  self-­‐  regulate  their  slow  cortical  potentials  during  the  feedback  condition.  IQ  and  memory  values  were  worse  compared  to  the  one  year  follow-­‐up  but  not  below  the  level  of  pre-­‐treatment  assessments.  Psychological  variables  were  still  in  a  non-­‐clinical,  normal  range.  

Conclusion:  

About  eight  years  after  the  end  of  an  EEG-­‐biofeedback  treatment  for  patients  with  refractory  epilepsy,  a  statistically  significant  trend  to  a  lasting  reduction  in  seizure  frequency  was  observed.  All  patients  except  those  who  had  received  surgical  treatment  in  the  meantime  still  had  the  ability  to  self-­‐regulate  their  slow  cortical  potentials.  Given  such  a  long  follow-­‐up  period,  the  possible  impact  of  confounding  variables  has  to  be  taken  into  account.  In  addition,  considering  the  small  number  of  patients  participating  in  this  follow-­‐up  evaluation  and  the  fact  that  members  of  the  control  groups  refused  to  take  part,  causal  conclusions  cannot  be  drawn.  Yet,  given  the  positive  and  sustained  development  of  the  patients  who  participated  in  the  EEG  biofeedback  training,  future  treatment  planning  and  research  should  not  only  aim  at  optimizing  conventional  therapies,  but  should  include  EEG-­‐biofeedback  as  an  option  in  the  treatment  of  patients  with  (intractable)  epilepsies.  

References  Kotchoubey,  B.,  Strehl,  U.,  Uhlmann,  C.,  Holzapfel,  S.,  König,  M.,  Fröscher,  W.,  Blankenhorn,  V.  and  Birbaumer,  N.  (2001).  Modification  of  Slow  Cortical  Potentials  in  Patients  with  Refractory  Epilepsy:  A  Controlled  Outcome  Study.  Epilepsia,  42  (3),  406-­‐416.  

Learning  Objective  Understand  why  slow  cortical  potentials  feedback  can  reduce  seizures.    

Page 95: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Understand  a  slow  cortical  potentials  training  protocol  in  a  behavioral  medicine  setting.  

Learn  about  the  results  of  a  long  term  follow-­‐up  study.    

Discuss  design  problems  of  long  term  follow-­‐up  study.  

Outline  SCP-­‐Feedback  in  intractable  epilepsies    (10  min)  

Behavioral  medicine  setting  (5  min)    

Short  and  long  term  results  (10  min)  

Questions  and  answers  (5  min)

Financial  Interest:  No  financial  interests  or  relationships.    

STUDENT  PRESENTATION    Theta-­‐Beta  Neurofeedback  for  Adult  ADHD:  EEG  and  Behavioral  

Changes  (R,C)  Sarah  Wyckoff,  MA,  University  of  Tubingen,  [email protected]  

Kerstin  Mayer,  M  Sc,  University  of  Tubingen  Ute  Strehl,  PhD,  University  of  Tubingen  

 Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: .25  Abstract  Objectives  

Attention–Deficit/Hyperactivity  Disorder  (ADHD)  is  one  of  the  most  common  disorders  of  childhood  and  persists  into  adulthood  for  approximately  5%  of  the  population  worldwide  (Polanczyk,  de  Lima,  Horta,  Biederman,  &  Rohde,  2007).  The  primary  symptoms  of  ADHD  include  inattentiveness,  impulsivity,  and  hyperactivity.  Analysis  of  resting  state  EEG  from  adults  with  ADHD  has  produced  a  variety  of  activity  patterns  in  power,  coherence,  and  asymmetry  measures,  as  well  as  the  typical  increases  in  theta/beta  ratios  seen  in  pediatric  populations  (Bresnahan,  Anderson,  &  Barry,  1999;  Bresnahan  &  Barry,  2002;  Clarke  et  al.,  2008a).  Neurofeedback  training  is  a  treatment  method  that  utilizes  operant  conditioning  to  reinforce  specific  EEG  activity.  In  a  recent  meta-­‐analysis,  a  large  effect  size  (ES)  was  found  for  neurofeedback  on  impulsivity  and  inattention  in  controlled  studies  and  pre-­‐  and  post-­‐designs  (Arns,  de  Ridder,  Strehl,  Breteler,  &  Coenen,  2009).  Studies  indicated  that  ADHD  children  are  able  to  self-­‐regulate  cortical  activity  (Drechsler  et  al.,  2007;  Leins  et  al.,  2007;  Strehl  et  al.,  2006),  which  lead  to  changes  in  spontaneous  EEG  activity  (Gevensleben  et  al.,  2009;  Monastra,  Monastra,  &  George,  2002).  However,  limited  research  has  investigated  the  efficacy  of  neurofeedback  as  a  treatment  for  adult  ADHD.  This  study  will  investigate  changes  in  EEG  following  a  course  of  30  sessions  of  theta-­‐beta  neurofeedback.  

Methods  

Continuous  20-­‐channel  EEG  was  acquired  from  12  adult  participants  that  met  DSM-­‐IV  criteria  for  ADHD  (combined,  inattentive,  or  hyperactive  type)  and  12  healthy  matched  controls,  both  groups  without  additional  serious  physical,  neurological,  or  psychiatric  disorders,  and  a  full  scale  IQ  >  80.  The  ADHD  group  received  30  sessions  of  neurofeedback  training  in  which  theta  (4-­‐8Hz)  activity  was  inhibited  and  beta  (13-­‐21Hz)  activity  was  augmented  at  CZ  (referenced  to  A1,  ground  A2).  Each  

Page 96: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

session  consisted  of  a  2-­‐minute  baseline,  (3)  7-­‐minute  blocks  of  continuous  feedback  of  theta  and  beta  frequency  band  amplitudes,  and  (1)  7-­‐minute  transfer  block  in  which  amplitude  feedback  was  not  presented.  EEG  recordings  were  collected  pre/post  treatment  and  included  an  EO,  EC,  and  active  listening  task,  in  addition  to  ADHD  behavioral  questionnaires.  

Results  

This  investigation  is  in  progress.  The  EEG  was  Fourier  transformed  to  provide  absolute  and  relative  power  estimates  for  the  delta,  theta,  alpha  and  beta  bands.  A  baseline  comparison  of  the  ADHD  participants  and  healthy  controls,  as  well  as,  pre/post-­‐training  changes  in  behavioral  and  neurophysiologic  parameters  will  be  presented  at  the  time  of  the  conference.  

Conclusion  

Treatment  implications,  study  limitations,  and  future  directions  in  research  will  be  addressed.  

References  Arns,  M.,  de  Ridder,  S.,  Strehl,  U.,  Breteler,  M.,  &  Coenen,  A.  (2009).  Efficacy  of  neurofeedback  treatment  in  ADHD:  The  effects  on  inattention,  impulsivity  and  hyperactivity:  A  meta-­‐analysis.  Clin  EEG  Neuroscience,  40(3),  180-­‐189.  

Bresnahan,  S.  M.,  Anderson,  J.  W.,  &  Barry,  R.  J.  (1999).  Age-­‐related  changes  in  quantitative  EEG  in  attention-­‐deficit/hyperactivity  disorder.  Biol  Psychiatry,  46(12),  1690-­‐1697.  

Bresnahan,  S.  M.,  &  Barry,  R.  J.  (2002).  Specificity  of  Quantitative  EEG  analysis  in  adults  with  attention  deficit  hyperactivity  disorder.  Psychiatry  Res,  112(2),  133-­‐144.  

Clarke,  A.  R.,  Barry,  R.  J.,  Heaven,  P.  C.,  McCarthy,  R.,  Selikowitz,  M.,  &  Bryne,  M.K.  (2008a).  EEG  coherence  in  adults  with  attention-­‐deficit/hyperactivity  disorder.  International  Journal  of  Psychophysiology,  76(1),  35-­‐40.  

Clarke,  A.  R.,  Barry,  R.  J.,  Heaven,  P.  C.,  McCarthy,  R.,  Seilkowitz,  M.,  &  Bryne,  M.K.  (2008b).  EEG  in  adults  with  attention-­‐deficit/hyperactivity  disorder.  Int  J  Psychophysiology,  70(3),  176-­‐183.  

Drechsler,  R.,  Straub,  M.,  Doehnert,  M.,  Heinrich,  H.,  Steinhausen,  H.C.,  &  Brandeis,  D.  (2007).  Controlled  evaluation  of  a  neurofeedback  training  of  slow  cortical  potentials  in  children  with  attention  deficit/hyperactivity  disorder  (ADHD).  Behav.  Brain  Funct.  3,  (35).  

Gevensleben,  H.,  Holl,  B.,  Albrecht,  B.,  Schlamp,  D.,  Kratz,  O.,  Studer,  P.,  Wangler,  S.  Rothernberger,  A.,  Moll,  G.  H.,  &  Heinrich,  H.  (2009).  Distinct  EEG  effects  related  to  neurofeedback  training  in  children  with  ADHD:  A  randomized  controlled  trial.  International  Journal  of  Psychophysiology,  74,  149-­‐157.  

Leins,  U.,  Hinterberger,  T.,  Kaller,  S.,  Schober,  F.,  Weber,  C.,  &  Strehl,  U.  (2006).  Neurofeedback  for  children  with  ADHD:  A  comparison  of  SCP-­‐  and  theta/beta-­‐protocols.  Prax.  Kinderpsychol.  Kinderpsychiatr.  55,  384–407.  

Monastra,  V.J.,  Monastra,  D.M.,  &  George,  S.  (2002).  The  effects  of  stimulant  therapy,  EEG  biofeedback,  and  parenting  style  on  the  primary  symptoms  of  attention-­‐deficit/hyperactivity  disorder.  Appl.  Psychophysiol.  Biofeedback,  27,  231–249.  

Polanczyk,  G.,  de  Lima,  M.  S.,  Horta,  B.  L.,  Biederman,  J.,  &  Rohde,  L.  A.  (2007).  The  worldwide  prevalence  of  ADHD:  A  systematic  review  and  metaregression  analysis.  Am  J  Psychiatry,  164  (6):  942–48.  

Page 97: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Strehl,  U.,  Leins,  U.,  Goth,  G.,  Klinger,  C.,  Hinterberger,  T.,  &  Birbaumer,  N.  (2006).  Self-­‐regulation  of  slow  cortical  potentials:  A  new  treatment  for  children  with  attention-­‐deficit/hyperactivity  disorder.  Pediatrics  118,  e1530–e1540.  

Learning  Objective  Understand  and  report  protocol  and  disorder  specific  EEG  and  behavioral  outcomes  extracted  from  pre/post  continuous  20-­‐channel  recording  of  EC,  EO,  active  listening  task  following  a  course  of  theta-­‐beta  neurofeedback  for  adult  ADHD;  assess  if  adult  ADHD  patients  identified  as  being  able  to  learn  to  self-­‐regulation  neurofeedback  parameters  experience  greater  EEG  and  core  symptom  changes.  

Outline  Background  on  EEG  findings  in  adult  ADHD;  description  of  neurofeedback  protocol/collection  methods:  (5  min)    

Study  population  demographics,  EEG/session  data  processing  methods,  and  results:  (7  min)    

Discussion  of  treatment  implications,  study  limitations,  and  future  directions:  (3  min)  

Financial  Interest:  We  have  no  significant  financial  interest  or  relationship  with  the  commercial  supporter(s)  or  manufacturer(s)  of  any  commercial  product  or  service  that  is  discussed  as  part  of  this  presentation.  Combined  Neuromodulation  Method  Aimed  to  Improve  Frontal  

Functions  in  Autism  (R,C)  Estate  Sokhadze,  PhD,  University  of  Louisville,  [email protected]  

Ayman  El-­‐Baz,  PhD,  University  of  Louisville  Allan  Tasman,  MD,  University  of  Louisville  Lonnie  Sears,  PhD,  University  of  Louisville  

Manual  Casanova,  MD,  University  of  Louisville    

Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: .5  Abstract  Introduction

Among  the  emerging  methods  of  neuromodulation  such  neurotherapeutic  techniques  as  repetitive  Transcranial  Magnetic  Stimulation  (rTMS)  and  neurofeedback  (NFB)  are  most  promising  for  the  treatment  of  core  autism  symptoms.  TMS  offers  a  noninvasive  method  for  altering  excitability  of  the  neural  circuits  and  induction  of  a  short-­‐term  functional  reorganization  in  the  human  cortex.  Since  effects  of  rTMS  are  not  limited  to  the  stimulated  target  cortex  but  give  rise  to  functional  changes  in  anatomically  and  functionally  interconnected  cortical  areas,  rTMS  is  a  suitable  tool  to  modulate  neural  plasticity  within  a  distributed  functional  network.  The  rTMS  may  have  therapeutic  potential  in  some  psychiatric  disorders  (e.g.,  depression,  George  et  al.,  1999)  We  reported  recently  positive  therapeutic  effects  of  low  frequency  rTMS  in  autism  spectrum  disorders  (ASD)  (Sokhadze  et  al.,  2009  2010,2012;  Baruth  et  al.,  2010).  The  NFB  is  a  form  of  operant  conditioning  of  electroencephalographic  (EEG)  activity  in  which  desired  electrocortical  activity  is  rewarded,  while  undesirable  is  inhibited.  Positive  effects  of  NFB  training  have  been  found  and  well  documented  for  ADHD  (Sherlin  et  al.,  2010).  Less  is  known  about  the  effects  of  neurofeedback  based  intervention  to  sensory  and  cognitive  functions  in  children  with  ASD  (Coben  et  al.,  2010).  There  are  not  any  studies  yet  reported  where  rTMS  and  neurofeedback  are  used  as  a  combined  neuromodulation  approach  to  treat  core  symptoms  of  autism.

Goals

Page 98: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Autism  is  a  pervasive  developmental  disorder  of  childhood  characterized  by  deficits  in  social  interaction,  language,  and  stereotyped  behaviors  and  restricted  range  of  interests.  The  study  is  based  on  an  underlying  neuropathology  model  of  autism  which  emphasizes  minicolumnar  pathology  (Casanova,  2007,  Casanova  et  al.,  2006)  and  lateral  inhibition  deficits  resulting  in  behavioral,  executive,  and  emotional  dysfunctions.  We  propose  that  neuromodulation  based  on  low  frequency  rTMS  will  enhance  lateral  inhibition  through  activation  of  inhibitory  double  bouquet  interneurons  and  will  be  accompanied  by  improvements  in  prefrontal  executive  functions.  The  numerous  studies  of  effects  of  TMS  agree  that  most  profound  acute  effects  of  magnetic  stimulation  last  for  approximately  one  hour,  while  effects  of  TMS  session  have  one  week-­‐long  washout  period  (George  et  al.,  1999).  It  is  an  important  goal  to  maintain  and  reward  positive  effects  of  individual  TMS  session  during  rTMS  treatment  course,  which  usually  consists  of  12  weekly  sessions.

Method

In  this  study  we  used  a  novel  approach  by  combining  prefrontal  rTMS  sessions  with  prefrontal  neurofeedback  (NFB)  to  prolong  and  reinforce  TMS-­‐induced  electrophysiological  changes  using  operant  conditioning  paradigm.  The  pilot  trial  recruited  children  and  adolescents  with  ASD.  Outcome  measures  included  behavioral  and  psychophysiological  responses.  In  particular  both  active  treatment  groups  (TMS  only  [N=20],  NFB  only  [N=8],  TMS  with  neurofeedback  [N=6],  and  wait-­‐list  [N=20])  were  assessed  at  (1)  the  initial  baseline  using  clinical  behavioral  questionnaires,  i.e.,  ABC  (Aman  &  Singh,  1994),  SRS  (Constantino  &  Gruber,  2005),  RBS  (Bodfish  et  al.,  1999)  and  performed  on  visual  oddball  task  with  evoked  EEG  response  recording  (Kanizsa  illusory  figure  test),  and  (2)  post  completion  of  12  sessions  of  treatment  (TMS,  NFB,  TMS+NFB),  or  4-­‐8  week  long  waiting  period.

Discussion and Results

The  project  links  behavioral,  clinical,  and  electrophysiological  (EEG  and  ERP)  responses  during  cognitive  tests  and  TMS-­‐neurofeedback  treatment  outcomes  with  an  underlying  developmental  neuropathology  model  derived  from  investigations  in  our  laboratory.  The  study  represents  a  new  development  in  combining  rTMS  with  EEG  biofeedback  and  using  functional  outcome  measures  (cognitive  ERP,  EEG,  and  autonomic  nervous  system  activity  measures  during  rTMS  sessions),  where  integrated  TMS-­‐neurofeedback  trial  represents  a  theory-­‐guided  psychiatric  neurotherapy  in  autism.  In  this  exploratory  project  we  used  active  rTMS,  wait-­‐list  and  neurofeedback  training  combinations  to  examine  effects  of  each  intervention  arm  and  their  combination  (TMS,  neurofeedback,  TMS  with  neurofeedback,  wait-­‐list)  on  EEG,  ERP,  autonomic  physiology  (heart  rate,  HV  variability  [HRV],  skin  conductance  level,  skin  temperature),  and  other  functional  and  behavioral  clinical  outcomes  in  autism.  Collected  preliminary  data  support  our  concept  that  rTMS  induces  decrease  of  sympathetic  arousal  and  anxiety,  improves  executive  functioning  as  evidenced  by  normalization  of  EEG/ERP  responses  during  executive  function  tests  and  clinical  behavioral  evaluations,  and  that  the  combination  of  TMS  with  EEG  neurofeedback  may  result  in  a  synergetic  outcome.  We  compared  several  clinical,  behavioral,  cognitive,  and  emotional  measures  to  select  those  more  sensitive  to  predicted  changes  resulting  from  the  combined  neurotherapy.

Conclusion

The  results  of  our  innovative  pilot  study  were  used  to  design  a  research  project  to  explore  clinical  efficacy  of  developed  novel  integrated  TMS/biofeedback  neuromodulatory  intervention  for  treatment  of  core  autism  symptoms.  The  grant  proposal  based  on  these  concepts  and  pilot  data  has  been  submitted  to  a  federal  agency  as  an  exploratory  project.

References  Aman,  M.  G.,  &  Singh,  N.  N.  (1994).  Aberrant  Behavior  Checklist  -­‐  Community.  Supplementary  Manual.  East  Aurora,  NY:  Slosson  Educational  Publications.  

Baruth,  J.M.,  Casanova,  M.,  El-­‐Baz,  A.,  Horrell,  T.,  Mathai,  G.,  Sears,  L.,  Sokhadze,  E.(2010b).  Low-­‐  

Page 99: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

frequency  repetitive  transcranial  magnetic  stimulation  (rTMS)  modulates  evoked-­‐gamma  oscillations  in  autism  spectrum  disorder  (ASD).  J.  Neurother.,  14,  179-­‐194  

Bodfish,  J.  W.,  Symons,  F.  J.,  Lewis,  M.  H.(1999).  Repetitive  behavior  scale.  Western  Carolina  Center  Research  Reports,  Morganton,  NC  

Casanova,  M.  F.,  van  Kooten,  I.,  Switala,  A.  E.,  van  England,  H.,  Heinsen,  H.,  Steinbuch,  H.  W.  M.,  et  al.  (2006).  Abnormalities  of  cortical  minicolumnar  organization  in  the  prefrontal  lobes  of  autistic  patients.  Clin.  Neurosci.  Res.,  6,  127–133  

Casanova,  M.F.  (2007).  The  neuropathology  of  autism.  Brain  Pathol.,  17,  422-­‐433.  Coben,  R.,  Linden,  M.,  Myers,  T.  E.  (2010).  Neurofeedback  for  autistic  spectrum  disorder:  a  review  of  

the  literature.  Applied  Psychoph.  Biofeedback,  35  (1),  83-­‐105.  Constantino,  J.  N.,  Gruber,  C.  P.  (2005).  The  Social  Responsiveness  Scale  (SRS)  Manual.  Los  Angeles  

CA:  Western  Psychological  Services.  

George,  M.  S,  Lisanby,  S.  H.,  Sackeim,  H.  A.  (1999).  Transcranial  magnetic  stimulation:  Applications  in  neuropsychiatry.  Arch  Gen  Psychiatry  56:300–311.  

Sherlin,  L.,  Arns,  M.  ,  Lubar,  J.,  Sokhadze,  E.  (2010).  A  Reply  to  Lofthouse,  Arnold,  and  Hurt  (2010).  J  Neurother.,  14  (4),  307-­‐311.  

Sokhadze,  E.,  Baruth,  J.,  Tasman,  A.,  Mansoor,  M.,  Ramaswamy,  R.,  Sears,  L.,  Mathai,  G.,  El-­‐Baz,  A.,  Casanova  M.F.,  (2010).  Low-­‐frequency  repetitive  transcranial  magnetic  stimulation  (rTMS)  affects  event-­‐related  potential  measures  of  novelty  processing  in  autism.  Appl.  Psychophysiol.  Biofeedback,  35,  147-­‐161  

Sokhadze,  E.,  El-­‐Baz,  A.,  Baruth,  J.,  Mathai,  G.,  Sears,  L.,  Casanova,  M.F.(2009).  Effects  of  low  frequency  repetitive  transcranial  magnetic  stimulation  (rTMS)  on  gamma  frequency  oscillations  and  event-­‐related  potentials  during  processing  of  illusory  figures  in  autism.  J.  Autism  Dev.  Disord.,  39,  619-­‐634.  

Sokhadze,  E.,  Baruth,  J.  M.,  Sears,  L.,  Sokhadze,  G.  E.,  El-­‐Baz,  A.  S.,  Casanova,  M.  F.  (2012)  Prefrontal  neuromodulation  using  rTMS  improves  error  monitoring  and  correction  functions  in  autism.  Applied  Psychophys.  Biofeedback  DOI:  10.1007/s10484-­‐012-­‐9182-­‐5,  E-­‐publication  Feb  8.  

Learning  Objective  Learn  about  executive  frontal  deficits  in  autism  and  understand  how  rTMS  and  neurofeedback  can  be  used  to  improve  these  deficient  functions  in  children  with  autism.

Outline  Introduction  –  5  min

Methods  –  5  min    

Results  and  Discussion  –  5  min    

Conclusions  and  Future  Directions  –  10  min    

Questions  and  Answers  –  5  min

Financial  Interest:  No  significant  financial  interests  to  report.    

Page 100: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Neurofeedback  Protocol  for  the  Treatment  of  Phonetic  and  Expressive  Speech  Impediments:  Report  of  Two  Cases  (C)  

Jorge  Julian  Palacios,  PhD,  Biofeedback  Center,  [email protected]    

Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: .5  Abstract  Background:    

We  will  report  the  treatment  results  of  two  children,  6  and  5  years  old  respectively,  who  were  diagnosed  with  severe  Phonetic  and  Expressive  Language  Impairments  (PELI)  since  they  were  two  years  old.  The  children  failed  to  developed  language  with  no  diagnoses  of  slow  development  syndrome,  physical  abnormalities  of  the  speech  apparatus,  autistic  disorder,  acquired  or  genetic  brain  or  neural  damage,  hearing  loss,  oral  motor  deficits,  and  proper  strength,  coordination,  range  of  movement,  symmetry  and  speed  of  cranial  nerves  V,  VII,  IX,  X  and  XII.  Poor  performance  in  the  school,  audition  hearing  test  results  of  25dB,  nonverbal  IQ  of  90;  lower  verbal  IQ,  no  emotional  disturbances.  No  fluently  speech,  20  words  repertoire,  short  phrases,  words  omission  poor  comprehension  of  language  in  general.  

Methods:    

Evaluations  results  were  with  85%  Delta/Theta  (1-­‐7  Hz.)  prevalence  over  15%  Beta1  (15-­‐18  Hz)  with  eyes  open.  Patients  receive  40  sessions  Neurofeedback  treatment,  3  sessions  weekly,  using  an  I-­‐330  C2+6  Neuro/Biofeedback  system  with  USE3  software,  by  J&J  Engineering  and  trained  to  increased  Beta1  and  decreased  Delta/Theta  and  EMG  (40-­‐360  Hz.)  in  T4/C4  and  P3/F7  derivations  simultaneously.  Neurofeedback  stimuli  were  auditory  and  visual.  

Results:    

Beta1  prevalence  increased  to  40%  while  decreased  Delta/Theta  to  60%  and  EMG  to  10%,  after  second  week  treatment,  school  and  parents  reported  general  improvement  in  phonetic  and  expressive  speech  and  language,  increment  in  verbal  repertoire  and  verbal  IQ  with  more  than  100  words,  fluently  speech,  develop  of  accurate  written  language  and  improvement  in  school  performance.  Results  persisted  after  3  and  1  follow  up  years.  

Conclusions:    

Findings  suggest  that  induction  of  brain  activity  integration  T4/C4  and  increment  Beta1  in  left  hemisphere  P3/F7  lead  to  appropriate  speech  development  and  strongly  suggest  to  be  replicated  with  a  bigger  group  to  develop  standardized  treatment  protocols.  

References  Neville  H.  J.  &  Coffey  S.  A.  (1993).  Processing  The  Neurobiology  of  Sensory  and  Language  in  Language-­‐Impaired  Children.  Cog.  Neurosc.  Vol.  5,  No.  2.    

Thompson,  M.  &  Thompson,  L.  (2009).  Asperger’s  syndrome  intervention:  Combining,  Neurofeedback,  biofeedback  and  metacognition.  In  Introduction  to  Quantitative  EEG  and  Neurofeedback.  Sec  Ed.  Budzynski  T.  et  al.  Associated  Press.  Pp  362-­‐415.    

Walker,  J.  E.  (2010).  Recent  Advances  in  Quantitative  EEG  as  an  Aid  to  Diagnosis  and  as  a  Guide  to  Neurofeedback  Training  for  Cortical  Hypofunctions,  Hyperfunctions,  Disconnections,  and  Hyperconnections:  Improving  Efficacy  in  Complicated  Neurological  and  Psychological  Disorders.  

Page 101: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Applied  Psychophysiology  and  Biofeedback  Vol.  35,  Num.  1.

Learning  Objective  Learn the basic procedures to apply this protocol for the treatment of Speech Impediments and replicated in order to validate it.  

Outline  Presenting and discussing the results of the Neurofeedback treatment for Speech Impediments and its implications for the development a new treatment protocol.

Financial  Interest:  No  financial  or  commercial  relationships  with  any  individual  or  manufacturer  or  enterprise  other  than  the  Biofeedback  Center.    

Sunday, September 23, 2012

 Plenary  Room  2  

On  the  Relation  Between  α  and  Θ  in  Specific  Parieto-­‐frontal  Networks  in  Adult  Attention  Deficit/Hyperactivity  Disorder  

(ADHD)  

Rex  Cannon,  PhD,  University  of  Tennessee,  [email protected]  Debora  Baldwin,  PhD,  University  of  Tennessee  Cynthia  Kerson,  PhD,  Brain  Science  International  

Tiffany  Shaw,  MS,  University  of  Tennessee  Dominic  DeLoreto,  MA,  University  of  Tennessee  Sherman  Phillips,  MA,  University  of  Tennessee  Coleman  Garner,  BA,  University  of  Tennessee  

 Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: 1  Abstract  Introduction:  

Several  authors  have  proposed  potential  parietal  foci  for  symptoms  of  attention  deficit  hyperactivity  disorder  (ADHD)  involving  interdependencies  of  the  alpha  and  theta  EEG  frequency  domains.  We  investigated  these  mechanisms  across  two  studies.  First  we  utilized  intrinsic  network  connectivity  of  medial  prefrontal  cortex  with  other  locations  in  the  default  network  (DMN)  using  functional  magnetic  resonance  imaging  and  standardized  low  resolution  electromagnetic  tomography.  Second,  we  analyzed  a  larger  sample  of  ADHD  adults  using  sLORETA  and  evaluated  changes  initiated  in  the  alpha  and  theta  frequency  domains  between  parietal  and  frontal  regions  using  LORETA  neurofeedback.    

Methods:    

Study  1  was  conducted  with  13  total  participants,  7  normal  controls  and  6  adults  with  a  current  diagnosis  of  ADHD.  We  generated  a  PPI  (psycho-­‐physiological  interaction)  model  for  each  individual  using  the  SPM5  software  package.  We  extracted  the  time-­‐course  from  medial  BA10  region  of  interest  and  assessed  connectivity  within  the  default  network  using  fMRI  and  sLORETA.  Study  2  assessed  functional  connectivity  between  parietal  and  frontal  regions  in  the  alpha  and  theta  frequency  

Page 102: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

domains  in  14  participants  (ADHD  and  control)  for  pre  and  post  training  LORETA  neurofeedback.    

Results:    

Medial  prefrontal  regions  do  show  significant  correlations  with  many,  not  all  regions  in  the  DMN,  with  an  emphasis  on  left  parietal  areas.  Interestingly,  the  ADHD  group  shows  increased  correlations  in  the  alpha  frequency  domain  between  frontal  and  parietal  regions,  and  less  connectivity  strength  for  other  frequencies.  This  pattern  was  also  confirmed  pre  LNFB  training.  Changes  in  alpha  and  theta  cross-­‐  frequency  coupling  between  parietal-­‐frontal  regions  shift  as  a  result  of  training  and  increased  scores  in  executive  functions  are  noted.  Clinical,  research  and  theoretical  implications  are  discussed.  

References  Cannon  R,  Kerson  C,  Hampshire  A.  (2011):  sLORETA  and  fMRI  Detection  of  Medial  Prefrontal  Default  Network  Anomalies  in  Adult  ADHD.  Journal  of  Neurotherapy  15(4):358-­‐373.  

Carmona  S,  Vilarroya  O,  Bielsa  A,  Tremols  V,  Soliva  JC,  Rovira  M,  Tomas  J,  Raheb  C,  Gispert  JD,  Batlle  S,  Bulbena  A.  (2005):  Global  and  regional  gray  matter  reductions  in  ADHD:  a  voxel-­‐based  morphometric  study.  Neurosci  Lett  389(2):88-­‐93.  

Castellanos  FX.  (2001):  Neural  substrates  of  attention-­‐deficit  hyperactivity  disorder.  Adv  Neurol  85:197-­‐  206.  

Castellanos  FX,  Acosta  MT.  (2002):  [Syndrome  of  attention  deficit  with  hyperactivity  as  the  expression  of  an  organic  functional  disorder].  Rev  Neurol  35(1):1-­‐11.  

Castellanos  FX,  Glaser  PE,  Gerhardt  GA.  (2006):  Towards  a  neuroscience  of  attention-­‐  deficit/hyperactivity  disorder:  fractionating  the  phenotype.  J  Neurosci  Methods  151(1):1-­‐4.  

Castellanos  FX,  Margulies  DS,  Kelly  C,  Uddin  LQ,  Ghaffari  M,  Kirsch  A,  Shaw  D,  Shehzad  Z,  Di  Martino  A,  Biswal  B,  Sonuga-­‐Barke  EJ,  Rotrosen  J,  Adler  LA,  Milham  MP.  (2008):  Cingulate-­‐precuneus  interactions:  a  new  locus  of  dysfunction  in  adult  attention-­‐deficit/hyperactivity  disorder.  Biol  Psychiatry  63(3):332-­‐7.  

Learning  Objective  Gain  important  information  about  cross-­‐frequency  modulation  between  frontal  and  parietal  cortices  in  ADHD  and  normal  controls.

Outline  Functional  connectivity  and  plasticity  (10  min)

Inter-­‐frequency  and  cross-­‐frequency  modulation  between  neuroanatomical  locations  (15  min)    

Application  for  neurofeedback  and  diagnoses  (10  min)    

Potential  implications  in  the  etiology  of  ADHD  (10min)  Conclusions  (10  min)

Questions  (5min)

Financial  Interest:  No  financial  interests.    

60  Minutes  on  the  LENS  Effects  (R,C,T)  Len  Ochs,  PhD,  Ochs  Labs,  [email protected]  

 

Page 103: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: 1  Abstract  This  oral  presentation  introduces  a  variety  of  data-­‐based  topics  on  the  LENS  as  well  as  tools  used  with  the  LENS.  These  topics  range  from:  

Demonstrating  the  OchsLabs,  Inc.  Quality  and  Study  Manager  (QSM)  and  some  of  the  capabilities  of  the  QSM  to  serve  as  a  research  engine  demonstrating  results  from  incomplete  studies  under  way,    

Avideo-­‐composite  of  the  EEG  from  an  80-­‐session  course  of  treatment  of  fibromyalgia  demonstrating  a  time-­‐lapse  view  of  the  undulations  of  Alpha  EEG,    

A  brief  overview  of  both  the  helpful  release  of  suppression  as  well  as  the  helpful  addition  of  suppression  to  a  fragile  and  explosive  young  man,    

A  view  of  several  different  kinds  of  maps  used  for  the  LENS,  and  ends  with    

A  data-­‐based  discussion  of  some  of  the  typically  unappreciated  properties  of  many  EEG    amplifiers  to  generate  stimulation,  showing  that  the  LENS  is  no  more  of  a  stimulation  system  than  any  other  neurofeedback  system.    

References  Carter,  J.  L.  and  H.  L.  Russell  (1981).  "Changes  in  verbal  performance  of  IQ  discrepancy  scores  after  left  hemisphere  EEG  frequency  control  training."  American  Journal  of  Clinical  Biofeedback,  4:  66-­‐68.  

Carter,  J.  L.  and  H.  L.  Russell  (1984).  Application  of  biofeedback  relaxation  procedures  to  handicapped  children:  Final  report.  Washington,  DC,  Bureau  of  Education  for  the  Handicapped.  

Carter,  J.  L.  and  H.  L.  Russell  (1993).  "A  pilot  investigation  of  auditory  and  visual  entrainment  of  brain  wave  activity  in  learning  disabled  boys."  Texas  Researcher  4:  65-­‐  73.  

Cripe,  C.  (2007).  "Effective  Use  of  LENS  Unit  as  an  Adjunct  to  Cognitive  Neuro-­‐  Developmental  Training."  Journal  of  Neurotherapy  10(2-­‐3):  79-­‐87.  

Donaldson,  C.  C.  S.,  Sella,  G,  Mueller,  H.  (2001).  "The  Neural  Plasticity  Model  of  Fibromyalgia.  Theory,  Assessment,  &  Treatment."  Practical  Pain  Management  Part  One  May/June.  

Donaldson,  C.  C.  S.,  D.  V.  Nelson,  et  al.  (1998).  "Disinhibition  in  the  gamma  motoneuron  circuitry:  A  neglected  mechanism  for  understanding  myofascial  pain  syndromes."  Applied  Physiology  &Biofeedback  23:  43-­‐58.  

Donaldson,  C.  C.  S.,  G.  E.  Sella,  et  al.  (1988).  "Fibromyalgia:  A  retrospective  study  of  252  consecutive  referrals."  Canadian  journal  of  Clinical  Medicine  5(6):  116-­‐127.  

Esty,  M.  L.  (2007).  "Reflections  on  FMS  Treatment,  Research,  and  Neurotherapy:  Cautionary  Tales."  Journal  of  Neurotherapy  10(2-­‐3):  63-­‐68.  

Hammond,  D.  C.,  Editor  (2007).  LENS;  The  Low  Energy  Neurofeedback  System.  Binghamton,  NY,  The  Hawthorne  Medical  Press.  

Hammond,  D.C.  (2010).  “LENS  Neurofeedback  Treatment  of  Anger:  Preliminary  Report.”  Journal  of  Neurotherapy,  14:  2,  162-­‐169.  

Page 104: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Hammond.  D.C.  (2010).  “QEEG  Evaluation  of  the  LENS  Treatment  of  TBI.”  Journal  of  Neurotherapy,  14:2,  170-­‐177.  

Hammond,  D.  C.,  S.  Stockdale,  et  al.  (2001).  "Adverse  reactions  and  potential  iatrogenic  effects  in  neurofeedback  training."  Journal  of  Neurotherapy  4(4):  57-­‐69.  

Hammond,  D.  C.  (2007).  Can  LENS  neurofeedback  treat  anosmia  resulting  from  a  head  injury?  Journal  of  Neurotherapy,  11(1),  57-­‐62.  

Kravitz,  H.  M.,  M.  L.  Esty,  et  al.  (2007).  "Treatment  of  Fibromyalgia  Syndrome  Using  Low-­‐Intensity  Neurofeedback  with  the  Flexyx  Neurotherapy  System:  A  Randomized  Controlled  Clinical  Trial."  Journal  of  Neurotherapy  10(2-­‐3):  41-­‐58.  

Larsen,  S.  (2001).  The  use  of  Flexyx  treatment  modality  with  patients  with  multiple  brain  and  spinal  cord  injuries.  Future  Health  Winter  Brain  Conference.  Miami,  FL.  

Larsen,  S.  (2006).  The  Healing  Power  of  Neurofeedback:  The  Revolutionary  LENS  Technique  for  Restoring  Optimal  Brain  Function.  Rochester,  VT,  Healing  Arts  Press.  

Larsen,  S.  (2007).  "The  LENS  Neurofeedback  with  animals."  Journal  of  Neurotherapy  10(2-­‐3):  89-­‐101.  

Larsen,  S.,  K.  Harrington,  et  al.  (2007).  "The  LENS  (Low  Energy  Neurofeedback  System):  A  Clinical  Outcomes  Study  on  One  Hundred  Patients  at  Stone  Mountain  Center,  NY."  Journal  of  Neurotherapy  10(2-­‐3):  69-­‐78.  

Larsen,  S.,  R.  Larsen,  et  al.  (2004).  The  LENS  with  Animals:  Preliminary  Observations.  International  Society  for  Neuronal  Regulation,  National  Conference.  Ft.  Lauderdale.  

Marcus,  L.  (2001).  EEG  Amplitude  and  Variability  Changes  Following  Low-­‐Intensity  Neurofeedback-­‐Based  Stimulation  for  Fibromyalgia.  Palo  Alto,  CA,  Western  Graduate  School  of  Psychology.  Ph.D.  

Mueller,  H.  H.,  C.  C.  S.  Donaldson,  et  al.  (2001).  "Treatment  of  fibromyalgia  incorporating  EEG-­‐Driven  stimulation:  A  clinical  out-­‐comes  study."  Journal  of  Clinical  Psychology  57(7):  933-­‐952.  

Ochs,  L.  (1993).  "New  light  on  lights,  sound,  and  the  brain."  Megabrain  Reports:  Journal  of  Mind  Technology  2:  48-­‐52.  

Ochs,  L.  (1997).  EDS:  Background  and  operation,  EEG-­‐driven  pico-­‐photic  stimulation.  Walnut  Creek,  CA,  Flexyx,  LLC.  

Ochs,  L.  (2006).  Thoughts  about  EEG-­‐Driven  stimulation  after  three  years  of  its  uses:  Ramifications  for  concepts  of  pathology,  recovery  ,  and  brain  function.  

Ochs,  L.  (2007).  "Comment  on  the  Treatment  of  Fibromyalgia  Syndrome  Using  Low-­‐  Intensity  Neurofeedback  with  the  Flexyx  Neurotherapy  System:  A  Randomized  Controlled  Clinical  Trial,  or  How  to  Go  Crazy  Over  Nearly  Nothing."  Journal  of  Neurotherapy  10(2-­‐3):  59-­‐61.  

Ochs,  L.  (2007).  "The  Low  Energy  Neurofeedback  System  (LENS):  Theory,  Background  and  Introduction."  Journal  of  Neurotherapy  10(2-­‐3):  5-­‐37.  

Ochs,  L.  (2007).  “Comment  on  "neurofeedback  overtraining  and  the  vulnerable  patient.  Journal  of  Neurotherapy,  11(3),  67-­‐71.  

Ochs,  L.  (2010)  Underlying  Treatment  Issues  in  Neurofeedback  as  Exemplified  by  Treatment  of  

Page 105: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Seizure  Disorders.  Journal  of  Neurotherapy,  Spring.  29-­‐33.  

Ochs,  L.  (2010).  “Working  with  Latent  and  Actual  Seizures.”  Journal  of  Neurotherapy,  Summer.  30-­‐32.  

Schoenberger,  N.  E.,  S.  C.  Shiflett,  et  al.  (2001).  "Flexyx  neurotherapy  system  in  the  treatment  of  traumatic  brain  injury:  An  initial  evaluation."  Journal  of  Head  Trauma  Rehabilitation  16(3):  260-­‐274.  

Learning  Objective  Identify  the  OchsLabs,  Inc.  Quality  and  Study  Manager.  

Describe  two  underlying  physiological  events  that  contribute  to  the  LENS  effects.

Describe  one  advantage  and  one  disadvantage  of  the  presence  of  EEG  suppression.  

Describe  two  different  ways  that  LENS  Maps  and  qEEGs  differ.  

Explain  two  reasons  why  the  LENS  is  not  a  stimulation  system.

Outline  The  Quality  and  Study  Manager  (QSMTM)    

What’s  a  Vascular  vs.  Neurological  Effect  :  Vascular  Trees  and  Vascular  Responses  of  the  LENS    and  EEG  Rises  and  Falls  during  the  Use  of  the  LENS    

EEG  Suppression:  Curse  and  Blessing    

LENS  Maps  and  Qs:  Different  Purposes,  Different  Tools    

Areas  for  Research:  The  EEG  Box,  Itself,  as  a  Trigger  for  Change    

Financial  Interest:  Len  Ochs  is  the  inventor  and  developer  of  the  LENS.    I  have  no  ownership,  paid  or  unpaid  position  with  OchsLabs,  Inc.  as  my  entire  income  is  from  Social  Security  retirement;  I  am  not  an  employee  of  OchsLabs,  Inc.      Role  of  QEEG  Guided  Neurofeedback  in  the  Overall  Treatment  of  

Fetal  Alcohol  Spectrum  Disorder  (FASD)  (C)  Ajeet  Charate,  MA,  Illinois  Centers  for  Fetal  Alcohol  Spectrum  Disorders,    

acharate@trinity-­‐services.org  James  Kowal,  PhD,  The  Center  for  Traumatic  Stress,  [email protected]  

 Credits: CME, American Psychological Association, NBCC, ASWB and CA Board of Behavioral Sciences Credits and BCIA recertification credits: 1 Abstract  Fetal  Alcohol  Spectrum  Disorder  (FASD)  is  an  umbrella  term  used  to  describe  the  range  of  effects  that  can  occur  in  an  individual  whose  mother  drank  alcohol  during  pregnancy.  Alcohol  is  a  teratogen  and  therefore  selectively  toxic  to  the  developing  fetus,  particularly  to  the  Central  Nervous  System.  Researchers  estimate  that  some  2-­‐5%  of  school  age  children  have  FASD.  Most  individuals  lack  the  characteristic  dysmorphologic  features  and/or  a  history  of  birth  mothers  use  of  alcohol  during  pregnancy,  thereby  making  FASD  one  of  the  most  underreported  and  under  diagnosed  conditions.  Without  a  proper  diagnosis,  standard  treatments  are  largely  in-­‐  effective.  The  goal  of  this  study  is  to  

Page 106: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

assess  if  QEEG  analysis  can  assist  in  recognizing  the  neurological  patterns,  understanding  the  primary  symptoms,  and  planning  neuro-­‐treatment.  Ten  children  diagnosed  with  FASD  received  pre  and  post  intervention  QEEG  analysis.  No  obvious  pattern  emerged  but  QEEG  analysis  showed  a  lot  of  variability  based  upon  the  amount  of  alcohol  consumed  by  the  birth  mother  and  the  stage  of  pregnancy.  It  helped  in  developing  the  protocols  and  deciding  what  neuro-­‐treatment  would  be  most  beneficial.  Some  children  received  standard  neurofeedback  while  a  few  received  coherence  training  and  LENS.  The  study  concluded  that  pre-­‐treatment  QEEG  analysis  is  absolutely  essential  in  planning  interventions  for  individuals  with  FASD.  Additionally,  behavioral  consultation,  skills  coaching,  parental  support,  and  education  about  FASD  resulted  in  greater  improvements.  Results  of  this  study  have  been  very  promising.  No  significant  side  effects  were  reported.  Future  studies  should  include  a  larger  sample  size  for  studying  neurological  patterns,  clinical  trials  with  standard  neurofeedback  versus  LENS  treatment,  and  effects  of  nutrition  and  supplements.  

References  Center  for  Substance  Abuse  Prevention.  01/2006.  How  Fetal  Alcohol  Spectrum  Disorders  C0-­‐Occur  with  Mental  Illness.  Rockville,  MD:  Substance  Abuse  and  Mental  Health  Services  Administration.  Fasdcenter.smasha.gov.  Retrieved  from  http://www.fasdcenter.samhsa.gov/documents/WYNK_CoOccurMentalIllnes.pdf  

Learning  Objective  Be  able  to  recognizing  neurological  patterns  in  persons  diagnosed  with  FASD.  

Identify  types  of  treatment  options  available  for  FASD.  

Identify  other  interventions  to  improve  functioning  and  support  within  families  with  FASD.    

Outline  1. Introduction  to  FASD  (5-­‐10  mins)    

  Definition  of  FASD      

  Prevalence  &  diagnostic  criteria    

  Primary  and  secondary  symptoms  

   Co-­‐occurring  conditions    

2. QEEG  Findings  (10-­‐20  mins)    

Symptoms  mild,  moderate,  or  severe    

Academic,  Cognitive,  Behavioral,  Social,  Executive  Functioning    

Areas  Effected:  Frontal  Slowing,  Posterior,  Temporal,  Bi-­‐Lateral,  .  .  .    

Type  of  Neuro-­‐abnormalities:  Amplitude,  Coherence,  Phase  Lag,  .  .  .    

3. Neuro-­‐Treatment  Options:  (5-­‐15  mins)    

Traditional  Neurofeedback  (Amplitude  Training)    

Low  Energy  Neurofeedback  System  (LENS)    

Page 107: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Coherence  (Z-­‐Score)    

Phase  Lag    

4. Family-­‐Treatment  Options:  (5  mins)    

Skill  Achievement  Groups    

Counseling    

Educational  Counseling    

5. Future  Areas  of  Investigation  (5  mins)    

Nutrition  and  Supplements    

Early  Dietary  Interventions    

6. (Optional:  Questions  and  Answers  5  mins)  

Financial  Interest:  There  is  no  financial  interest  or  relationship  with  any  commercial  supporters)  or  manufacturer(s)of  any  commercial  product  or  service  that  is  discussed  in  the  presentation.          

Page 108: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

ISNR 2012 Poster Abstracts The category of presentations is indicated by “C” for Clinical Application or

Clinical Experience, “R” for Research, and “T” for Theoretical.

Thursday, September 20, 2012

Effects of the Synchroton, An Electronic Devise Pulsing at 7.8 Hz Schumann Fundamental Frequency, on the EEG (R,C)

Juan Acosta-Urquidi, PhD, Brain-Topos, [email protected] Guy Abraham, MD

Abstract The adverse health effects of constant exposure to EMF fields, from ELF, RF to MHz bandwidth, is mounting, and has been a growing public safety concern for the past few decades. Electrohypersensitive subjects (EHS) are particularly affected, presenting symptoms like allergies, chronic pain, fatigue, agitation, nausea, brain fog, cognitive impairments , etc. A previous study has reported protective effects of an electromagnetic potential pulsed at the Schumann fundamental frequency of 7.8 Hz using a SynchrotonR against EMF effects on a population of CFS patients (Abraham et al., 2003). The Synchroton A-30 is a compact electronic device the size of a cigarette pack powered by 2 AA batteries (Abraham,1999, Optimox Corp., Torrance, CA). We report that exposure to the Synchroton produced an entrainment effect on the EEG.

Methods

Volunteer subjects were recruited for this study (N=16 ), some meeting the criteria for EHS. Most QEEG data was recorded using Lexicor NRS-24 equipment and Mitsar 201 amplifier (St. Petersburg, Russia), 19 channel electrocap, International 10-20 system, referential linked ears, impedances ca. 5 Kohms. Sampling rate 256 Hz; the bandwidth studied was 0.3 to 40 Hz. The raw EEG files were visually edited to remove ocular and muscle (EMG) artifacts. Data analysis employed Neurolex (Lexicor), Neuroguide (www.appliedneuroscience.com) , WinEEG (Mitsar). Spectral FFT power frequency graphs and brain topographic maps were generated. Peak Absolute power values (uV2) were compared before (10 min. control baseline, resting eyes closed) and during Synchroton exposure (10 min. eyes closed). Data was statistically analyzed (paired correlated samples t-test).

Results

Synchroton exposure produced a robust significant increase in Theta (T) and Alpha (A) absolute power values. A pooled data comparison of mean +- sem, P values, paired t-test, correlated samples) between baseline vs Synchroton yielded: frontal sites, T 90.7 +-16, A 121.8 +-28 vs T 125.9 +-26, A 163.4 +-37, P<0.005; Central, T 127.3 +-25, A 213.5 +-54 vs T 172.6 +-35, A 284.7 +-71 vs P<0.002; Temporal, T 71.6 +-19, A 168.3 +-47 vs T 100.6 +-27, A 220.5 +-55, P<0.005; Parieto-occipital T 109.1 +-32, A 327.2 +-79 vs T 167.8 +-53, A 466.13 +- 105, P<0.002. Sham Synchroton exposure as control tests produced no consistent or significant trend in Theta or Alpha power. To further explore and confirm an entrainment effect, the Synchroton exposure was delivered simultaneously with photic stimulation (Polysync Pro). The following stimulation frequencies were employed: 5, 7.8, 9.6, 10 and 14 Hz. The results of these tests revealed a complex interaction between the Synchroton and photic stimulation at different frequencies. Specific to each subject’s baseline photic entrainment response, the Synchroton either potentiated or suppressed photic driving effects ..Taken together, these tests further strengthened the evidence for a direct entrainment effect of the Synchroton on EEG.

Conclusion

The Synchroton device is an effective EEG entrainment tool that has a protective effect against EMF pollution and the Schumann frequency is also believed to have many beneficial health effects. Further

Page 109: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

studies are underway.

References Abraham, Guy, M.D. Synchroton Scalar Synchronizers: Potential Shields Against Electromagnetic Pollution. Optimox Corp., Torrance, CA.,1999.

Abraham, G.E., Fagan, C.L. and Himmel, P.B. Effects of Exposure to Electromagnetic Potential pulsed at the Schumann Fundamental.

Frequency on Patients with Chronic Fatigue Syndrome. The Original Internist. Sept. 2003. 15-21.

Bell, G.B. et al. Human Sensitivity to Weak Magnetic Fields. Lancet. 338, 1521, 1991.

Grant, L. The Electrical Sensitivity Handbook: How Electromagnetic Fields are making People Sick. Weldon Publishing, 1999.

C.E.N.T Computer Enabled Neuroplasticity Treatment (R,C) Ben Cowley, PhD, University of Helsinki, [email protected]

Abstract The University of Helsinki brings Neurofeedback to Finland in a new study. Finland is heavily invested in cutting-edge brain science, yet it has never before had dealings with neurofeedback (NFB), either in research or clinical practice. However the research on ADHD in Finland has been strongly ongoing (e.g. Helenius et al., 2011, Gumenyuk et al., 2004) and thus provides a good ground for the introduction of neurofeedback into Finland.

On par with more global estimates (Polanczyk et al., 2007), the prevalence of ADHD in Finnish 8-year-olds is estimated at 4% (DSM-III) (Almqvist 2004), while among Finnish 16-18 year olds it rises to 8.5% (DSMIV) (Smalley et al., 2007). Indeed, given that medication therapy for ADHD is lowest in Finland among all Scandinavian countries (Zoëga et al., 2011), there may be a greater need in Finland. The CENT project will conduct a study on the effects of NFB on adult ADHD within Finland. Research is being conducted by the Cognitive Science Unit at the Institute of Behavioural Sciences, Helsinki University. Training will be conducted by trained technicians supervised by qualified psychotherapists, at the clinics of Mental Capital Care, Oy.

References Almqvist F. Aktiivisuuden ja tarkkaavuuden häiriöt. Kirjassa: Moilanen I, Räsänen E, Tamminen T, Almqvist F, Piha J, Kumpulainen K (toim.) Lasten- ja nuorisopsykiatria. Kustannus Oy Duodecim 2004:240-9.

Smalley SL, McGough JJ, Moilanen IK ym. Prevalence and psychiatric comorbidity of attention- deficit/hyperactivity disorder in an adolescent Finnish population. J Am Acad Child Adolesc Psychiatry 2007;46:1575-83

Zoëga, H., Furu, K., Halldórsson, M., Thomsen, P. H., Sourander, A. and Martikainen, J. E. (2011), Use of ADHD drugs in the Nordic countries: a population-based comparison study. Acta Psychiatrica Scandinavica, 123: 360–367.

Polanczyk, G., de Lima, M. S., Horta, B. L., Biederman, J., & Rohde, L. A. (2007). The worldwide prevalence of ADHD: a systematic review and metaregression analysis. The American journal of psychiatry, 164(6), 942-8.

Gumenyuk, V., Korzyukov, O., Alho, K., Escera, C., & Näätänen, R. (2004). Effects of auditory distraction on electrophysiological brain activity and performance in children aged 8-13 years. Psychophysiology,

Page 110: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

41(1), 30-6.

Helenius, P., Laasonen, M., Hokkanen, L., Paetau, R., & Niemivirta, M. (2011). Impaired engagement of the ventral attentional pathway in ADHD. Neuropsychologia, 49(7), 1889-96.

LORETA Neurofeedback: Linking Self-regulation and Anxiety (R,C)

Dominic Di Loreto, MA, University of Tennessee, [email protected]

Rex Cannon, PhD, University of Tennessee

Deborah Baldwin, PhD, University of Tennessee

Sherman Phillips, BA, University of Tennessee

Tiffany Shaw, MA, University of Tennessee

Abstract

Introduction: Anxiety is best conceptualized as a future-oriented cognitive-affective- somatic state, the prominent feature being “a sense of uncontrollability focused on possible future threat, danger, or other upcoming, potentially negative events.” It is characterized by a sustained hyperarousal or heightened apprehension and vigilance to temporally uncertain, usually distal, danger. Behaviorally, anxiety is associated with avoidance. We propose a hypothesis that implicates disruptions in functional integration of neural networks important to self-regulation. Methods: For the current study, six (4 male) participants with a prior diagnosis of anxiety or anxiety with a comorbid syndrome completed between 15 and 20 sessions spatial specific EEG operant conditioning (LORETA Neurofeedback) to improve self-regulation. Results: All participants were able to produce significant learning effects across sessions, including network convergent learning. Post training assessment discovered significant decreases in anxiety as measured by the Personality Assessment Inventory (PAI) and significant increases in executive functions as measured with subtests from the Delis-Kaplan Executive Function System (DKEFS). Functional correlations between neurological and behavioral data demonstrate specific network involvement in these symptom reductions and provide data to develop a potential intervention for anxiety disorders in 20 days or less.

References

Barlow, D. H., Chorpita, B. F., and Turovsky, J. 1996. Fear, Panic, Anxiety, and Disorders of Emotion. Nebraska Symp. Motiv. 43:251–328.

Blanchard RJ, Yudko EB, Rodgers RJ, Blanchard DC. Defense system psychopharmacology: an ethological approach to the pharmacology of fear and anxiety. Behavioural and Brain Research 1993;58:155–165.

Use of a Simple BrainMaster EEG Training Protocol to Faciliate Cognitive and Physical Recovery of a 22 Month Old Child Suffering a

SIDS-Related Anoxic Injury: A Case Study (C) Thomas Fink, PhD, Acorn Health Associates, [email protected]

Teri Hagen, MS, Acorn Health Associates Abstract A clinical case study will be presented describing the use of a simple BrainMaster EEG Biofeedback training protocol to successfully treat a 22-month-old child suffering a SIDS-related anoxic injury. At the initiation of treatment, the child presented as agitated and developmentally impaired. He was unable to track movements with his eyes and he did not interact in any meaningful way with his environment. Physiologically, he had difficulty supporting his head and his resting heart rate was abnormally high. After

Page 111: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

only six sessions, using a unipolar, single-site recording from CZ and a Delta/Theta/Gamma inhibit and an SMR/Low Beta augment, the child improved dramatically. For example, resting heart rate reduced from 120/min to 70+/min in an awake state. The child presented as more relaxed and composed. He gained control of his head movements, eye contact could be established and the child began to visually track, play with toys and initiate physical movement during physical therapy sessions. EEG amplitude measures, which all changed in the desired directions, will be presented for both within and across training session measures. A brief review of available research concerning recovery from anoxic injury in children will be provided, with attention given to typical recovery patterns found without the use of Neurofeedback therapy. Implications for future application, study and research will be discussed.

References Ayers, M. E. (1995a). A controlled study of EEG neurofeedback and physical therapy with pediatric stroke, age seven months to age fifteen, occurring prior to birth. Biofeedback & Self--Regulation, 20(3), 318.

Ayers, M. E. (1995b). EEG neurofeedback to bring individuals out of level 2 coma. Biofeedback & Self--Regulation, 20(3), 304--305.

Collura, T. (2008). Toward a coherent view of brain connectivity. Journal of Neurotherapy, 12(2--3), 99-110.

Cripe, C. T. (2006). Effective use of LENS unit as an adjunct to cognitive neuro- -developmental training. Journal of Neurotherapy, 10(2--3), 79--87.

Gillies, J.D and Seshia, S.S. (1980). Vegetative state following coma in childhood: Evolution and outcome. Developmental Medicine & Child Neurology, 22 (5), 642-648.

Hammond, D. C. (2006). What is neurofeedback? Journal of Neurotherapy, 10(4), 25- 36.

Kriel, R.L., Krach, L.E., Luxemberg, M.G., Jones-Saete, C., and Sanchez, J. (1994). Outcome of severe anoxic/ischemic brain injury in children. Pediatric Neurology, 10 (3), 207-212.

Laatsch, L., Harrington, D., Holtz, G., Marcantuono, J., Mozzoni, M., Walsh, V. and Hersey, K.P. (2007). An evidence-based review of cognitive and behavioral treatment studies in children with acquired brain injury, Journal of Head Trauma Rehabilitation, (22 (4), 248-256.

Ochs, L. (2006). The Low Energy Neurofeedback System (LENS): Theory, background, and introduction. Journal of Neurotherapy, 10(2--3), 5--39.

Ochs, L. (2012). A few words from Len. In OchsLabs Newsletter, April 13, 3-4.

Wing, K. (2001). Effect of neurofeedback on motor recovery of a patient with brain injury: A case study and its implications for stroke rehabilitation. Topics in Stroke Rehabilitation, 8(3), 45—53.

QEEG Evaluations of a Brain Enhancement Program Utilizing the Low Energy Neurofeedback System (LENS) (C)

D. Corydon Hammond, PhD, University of Utah School of Medicine, [email protected] Stuart Donaldson, PhD, Myosymmetries Clinic

Abstract The Low Energy Neurofeedback System (LENS) is a unique and passive form of neurofeedback which produces its effects through feedback that involves a microscopic electromagnetic field delivered down the electrode wire(s). This presentation will briefly describe LENS neurofeedback and the existing literature on LENS. We will then describe a “brain enhancement program” that utilized LENS, along with a description of the non-clinical subject sample (N = 40-50 subjects). Outcomes measures included subject ratings on variables (e.g., concentration, memory, quality of sleep) that subjects wished to see improved, and pre- and post-treatment quantitative EEGs. Significant changes were commonly found in QEEG measures of

Page 112: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

absolute power, coherence, and phase-lag. The results of this study will be presented, along with several detailed case examples.

References Donaldson, C. C. S., Sella, G. E., & Mueller, H. H. (1998). Fibromyalgia: A retrospective study of 252 consecutive referrals. Canadian Journal of Clinical Medicine, 5 (6), 116-127. Esty, M. L. (2006). Reflections on FMS treatment, research, and neurotherapy: Cautionary tales. Journal of Neurotherapy, 10(2_3), 63_68.

Hammond, D. C. (2007a). Can LENS neurofeedback treat anosmia resulting from a head injury? Journal of Neurotherapy, 11(1), 57-62. Hammond, D. C. (2007b). LENS: The Low Energy Neurofeedback System. New York: Haworth Press.

Hammond, D. C. (2010). QEEG evaluation of the LENS treatment of TBI. Journal of Neurotherapy, 14, 170-177. Hammond, D. C. (2010). LENS neurofeedback treatment of anger: preliminary results. Journal of Neurotherapy, 14, 162-169.

Hammond, D. C. (in press, 2012). LENS neurofeedback treatment with fetal alcohol spectrum disorder and neglect. Journal of Neurotherapy ���Kravitz, H. M., Esty, M. L., Katz, R. S., & Fawcett, J. (2006). Treatment of fibromyalgia syndrome using low_intensity neurofeedback with the Flexyx Neurotherapy System: A randomized controlled clinical trial. Journal of Neurotherapy, 10(2_3), 41_58.

Larsen, S., (2006). The Healing Power of Neurofeedback: The Revolutionary LENS Technique for Restoring Optimal Brain Function. Rochester, Vt.: Healing Arts Press. Larsen, S., Harrington, K., & Hicks, S. (2006). The LENS (Low Energy Neurofeedback System): A clinical outcomes study of one hundred patients at Stone Mountain Center, New York. Journal of Neurotherapy, 10(2-3), 69-78.

Larsen, S., Larsen, R., Hammond, D. C., Sheppard, S., Ochs, L., Johnson, S., Adinaro, C., & Chapman, C. (2006). The LENS neurofeedback with animals. Journal of Neurotherapy, 10(2- 3), 89-101. Mueller, H. H., Donaldson, C. C. S., Nelson, D. V., & Layman, M. (2001). Treatment of fibromyalgia incorporating EEG-driven stimulation: A clinical outcomes study. Journal of Clinical Psychology, 57(7), 933-952.

Nelson, D. V., Bennett, R. M., Barkhuizen, A., Sexton, G. J., Jones, K. D., Esty, M. L., Ochs, L., & Donaldson, D. C. S. (2010). Brief research report: Neurotherapy of fibromyalgia? Pain Medicine, 11, 912-919. Ochs, L. (2010). Personal communication, February 13, 2010.

Schoenberger, N. E., Shiflett, S. C., Esty, M. L., Ochs, L., & Matheis, R. J. (2001). Flexyx neurotherapy system in the treatment of traumatic brain injury: An initial evaluation. Journal of Head Trauma Rehabilitation, 16(3), 260-274.

Heart Brain Synchronicity as a Candidate Neurofeedback Index (R,C)

Dae Keun Kim, MS, Institute of Complimentary and Integrated Medicine, [email protected] Seung Wan Kang, MD, PhD

Jae Il Kim, PhD Min Cheol Whang, PhD

Abstract Electrophysiological changes in response to autogenic training were explored in 12 healthy volunteers who completed 8 weeks of a basic course in autogenic training. Heart coherence, representing the degree of ordering in oscillation of heart rhythm intervals, increased significantly (p < 0.0001) during the training. Relative alpha power averaged over 19 channels and alpha coherence averaged over 171 channel combinations also increased (p < 0.0001). Parietal peak alpha power increased(p < 0.0001) with increasing heart coherence during the training, but no such relationship was observed during baseline. Average alpha coherence also increased(p = 0.002) with increasing heart coherence during the training but no significant

Page 113: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

relationship was observed at baseline. Relative alpha power increased with increasing heart coherence during both meditation and baseline period while coupling between relative alpha power and heart coherence was stronger during in training than in baseline. It is expected that increasing heart coherence and the accompanying EEG alpha activations, heart brain synchronicity, could be a candidate marker for a quality of training, and also would be helpful in recovering synchronization of chaotic human physiology of homeostatic depletion. The following study was designed to confirm validity of the heart brain synchronicity index for a training group of early dementia. At the turn of an aging society , dementia research among any other brain related diseases is very active. The dementia is developed from weakening of memory functions which is driven by emotion. The emotion is divided into positive and negative emotions. To strengthen the positive emotions would be directly be related to enhancement of cognitive function. Emotions, generated by both conscious and subconscious area, are considered to be initiated by brain(Top-down) or body(Bottom up). We argue that brain and body simultaneously interact each other to make emotions and the interactions could be evaluated quantitatively. In this study, 7 early dementia patients are evaluated before and after 8 weeks LENS trainings including the heart brain synchronicity and standard neuropsychological assessments. It is expected that LENS training facilitate balancing between consciousness and subconsciousness and could change interactions between brain and body (especially, heart). The training is under process and final results will be presented at the conference.

References Benson, H. (1975). The relaxation response. New York, HARPERTORCH.

Chiesa., A. (2009). "Zen Meditation: An Integration of Current Evidence." The Journal of Alternative and Complementary Medicine. 15(5): 8.

Cysarz, D. and A. Büssing (2005). "Cardiorespiratory synchronization during Zen meditation." European Journal of Applied Physiology 95(1): 88-95.

Davidson, R. J., J. Kabat-Zinn, et al. (2003). "Alterations in Brain and Immune Function Produced by Mindfulness Meditation. ." Psychosomatic Medicine 65: 7.

Delorme, A. and S. Makeig (2004). "EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis." Journal of Neuroscience Methods 134(1):9-21. [6] Ditto B, E. M., Goldman N. (2006). "Short-term autonomic and cardiovascular effects of mindfulness body scan meditation." Ann Behav Med 32(3): 8.

Gregoski, M. J., V. A. Barnes, et al. (2011). "Breathing Awareness Meditation and LifeSkills Training Programs Influence Upon Ambulatory Blood Pressure and Sodium Excretion Among African American Adolescents." Journal of Adolescent Health 48(1): 59-64.

Hamada T, M. T., et al (2006). "Changes in autonomic function and EEG power during mental arithmetic task and their mutual relationship." Rinsho Byori 54(4): 5.

José Antonio Curiati, E. B., José Octávio Freire, Ana Claudia Arantes, Márcia Braga, Yolanda Garcia, Guilherme Guimarães, and Wilson Jacob Fo. (2005). "Meditation Reduces Sympathetic Activation and Improves the Quality of Life in Elderly Patients with Optimally Treated Heart Failure: A Prospective Randomized Study." The Journal of Alternative and Complementary Medicine. 11(3): 8.

Lo, S.-D. W. a. P.-C. (2008). "Inward-attention meditation increases parasympathetic activity: a study based on heart rate variability." Biomedical Research 29: 6.

Lutz, A., L. L. Greischar, et al. (2009). "BOLD signal in insula is differentially related to cardiac function during compassion meditation in experts vs. novices." NeuroImage 47(3): 1038-1046.

[Lutz, A., L. L. Greischar, et al. (2004). "Long term meditators self-induce high-amplitude gamma synchrony during mental practice. ." Proceedings of National Academy of Science of the USA 101(5): 5.

Page 114: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

McCraty, R., M. Atkinson, et al. (2009). "The Coherent Heart : Heart-Brain Interactions, Psychophysiological Coherence, and the Emergence of System-Wide Order." Integral Review 5(2): 105. [14] Phongsuphap, S., Y. Pongsupap, et al. (2008). "Changes in heart rate variability during concentration meditation." International Journal of Cardiology 130(3): 481-484.

Takahashi, T., T. Murata, et al. (2005). "Changes in EEG and autonomic nervous activity during meditation and their association with personality traits." International Journal of Psychophysiology 55(2): 199-207. [16] Task Force (1996). " Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology : Heart rate variability, Standards of emasurement, physiological interpretation, and clinical use." European Heart Journal 17: 28.

Thayer, J., A. Hansen, et al. (2009). "Heart Rate Variability, Prefrontal Neural Function, and Cognitive Performance: The Neurovisceral Integration Perspective on Self-regulation, Adaptation, and Health." Annals of Behavioral Medicine 37(2): 141-153.

Travis, F., D. A. F. Haaga, et al. (2009). "Effects of Transcendental Meditation practice on brain functioning and stress reactivity in college students." International Journal of Psychophysiology 71(2): 170-176. [19] Wu, S.-D. and P.-C. Lo (2010). "Cardiorespiratory phase synchronization during normal rest and inward-attention meditation." International Journal of Cardiology 141(3): 325-328.

Yi-Yuan Tang, Y. M., et al (2009). "Central and autonomic nervous system interaction is altered by short-term meditation." Proc Natl Acad Sci 106(22): 6.

Zelazo, P., M. Moscovitch, et al. (2007). Cambridge Handbook of Consciousness, Cambridge University Press.

Assessment of Memory Deficit and Malingering with a “Dual-Probe” Protocol, Using Incidentally Learned Information and Pictorial Stimuli

(R,C) Elena Labkovsky, PhD, Northwestern University, [email protected]

J. Peter Rosenfeld, PhD, Northwestern University Abstract

Introduction:

Memory is one of the most vulnerable cognitive functions affected in cases of brain traumas, such as head injury, poisoning, radiation, viral infection, stroke, etc. Expectation to obtain monetary compensation increases motivation of “victims” to exaggerate and feign memory deficit. As estimated, about half of all the cases presented with “compromised memory” are actually cases of malingered psychological symptoms. Concerns raised by psychologists that the number of cases with feigned memory deficit continues growing led to increased interest in developing methods and techniques to identify malingerers. One of the major challenges faced by researchers and practitioners utilizing neuropsychological tests and behavioral techniques to assess memory deficit is poor reliability of the conclusions of whether or not the patient has sustained real memory deficit or is malingering amnesia.

“A major roadblock to the study of malingered amnesia is the marked constraint on the verifiability of memory complaints. Unless an individual eventually admits that he or she has been intentionally deceptive, the clinician can never establish with confidence whether he or she has been malingering. Individuals willing to step forward and acknowledge their deceitfulness are rarely, under any circumstances, available. As a result, malingerers usually cannot be identified independently of the outcome measures . . . being evaluated . . .” (Brandt, J. (1988) Malingered amnesia. In: R. Rogers (Ed.), Clinical Assessment of Malingering and Deception, Guilford Press, New York, NY, pp. 65-83).

Recently developed ERP-based tests reveal a high level of resistance to the effects of malingering

Page 115: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

compared to neuropsychological/behavioral tests of memory (Rosenfeld, 2011).

Last year we demonstrated effectiveness of the “Dual-probe” ERP-based test to identify exaggeration of memory deficit (Labkovsky & Rosenfeld, 2011). The accuracy with the “Dual probe” protocol using personally-relevant (autobiographical) information reached 100% (with either one or both probes). The present study demonstrates effectiveness of the “Dual-probe” protocol utilizing incidentally-learned information and pictorial stimuli with 8 irrelevant stimuli in each of the two parts of a trial.

Methods:

In the “Dual-Probe” protocol each trial consists of two parts. There are about 400 trials in one block. Each of the two parts has one “Probe” (familiar to the subject item) and a few “Irrelevant” stimuli (unknown to the subject). In each part stimuli represent different domains. In the current study the first part of a trial consisted of pictorial stimuli. There was one probe (P1) and 8 irrelevants (I1.1-I1.8. All 8 irrelevants combined from part1 define Iall1). The probe was an image of the flash-drive (which subject was asked to steal and hide) and 8 irrelevants were pictures of items which were never shown to the subject before. In the second part of a trial the stimuli were names. The probe (P2) was name of the person from whose mailbox the flash-drive was taken by the subject and the 8 irrelevants were some random names (I2.1-I2.8, and Iall2= combined irrelevants in part2). There also was a target stimulus (Target) in the second part of a trial that was a task relevant name requiring a unique button press (with unique “assigned significance”, as in Johnson,1986). In each trial, the subject first saw an image (P1) or one of the 8 pictorial Irrelevants (I1.1-I1.8) followed by P2, or an “Irrelevant” from part2 (I2.1-I2.8) or a “Target.“

Subjects randomly pressed 1of 5 buttons on one response box when they saw a pictorial stimulus (1st part), and they pressed 1of 2 buttons on another response box to a name (2nd part).

Results:

For statistical analysis in the group with the Dual-probe protocol using incidentally learned information and pictorial stimuli (N=11), we implemented ANOVA and t-tests. ANOVA (2 parts of a trial x 2 stimulus types) showed significant stimulus type effect F(1,20)=39.363, p<.001. There was no significant group effect (between two parts of a trial) F(1,20)=1.192, p=.29 and no interaction (Pr vs.Iall x trial part).

Follow up t-tests revealed significant differences in the first part of a trial between P1 and Iall1 amplitudes t(10)=4.98, p<.001) and in the second part of a trial, between P2 and Iall2 t(10)= 3.83,  p<.001. Hit rate was 100% with either P1(1 or 2) or P2(1 or 2) detected as recognizing the probes even if claiming a feigned stimulus recognition deficit.

Conclusions:

The “Dual-Probe” ERP-based protocol for assessment of memory deficit and malingering shows a high level of accuracy. When subjects try to feign cognitive impairment and, specifically deny recognition of familiar stimuli, the “Dual-Probe” (with pictorial stimuli) approach reflects the subject’s ability to recognize familiar stimuli. Thus, the “Dual-Probe” protocol can be used in situations where subjects are unable, or unwilling, to report their recollection for incidentally acquired or learned information.

Further research is required to investigate how introduction of countermeasures and changing number or irrelevants affect accuracy of the “Dual-Probe” protocol with pictorial stimuli and incidentally learned or rehearsed information.

References

Allen, J., Movius, H.L.II. (2000). The objective assessment of amnesia in dissociative identity disorder using event-related potentials International Journal of Psychophysiology 38 Pp. 21-41.

Page 116: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Brandt, J. (1988) Malingered amnesia. In: R. Rogers (Ed.), Clinical Assessment of Malingering and Deception, Guilford Press, New York, NY, pp. 65-83.

Ellwanger J, Rosenfeld JP, Sweet JJ, Bhatt M.(1996). Detecting simulated amnesia for autobiographical and recently learned information using the P300 event-related potential. Int J. Psychophysiology. Aug-Sep; (1-2), Pp.9-23.

Johnson, R., Jr. (1986). A triarchic model of P300 amplitude. Psychophysiology, 23 , 367-384.

Labkovsky E., Rosenfeld J.P. (2009). P300-based protocol (with acoustic stimuli) for assessing memory deficit, malingering, and deception in clinical and forensic settings. Psychophysiology. 46, s.1 Pp.141.

Labkovsky, E., Rosenfeld, J.P. (2011). Memory deficit and malingering: An ERP-based assessment with a “Dual-Probe” Protocol and countermeasure use. Journal of Neurotherapy. Vol 15-4, Pp. 436-7.

Rosenfeld JP, Labkovsky E. (2010). New P300-based protocol to detect concealed information: Resistance to mental countermeasures against only half the irrelevant stimuli and a possible ERP indicator of countermeasures. Psychophysiology. 47, Pp.1002–10.

Rosenfeld, J. P. (2011). P300 in detecting concealed information. In B. Versuchere, G. Ben- Shakhar, & E. Meijer, (Eds.), Memory Detection: Theory and application of the ���Concealed Information Test (pp.63-89). Cambridge University Press.

Randomized Clinical Trial of Biofeedback in Patients with Multiple Sclerosis (R)

Michael McKee, PhD, Cleveland Clinic Christine Moravec, PhD, Cleveland Clinic, [email protected]

Elizabeth Grossman, BA, Cleveland Clinic Gregory Bolwell, BA, Cleveland Clinic Alison Reynard, PhD, Cleveland Clinic

Amanda Mills, BA, Cleveland Clinic Dana Schneeberger, PhD, Cleveland Clinic

Abstract Patients with multiple sclerosis (MS) have chronic symptoms, including unremitting fatigue, spasticity, bowel and bladder dysfunction, pain syndromes, cognitive impairment, mood disorders and gait disturbances. Underlying pathophysiology of this disease is complex, but includes dysfunction of the autonomic nervous system and activation of inflammatory cascades. We are testing the hypothesis that biofeedback- mediated stress management in patients with MS will improve autonomic balance, decrease the inflammatory state, reduce symptoms, and enhance quality of life. Patients between the ages of 18 and 90, with a complaint of fatigue interfering with daily activities, but with no recent disease exacerbation, are being enrolled in a randomized, controlled study. All patients receive an initial evaluation including psychophysiologic stress reactivity to mental stress, manual muscle testing, numeric pain rating, the multiple sclerosis functional composite test, measurement of plasma norepinephrine, tumor necrosis factor alpha and C-reactive protein, and four questionnaires asking about overall health status, life engagement, anxiety and depression. After the initial evaluation, patients are randomized to the biofeedback (BF) group or the usual care (UC) group. Patients in the BF group return for eight weekly sessions of instruction in stress management, including finger temperature, skin conductance, respiration and heart rate variability (HRV) biofeedback training. Patients in the UC group continue as they normally would, with no additional sessions. After ten weeks, all patients return for a final evaluation, which duplicates the initial evaluation. Following the final evaluation session, patients in the UC group are offered a one hour educational session with a certified biofeedback therapist. They also receive the take-home aids which were provided to study patients (thermometer, relaxation CDs, stress management workbook). Data analysis seeks to determine whether MS patients are capable of learning self- regulation, and whether improved self-regulation results in enhanced quality of life, changes in plasma markers of autonomic nervous system activation or inflammation, and changes in the clinical condition, including pain perception, stress level, muscle strength,

Page 117: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

walking, and memory.

References Flachenecker P, Wolf A, Krauser M, Hartung HP, Reiners K. Cardiovascular autonomic dysfunction in multiple sclerosis: correlation with orthostatic intolerance. J Neurol 246:578-586, 1999.

Fox RJ, Bethoux FA, Goldman MD, Cohen JA. Multiple sclerosis: advances in understanding, diagnosing, and treating the underlying disease. Cleveland Clinic J Med 73 (!): 91-102. 2006.

Goldman MD, Cohen JA, Fox RJ, Bethoux FA. Multiple sclerosis: treating symptoms, and other general medical issues. Cleveland Clinic J Med 73 (2): 177-186, 2006.

Hesen C, Gold SM, Hartmann S, Mladek M, Reer R, Braumann KM, Wiedemann K, Schulz KH. Endocrine and cytokine responses to standardized physical stresses in multiple sclerosis. Brain, Behav Immun 17:473-481, 2003.

Mahovic D, Lakusic N. Progressive impairment of autonomic control of heart rate in patients with multiple sclerosis. Arch Med Res 38:322-235, 2007.

An Interesting Finding

Mickey Ogan, Retired, [email protected]

Don Bars, PhD, Private Practice, [email protected]

Abstract

Introduction: The original goal of working with the Visual and Auditory Evoked Potential (VEP and AEP) data was to evaluate conscious vs. un/subconscious signals. Left vs. right electrodes from the International 10-20 system were evaluated. Initially, data from individuals of mixed gender and age were used. This data was initially processed with the assumption that the minds of each subject operated within System Theory and resulted in some comparisons being accurate to significant number of decimal places. At this point more consistent data relative to age and gender was acquired. Methods: Ultimately, the final data set analyzed consisted of sixty 13 year old males and forty 17 year old males. The data analyzed were from three test types. VEP from both pattern reversal and flash paradigms and an AEP odd ball paradigm. The AEP consisted of two files, both the standard tone and the target tone. The analysis, however, resulted in the data from both tones being precisely the same, therefore only the standard tone data was included in the final analysis. Preliminary attempts to analyze phase calculations were abandoned due to the data representing 256 time series points for 16 individual electrodes, each representing a quarter or half second time period. The time series data were converted to frequency bands of Delta (0-3.75 Hz), Theta (3.75-7.5 Hz), Alpha (7.5-15 Hz), Beta (15-30 Hz), Gamma(1)(30-60 Hz), Gamma2 (60-120 Hz), Gamma3 (>120 Hz). These frequency bands were then reconverted back to bands in a time series. A systems view of the normal "mapping" followed which caused the data from all 16 electrodes to be used to calculate the tilt variation of the 16 electrodes having identical values. Next, analysis was made utilizing auto and cross correlation of the Fast Fourier Transform data across all 16 active electrode signals. The data were then input to Microsoft Access 1A Data Base Management System (DBMS) for final analysis. Results: The Analysis separated two distinct types of data. The majority were in clusters that were relative to both individuals and coherence values. The clusters consisted of both auto and cross correlation values. Any data from individuals that did not match the cluster values were labeled as 'Outliers'. and were only considered in cross correlation

Page 118: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

functions. No outliers were identified in the autocorrelation portion of the data. While within the clusters the elements were similar, the ordering was not. Certain coherence types, specifically seven arbitrarily numbered pairs; 3&8, 4&6, 5&7, 13&22, 14&16, 17&20, plus 28&29 then the set of 18, 19, 25 and 26 always went together and were significant to fourteen decimal points. The autocorrelation elements were the numbers 2 - 8 while cross correlations types were numbered 11 - 29. Numbers 12 and 15 were always identically zero and were dropped from the analysis. The numbers 2, 11, 21 and 27 were individual and all these matches were geometrically related to the grid assigned the values. The "self similarity" within the clusters suggested a "fractal" view, therefore, the fractal dimension was assessed and, bottom line, all one hundred (100) boys mental processes were shown to be fractal. The dimensioning was done by summing all data for a given test type based on left side or right side then taking the logarithms of these data and calculating the ratio. The upper bound was limited to 1.0 by assigning the smaller of the two to the numerator of the ratio. Numbers less than or equal to 0.5 would have indicated the data was random while 0.5 to 1.5 was a fractal dimension, based upon criteria from, Fractal Structure in the Electroencephalogram, P.A. Watters, Complexity International, Vol. 5, 1998. Discussion: A primary significance of these results are that usual calculations based upon the "Bell shaped curve" would not be valid. The fractal dimensions are not an average but are related to each individual. This holds, however, only for this data set and therefore the individuals within the clusters. The similarity within the clusters combined with a variation in the ordering, as shown by the plotting of the data, was suggestive of the data being fractal. The meaning of the values within the clusters, which were unique to that cluster, or for that matter the values of individual records that didn't match the cluster values were beyond the scope of this study.

Logic: A Pain in the Anterior Cingulate (R) Sherman Phillips, MA, University of Tennessee, [email protected]

Rex Cannon, PhD, University of Tennessee Debora Baldwin, PhD, University of Tennessee

Dominic Di Loreto, MA, University of Tennessee Tiffany Shaw, MS, University of Tennessee

Abstract Background:

The present study will utilize quantitative EEG and LORETA source localization, alongside hypothalamic-pituitary-adrenal (HPA) axis activity to facilitate real-time inquiry into active, cortical regions of interest (ROI) and stress reactivity associated with logic and deductive reason. To date, functional connectivity, neuronal and stress hormone cortisol activity underlying logic and deduction remain unclear.

Methods:

Eighteen study participants between the ages of 18 and 50 will participate in this study. Subjects will undergo continuous EEG recording in four conditions (eyes closed and eyes open baselines, learning (priming), and syllogism validation). Pre and post salivary cortisol sampling baselines will be collected before and after said experimental condition. Subject responses will be marked within the EEG record, extrapolated and compared for significance using standardized low-resolution electromagnetic tomography for 6,329 5mm3 voxels.

Results:

Previous research and statistical analyses, without cortisol measures, revealed current source density supporting evaluation processes in deduction were specific to left hemisphere, BA 30 parahippocampal gyrus, anterior cingulate and activity in right frontal lobe regarding beta frequency. Decisions compared to instruction (learning) produced increases in all frequency domains in various cortical regions. Delta frequency showed increase in BA 10, and a distributed pattern in the cingulate gyrus. Theta showed maximal increases at BA 10 and AC (BA 32), as well as right BA 18, 19, 37 and 40. Alpha frequency showed increase in left temporal and posterior cingulate (i.e., may reflect language processing and semantics). Beta showed increase in BA 19 (precuneus) and decrease in anterior regions.

Page 119: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Discussion:

Thus, this study will utilize a repeated measures design to analyze the underlying relationship between cortical activity and functional connectivity, along with HPA axis stress hormone cortisol reactivity associated with logic. Plausible interpretation of the data may denote the importance of low frequency bands and/or stress in information retrieval and network integration of syntax, semantics and other executive processes as a function of deductive inference decision making in the AC, PFC, and PCC.

References  

Goel, V., Buchel, C., Frith, C., & Dolan, R. J. (2000). Dissociation of Mechanisms Underlying Syllogistic Reasoning. NeuroImage, 12(5), 504-514.

Goel, V., & Dolan, R. J. (2001). Functional Neuroanatomy of Three-Term Relational Reasoning. Neuropsychologia, 39(9), 901-909.

Knauff M, Mulack T, Kassubek J, Salih HR, Greenlee MW (2002). Spatial imagery in deductive reasoning: a functional MRI study. Cogn Brain Res 13, 203–212.

Pascual-Marqui, R.D., (2002). Standardized low resolution brain electromagnetic tomography (sLORETA): technical details. Methods Findings Exp Clin Pharmacol, 24, 5–12.

Reverber, C, Cherubini, A., Rigamonti, E., Caltagirone, C., Frackowiak, R., Macaluso, E., Paulesu, E. (2007). Neural basis of generation of conclusions in elementary deduction. NeuroImage,38(4), 752-762.

On The Differences Between Topographical and LORETA Neurofeedback in Children and Adults

Tiffany Shaw, MS, University of Tennessee, [email protected] Rex Cannon, PhD, University of Tennessee

Debora Baldwin, PhD, University of Tennessee Dominic Di Loreto, MA, University of Tennessee Sherman Phillips, MA, University of Tennessee

Abstract Introduction:

This study distinguishes between the effects of a recently developed α-protocol designed for improvements in self-regulation and LORETA neurofeedback training of the α-frequency in the precuneus with the same function. Concentration of both protocols is in the left parieto-occipital cortex.

Methods:

This study consists of 6 children and 4 adults with ADHD who received 20 sessions of the alpha protocol 2 or 3 times per week contrasted with 2 age-similar children and age-similar adults who underwent the LNFB protocol over 15 – 20 consecutive weekdays.

Results:

There are similarities and differences specific to each protocol, with LNFB appearing to influence specific networks in a more definite fashion. Such disparities appear in fronto-parietal regions with global differences noted.

Discussion:

Neurofeedback, in general, operates under the auspices of neuroplasticity and a neural- efficiency model.

Page 120: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Differences between topographical and LORETA neurofeedback exist and should be investigated; yet, there are numerous similarities as well. Clinical and research applications will be discussed.

References    Cannon R., Kerson C., Hampshire A. (2011): sLORETA and fMRI Detection of Medial Prefrontal Default Network Anomalies in Adult ADHD. Journal of Neurotherapy 15(4):358-373.

Carmona S., Vilarroya O., Bielsa A., Tremols V., Soliva J.C., Rovira M., Tomas J., Raheb C., Gispert J.D., Batlle S, Bulbena A. (2005): Global and regional gray matter reductions in ADHD: a voxel-based morphometric study. Neurosci Lett 389(2):88-93.

Castellanos F.X. (2001): Neural substrates of attention-deficit hyperactivity disorder. Adv Neurol 85:197-206.

Castellanos F.X, Acosta M.T. (2002): [Syndrome of attention deficit with hyperactivity as the expression of an organic functional disorder]. Rev Neurol 35(1):1-11.

Castellanos F.X., Glaser P.E., Gerhardt G.A. (2006): Towards a neuroscience of attention- deficit/hyperactivity disorder: fractionating the phenotype. J Neurosci Methods 151(1):1-4.

Castellanos F.X., Margulies D.S., Kelly C., Uddin L.Q., Ghaffari M., Kirsch A., Shaw D., Shehzad Z., Di Martino A., Biswal B., Sonuga-Barke E.J., Rotrosen J., Adler L.A., Milham M.P. (2008): Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. Biol Psychiatry 63(3):332-7.

An Integrative Approach to High Performance Evaluation and Training: Illustrated by Data of a Professional Boxer (C)

Leslie Sherlin, PhD, Neurotopia, [email protected] Michael Gervais, Neurotopia

Chris Talley, Neurotopia Noel Larson, Neurotopia

Andy Walshe, Neurotopia Abstract Introduction In the clinical applications of mental health it is well recognized that there are multiple contributors to pathology and also multiple contributors to wellness. Largely in the past, athletic performance primarily has focused on training the body from an anatomical (e.g., Manning & Pickup, 1998), muscular (e.g., Anderson et al., 1991), and cardiovascular performance (Noakes, 2000) approach. As understanding and technology have emerged, the focus has broadened from simply being exercise physiology to a sports and high performance science including the interrelationships and collaborations between physiology, psychology, technology, coaching, biomechanics, and nutrition . Methods The model we employ addresses each of the core areas for maximum athlete performance. The body and brain need adequate nutrition in order to supply cells with fuel. In addition to assuring the intake of the optimal nutrients, it is critical to limit exposure to toxins and allergens that may be contained in food or other substances ingested. Physical capabilities also have to be measured and subsequently trained. Sports psychology techniques of measuring and training mental and emotional skills yield an understanding of the intrinsic belief systems of the individual that can be refined to enhance high performance attainment. The specific brain electrical activity measurements that can be acquired from quantitative electroencephalographic (QEEG) techniques have been well established to reflect levels of cognitive engagement and arousal regulation. Engagement and arousal are critical among the many variables that

Page 121: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

contribute to brain states, and an athlete who can exercise volitional control of these aspects of brain state likely has a distinct advantage during training and competition. In combination, the areas mentioned contribute to a model that is designed to address each core aspect of the individual athlete to enhance the oft-allusive drive for maximum performance. To illustrate the approach a case example was analyzed. The subject is a male professional heavyweight boxer. To measure the sport mindset The Attentional and Interpersonal Styles (TAIS) inventory was administered (Nideffer, 1976). TAIS is a 144-item self-report subjective assessment tool designed to measure concentration styles and interpersonal skills involved in effective decision-making in high-pressure situations. Quantitative electroencephalography (QEEG) was recorded from 19 electrode sites and spectral analyses were computed in classically defined frequency bands of delta, theta, alpha and beta in both absolute and relative power measures. Additionally a new metric of combined behavioral information and QEEG spectral data was utilized to evaluate the athletes “NeuroProfile.” Nutritional information was gathered from a blood and urine sample that in addition to a complete blood count (CBC), sex hormone panel, and basic lipoprotein screening, this analysis involves testing for a large number of common allergies, fatty acids and their derivatives, amino acids, vitamins/minerals, heavy metal toxicities, impaired detoxification indicators, and gut microbial imbalances. Results The TAIS data was used to help enhance identified psychological skills and was used in conjunction with neurofeedback protocols. The QEEG analysis demonstrated findings that included statistically significant deficits of alpha frequency and elevations of the beta frequency in the parietal and occipital cortex. These findings are consistent with a presentation consistent with cortical overarousal and could contribute to anxiety type presentation. Nutritional results showed serious allergies to milk, eggs, and mustard, a frank vitamin D deficiency, a nearly complete absence of omega-3 fatty acids, heavy metal scores that were well above normal levels, and a significant gut microbial imbalance. Correlation analysis were computed between these measures and interesting trends were found all consistent with the athletes subjective and objective presentation. Conclusion Our approach requires coordinating a group of specialists in a wide variety of performance disciplines (i.e., coaches, psychologists, nutritionists, psychophysiologists, biomechanists, and strength and conditioning experts) to deliver an integrated program of performance support. A clear understanding of the integration of the components of performance is becoming more and more critical. None of the components of performance can be considered in isolation any longer and the interrelationships of these core areas is the space in which many of the next strides in high performance training will be made. References Anderson, M.A., Gieck, J.H., Perrin, D.H., Weltman, A., Rutt, R., & Denegar, C. (1991). The relationship among isometric, isotonic, and isokinetic concentric and eccentric quadriceps and hamstring force and three components of athletic performance. Journal of Orthopaedic and Sports Physical Therapy, 14, 114-120. Manning, J. T. & Pickup, L. J. (1998). Symmetry and performance in middle distance runners. International Journal of Sports Medicine, 19, 205-209. Nideffer, R. M. (1976). Test of attentional and interpersonal style. Journal of Personality and Social Psychology, 34, 394-404. Noakes, T. D. (2000). Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. Scandinavian Journal of Medicine & Science in Sports, 10, 123-145.

Infra-low Frequency Neurofeedback: Results of a School-Based Program (R,C)

Mark Smith, MSW, Private Practice, [email protected]

Page 122: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

John Ferrera, PhD Abstract Infra-Low-Frequency (ILF) neurofeedback is a new paradigm in biofeedback training that is generating interest among practitioners due to clinical reports of its efficacy with a wide range of client presentations. This poster presentation reports on an infra-low frequency neurofeedback pilot program in a special needs school in New York City. Preliminary results from that program include pre/post CBCL and ATEC scales in additional to clinical reports.

Results of Pilot School Program:

In total, we have had sixteen students in the program. Thirteen of the sixteen students had a positive response that involved either: a significant reduction of tantruming behavior and/or a reduction or elimination of psychotropic medication and/or improved ability to sustain attention during class resulting in academic progress. Of the remaining three students: two have just begun the program and one had a positive response that is confounded by the initiation of an SSRI at the beginning of the training. This subject, a selectively mute child, achieved a remarkable improvement in symptoms after approximately one week on the SSRI and two weeks with neurofeedback.

In addition to presenting the behavioral data obtained from the school-based program, the poster will present pre and post QEEGs for individuals who have undergone ILF treatment. Recent equipment and software advancements have allowed for simultaneous 19-channel recording and ILF training. This innovation has provided a window on the mechanism of bipolar ILF training. The value of QEEG in predicting treatment responders, treatment planning, and determining treatment outcomes will be discussed. We will also outline some proposed mechanisms of action for ILF neurofeedback and will propose a research design for uncovering the mechanism.

References Aladjalova NA, (1957) Infra-slow oscillations of the steady potential of the cerebral cortex. Nature Volume 179: 957-959.

Aladjalova NA, (1964) Slow Electrical Processes in the Brain in Progress in Brain Research Volume 7, Elsevier, New York.

Broyd SJ, Helps SK, Sonuga-Barke EJS (2011) Attention-induced deactivations in very low frequency EEG oscillations: differential localization according to ADHD symptom status. PLoS ONE 6(3): e17325.

Crunelli V, Errington AC, Hughes SW, Toth TI (2011) The thalamic low-threshold CA2+ potential: a key determinant of the local and global dynamics of the slow (<1 Hz) sleep oscillation in thalamocortical networks. Philosophical Transactions of the Royal Society A 369, 3820-3839.

Hughes SW, Lorincz ML, Parri HR, Crunelli V (2012) Infra-slow (<0.1 Hz) oscillations in thalamic relay nuclei: basic mechanisms and significance to health and disease states. Progress in Brain Research, 193C: 145-162.

Kamiya J, Girton DG, Benson KL (1973) Observation of very slow potential oscillations in human scalp recordings. Electroencephalography and Clinical Neurophysiology 35: 561-568, Elsevier, Amsterdam.

Ko AL, Darvas F, Poliakov A, Ojemann J, Sorensen LB (2011) quasi-periodic fluctuations in the default mode network physiology. The Journal of Neuroscience, 31(32): 11728-11732.

Lorincz ML, Geall F, Bao Y, Crunelli, V, Hughes SW (2009) ATP-Dependent infra-slow (<0.1 Hz) oscillations in thalamic networks. PLoS ONE 4(2) e4447.

Marshall L, Molle M, Fehm H, Born J (2000) Changes in direct current (DC) potentials and infra-slow EEG oscillations at the onset of the luteinizing hormone (LH) pulse. European Journal of Neuroscience,

Page 123: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Vol. 12 pp. 3935-3943.

Palva MJ, Palva S, (2012) Infra-slow fluctuations in electrophysiological recordings, blood-oxygenation- level-dependent signals, and psychophysical time series, NeuroImage.

Monto S, Plava S, Voipio, J, Palva JM, (2008) Very slow EEG fluctuations predict the dynamics of stimulus detection and oscillation amplitudes in humans. The Journal of Neuroscience, 13, 28(33).

Vanhatalo S, Palva JM, Holmes MD, MIller JW, Voipio J, Kaila, K, (2004) Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep. PNAS 101 (14) 5053-5057.

Insights Gained from Over 3 Years of Full-cap Z-score Neurofeedback: Towards a New Paradigm (R,C)

Nancy Wigton, MA, Grand Canyon University, [email protected]

Genomary Krigbaum, PsyD, Grand Canyon University Abstract In 2006 a new 4-channel Neurofeedback technique, called Z-Score Neurofeedback (ZNF), became available that uses real-time Z-scores from an age matched normative database. Since its introduction many clinicians report that the ZNF approach provides for faster clinical outcomes (Collura, Guan, Tarrant, Bailey, & Starr, 2010). However in the initial application of ZNF the maximum number of channels that could be trained at one time was 4 and training was limited to the linked-ears normative database. In 2009 the use of full-cap ZNF (fcZNF) greatly expands the number of scalp locations and measures and included the ability to train real-time Z-scores using not only linked-ears montage data (as well as coherence and phase measures), but also the Laplacian montage data. Since the introduction of fcZNF various approaches within this modality have been developed. Also, given that this is a relatively new approach to NF, to-date there have been no multi-year follow-up data presented or published which addresses the question of longer-term benefit of this new technique.

This will be an overview presentation of multiple case histories with emphasis on the practical applications for the NF clinician. As one of the first clinicians in private practice to incorporate surface fcZNF the presenter will share what has been learned after three years of using four primary approaches to fcZNF, on two different platforms. The presenter’s application of fcZNF is an eclectic approach resulting in a blended matrix which has led to significant advances in terms of shortened treatment time. As a result of observations over the years, the presenter believes certain elements of a changed paradigm are now possible.

Method:

Treatment records of a private neurofeedback practice are reviewed. Pre and post QEEG comparisons, case examples with pre and post outcome measures, and where possible, multiple year follow-ups from this new neurofeedback technique are examined.

Results:

As of the writing of this abstract this investigation is still in process. At the time of the conference applicable statistical analysis will be presented. The different fcZNF approaches to be discussed will be the Linked Ear montage with and without symptom checklist, Laplacian montage, and PZOK-19channel. Suggestions for a framework of a new paradigm will be presented.

References Collura, T.F., Guan, J.G., Tarrant, J., Bailey, J., Starr, F. (2010) EEG Biofeedback Case Studies Using Live Z-Score Training and a Normative Database. Journal of Neurotherapy, 14(1), pg. 22-46.

Page 124: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Collura, T.F, Thatcher, R.W., Smith, M.L., Lambos, W.A. and Stark, C.R. (2009) EEG Biofeedback Training Using Live Z-Scores And A Normative Database. In: Introduction to QEEG and Neurofeedback: Advanced Theory and Applications, T. Budzinsky, H. Budzinsky, J. Evans and A. Abarbanel (eds), pg. 103-141.

Collura, T.F (2008) Whole-Head Normalization Using Live Z-Scores for Connectivity Training, Part 1. NeuroConnections. April, pg. 12-18.

Collura, T.F (2008) Whole-Head Normalization Using Live Z-Scores for Connectivity Training, Part 2. NeuroConnections. July, pg . 9-12.

Saab, M. (2008) Z-Score Biofeedback with Thought Technology’s Infiniti System. NeuroConnections. April, pg. 26-30.

Stark, C.R. (2008) Consistent Dynamic Z-Score Patterns Observed During Z-Score Training Sessions. NeuroConnections. April, pg 37-38.

Tegan, E. (2008) Z-Sscore Training Case Review of Severe Mood Instabilities. NeuroConnections. July, pg. 33-34.

Thatcher, R.W. (2009) Multi-Channel Z-Score EEG Biofeedback: Laplacian, Average Reference, Phase Reset and Discriminant functions, Oral Presentation at 17th Annual ISNR Conference, Indianapolis, IN.

Thatcher, R.W. (2008) Z-Score EEG Biofeedback: Conceptual Foundations. NeuroConnections. April, pg. 9-11.

Wigton, N. (2008) Does Z-Score NF work better than non Z-Score NF?, Poster presentation at 16th Annual ISNR Conference, San Antonio, TX.

Wigton, N. (2009) First Impressions of NeuroGuide Real-Time Z-Score Training. In: Getting Started with DynamicZ-Score Training, J Demos, Neurofeedback of S.VT LLC, pg. 81-89.

Wigton, N. (2010). Laplacian Z-Score Neurofeedback: A Unique Option in The Realm of Multi-Channel Z-ScoreNeurofeedback, Plenary Session Oral Presentation, ISNR 18th Annual Conference, 2010.

Wigton, N. (2010). Case Studies Overview of Multi-Channel Z-Score Neurofeedback, Poster Session, ISNR 18th Annual Conference 2010.

Page 125: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

ISNR 2012 Conference Workshops

Thursday,  September  19,  2012    

WS 1: Fundamentals in Research Methodology: An ISNR Research Foundation Workshop

(Lecture) David Trudeau, MD, [email protected]

Estate Sokhadze, PhD, University of Louisville, [email protected] Rex Cannon, PhD, University of Tennessee, [email protected]

Credits: 3 Level of Difficulty: Intermediate Abstract This workshop, presented by top researchers in neuromodulation, will focus on fundamental research design principles, and show their usefulness in researching neuromodulation, which is an operant conditioning and behavioral modality, which is a highly applied field. It will compare common flaws and successful study designs in recent research, including specific examples of both flaws and successful designs. Some questions to be discussed are: Is it possible to do RCT of operant conditioning that is truly double blinded and the active condition is therapeutic? What can we learn from comparison studies? From physiologic outcome measure studies? This is a very important workshop for those interested in clinical trials and students embarking on their theses and/or dissertations.

References Creswell, J. (1998). Qualitative inquiry and research design: Choosing among five traditions. Thousand Oaks, California: Sage Publications.

Creswell, J. (2003). Research Design: Qualitative, Quantitative, and Mixed Methods Approaches. Thousand Oaks, California: Sage Publications.

Guba, E. and Lincoln, Y. (1989). Fourth Generation Evaluation. Newbury Park, California: Sage Publications.

Herrman, C. S. (2009). “Fundamentals of Methodology”, a series of papers On the Social Sciences Research Network (SSRN), online.

Patton, M. Q. (2002). Qualitative research & evaluation methods (3rd edition). Thousand Oaks, California: Sage Publications.

Ruane, JM. (2005) Essentials of research methods: A guide to social science research. Blackwell Publications; Malden, MA.

Goals/Objectives Discern the problems inherent in randomized controlled trials and blinding issues in researching operant conditioning and behavioral modalities.

Know common flaws in published research in the field and learn how to avoid them.

Utilize basic research methodology in neuromodulation such as rTMS and neurofeedback.

Page 126: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Outline This workshop, presented by top researchers in neuromodulation, will focus on fundamental research design principles (.75 hr), and show their usefulness in researching neuromodulation (.75 hr), which is an operant conditioning and behavioral modality. It will also discuss common flaws (.75 hr) and successful study designs in recent research (.75 hr)

Financial Interest: No financial interests. WS 2: Autism Spectrum Disorders: Integrating Clinical Knowledge and

Individual Symptoms and Neurophysiology in the Formation of Neurofeedback Treatment Plans

(Lecture, Demonstration) Robert Coben, PhD, Private Practice, [email protected] Credits: 3 Level of Difficulty: Advanced Abstract The prevalence of Autism Spectrum Disorders (ASD) continues to rise at an alarming rate (CDC, 2012). Providing effective treatment options is becoming more and more crucial for this population. While some treatments have shown promise and have preliminary empirical support (i.e., Neurofeedback (Coben & Wagner, 2011), Hyperbaric Oxygen Therapy (Rossignol, 2007)), the most pressing clinical issue is how to individualize treatment to the needs of the individual.

This workshop will focus on enhancing knowledge about ASDs, treatment options, symptom constellations, and neurophysiological mechanisms so participants will be able to start integrating such information in the formation of neurofeedback protocols and treatment plans. Empirical data will be presented from neurofeedback trials to form the basis for effective treatment protocols. This will include a focus on the following:

Review of ASD symptoms, diagnoses, epidemiology, potential causes and neurophysiological findings.

Current therapies and their empirical support.

Using neurofeedback to treat ASD: Empirical data regarding EEG, neuroimaging and neuropsychological research will be integrated in order to maximize the evaluation and therapy course and avoid common pitfalls while working with this population.

Discussion and questions.

The true value of this workshop is an understanding for a neuroscientific level what leads to autistic symptoms and how to remedy them. Individualization of treatment is at the heart of this approach, which has led to an overall success rate in approximately 90 – 95% of the cases.

References Centers for Disease Control and Prevention (CDC) (2012). Prevalence of Autism Spectrum Disorders — Autism and Developmental Disabilities Monitoring Network, 14 Sites, United States, 2008. Surveillance Summaries, 61 (SS03), 1- 19.

Coben, R., Wagner, L. (2011). Emerging empirical evidence supporting connectivity guided Neurofeedback for Autistic disorders. In Coben & Evans (Ed.), Neurofeedback and Neuromodulation

Page 127: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

techniques and applications (153-182). London, UK: Elsevier.

Rossignol, D.A., Rossignol, L.W., James, S.J., Melnyk, S., & Mumper, E. (2007). The effects of hyperbaric oxygen therapy on oxidative stress, inflammation, and symptoms in children with autism: An open-label pilot study. BMC Pediatrics, 7, 36-49.

Goals/Objectives Discuss the symptoms and neurophysiological findings associated with autistic disorders. Review available treatments, especially alternative one’s.

Be able to start to integrate knowledge of symptoms and neurophysiology in the formation of neurofeedback protocols.

Outline Review of ASD symptoms, diagnoses, epidemiology, potential causes and neurophysiological findings.

Available treatments and their current empirical support.

Using Neurofeedback to treat ASD: Integrating knowledge of ASD with individual symptoms and neurophysiological findings.

Discussion and questions.

Financial Interest: There is no financial relationship with any software or product discussed in this workshop.

WS 3: Video Games As Exceptional Learning Environments

(Lecture, Discussion, Demonstration) C. Shawn Green, PhD, University of Wisconsin, [email protected]

Credits: 3 Level of Difficulty: Basic to Advanced Abstract Those who develop off-the-shelf video games have generally done so with one goal in mind – to make a product that is incredibly entertaining and which is thus a product that consumers will want to buy. However, in accomplishing exactly this, whether intentionally or otherwise, they have exploited principles that have been the focus of more than one hundred years of research in neuroscience and psychology to produce an experience that changes the brain and behavior unlike any training paradigm that came before (Gentile & Gentile, 2008; Green & Bavelier, 2008).

In this workshop we’ll examine the basic neuroscientific and psychological principles that are known to affect the rate, depth, and generality of learning. This includes topics such as the effects of arousal and motivation - mediated by the cholinergic basal forebrain system (Kilgard & Merzenich, 1998), reward - mediated by the mesocortical dopaminergic pathway (Bao, Chan, & Merzenich, 2001), reward scheduling (Ferster & Skinner, 1957), feedback (Roelfsema, van Ooyen, & Watanabe, 2010), active learning (Gee, 2003), level of difficulty (Ahissar & Hochstein, 1997), variety (Schmidt & Bjork, 1992), hierarchical learning (Harlow, 1949), and so-called “spiral curricula” (Bruner, 1960). More specifically, we’ll consider how commercial video games embody and/or implement these principles to produce efficient learning and perhaps just as importantly, we’ll also discuss the myriad ways in which most games designed for practical purposes (e.g. “brain trainers” or educational software) neglect these principles (thus resulting in the derisive nickname of “chocolate covered broccoli”).

Page 128: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Finally, using the video game implementations as a guide, we’ll attempt to devise ways (using video games or otherwise) to employ the basic learning principles to augment learning in the domains of most interest to the workshop participants (whether it be cognitive therapy, education, rehabilitation, etc).

References Ahissar, M., & Hochstein, S. (1997). Task difficulty and the specificity of perceptual learning. Nature, 387, 401-406.

Bao, S., Chan, V., & Merzenich, M. (2001). Cortical remodeling induced by activity of ventral tegmental dopamine neurons. Nature, 412, 79-83.

Bruner, J. (1960). The process of education. New York: Vintage.

Ferster, C. B., & Skinner, B. F. (1957). Schedules of reinforcement. New York: Appleton-Century-Crofts.

Gee, J. P. (2003). What video games have to teach us about learning and literacy. New York: Palgrave Macmillan.

Gentile, D. A., & Gentile, J. R. (2008). Violent video games as exemplary teachers: A conceptual analysis. Journal of Youth and Adolescence, 37, 127-141.

Green, C. S., & Bavelier, D. (2008). Exercising your brain: A review of human brain plasticity and training-induced learning. Psychology and Aging, 23(4), 692-701.

Harlow, H. F. (1949). The formation of learning sets. Psychological Review, 56(1), 51-65.

Kilgard, M., & Merzenich, M. (1998). Cortical map reorganization enabled by nucleus basalis activity. Science, 279, 1714-1718.

Roelfsema, P. R., van Ooyen, A., & Watanabe, T. (2010). Perceptual learning rules based on reinforcers and attention.. Trends Cogn Sci, 14(2), 64-71.

Schmidt, R. A., & Bjork, R. A. (1992). New conceptualizations of practice: Common principles in three paradigms suggest new concepts for training. Psychological Science, 3(4), 207-217.

Goals/Objectives Understand many of the principles of effective learning regimens including arousal, reward and reward scheduling, feedback, and variety as well as the neuroscientific bases for this principles.

Appreciate how these principles are effectively implemented in modern commercial video games (and neglected in many modern games designed for practical purposes.

Have a framework for utilizing the knowledge in their own domain of interest.

Outline For each topic: psychology of XX, neuroscience of XX, implementation of XX in good games, implementation of XX in bad games, how to utilize XX in own domain of interest:

- arousal and motivation

- reward

- feedback

Page 129: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

- variety

- hierarchical structure

- difficulty

- spiral curricula

Financial Interest: One patent pending for action-video game based on mathematics training. Bavelier, D., Halberda, J., Green, CS, and Pouget, A. (2010). Game Design for Number-sense Training via Action-Packed Video Games. Invention Disclosure on file with the U. of Rochester, patent pending. WS 4: Neurofeedback Intermediate - Advanced (BCIA Review Course)

(Lecture) Lynda Thompson, PhD, ADD Centre, [email protected] Michael Thompson, MD, ADD Centre, [email protected]

Credits: 3 Level of Difficulty: Intermediate Abstract This workshop covers areas from the BCIA blueprint of knowledge and skills, information relevant to all neurofeedback practitioners. Basic definitions and descriptions will be discussed. It will cover the highlights concerning the history of neurofeedback, research criteria for determining efficacy, efficacy levels of various disorders treated with NFB, basic neurophysiology & neuroanatomy (very brief) as these apply to assessment for biofeedback interventions, source of the electroencephalogram (EEG), instrumentation, procedures for assessment and intervention. It additionally comments on adjunctive techniques, including biofeedback and relaxation.

Method:

This course is a didactic presentation that provides a very brief review of basic knowledge and will cover selected topics from the areas that comprise the Blueprint of Knowledge for specialty certification in EEG biofeedback developed by the BCIA. Goals are that participants will be able to answer questions on material that could legitimately be covered in a BCIA examination on EEG Biofeedback (that is, material that has been published, as contrasted to ideas based on clinical impressions). For example, they will be able to answer questions regarding EEG data collection and instrumentation including: impedance versus resistance, differential amplifier, sampling rates, filters and so on and understand EEG assessment (one, two and 19 channels, brain maps, LORETA, data bases, EEG artifacts, normal and abnormal waveforms, common findings in disorders where neurofeedback is used). Methods for obtaining accurate data and interpreting this information will be covered. Additionally, they will be able to demonstrate an understanding of how learning theory (especially operant conditioning) applies to EEG biofeedback, discuss basic neurophysiology relevant to interventions that use the EEG, and briefly relate basic information on other related topics including: HRV, ERPs, ethics, statistics, and so on. Blueprint areas include:

Section I Section II Section III Section IV

Overview of Biofeedback, Neurofeedback and Learning Physiological Basis of the Electroencephalogram and basic neuroanatomy. Measuring The EEG: Instruments & Electronics Brief Overview of Statistics and Research Design with an emphasis on criteria for evaluating efficacy

Section V Section VI

Section VII

Page 130: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Psychopharmacology Overview as it relates to assessment and training. Fundamentals of Intervention: Choice of Electrode Placement, Channels, Bandwidths and Adjunctive Techniques Professional conduct: very brief review

Results & Conclusions These headings do not have equal emphasis in this workshop. Feedback concerning the workshop has been that it increases the confidence level and successful outcomes for people taking the BCIA examination.

BCIA REVIEW Section I Overview of Biofeedback, Neurofeedback and Learning Section II Physiological Basis of the Electroencephalogram and basic neuroanatomy. Section III Measuring The EEG: Instruments & Electronics Section IV Brief Overview of Statistics and Research Design with an emphasis on criteria for evaluating efficacy Section V Psychopharmacology Overview as it relates to assessment and training. Section VI Fundamentals of Intervention: Choice of Electrode Placement, Channels, Bandwidths and Adjunctive Techniques Section VII Professional conduct: brief review

References Thompson, M. and Thompson, L., (2003), The Neurofeedback Book: An Introduction to Basic Concepts in Applied Psychophysiology, Association for Applied Psychophysiology, Wheat Ridge, Colorado.

Campbell, Neil, Reece, Jane, Mitchell, Lauren, Biology, 5th Edition, Addison Wesley Longman, Inc.1999, page 971 of Chapter 48 Nervous Systems pp 950-991.

Schwarz, Biofeedback: A Practitioner’s Guide, 1997.

Thompson L., Thompson M., (1998), Neurofeedback Combined with Training in Metacognitive Strategies: Effectiveness in Students with ADD, Applied Psychophysiology and Biofeedback, Vol. 23.

Fisch, Bruce J., (1999) Fisch and Spehlmann’s EEG Primer, Basic Principles of Digital and Analog EEG, third revised and enlarged edition, Elsevier, NY.

Baehr, Elsa, Rosenfeld, J.P., Baehr, R., Earnst, C., (1999) Clinical use of an alpha asymmetry neurofeedback protocol in the treatment of mood disorders in Quantitative EEG and Neurofeedback, James R. Evans and Andrew Abarbanel, Academic Press, NY).

Goals/Objectives Discuss EEG data collection and interpretation using common terms including: referential, sequential, and laplacian montages; active, reference, and ground electrodes, digital versus analogue recording, QEEG, LORETA.

Discuss instrumentation including: impedance versus resistance, differential amplifier, sampling rates, high and low pass filters.

List and describe common artifacts including: eye movement, muscle tension, cardiac, cardioballistic, electrode movement.

Describe normal and abnormal waveforms.

Describe common findings in disorders where neurofeedback is used including: Seizure disorders, ADHD, anxiety, depression.

Outline how learning theory (especially operant conditioning) applies to EEG biofeedback.

List three Brodmann Areas that are common targets of NFB intervention and name a disorder where that area is important.

Page 131: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Describe levels of efficacy for NFB.

Define event related potential (ERP) and describe the importance of latency and amplitude with one example (e.g., ADHD or dementia).

List and describe four basic ethical principles.

Define basic statistical terms.

Name five structures that comprise the Basal Ganglia.

Name four neural networks.

Define SDNN and describe how heart rate variability training can improve this measurement.

Outline First Hour

1. History, Theory & Assessment 2. TERMS: Frequency (Hz), Amplitude (µV), Magnitude, Power (pW) 3. 10:20 System; Montages 4. EEG waves: Delta, Theta, Alpha, Beta, Gamma 5. Other Terms: QEEG, Phase, Coherence, LORETA 6. EEG Band Widths correspond to functions (ADHD examples) 7. Operant & Classical Conditioning 8. Post-synaptic-potential: EPSP & IPSP Sub Cortical Influence (selection: Striatum-Pallidum-Thalamus) 9. Instrument: High pass & Low Pass Filters 10. Impedance & Differential Amplifier; Optical Isolation Second Hour

11. Basics of EEG Assessment

12. Brodmann Areas & Limbic System

13. Data Bases

14. Neurotransmitters 15. Evoked Potentials, slow cortical potentials

16. Psychophysiological Variables & Biofeedback

17. Artifacts & Medication Effects

18. Side effects NFB

19. Side effects BFB

Third Hour

20. Disorders with illustrations of Assessment EEG findings

21. Levels of efficacy

22. Training Paradigms using both NFB & BFB

Page 132: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

23. Sleep & Seizure Disorders

24. Basic Statistics

25. Selected Psychoanalytic Terms Discussion (questions are answered through all sections)

Financial Interest: Lynda Thompson is co-author of THE A.D.D. BOOK. Michael and Lynda are co-authors of SETTING UP FOR CLINICAL SUCCESS. Michael and Lynda Thompson are co-authors of THE NEUROFEEDBACK BOOK. It is likely that these books may be on sale at the meeting. The authors will state their interest in these books at the workshop.

WS 5: A Clinician’s Guide to Understanding Recent Developments in Neurofeedback: Amplitude, Live Z-score and sLORETA Training

Explained (Lecture, Demonstration)

Thomas Collura, PhD, BrainMaster Technologies, [email protected] Penijean Rutter, Stress Therapy Solutions, [email protected]

Ronald Bonnstetter, University of Nebraska, [email protected] Credits: 3 Level of Difficulty: Intermediate Abstract With EEG technology and training software developing at blistering speeds, clinicians new to the field of neurofeedback are expressing confusion at the differences between the available training options, and even experienced practitioners are struggling to understand and incorporate recent technological innovations in a clinical practice. This workshop will provide a brief analysis of the literature, history and development of conventional amplitude neurofeedback, live Z-score methods, and sLORETA training, while evaluating differences and similarities between the highlighted approaches. A review of the relevant scientific terms and principles will include remarks on the emerging role of QEEG in protocol selection, an examination of the available models for neurofeedback training, a discussion of the differences between standard types of acquisition and feedback, and an overview of how to make educated choices regarding clinical interventions appropriate to the client presentation based on an introduction of the technical information critical to such a process. The intent of this workshop is to equip the attendee with a working knowledge of the scientific paradigms that underlie different theoretical approaches to neurofeedback, to increase the skill with which protocols are chosen or created through improved understanding of the conceptual framework behind the design of available training software, and to enhance individual clinical competency through technical education. References Breakspear, M. and Terry, J.R. (2002a). Detection and description of non-linear interdependence in normal multichannel human EEG data. Clin. Neurophysiol., 113(5): 735-753.

Breakspear, M. and Terry, J.R. (2002b). Nonlinear interdependence in neural systems: motivation, theory and relevance. Int. J. Neurosci., 112(10): 1263-1284.

Buzaski, G.B. (2006). Rhythms of the Brain. Oxford Univ. Press, New York.

Giannitrapani, D. The Electrophysiology of Intellectual Functions , Kargere, Press, New York, 1985.

Collura, T. F. Guan, J., Tarrant., Bailey, J., & Srarr, F. (2010) EEG biofeedback case studies

Page 133: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

using live Z-score training and a normative database. Journal of Neurotherapy, 14(1), 22- 46.

Collura, T. F. (2009) Neuronal dynamics in relation to normative electroencephalography assessment and training. Biofeedback, 36, 134-139.

Gomez JF, Thatcher RW: Frequency domain equivalence between potentials and currents using LORETA.International Journal of Neuroscience 107:161-171, 2001.

John, E. R., Prichep, L. S. & Easton, P. (1987). Normative data banks and neurometrics: Basic concepts, methods and results of norm construction. In A. Remond (Ed.), Handbook of electroencephalography and clinical neurophysiology: Vol. III. Computer analysis of the EEG and other neurophysiological signals (pp. 449-495). Amsterdam: Elsevier.

Nunez, P. (1981). Electrical Fields of the Brain. Oxford University Press, Mass. Pikovsky, A., Rosenblum, M. and Kurths, J. (2003). Synchronization: A universal concept in nonlinear sciences. Cambridge Univ. Press, New York. Pascual-Marqui RD, Michel CM, Lehmann D: Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. International Journal of Psychology 18: 49-65, 1994.

Sterling P; Eyer J (1988) Allostasis: a new paradigm to explain arousal pathology. In: Handbook of Life Stress, Cogintion and Health (Fisher S; Reason J, eds), pp 629-649. New York, NY:J. Wiley & Sons.

Thatcher, R.W. EEG normative databases and EEG biofeedback (1998). Journal of Neurotherapy, 2(4): 8-39. Thatcher, R.W. EEG database guided neurotherapy (1999). In: J.R. Evans and A. Abarbanel Editors, Introduction to Quantitative EEG and Neurofeedback, Academic Press, San Diego.

Yao D, He B. A self-coherence enhancement algorithm and its application to enhancing three-dimensional source estimation from EEGs. Annals of Biomedical Engineering, 2001, 29:1019-1027.

Goals/Objectives Describe neurofeedback paradigms and their published clinical results. Interpret QEEG results of neurofeedback therapy in clinical terms. Demonstrate combined methodologies using selected cases of live z-score, amplitude, and sLORETA methods. Outline Overview of neurofeedback paradigms (1 Hour) Principles of protocol combination: conventional + innovative (1 Hour) Case studies with QEEG pre and post outcome measures (1 Hour) Financial Interest: Dr. Collura has a financial interest in BrainMaster Technologies Inc. Part of the workshop will describe products provided by BrainMaster Technologies, along with other providers. "As part of StressTherapy Solutions, Inc. faculty, Penijean Rutter has no financial gain or interest in BrainMaster Technologies. Dr. Bonnstetter is a Senior Vice President of Target Training International.

WS 6: Psychopharmacology of Depression (Lecture)

Fredric Shaffer, PhD, Truman State University, [email protected]

Credits: 3 Level of Difficulty: Intermediate Abstract This 3 contact-hour workshop is designed for biofeedback/neurofeedback practitioners, psychologists, clinical counselors, clinical social workers, marriage and family therapists, nurses, physicians, and other

Page 134: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

health care professionals and academicians interested in pharmacological and biofeedback and neurofeedback treatment of depression. This workshop will examine the neurogenic theory of depression, review the mechanisms, efficacy, side effects, and EEG effects of first-generation, second-generation, and dual-action antidepressants, summarize the lessons of the STAR*D study, and assess the promise of HRV biofeedback and neurofeedback as alternatives to antidepressants. Attendees will learn that antidepressants may relieve depression by increasing levels of neurotrophins like BDNF and restoring neurogenesis in the hippocampus. They will discover that while successive generations of antidepressants have reduced toxicity and improved side effect profiles, they have not increased the onset of action or reduced the number of treatment-resistant patients. Finally, they will realize that HRV biofeedback and neurofeedback are possibly efficacious in the treatment of depression.

Topics

Neurogenic theory of depression (30 min). 1. Neuronal repair (Saarelainen et al., 2003) 2. Neurogenesis (Duman, 2004; Kirshnan & Nestler, 2008) 3. Chronic effects of stress on the hippocampus (Frodl et al., 2007; Lucassen et al., 2010) 4. How antidepressants restore neuronal repair and neurogenesis (Angelucci et al., 2005)

Efficacy guidelines for pharmaceutical and behavioral treatments (10 min) 1. Efficacy levels 2. Effect size

First-generation antidepressants (30 min).

7. Tricyclic antidepressants A. Mechanism of action B. Pharmacological effects C. Side effects D. EEG effects

8. Monoamine oxidase inhibitors A. Mechanism of action B. Pharmacological effects

C. Side effects D. EEG effects

Second-generation antidepressants (30 min). 1. Selective serotonin reuptake inhibitors

A. Mechanism of action B. Pharmacological effects C. Side effects D. EEG effects

Dual-action antidepressants (30 min) 1. Serzone, Savella, Effexor, Cymbalta, Remeron

A. Mechanism of action B. Pharmacological effects C. Side effects D. EEG effects

2. Dopamine-norepinephrine reuptake inhibitor (Bupropion) A. Mechanism of action B. Pharmacological effects C. Side effects

D. EEG effects

3. Selective norepinephrine reuptake inhibitors (Vestra, Strattera) A. Mechanism of action B. Pharmacological effects C. Side effects

D. EEG effects

Lessons from the STAR*D study (15 min) A. Study description B. Study conclusions

HRV biofeedback and neurofeedback for depression (35 min) 1. HRV biofeedback for depression

A. Treatment protocol B. Mechanism of action C. Efficacy

2. Neurofeedback for depression A. Treatment protocol B. Mechanism of action C. Efficacy

Page 135: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

References Angelucci, F., et al. (2005). BDNF in schizophrenia, depression, and corresponding animal models. Molecular Psychiatry, 10, 345-352.

Baehr, E., Miller, E., Rosenfeld, J. P., & Baehr, R. (2004). Changes in frontal brain asymmetry associated with premenstrual dysphoric disorder: A single case study. Journal of Neurotherapy, 8(1), 29-42.

Baehr, E., Rosenfeld, J. P., & Baehr, R. (1997). The clinical use of an alpha asymmetry protocol in the neurofeedback treatment of depression: Two case studies. Journal of Neurotherapy, 2(3), 10-23.

Baehr, E., Rosenfeld, J. P., & Baehr, R. (2001). Clinical use of an alpha asymmetry neurofeedback protocol in the treatment of mood disorders: Follow-up study one to five years post therapy. Journal of Neurotherapy, 4(4), 11-18.

Baehr, E., Rosenfeld, J. P., & Baehr, R. (2004). Clinical use of an alpha asymmetry neurofeedback protocol in the treatment of mood disorders: Follow-up study one to five years post therapy. Journal of Neurotherapy, 4(4), 11-18.

Crupi, R., Marino, A., & Cuzzocrea, S. (2011). New therapeutic strategy for mood disorders. Curr Med Chem, 18(28), 4284-4298.

Costanzo, R. M. (1991). Regeneration of olfactory receptor cells. CIBA Found Symp, 160, 233- 242.

Damasio, A. (2010). Self comes to mind. New York: Pantheon Books. Duman, R. S., Heninger, G. R., & Nestler E. J. (1997). A molecular and cellular theory of depression. Arch Gen Psychiatry, 54(7), 597-606. Duman, R. S. (2004). Depression: A case of neuronal life and death? Biological Psychiatry, 56, 140-145.

Frodl, T., et al. (2007). Association of the brain-derived neurotrophic factor Val66Met polymorphism with reduced hippocampal volumes in major depression. Archives of General Psychiatry, 64, 410-416.

Hammond, D. C. (2001). Neurofeedback training for anger control. Journal of Neurotherapy, 5(4), 98-103.

Hammond, D. C. (2001). Neurofeedback treatment of depression with the Roshi. Journal of Neurotherapy, 4(2), 45-56.

Hammond, D. C. (2005). Neurofeedback with anxiety and affective disorders. Child & Adolescent Psychiatric Clinics of North America, 14(1), 105-123.

Hanson, N. D., Owens, M. J., & Nemeroff, C. B. (2011). Depression, antidepressants, and neurogenesis: A critical reappraisal. Neuropsychopharmacology, 36(13), 2589-2602.

Hennessy, M. B., Schiml-Webb, P. A., & Deak, T. (2009). Separation, sickness, and depression: A new perspective on an old animal model. Curr Dir Psychol Sci, 18(4), 227-231.

Julien, R. M., Advokat, C. D., & Comaty, J. E. (2011). A primer of drug action (12th ed.). New York: Worth Publishers.

Karavidas, M. K., Lehrer, P. M., Vaschillo, E. G., Vaschillo, B., Marin, H., Buyske, S., et al. (2007). Preliminary results of an open-label study of heart rate variability biofeedback for the treatment of major depression. Applied Psychophysiology and Biofeedback, 32, 19-30.

Kitamura, T., et al. (2009). Adult neurogenesis modulates the hippocampus-dependent period of associative fear memory. Cell, 139(4), 814-827.

Page 136: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Krishnan, V., & Nestler, E. J. (2008). The molecular neurobiology of depression. Nature, 455, 894-902.

Lucassen, P. J., et al. (2010). Regulation of adult neurogenesis by stress, sleep disruption, exercise and inflammation: Implications for depression and antidepressant action. European Neuropsychopharmacology, 20, 1-17.

Maes, M., Yirmyia, R., Noraberg, J., Brene, S., Hibbeln, J., et al. (2009). The inflammatory & neurodegenerative (I&ND) hypothesis of depression: Leads for future research and new drug developments in depression. Metab Brain Dis, 24(1), 27-53.

Petrik, D., Lagace, D. C., & Eisch, A. J. (2012). The neurogenesis hypothesis of affective and anxiety disorders: Are we mistaking the scaffolding for the building? Neuropharmacology. [Epub ahead of print].

Rosenfeld, J. P. (2000). An EEG Biofeedback protocol for affective disorders. Clinical Electroencephalography, 31(1), 7-12.

Rosenfeld, J. P., Baehr, E., Baehr, R., Gotlib, I. H., & Ranganath, C. (1996). Preliminary evidence that daily changes in frontal alpha asymmetry correlate with changes in affect in therapy sessions. International Journal of Psychophysiology, 23, 137-141.

Saarrelainen, T., et al. (2003). Activation of the TrkB neurotrophin receptor is induced by antidepressant drugs and is required for antidepressant-induced behavioral effects. Journal of Neuroscience, 23, 349- 357.

Saxby, E., & Peniston, E. G. (1995). Alpha-theta brainwave neurofeedback training: An effective treatment for male and female alcoholics with depressive symptoms. Journal of Clinical Psychology, 51(5), 685-693.

Shors, T. J. (2009). Saving new brain cells. Scientific American, 300(3), 46-52, 54.

Stahl, S. M. (2008). Stahl’s essential psychopharmacology: Neuroscientific basis and practical applications (3rd ed.). New York: Cambridge University Press.

Goals/Objectives Explain the neurogenic theory of depression.

Describe the mechanism, efficacy, and side effects of first-generation antidepressants.

Describe the mechanism, efficacy, and side effects of second-generation antidepressants.

Describe the mechanism, efficacy, and side effects of dual-action antidepressants.

Summarize the major findings of the STAR*D study.

Discuss the behavioral alternatives of HRV biofeedback and neurofeedback for depression.

Outline Neurogenic theory of depression (30 min).

First-generation antidepressants (30 min)

Second-generation antidepressants (30 min)

Dual-action antidepressants (30 min)

Lessons from the STAR*D study (15 min)

Page 137: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

HRV biofeedback and neurofeedback for depression (45 min)

Financial Interest: No significant financial interests.

WS 7: Setting up for Success with Asperger’s and Autistic Spectrum Disorders (Day 1)

(Lecture, Demonstration) Michael Thompson, M.D., The ADD Centre, [email protected] Lynda Thompson, Ph.D., The ADD Centre, [email protected]

Credits: 3 Level of Difficulty: Basic Abstract Day 1: For professionals who have not had extensive experience in assessment, differential diagnostic work-up, and basic interventions, for Asperger’s (AS) or Autism (AD).

Day 2: For professionals experienced with autistic spectrum disorder (ASD), an emphasis on how QEEG and psychophysiological assessments lead to effective intervention.

Goal: Attendees for both half days of this workshop will become familiar with how symptoms differ between Asperger’s and autism. They will be able to outline, on the basis of functional Neuroanatomy (which includes discussion of Brodmann Areas, neural networks and connections, including vagal inputs to the medulla and brain stem connections to basal ganglia, thalamus, and cortex), why a combination of NFB + BFB + Strategies improves social functioning in addition to resulting in significant improvements in scores on academic, intelligence, and attention measures (Thompson, Thompson, & Reid, 2010). The participants will learn how autistic spectrum disorders (ASDs) have major difficulties in at least three major networks: executive, affect, and the default network. Every patient will have a different “balance” of involvement or difficulties related to these networks. These three networks can be influenced by Neurofeedback at various sites over the central midline structures (CMS). They are also altered by means of biofeedback and, in particular, by Heart Rate Variability (HRV) training that influences the same CMS. The neuroanatomy and connections of the CMSs, and in particular of areas of the anterior cingulate and how they are involved in the networks, is highlighted.

Abstract for Day 1

Presenters will outline, with case examples, the major symptoms of Autism and Asperger’s Disorder. The workshop will include a basic over-view of cortical areas that are dysfunctional in the autistic spectrum disorders (ASD) with LORETA examples of how these are seen in the QEEG assessment, which is expanded in day 2. Functional significance of cortical areas is partially elucidated in the Brodmann Areas booklet (Thompson, Thompson, & Wu, 2008) and those findings will be mentioned. Psychophysiological stress assessments include respiration and

heart rate to provide a baseline for heart rate variability (HRV) training. The EEG plus peripheral measures reflect the anxiety components of ASDs. Breathing, heart rate, electrodermal response, and temperature can all show the negative effects of even minor stressors on all aspects of the functioning of those with ASD. Neuroanatomical connections suggest how HRV training may influence neural networks. Regarding assessment, presenters discuss how high tactile sensitivity in some clients means you begin with only a single channel QEEG assessment (emphasized in day 1) and follow-up later with a 19-channel QEEG once SMR up-training has modified the tactile sensitivity and the client has learned to minimize EMG artifact. EEG interpretations used to illustrate findings range from raw EEG data to quantitative analysis with LORETA and, when possible, event related potentials . (ERPs are mentioned but not dealt with in detail in this workshop). This first day will include a review of methods and results of researchers and clinicians

Page 138: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

working with neurofeedback who have published in the area of ASD, such as Coben, Kouijzer, Linden, Pineda, Sichel & Fehmi, Thompson & Thompson. Similarities and differences between the methods described in these publications will be noted. For example, a similarity is that these authors all use careful QEEG assessment as the basis for their interventions. There were differences in training parameters, with some, such as Coben, placing an emphasis on coherence, while Pineda targeted mu waves measured across the sensorimotor strip, and others emphasized different frequency bands and initial sites for training. The Thompsons combine neurofeedback (NF) with biofeedback and strategies, publishing a case series of 159 cases. Note that it is beyond the scope of this workshop to discuss more traditional interventions and research concerning interventions such as ABA, IBI, speech and language therapy, special diets, etc., though use of medications (stimulants, anti-depressants, anti-psychotic medications as discussed in the Sloman review) will be touched on briefly, since drugs are sometimes combined with NF interventions.

Assessment results will lead to discussion of how interventions are initially focused on decreasing anxiety and dealing with the ADHD symptoms found in these patients. A multimodal treatment approach will be outlined that addresses the four key groups of symptoms: (1.) anxiety and affect modulation, (2.) ADHD symptoms of inattention and impulsivity, (3.) empathy, affect interpretation and expression and maintaining social interactions, and (4.) executive functioning difficulties. These interventions typically combine neurofeedback (NFB), biofeedback (BFB), and strategies.

References De Ridder, Dirk (2009). An evolutionary approach to brain rhythms and its clinical implications for brain modulation. Journal of Neurotherapy, (13)1, 69-70.

Kouijzer, E.J., Jan M.H., de Moor, B., Gerrits, J.L., Congedo, M., & van Schie, H. T. (2009). Neurofeedback improves executive functioning in children with autism spectrum disorders. Research in Autism Spectrum Disorders 3, 145–162.

Gevirtz, R. (2010). Autonomic Nervous System Markers for Psychophysiological, Anxiety, and Physical Disorders, Chapter 9, in Integrative Neurosience and Personalized Medicine edited by Evian Gordon and Stephen H. Koslow, Oxford Press pp 164-181.

Porges , S. W. (2007). The Polyvagal Perspective. Biological Psychiatry, 74, 116 – 143.

Thompson, M. & Thompson, L. (2007). Neurofeedback for Stress Management. Chapter in Paul M. Lehrer, Robert L. Woolfolk and Wesley E. Sime (Eds.) Principles and Practice of Stress Management, 3rd Edition. New York: Guilford Publications.

Thompson, M. & Thompson, L., (2009). Systems Theory of Neural Synergy: Neuroanatomical Underpinnings of Effective Intervention Using Neurofeedback plus Biofeedback. Journal of Neurotherapy,(13)1, 72-74.

Thompson, M. & Thompson, L., (2010). Functional Neuroanatomy and the Rationale for Using EEG Biofeedback for Clients with Asperger’s Syndrome. Journal of Applied Psychophysiology and Biofeedback, (35)1, 39-61.

Thompson, L., Thompson, M., Reid, A., (2010). Neurofeedback Outcomes in Clients with Asperger’s Syndrome. Journal of Applied Psychophysiology and Biofeedback, (35)1, 63-81.

Lynda Thompson, Ph.D., Michael Thompson, M.D., James Thompson, Ph.D., Andrea Reid, M.A. (2009). Biofeedback interventions for autistic spectrum disorders – an overview. NeuroConnections Fall, pp14-22.

Bojana Knezevic, Lynda Thompson, and Michael Thompson (2010) Using the Tower of London to assess

Page 139: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

improvement after Neurofeedback training in clients with Asperger’s Syndrome, Journal of Neurotherapy.

Thompson, M., Thompson, L., Thompson, J., Hagedorn, D., (2011) Networks: A Compelling Rationale for Combining Neurofeedback, Biofeedback and Strategies. NeuroConnections, Summer.

Uddin, L. Q., Iacoboni, M., Lange, C., & Keenan, J.P. (2007). The self and social cognition: the role of cortical midline structures and mirror neurons. Trends in Cognitive Sciences, (11)4, 153-157.

Goals/Objectives List the primary symptoms observed in Asperger’s Syndrome .

List differences between Autism and Asperger’s.

Relate these symptoms to the Neural Networks that are most likely to be involved.

List reasons why initial NFB training over central midline structures, based on QEEG and LORETA assessment findings, is likely to produce improvement in some of the core symptoms of people with Asperger’s.

State why up training of high frequency alpha may be contraindicated in some patients.

State why up training of 14 Hz may be contraindicated in some patients.

Outline, with reference to: affect, executive, and distress networks, and the hypothalamic-pituitary- adrenal axis (HPA), why HRV training may have a positive influence on the outcomes of patients with Asperger’s.

Outline 1st hr – Discussion of symptoms of Asperger’s and Autism.

2nd hr – Describe the assessment including QEEG and Psychophysiological Assessment peripheral biofeedback variables.

3rd hr – Outline basic interventions to decrease symptoms of: Anxiety, inattention, impulsivity, and begin on appropriate social interactions.

Financial Interest: Lynda Thompson is co-author of THE A.D.D. BOOK. Michael and Lynda are co-authors of SETTING UP FOR CLINICAL SUCCESS. Michael and Lynda Thompson are co-authors of THE NEUROFEEDBACK BOOK. It is likely that these books may be on sale at the meeting. The authors will state their interest in these books at the workshop.

Friday, September 21, 2012

WS 8: Ethics and Neurofeedback: Thoughtful Discussions (Lecture, Experiential, Discussion)

Rex Cannon, PhD, University of Tennessee, [email protected] Credits: 3 Level of Difficulty: Basic to Advanced Abstract This workshop provides an open-discussion into the ethical principles involved in neurofeedback and brain mapping. In recent years the technological advances in quantitative EEG, source localization methods and operant conditioning of the EEG have increased at an exponential rate. As such it becomes prudent to

Page 140: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

discuss potential ethical dilemmas that arise and steps we might take to guide our clinical and research outcomes. We will cover neuroanatomy and potential issues associated with spatial specific training. We will engage in the process of decision trees to facilitate the best clinical and research decisions. We will identify key concepts and evaluate our current referral procedures and develop individual plans for ethical practice and networking. As a profession we follow ethical guidelines maintained by other professional organizations. Neurofeedback, however, as it advances presents many issues that may not fall within these particular auspices.

References Koocher & Keith-Spiegel (2008). Ethics and the Mental Health Professions: Standards and Cases http://www.apa.org/ethics/code/index.aspx http://www.counseling.org/resources/codeofethics/TP/home/ct2.aspx http://www.ama-assn.org/ama/pub/physician-resources/medical-ethics.page

Goals/Objectives Attendees will understand ethical dilemmas that may arise in the clinical and research setting and gain resources to aid in formulating ethically sound decisions. Attendees will gain education in many of the terms and modalities in use today and as such gain experience in communicating technologically advanced terms to patients and peers (e.g. what do we tell the patient about anomalies and how do we minimize potential damage?) Attendees will engage in discussion to practice ranking ethical problems and resource building to find ethical solutions. The group and attendees with engage in the process of developing individual and group ethical solutions to potential problems that may arise in the clinical and research setting. By the end of the workshop attendees will be able to describe a problem, determine whether there is an ethical issue or dilemma, identify and rank key values and principles, gather and process information, review applicable codes or cases, select a course of action, enact the plan of action and critically evaluate the results. Outline Neurofeedback: History, challenges and future 30 min

Ethical dilemmas, fundamental processes (APA, AMA, ACA) 30 min Potential issues and ethical dilemmas in clinical and research settings using neurofeedback and brain mapping 40 min Ethical decision making and evaluating ethical dilemmas 30 min Planning and taking action 30 min Critical evaluation of plans, actions and resource effectiveness 20 min

Financial Interest: Nothing to disclose.

WS 10: Breaking Down Barriers to Peak Performance Brain Training™ in Elite Athletes

(Lecture, Experiential) Leslie Sherlin, PhD, Neurotopia, [email protected]

Noel Larson, MA, Neurotopia, [email protected] Credits: 3 Level of Difficulty: Intermediate Abstract Self-regulation of attention, arousal, and motor control are favorable skills for athletes, thus performance training directed at improving these specific abilities or related talents is a valuable pursuit (Vernon, 2005).

Page 141: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Due to the growing interest in the application of neurofeedback training among athletes (Harung et al., 2011), the scientific team at Neurotopia began collecting quantitative electroencephalography (QEEG) data alongside various psychological testing (questionnaires, CPT, etc) from elite athletes. This led to the development of a new database, the BrainBankTM, that is comprised of data from elite athletes of varying developmental levels in many sports, e.g., baseball, track and field, basketball, football, action sports, etc. Over the past three years we discovered that this population is unique and should not be approached with the traditional model typically employed with clinical populations when using neurofeedback. We had now overcome the barrier of understanding the elite performer, yet had a barrier of effectively communicating this information to the athlete.

The BrainBankTM data was used to develop a new format for presenting sport relevant QEEG and brain performance results to athletes and their support staff. The NeuroPerformance ProfileTM provides a standardized report and communication tool that integrates brain performance outcomes into comprehensible language and constructs of sport psychology. The NeuroPerformance Profile provides the basis to training protocols designed to impact sport performance variables. Subsequently research was carried out to test validity of the Performance Brain TrainingTM protocols to sport specific outcomes.

Finally, the practical barriers of ease of use, invasiveness, opportunity for training and quality control concerns (capability of the athlete to carry out training accurately and effectively) required the development of a new platform for the training. This is implemented in a newly designed dry sensor headset integrated with software on portable iOS devices. This workshop will provide the attendee with the presentation of these barriers encountered while developing an elite athlete brain training program. Theoretical models, validation research and applications will be presented.

References Arns, M., Kleinnijenhuis, M., Fallahpour, K., & Breteler, R. (2007). Golf performance enhancement and real-life neurofeedback training using personalized event- locked EEG profiles. Journal of Neurotherapy, 11, 11-18.

Harung, H. S., Travis, F., Pensgaard, A. M., Boes, R., Cook-Greuter, S., & Daley, K. (2011). Higher psycho-physiological refinement in world-class Norwegian athletes: brain measures of performance capacity. Scandinavian Journal of Medical Science in Sports, 21, 32 – 41.

Landers, D. M., Petruzzello, S. J., Salazar, W., Crews, D. J., Kubitz, K. A., Gannon, T. L., & Han, M. (1991). The influence of electrocortical biofeedback on performance in pre-elite archers. Medicine & Science in Sports & Exercise, 23, 123-129.

Vernon, D. J. (2005). Can neurofeedback training enhance performance? An evaluation of the evidence with implications for future research. Applied Psychophysiology and Biofeedback, 30, 347-364.

Goals/Objectives Attendee will understand constructs necessary for implementing neurofeedback in an athlete population.

Attendee will understand barriers to entry for peak performance populations.

Attendee will be familiar with the background literature in neurofeedback and sports performance.

Outline Model for understanding athlete population’s psychophysiology.

Constructs for evaluating athlete brain performance.

Interpretive elements for athlete brain performance data.

Platform for Performance Brain TrainingTM application for athletes.

Page 142: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Financial Interest: Both presenters are employees of Neurotopia, Inc the company that has sponsored all research and products resulting from the research presented in this workshop.

WS 11: Infra-low Frequency Training in Clinical Practice (Lecture, Experiential)

Mark Smith, MSW, Private Practice, [email protected]

Credits: 3 Level of Difficulty: Basic Abstract Infra-low frequency (ILF) oscillations, first identified by Russian researchers in the 1950′s (Aladjalova, 1957, 1964) and later corroborated by Joe Kamiya (1973) and others, have become a signal of significant interest to researchers recently. Research suggests that the infra-low signal underlies the excitability dynamics of cortical networks (Vanhataloo, 2004). The phase of infra- slow fluctuations is robustly correlated with the amplitudes of 1-40 hertz oscillations. Further, it appears to be a direct electrophysiological correlate for slow fluctuations in human psychophysical performance (Monto 2008). Marshall(2000) demonstrated a coupling of hypothalamic-pituitary activity with an increase in the magnitude of the infra-low frequency signal. Most recently, research has suggested that very slow oscillations are associated with the Default Mode Network of the human cerebral cortex and appear to be related to ADHD symptom status (Broyd, 2011).

It was almost fifty years ago that Aladjalova (1964) proposed a role for the infra-low frequencies in hypothalamic functioning. His animal research discovered that stimulation of the ventromedial nucleus of the hypothalamus resulted in high-amplitude slow waves with a long latent period appearing in the EEG of both hemispheres. Aladjalova established that the ILF became intensified by agents that elicit a defense reaction similar to the response to "stress." More recently, Marshall (2000) supported this association between infra-slow oscillations and hypothalamic function by demonstrating the coupling of increased ILF power and hypothalamo- pituitary hormone release.

The hypothalamus plays an integral role in affective response, as well as, playing a vital role in maintaining homeostasis. It is the control center for many autonomic functions of the peripheral nervous system. Hypothalamic hormones control pituitary hormone secretion which in turn manages adrenal secretion of Epinephrine and Norepinephrine, the hormones that organize sympathetic nervous system response. Known as the Hypothalamic/Pituitary/Adrenal Axis (HPA), this organ system has feedback loops that promote reparative, parasympathetic nervous system, response as well.

ILF neurofeedback training may be efficacious because it addresses the energy that regulates this organ system.

Recent developments in commercial amplifiers available to neurofeedback practitioners have produced an instrument that is Direct Current (DC) coupled. This seamless integration of the lower (DC) and higher (AC) energies has produced a superior instrument for infra-low training. These DC coupled amplifiers produce enough "bounce" in the low alternating current domain, riding as they do on the DC off-set, to filter and train energies below .1 hertz with a high signal to noise ratio.

This workshop will demonstrate the process of infra-low frequency training on a DC amplifier in clinical practice. The process pivots on the determination of an optimum frequency (OF) that is trained for each individual client. In the didactic portion of the workshop the OF determination process will be demonstrated along with a discussion of the equipment and optimal signal processing requirements necessary to accomplish effective training. The value of QEEG in predicting treatment responders, treatment planning, and determining treatment outcomes will be established. Recent equipment and software advancements have allowed for simultaneous 19 channel recording and ILF training. This innovation that has provided a window on the mechanism of bipolar ILF training, will be discussed. Case studies with pre/post-QEEG analysis will be presented.

Page 143: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

References Aladjalova NA, (1957) Infra-slow oscillations of the steady potential of the cerebral cortex. Nature Volume 179: 957-959.

Aladjalova NA, (1964) Slow Electrical Processes in the Brain in Progress in Brain Research Volume 7, Elsevier, New York.

Broyd SJ, Helps SK, Sonuga-Barke EJS (2011) Attention-induced deactivations in very low frequency EEG oscillations: differential localization according to ADHD symptom status. PLoS ONE 6(3): e17325.

Crunelli V, Errington AC, Hughes SW, Toth TI (2011) The thalamic low-threshold CA2+ potential: a key determinant of the local and global dynamics of the slow (<1 Hz) sleep oscillation in thalamocortical networks. Philosophical Transactions of the Royal Society A 369, 3820-3839.

Hughes SW, Lorincz ML, Parri HR, Crunelli V (2012) Infra-slow (<0.1 Hz) oscillations in thalamic relay nuclei: basic mechanisms and significance to health and disease states. Progress in Brain Research, 193C: 145-162.

Kamiya J, Girton DG, Benson KL (1973) Observation of very slow potential oscillations in human scalp recordings. Electroencephalography and Clinical Neurophysiology 35: 561-568, Elsevier, Amsterdam.

Ko AL, Darvas F, Poliakov A, Ojemann J, Sorensen LB (2011) quasi-periodic fluctuations in the default mode network physiology. The Journal of Neuroscience, 31(32): 11728-11732.

Lorincz ML, Geall F, Bao Y, Crunelli, V, Hughes SW (2009) ATP-Dependent infra-slow (<0.1 Hz) oscillations in thalamic networks. PLoS ONE 4(2) e4447.

Marshall L, Molle M, Fehm H, Born J (2000) Changes in direct current (DC) potentials and infra-slow EEG oscillations at the onset of the luteinizing hormone (LH) pulse. European Journal of Neuroscience, Vol. 12 pp. 3935-3943.

Palva MJ, Palva S, (2012) Infra-slow fluctuations in electrophysiological recordings, blood-oxygenation- level-dependent signals, and psychophysical time series, NeuroImage.

Monto S, Plava S, Voipio, J, Palva JM, (2008) Very slow EEG fluctuations predict the dynamics of stimulus detection and oscillation amplitudes in humans. The Journal of Neuroscience, 13, 28(33).

Vanhatalo S, Palva JM, Holmes MD, MIller JW, Voipio J, Kaila, K, (2004) Infraslow oscillations modulate excitability and interictal epileptic activity in the human cortex during sleep. PNAS 101 (14) 5053-5057.

Goals/Objectives Be familiar with the special equipment and signal processing requirements for low frequency training.

Grasp the process of categorizing client presenting problems that determine the appropriate infra- low frequency intervention.

Understand the process of optimum frequency tuning.

Decide whether infra-low frequency training is appropriate for the participants practice.

Outline Definition of terms frequently used in low frequency work. 10 min

Signal processing requirements, montages, amplifier capabilities, and electrode specifications. 20 min

Page 144: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Starting sites and frequencies as determined by presenting problems. 30 min

Demonstration of the process for determining a client’s optimum reward frequency in the first session. 60 min

The use of QEEG analysis to predict treatment responders, aid in treatment planning, and determine client response. 30 min

Case presentation. 30 min

Financial Interest: No conflicts of interest.

WS 12: EEG Trend Screen Analysis: Implications of Compensatory Mechanisms for qEEG Analysis and Protocol Development

(Lecture) Richard Soutar, PhD, New Mind Neurofeedback Center, [email protected]

Credits: 3 Level of Difficulty: Intermediate Abstract It has been observed by clinicians for over a decade and a half that pre post qEEGs do not often demonstrate a linear and consistent pattern of change toward normative standards. Clients often appear to regress in some areas while improving in others. This process can be explained in part using Alvaro Pascual Leone’s Theories (2005) regarding compensatory aspects of brain functioning that affect factors such as transcollosal inhibitory control. The work of Alstott (2009) with respect to lesion modeling is also supportive of this perspective as well as work on adaptive mechanisms relating to TBI by Turner et al (2011). Compensatory theory also helps to explain many of the features of change observed in summary and trend screens during training. Utilizing this paradigm can greatly assist practitioners in analyzing qEEGs and trend lines as well as selecting best fit protocols and adjusting them dynamically during training. This workshop will develop the ideas of horizontal and vertical integration from the perspective of Brain Rate (Pop-Jordanova, 2005) and Cortical coupling (Schutter et al, 2005) as well as Compensatory mechanisms to account for and explain changes in the brain due to neurofeedback. It will be integrating Sterman’s arousal theory (1996) with Davidson’s (2000) asymmetry theory in a manner that can be directly applied to clinical data analysis

References AlstottJ.,BreakspearM.,HagmannP.,CammounL.,SpornsO. (2009).Modelingtheimpactoflesionsin

the human brain. PLoS Comput Biol 5(6):e1000408. doi:10.1371/journal.pcbi.1000408

Davidson, R.J., Jackson,D.C., and Kalin, N.H. (2000). Emotion, plasticity, context, and regulation: Perspectives from affective neuroscience. Psychological Bulletin, vol.126, no. 6, 890-909.

Nada Pop-Jordanova1, Jordan Pop-Jordanov2 (2005). Spectrum-weighted EEG frequency “Brain-Rate” as a quantitative indicator of mental arousal. Contributions, Sec. Biol. Med. Sci XXVI/2, 35–42.

Pascual-Leone A, Amedi A, Fregni F., Merabet L B. (2005). The plastic human brain. Cortex.Annu. Rev. Neurosci., 28:377–401.

Schutter, D., Leitner C., J. Kenemans L.J., van Honk, J. (2006). Electrophysiological correlates of cortico- subcortical interaction: A cross-frequency spectral EEG analysis. Clinical Neurophysiology 117, 381–387.

Page 145: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Sterman, Barry M. (1996). Physiological origins and functional correlates of EEG rhythmic activities: Implications for self-regulation. Biofeedback and Self-Regulation, Vol. 21, No. I.

TurnerG.R.,McIntoshA.R.,Levine,B. (2011).PrefrontalcompensatoryengagementinTBIisdueto altered functional engagement of existing networks and not functional reorganization. Frontiers in Systems Neuroscience. Volume 5, Article 9, 2.

Goals/Objectives Analyze trend screens in terms of horizontal and vertical integration of brain networks.

Recognize normative EEG patterns of horizontal and vertical integration.

Use trend screens to determine changes in reinforcement rates.

Use trend screens to evaluate need for changing protocols.

Use trend screens to determine whether metabolic confounds are present.

Help clients understand their progress in terms of trend screens.

Relate symptoms changes to EEG patterns in trend screens.

Outline Hour 1

Compensation

Transcollosal Inhibition

Adaptive Mechanism

Adaptive Networks

Affect Regulation and Symmetry Theory

Horizontal Integration

Hour 2

Brain Rate

Cortical Coupling

Arousal Theory

Sterman's EEG Arousal Theory

Vertical Integration

Hour 3

EEG Trend Distributions: Normal and Abnormal

Component Band Change Parameters

Component Band Scaling

Page 146: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Target Trend Trajectories

Dynamic Adjustment Considerations

Metabolic Limitation Factors

Socio-emotional Limitation Factors

Financial Interest: I am owner of the New Mind Database System and some images used in the presentation will be in that database format.

Saturday, September 22, 2012

WS 7.2: Setting up for Success with Asperger’s and Autistic Spectrum Disorders (Day 2)

(Lecture, Demonstration)

Michael Thompson, MD, ADD Centre, [email protected] Lynda Thompson, PhD, ADD Centre, [email protected]

Credits: 3 Level of Difficulty: Basic Abstract Day 1: For professionals who have not had extensive experience in assessment, differential diagnostic work-up, and basic interventions, for Asperger’s (AS) or Autism (AD).

Day 2: For professionals experienced with autistic spectrum disorder (ASD), an emphasis on how QEEG and psychophysiological assessments lead to effective intervention.

Goal: Attendees for both half days of this workshop will become familiar with how symptoms differ between Asperger’s and autism. They will be able to outline, on the basis of functional Neuroanatomy (which includes discussion of Brodmann Areas, neural networks and connections, including vagal inputs to the medulla and brain stem connections to basal ganglia, thalamus, and cortex), why a combination of NFB + BFB + Strategies improves social functioning in addition to resulting in significant improvements in scores on academic, intelligence, and attention measures (Thompson, Thompson, & Reid, 2010). The participants will learn how autistic spectrum disorders (ASDs) have major difficulties in at least three major networks: executive, affect, and the default network. Every patient will have a different “balance” of involvement or difficulties related to these networks. These three networks can be influenced by Neurofeedback at various sites over the central midline structures (CMS). They are also altered by means of biofeedback and, in particular, by Heart Rate Variability (HRV) training that influences the same CMS. The neuroanatomy and connections of the CMSs, and in particular of areas of the anterior cingulate and how they are involved in the networks, is highlighted.

Abstract for Day 2

For professionals experienced with autistic spectrum disorders (ASD), this day has an emphasis on how QEEG and psychophysiological assessments lead to effective intervention. The emphasis is on more complex assessments with QEEG &, when required, evoked potentials (overview only of ERP work). Assessment information is combined with knowledge of Brodmann Areas and knowledge of functional and anatomical neural networks to develop hypotheses regarding how the EEG findings correlate with the Asperger’s symptoms and with symptoms of comorbid disorders (inattention and impulsivity, anxiety, obsessions and compulsions). This is demonstrated using case examples. This EEG assessment is combined with psychophysiological stress profile assessment and psychological and /or psychoeducational

Page 147: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

testing to develop an individualized treatment approach. This multifaceted assessment leads to an integration of interventions including: NFB, peripheral biofeedback (BFB), HRV training, transcranial direct current stimulation (tDCS), metacognitive strategies, and perhaps other treatments, such as passive infra-red (pIR) feedback. Although EEGs from several cases are shown because they best illustrate individual aspects of the assessment, we will attempt to describe one case in more detail to walk participants through the diagnostic and treatment prescription process. These interventions usually require NFB + HRV training and, more recently, LORETA neurofeedback has been added to the mix for selected clients. Networks may account for the observation that initial training over central midline structures (CMS) at Fz or Cz, may have effects on broad functional networks (affect, attention, executive, salience, and default networks). Central Midline Structures (CMS) and basic inhibitory linkages that depend on the cortical-basal ganglion-thalamic-cortical links will be reviewed to help the participants understand why and how neural networks are involved in the symptom patterns of these disorders (Thompson, 2011). It follows that interventions are focused on improving a combination of symptoms including: anxiety, social difficulties and executive functioning. Participants will see commonly observed EEG and QEEG patterns including a very common presentation of excess frontal slow wave activity, a dip at Pz in the low alpha (8-10Hz) range, and higher than expected beta activity. Correlation of findings to symptoms and networks is made and exceptions are noted. The QEEG findings are the basis for setting NFB parameters for training and common initial settings will be described. This is complemented by a discussion of the functional neuroanatomical basis for doing BFB, particularly heart rate variability (HRV) training, along with NFB. A rationale will be provided regarding why coaching in metacognitive strategies related to both cognitive and social skills can provide added value. The training addresses the symptoms that interfere with a child patient being able to interact constructively with caregivers including, in order: anxiety, impulsivity, attention span, executive functions, and finally, understanding and responding to social cues. Evidence of producing changes in these areas is provided with statistical analysis of changes in pre-post measures. The p results for NFB, done over CMSs and combined with BFB + Metacognitive strategies, includes data showing changes in EEG ratios TOVA and IVA continuous performance tests, Wechsler Intelligence Scale (WISC & WAIS) scores, academic measures (WRAT3 and WRAT4), and questionnaires for 150 patients with Asperger’s and 9 with Autism (Thompson & Thompson, 2010).

In summary, highlights of Day 2, include hypotheses about EEG correlates of the symptoms found in people with ASD, such as EEG markers for attentional problems, anxiety, and sensory and motor aprosodia. Neuroanatomcal differences as compared to a normative database, especially as observed using LORETA, will be discussed and examples shown. Participants will be able to outline, on the basis of functional neuroanatomy why a combination of NF + BF + Strategies improves social functioning in addition to resulting in significant improvements in scores on academic, intelligence, and attention measures (Thompson, Thompson, & Reid, 2010). The neuroanatomical underpinnings include discussion of Brodmann Areas, neural networks (as described in publications relating to work with NFB by de Ridder and the Thompsons) and connections, including vagal inputs to the medulla, and brain stem connections to basal ganglia, thalamus, and cortex. The participants will learn how those with autistic spectrum disorders (ASDs) have major difficulties in at least three major networks: the executive, affect, and default networks. (These three networks will be described, as will the proposed mechanisms by which these networks can be influenced by Neurofeedback at various sites over the central midline structures (CMS). They are also altered by means of biofeedback and, in particular, by Heart Rate Variability (HRV) training that influences the same CMS. The neuroanatomy and connections of the CMS, in particular, areas of the anterior cingulate, and how they are involved in the networks, is highlighted. There will be research support cited, such as Porges’ polyvagal theory and how it supports the HRV intervention, which influences vagal functioning.

Hand-outs that show all power points and references will be provided to participants.

References De Ridder, Dirk (2009). An evolutionary approach to brain rhythms and its clinical implications for brain modulation. Journal of Neurotherapy, (13)1, 69-70

Kouijzer, E.J., Jan M.H., de Moor, B., Gerrits, J.L., Congedo, M., & van Schie, H. T. (2009).

Page 148: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Neurofeedback improves executive functioning in children with autism spectrum disorders. Research in Autism Spectrum Disorders 3, 145–162.

Gevirtz, R. (2010). Autonomic Nervous System Markers for Psychophysiological, Anxiety, and Physical Disorders, Chapter 9, in Integrative Neurosience and Personalized Medicine edited by Evian Gordon and Stephen H. Koslow, Oxford Press pp 164-181.

Porges , S. W. (2007). The Polyvagal Perspective . Biological Psychiatry , 74 , 116 – 143

Thompson, M. & Thompson, L. (2007). Neurofeedback for Stress Management. Chapter in Paul M. Lehrer, Robert L. Woolfolk and Wesley E. Sime (Eds.) Principles and Practice of Stress Management, 3rd Edition. New York: Guilford Publications.

Thompson, M. & Thompson, L., (2009). Systems Theory of Neural Synergy: Neuroanatomical Underpinnings of Effective Intervention Using Neurofeedback plus Biofeedback. Journal of Neurotherapy,(13)1, 72-74.

Thompson, M. & Thompson, L., (2010). Functional Neuroanatomy and the Rationale for Using EEG Biofeedback for Clients with Asperger’s Syndrome. Journal of Applied Psychophysiology and Biofeedback, (35)1, 39-61.

Thompson, L., Thompson, M., Reid, A., (2010). Neurofeedback Outcomes in Clients with Asperger’s Syndrome. Journal of Applied Psychophysiology and Biofeedback, (35)1, 63-81.

Lynda Thompson, Ph.D., Michael Thompson, M.D., James Thompson, Ph.D., Andrea Reid, M.A. (2009). Biofeedback interventions for autistic spectrum disorders – an overview. NeuroConnections Fall, pp14-22.,

Bojana Knezevic, Lynda Thompson, and Michael Thompson (2010) Using the Tower of London to assess improvement after Neurofeedback training in clients with Asperger’s Syndrome, Journal of Neurotherapy

Thompson, M., Thompson, L., Thompson, J., Hagedorn, D., (2011) Networks: A Compelling Rationale for Combining Neurofeedback, Biofeedback and Strategies. NeuroConnections, Summer.

Uddin, L. Q., Iacoboni, M., Lange, C., & Keenan, J.P. (2007). The self and social cognition: the role of cortical midline structures and mirror neurons. Trends in Cognitive Sciences, (11)4, 153-157.

Goals/Objectives List the primary symptoms observed in Asperger’s Syndrome

List differences between Autism and Asperger’s

Relate these symptoms to the Neural Networks that are most likely to be involved.,

List reasons why initial NFB training over central midline structures, based on QEEG and LORETA assessment findings, is likely to produce improvement in some of the core symptoms of people with Asperger’s.

State why up training of high frequency alpha may be contraindicated in some patients.

State why up training of 14 Hz may be contraindicated in some patients.

Page 149: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Outline, with reference to: affect, executive, and distress networks, and the hypothalamic-pituitary- adrenal axis (HPA), why HRV training may have a positive influence on the outcomes of patients with Asperger’s

Outline 1st hr – Discussion of symptoms of Asperger’s and Autism.

2nd hr – Describe the assessment including QEEG and Psychophysiological Assessment peripheral biofeedback variables.

3rd hr – Outline basic interventions to decrease symptoms of: Anxiety, inattention, impulsivity, and begin on appropriate social interactions.

Financial Interest: Lynda Thompson is co-author of THE A.D.D. BOOK. Michael and Lynda are co-authors of SETTING UP FOR CLINICAL SUCCESS. Michael and Lynda Thompson are co-authors of THE NEUROFEEDBACK BOOK. It is likely that these books may be on sale at the meeting. The authors will state their interest in these books at the workshop.

WS 13: ADHD and Learning Disabilities: Integrating clinical knowledge and individual symptoms and neurophysiology in the

formation of Neurofeedback Treatment Plans

(Lecture, Demonstration) Robert Coben, PhD, Private Practice, [email protected]

Anne Stevens, Private Practice, [email protected]

Credits: 3 Level of Difficulty: Intermediate Abstract Current estimates suggest that anywhere from 3 – 9% of school-aged children have been diagnosed with some form of Attention Deficit Hyperactivity Disorder (ADHD). In addition, about 10% of the childhood population has been diagnosed with some type of Learning Disability (LD). Taken together, these major neurodevelopmental disorders impacts approximately one out of every five children (Pastor & Reuben, 2008). The economic costs to society based on these figures has been estimated at at least $42 billion per annum (Pelham, Foster, & Robb, 2007). It has been estimated that about 66% of the children diagnosed with ADHD are treated with medication (CDC, 2005). Considering there are no medications FDA approved for the treatment of learning disabilities, this would suggest that of the 20% impacted by ADHD and LD 13.33 % are treated non-pharmacologically. Neurofeedback has shown promise in the treatment of these neurodevelopmental disorders (Arns, de Ridder, Strehl, Breteler, & Coenen, 2009) as they are neurophysiological in nature.

This workshop will focusing on enhancing knowledge about major neurodevelopmental disorders, treatment options, symptom constellations, and neurophysiological mechanisms so participants will be able to start integrating such information in the formation of neurofeedback protocols and treatment plans. The various forms of ADHD and Learning Disabilities will be discussed. This will include a focus on the following:

1. Review of symptoms, diagnoses, epidemiology, potential causes and neurophysiological findings related to major neurodevelopmental disorders commonly seen in clinical practices. This will include a focus on the various forms of ADHD and Learning Disabilities.

9. Available treatments and their current empirical support.

Page 150: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

10. Using Neurofeedback to treat ADHD and LD: Integrating knowledge of these neurodevelopmental disorders with individual symptoms and neurophysiological findings.

11. Discussion and questions.

The true value of this workshop is an understanding from a neuroscientific level what leads to symptoms of these common disorders and how to remedy them. Individualization of treatment is at the heart of this approach, which has led to an overall success rate in approximately 90 – 95% of the cases.

References Arns, M., de Ridder, S., Strehl, U., Breteler, M., & Coenen, A. (2009). Efficacy of Neurofeedback Treatment in ADHD: The Effects on Inattention, Impulsivity and Hyperactivity: A Meta-Analysis. Clinical EEG and Neuroscience, 40, 180-189.

Centers for Disease Control (2005). Mental Health in the United States: Prevalence of Diagnosis and Medication Treatment for Attention- Deficit/Hyperactivity Disorder --- United States, 2003. MWMR Weekly, 54 (34), 842 – 847.

Pastor PN, Reuben CA. (2008). Diagnosed attention deficit hyperactivity disorder and learning disability: United States, 2004–2006. National Center for Health Statistics, Vital Health Stat, 10, 237.

Pelham, W.E., Foster, E.M., & Robb, J.A. (2007). The economic impact of attention-deficit/hyperactivity disorder in children and adolescents. Journal of Pediatric Psychology, 32 (6), 711-727.

Goals/Objectives Discuss the symptoms and neurophysiological findings associated with major neurodevelopmental disorders.

Review available treatments for these childhood difficulties.

Be able to start to integrate knowledge of symptoms and neurophysiology in the formation of neurofeedback protocols.

Outline Review of symptoms, diagnoses, epidemiology, potential causes and neurophysiological findings related to major neurodevelopmental disorders commonly seen in clinical practices. This will include a focus on the various forms of ADHD and Learning Disabilities.

Available treatments and their current empirical support.

Using Neurofeedback to treat ADHD and LD: Integrating knowledge of these neurodevelopmental disorders with individual symptoms and neurophysiological findings.

Discussion and questions.

Financial Interest: There is no financial relationship with any software or product discussed in this workshop for either presenter. WS 14: Biofeedback and Neurofeedback with Professional and Olympic

Athletes (Lecture, Demonstration)

Michael Linden, PhD, Private Practice, [email protected] Penny Werthner, PhD

Page 151: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Wes Sime, PhD, First Step Recovery & Wellness Center, [email protected] Sanford Silverman, PhD, Center for Attention Deficit and Learning, [email protected]

Credits: 3 Level of Difficulty: Intermediate Abstract Interest in the use of Neurofeedback in Sport Psychology is increasing in both professional and Olympic sports. Neurofeedback is usually integrated with biofeedback and other techniques and skills to achieve the greatest application.

QEEG Patterns in athletes with ADD/ADHD and Aspergers will be presented and implications of Neurofeedback protocols with these athletes will be discussed. Biofeedback and Neurofeedback applications will be presented for several Olympic sports (skiing, speed skating, volleyball) and professional sports (tennis, baseball, golf). Demonstration of several general and specific assessment methods and protocols will be provided during this workshop.

References Arns, M., Kleinnijenhuis, M., Fallahpour, K., & Breteler R. (2008). Golf performance enhancement and real-life neurofeedback training using personalized event-locked EEG profiles. Journal of Neurotherapy, 11(4), 11–18.

Crews, D. J., & Landers, D. M. (1993). Electroencephalographic measures of attentional patterns prior to the golf putt. Medical Science & Sports Exercise, 25(1), 116–126.

Sime, W. E., Allen, T. W., & Fazzano, C. (2001). Optimal functioning in sport psychology: Helping athletes find their zone of excellence. Biofeedback, 28(5), 23-25.

Strack, B.; Linden, M. & Wilson, S. (2011). Biofeedback and Neurofeedback Applications in Sport Psychology. Association of Applied Biofeedback & Psychophysiology, Wheat Ridge, Co.

Wilson, V. E., Ainsworth, M., & Bird, E. I. (1985). Assessment of attentional abilities in male athletes. International Journal of Sport Psychology, 16, 296–306.

Wilson, V. E., & Thompson, M. (2003). The integration of biofeedback and neurofeedback in the assessment and training of high performing executives and athletes: Update. Unpublished workshop. Proceedings of the Association for Applied Psychophysiology and Biofeedback, Annual meeting in Jacksonville, FL.

Goals/Objectives Understand how to use QEEG to help identify characteristics of ADD and Aspergers in athletes.

Learn Neurofeedback & Biofeedback techniques to improve attention and performance in sports.

Review how other supplementary techniques combine with Neurofeedback & Biofeedback with athletes.

Outline QEEG patterns in athletes with ADD and Aspergers – Michael Linden -30 minutes

Neurofeedback techniques with athletes – Wes Sime, Michael Linden, Penny Werthner, Sandy Silverman - 60 minutes

Biofeedback techniques with athletes – Wes Sime, Penny Werthner, Sandy Silverman, Michael Linden –

Page 152: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

60 minutes

Supplementary techniques to combine with Neurofeedback with athletes – Wes Sime, Penny Werthner – 30 minutes

Financial Interest: Wes Sime & Michael Linden are editors of a book on Biofeedback & Neurofeedback in Sport Psychology. No conflicts of interest for other presenters.

WS 15: sLORETA and Z Score Neurofeedback: A Clinical Symbiosis

(Lecture, Demonstration) Mark Smith, MSW, Private Practice, [email protected]

Credits: 3 Level of Difficulty: Intermediate Abstract This course will demonstrate the use of Zscore/sLORETA training in clinical practice. Stand alone sLORETA training will be shown. Integrative approaches that combine simultaneous sLORETA and Z-score training will be covered. This new training innovation will be discussed as a first order intervention, as well as, for use with non or partial treatment responders. The effective use of QEEG and the Key Institute's LORETA Analysis software, to focus neurofeedback training, will be established. We will demonstrate the integration of recent resting state functional network research as a means to improve clinical decision making. The use of Brainmaster/Avatar Live LORETA Projector will be demonstrated as an effective feedback mechanism. It will also be taught as a real-time analytic tool to aid treatment decisions based on activation patterns and source analysis. Clinical strategies will be taught via a series of case studies from the instructor’s private practice. The course practicum will utilize Brainmaster/Avatar training software and Neuroguide's LORETA/Z Score training module. Analytic tools will include Neuroguide QEEG software and the Key Institute’s LORETA analysis software.. Thought Technology, Nexus, Deymed, and EEGer users are encouraged to attend as much of the information presented is easily transferable to these platforms.

References Canon RF, (2012) Low Resolution Brain Electromagnetic Tomography (LORETA): Basic Concepts and Clinical Applications, Bmed Press, Corpus Christi, Texas.

Collura, T.F. (2008a) Whole-head Normalization using Live Z-scores for Connectivity Training (part 1), NeuroConnections April, 12-18.

Collura, T.F. (2008b) Whole-head Normalization using Live Z-scores for Connectivity Training (part 2), NeuroConnections July, 9-12.

Collura, T.F. (2009) Neuronal Dynamics in Relation to Normative Electroencephalography Assessment and Training, Biofeedback Volume 36, Issue 4, pp. 134-139.

Collura,TF, Guan, J., Tarrant, J., Bailey, J., and Starr, F. (2010) EEG Biofeedback Case Studies Using Live ZScore Training (LZT) and a Normative Database , Journal of Neurotherapy 14(2), 22-46.

Collura, T.F., Thatcher, R.W., Smith, M.L., Lambos, W.A., and C.R. Stark (2009) EEG Biofeedback training using Z-scores and a normative database, in: (Evans, W., Budzynski, T., Budzynski, H., and A. Arbanal, eds) Introduction to QEEG and Neurofeedback : Advanced Theory and Applications, Second Edition. New York: Elsevier.

Duffy, F. H., Hughes, J. R., Miranda, F., Bernad, P., & Cook, P. (1994). Status of quantitative EEG (QEEG) in clinical practice, 1994. Clin Electroencephalogr, 25(4), VI-XXII.

Page 153: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Evans, J. R., & Abarbanel, A. (Eds.). (1999). Introduction to Quantitative EEG and Neurofeedback. London: Academic Press.

Festa, E.K., Heindel, W.C., Connors, N.C., Hirshberg, L., Ott, B.R. (2009) Neurofeedback training enhances the efficiency of cortical processing in normal aging. Cognitive Neuroscience Society Meeting, San Francisco, CA.

Hughes, J.R.(1994) EEG in Clinical Practice. Elsevier.

Hughes, J. R., & John, E. R. (1999). Conventional and Quantitative Electroencephalography in Psychiatry. J Neuropsychiatry Clin Neurosci, 11(2), 190-208.

Niedermeyer, E., and Lopes Da Silva. F. (eds) Electroencephalography, Third Edition, Urban and Schwarzenberg, Baltimore, 1992.

Pascual-Marqui, R.D. (2002). Standardized low resolution brain electromagnetic tomography (sLORETA): technical details. Methods & Findings in Experimental & Clinical Pharmacology. 24D:5-12 Rutter, P.J. (2012) Five case studies using live z-score training percent-z ok on individuals diagnosed with PTSD. Neuroconnections, Spring 2012: 28-30.

Sherlin, L.H. (2009) Diagnosing and treating brain function through the use of low resolution brain electromagnetic tomography (LORETA). In: T. Budzynski, H. Budzynski, J. Evans, and A. Abarbanal (Eds.), Quantitative EEG and Neurofeedback. pp. 83-104.

Smith, M.L. (2008) A Father Finds a Solution: Z-Score Training, NeuroConnections, April, 22-25. Goals/Objectives Use the LORETA and sLORETA analytic software to choose ROI's for training.

Combine the results of QEEG and LORETA analysis as a means to decide the kind of training, Z Score/sLORETA/traditional inhibit-enhance training, that would be most effective for the client.

Utilize recent functional network research to develop neurofeedback treatment strategies.

Outline How does QEEG analysis, recent neuroscience research, current neurofeedback research, LORETA analysis, and client presentations lead to treatment strategies. 60 min

Explanation and demonstration of sLORETA/Z Score intervention strategies and software applications. 60 min

Demonstration of live sLORETA and sLORETA/Z score training with one or more workshop participants. 60 min

Financial Interest: No conflicts of interest.

WS 16: HRV Biofeedback Training Strategies (Lecture, Demonstration)

Fredric Shaffer, PhD, Truman State University, [email protected]

Credits: 3 Level of Difficulty: Intermediate

Page 154: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Abstract This 3 contact-hour workshop is designed for biofeedback/neurofeedback practitioners, psychologists, clinical counselors, clinical social workers, marriage and family therapists, nurses, physicians, and other health care professionals and academicians interested in utilizing heart rate variability (HRV) biofeedback in their practice or research. This workshop will examine HRV time domain and frequency domain measurements, discuss how to monitor HRV and respiration, demonstrate how to correct breathing mechanics, explain how to design an HRV biofeedback training session, and review the clinical efficacy of HRV biofeedback.

Topics

HRV time domain and frequency domain measurements (30 min).

HRV definition

Time domain measures of HRV (HR Max – HR Min, pNN50, RMSSD, SDNN, and SDRR)

Frequency domain measures of HRV (VLF, LF, HF, LF/HF)

How to monitor HRV and respiration (30 min).

ECG method of monitoring HRV

Sensor placement

Identifying and controlling major artifacts

ECG tracking test

BVP method of monitoring HRV

Sensor placement

Identifying and controlling major artifacts

BVP tracking test

Respirometer method of monitoring breathing A. Measurement of respiration rate and depth B. Warning signs of breathing effort

How to correct breathing mechanics (60 minutes).

Breathing basics

Posture

Clothing

Dysfunctional breathing

Hyperventilation

Page 155: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Thoracic breathing

Clavicular breathing

Reverse breathing

Apnea

Effortless breathing

Explanation of effortless breathing

Effortless breathing training protocols

Computer and smartphone breathing programs

How to design an HRV biofeedback training session (30 min).

Resonance frequency measurement

Lehrer and Gevirtz resonance frequency protocol

2-week test-retest reliability data

HRV Training Protocols

Effective HRV biofeedback displays

How to structure an HRV biofeedback session

The HRV biofeedback learning curve

Important training elements

The effects of drugs on HRV

Innovative resources for home practice

The clinical efficacy of HRV biofeedback (30 min)

Probably efficacious applications: asthma

Possibly efficacious applications: heart disease, heart failure, hypertension, COPD, fibromyalgia, PTSD, and unexplained abdominal pain.

References Andreassi, J. L. (2000). Psychophysiology: Human behavior and physiological response. Hillsdale, NJ: Lawrence Erlbaum and Associates, Inc.

Berntson, G. G., Quigley, K. S., & Lozano, D. (2007). Cardiovascular psychophysiology. In J. T. Cacioppo, L. G. Tassinary, & G. G. Berntson, (Eds.). Handbook of psychophysiology (3rd ed.). New York: Cambridge University Press.

Combatalade, D. (2009). Basics of heart rate variability applied to psychophysiology. Montreal, Canada: Thought Technology Ltd.

Page 156: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Cowan, M. J., Pike, K. C., & Budzynski, H. K. (2001). Psychosocial nursing therapy following sudden cardiac arrest: Impact on two-year survival. Nursing Research, 50, 68-76.

Crider, A., Glaros, A. G., & Gevirtz, R. N. (2005). Efficacy of biofeedback-based treatments for temporomandibular disorders. Applied Psychophysiology and Biofeedback, 30(4), 333-345.

Elliot, W. J., Izzo, J. L., Jr., White, W. B., Rosing, D. R., Snyder, C. S., Alter, A., et al. (2004). Graded blood pressure reduction in hypertensive outpatients associated with use of a device to assist with slow breathing. Journal of Clinical Hypertension,6, 553-561.

Fuller, J., Wally, C., Korenfeld, I., Carrell, D., Peterson, J., Ward, A., Westermann-Long, A., & Korenfeld, D. (2011). How reliable is the resonance frequency? [Abstract]. Applied Psychophysiology & Biofeedback, 36(3), 219.

Fuller, J., Wally, C., Korenfeld, I., Carrell, D., Peterson, J., Ward, A., Westermann-Long, A., & Korenfeld, D., Burklund, Z., Shepherd, S., Jones, D., Francisco, A., Kane, A., Zerr, C., & Shaffer, F. (in press). Does adding heartfelt emotion to resonance frequency breathing increase heart rate variability? [Abstract]. Applied Psychophysiology & Biofeedback.

Fuller, J., Wally, C., Korenfeld, I., Carrell, D., Peterson, J., Ward, A., Westermann-Long, A., & Korenfeld, D., Burklund, Z., Shepherd, S., Jones, D., Francisco, A., Kane, A., Zerr, C., & Shaffer, F. (in press). Does heartfelt emotion increase heart rate variability? [Abstract]. Applied Psychophysiology & Biofeedback.

Gevirtz, R. N. (2011). Cardio-respiratory psychophysiology: Gateway to mind-body medicine. BFE conference workshop. Munich, Germany.

Giardino, N. D., Chan, L., & Borson, S. (2004). Combined heart rate variability and pulse oximetry biofeedback for chronic obstructive pulmonary disease: Preliminary findings. Applied Psychophysiology and Biofeedback, 29(2), 121-133.

Glazer, H. I., & Laine, C.D. (2006). Pelvic floor muscle biofeedback in the treatment of urinary incontinence: A literature review. Applied Psychophysiology and Biofeedback, 31(3), 187-201.

Grant, J., Korenfeld, I., Wally, C., & Truitt, A. (2010). Inhalation-to-exhalation ratio affects HRV training success [Abstract]. Applied Psychophysiology and Biofeedback, 35(1), 181.

Hassett, A. L., Radvanski, D. C., Vaschillo, E. G., Vaschillo, B., Sigal, L. H., Karavidas, M. K., et al. (2007). A pilot study of heart rate variability (HRV) biofeedback in patients with fibromyalgia. Applied Psychophysiology and Biofeedback, 32, 1-10.

Huikuri, H. V., & Makikallio, T. H. (2001). Heart rate variability in ischemic heart disease. Autonomic Neuroscience: Basic and Clinical, 90, 95-101.

Humphreys, P., & Gevirtz, R. (2000). Treatment of recurrent abdominal pain: Components analysis of four treatment protocols. Journal of Pediatric Gastroenterology and Nutrition, 31, 47-51.

Karavidas, M. K., Tsai, P., Yucha, C., McGrady, A., & Lehrer, P. M. (2006). Thermal biofeedback for primary Raynaud’s phenomenon: A review of the literature. Applied Psychophysiology and Biofeedback, 31(3), 203-216.

Karavidas, M. K., Lehrer, P. M., Vaschillo, E. G., Vaschillo, B., Marin, H., Buyske, S., et al. (2007). Preliminary results of an open-label study of heart rate variability biofeedback for the treatment of major depression. Applied Psychophysiology and Biofeedback, 32, 19-30.

Lagos, L., Vaschillo, E., Vaschillo, B., Lehrer, P., Bates, M., & Pandina, R. (2008). Heart rate variability

Page 157: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

biofeedback as a strategy for dealing with competitive anxiety: A case study Biofeedback, 36(3), 109- 115.

Lagos, L., Vaschillo, E., Vaschillo, B., Lehrer, P., Bates, M., & Pandina, R. (2011). Virtual reality assisted heart rate variability biofeedback as a strategy to improve golf performance: A case study. Biofeedback, 39(1), 15-20.

LaVaque, T. J., Hammond, D. C., Trudeau, D., Monastra, V., Perry, J., Lehrer, P., Matheson, D., & Sherman, R. (2002). Template for developing guidelines for the evaluation of the clinical efficacy of psychophysiological evaluations. Applied Psychophysiology and Biofeedback, 27(4), 273-281.

Lehrer, P. M., & Vaschillo, E. (2008). The future of heart rate variability biofeedback. Biofeedback, 36(1), 11-14.

Lehrer, P. M., Vaschillo, E., & Vaschillo, B. (2000). Resonant frequency biofeedback training to increase cardiac variability: Rationale and manual for training. Applied Psychophysiology and Biofeedback, 25(3), 177-191.

Lehrer, P. M., Vaschillo, E., & Vaschillo, B. (2000). Resonant frequency biofeedback training to increase cardiac variability. Rationale and manual for training. Applied Psychophysiology and Biofeedback, 25(3), 177-191.

Lehrer, P. M., Vaschillo, E., Vaschillo, B., Lu, S. E., Scardella, A., Siddique, M., et al. (2004). Biofeedback as a treatment for asthma. Chest, 126, 352-361.

Linden, W., & Moseley, J. V. (2006). The efficacy of behavioral treatments for hypertension. Applied Psychophysiology and Biofeedback, 31(1), 51-63.

Lucini, D., Milani, R. V., Constantino, G., Lavie, C. J., Porta, A., & Pagani, M. (2002). Effects of cardiac rehabilitation and exercise training on autonomic regulation in patients with coronary artery disease. American Heart Journal, 143, 977-983. Mancia, G., Ludbrook, J., Ferrari, A., Gregorini, L., & Zanchetti, A. (1978). Baroreceptor reflexes in human hypertension. Circulation Research, 43, 170-177.

Monastra, V., Lynn, S., Linden, M., Lubar, J. F., Gruzelier, J., & LaVaque, T. J. (2005). Electroencephalographic biofeedback in the treatment of Attention-Deficit/Hyperactivity Disorder. Applied Psychophysiology and Biofeedback, 30(2), 95-114.

Nestoriuc, Y., Martin, A., Rief, W., & Andrasik, F. (in press). Biofeedback treatment for headache disorders: A comprehensive efficacy review. Applied Psychophysiology and Biofeedback.

Otzenberger, H., Gronfier, C., Simon, C., Charloux, A., Ehrhart, J., Piquard, F., & Brandenberger, G. (1998). Dynamic heart rate variability: A tool for exploring sympathovagal balance continuously during sleep in men. American Journal of Physiology, 275(3), H946-H950.

Palsson, O. S., Heymen, S., & Whitehead, W. E. (2004). Biofeedback treatment for functional anorectal disorders: A comprehensive efficacy review. Applied Psychophysiology and Biofeedback, 29(3), 153-174.

Peper, E., Gibney, K. H., & Holt, C. (2002). Make health happen: Training yourself to create wellness (2nd). Dubuque, IA: Kendall-Hunt Publishing Company.

Peper, E., Tylova, H., Gibney, K. H., Harvey, R., & Combatalade, D. (2008). Biofeedback mastery: An experiential teaching and self-training manual. Wheat Ridge, CO: Association for Applied Psychophysiology and Biofeedback.

Sokkhadze, E. M., Cannon, R. L., & Trudeau, D. (2008). EEG biofeedback as a treatment for substance use disorders: Review, rating of efficacy and recommendations for further research. Applied Psychophysiology

Page 158: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

and Biofeedback, 33(1), 1-28.

Swanson, K. S., Gevirtz, R. N., Brown, M., Spira, J., Guarneri, E., & Stoletniy, L. (2009). The effect of biofeedback on function in patients with heart failure. Applied Psychophysiology and Biofeedback, 34(2), 71-91.

Tan, G., Dao, T. K., Farmer, L., Sutherland, R. J., & Gevirtz, R. (2010). Heart rate variability (HRV) and posttraumatic stress disorder (PTSD): A pilot study. Applied Psychophysiology and Biofeedback. doi: 10.1007/s10484-010-9141-y

Umetami, K., Singer, D. H., McCraty, R., & Atkinson, M. (1998). Twenty-four hour time domain heart rate variability and heart rate: Relations to age and gender over nine decades. Journal of the American College of Cardiology, 31(2), 593-601.

Wheat, A. L., & Larkin, K. T. (2010). Biofeedback of heart rate variability and related physiology: A critical review. Applied Psychophysiology and Biofeedback, 35(3), 229-242.

White, B. (2008). The effects of heart rate variability biofeedback as an adjunct to therapy on trauma symptoms. Doctoral dissertation, Alliant International University, San Diego.

Yucha, C., & Montgomery, D. (2008). Evidence-based practice in biofeedback and neurofeedback. Wheat Ridge, CO: AAPB.

Zucker, Y. L., Samuelson, K. W., Muench, F., Greenberg, M. A., & Gevirtz, R. N. (2009). The effects of respiratory sinus arrhythmia biofeedback on heart rate variability and posttraumatic stress disorder symptoms: A pilot study. Applied Psychophysiology and Biofeedback, 34(3), 135-143.

Goals/Objectives Explain the time domain measures (HR Max – HR Min, pNN50, RMSSD, and SDNN) and the frequency domain measures (VLF, LF, HF, LF/HF) of heart rate variability.

Describe the blood volume pulse (BVP) and electrocardiogram (ECG) methods for monitoring heart rate variability, to identify common sensor placements, to describe tracking tests, and to recognize common artifacts.

Describe the respirometer method for monitoring breathing, and to recognize signs of signs of excessive breathing effort.

Identify dysfunctional breathing mechanics and explain strategies for correcting them.

Describe how to design an HRV biofeedback training session.

Evaluate the clinical efficacy of HRV biofeedback.

Outline HRV time domain and frequency domain measurements (30 min).

How to monitor HRV and respiration (30 min).

How to correct breathing mechanics (60 minutes).

How to design an HRV biofeedback training session (30 min).

The clinical efficacy of HRV biofeedback (30 min).

Page 159: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Financial Interest: No significant financial interests.

WS 17: Validating Emotionally Charged Ipsative Assessments Using Prefrontal EEG Gamma Asymmetry

(Lecture) Ronald Bonnstetter, University of Nebraska, [email protected]

Thomas Collura, PhD, BrainMaster Technologies, Inc., [email protected] Credits: 3 Level of Difficulty: Intermediate Abstract The process of self reported forced-rankings by an individual, as a description of behaviors and beliefs, is a standard approach for many psychological assessments. While these self- perception tools are commonly used and in many cases possess abundant statistical validation, including internal validity, correlation data and means comparisons, until now virtually no research exist that links these self-reports to actual gamma brain activity.

The GIVE process uses asymmetric gamma wave bursts in the prefrontal cortex to validate the underlying subconscious decisions behind these self reported responses, at the very moment of decision-making. This report provides evidence that an evoked emotionally laden response results in corresponding brain activity that documents both the intensity of human emotional response as well as the directionality of the response. While a great deal of research has been done to show how prefrontal cortex baseline alpha wave activity is altered by an evoked stimuli the real source of these subconscious decisions are based on short bursts of gamma activity. The GIVE process not only provides the intensity of a person’s emotional responds to a stimuli by measuring voxel activation, but also provides emotional directionality by differentiating approach/withdrawal responses. The workshop will present the theoretical and experimental foundations, experimental design, results, and application data relating to this new technique. The presentation will be relevant to researchers, educators, clinicians, and others interested in emotional responses and the brain, and emerging technology.

References Light, Sharee, N., Coan James, A., Zahn-Waxler, C., Frye, H., Goldsmith, H. and Davidson, R. J. (July/August 2009) Empathy is associated with dynamic changes in prefrontal brain electrical activity during positive emotion in children. Child Development, Vol. 80. No. 4, pps 1210-1231.

Muller, M.M., Keil, A., Gruber, T., and Elbert, T. (1999) Processing of affective pictures modulates right- hemispheric gamma band EEG activity. Clinical Neurophysiology, Vol. 110, pps. 1913-1920.

Winkler, I. Jager, M. Mihajlovic, V. and Tsoneva, T. (2010) Frontal EEG asymmetry based classification of emotional valence using common spatial patterns. World Academy of Science, engineering & Technology, No. 69.

Goals/Objectives Articulate the principles of emotion responses in the brain based on published research Interpret live brain activity recordings showing emotional responses in the brain

Describe experiments using live emotional cues and simultaneous brain recordings showing emotional responses in the brain.

Outline

Page 160: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

Brain emotional responses and the published literature (1 Hr)

Design of experiment showing emotional responses in the brain (1 Hr)

Experimental results showing live changes in brain activity during emotional responses (1 Hr)

Financial Interest: Dr. Collura has a financial interest in BrainMaster Technologies Inc. Part of the workshop will describe products provided by BrainMaster Technologies, along with other providers. Dr. Bonnstetter is a Senior Vice President of Target Training International.

Page 161: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

ISNR 2012 Conference Vendor Seminars

VS 1: BrainMaster Basic and Advanced Atlantis, Discovery, and BrainAvatar Workshop

Tom Collura, PhD, BrainMaster Technologies, [email protected] Bill Mrklas, BrainMaster Technologies

Penijean Rutter, LMHC, Stress Therapy Solutions This vendor seminar will review the basic functions of the BrainMaster hardware and software, and quickly advance to the new features and functions in BrainAvatar. Live Z-Score (LZT) training using our exclusive multivariate proportional percent z-ok (MVP/PZOK) will be covered, as one of the foundations of our innovative neurofeedback capabilities. The Atlantis and Discovery systems provide from 1 to 24 channels of EEG biofeedback plus peripheral biofeedback. Ease of use, customizability, flexibility, and new functionality are the important features of our new software. Multiple tabbed screens, easy to use desktop shortcuts, new 3-D and contour displays, and the exclusive LLP Live sLORETA Projector are the important new capabilities of this new software. With a response time of 30 milliseconds and a resolution of 6,239 voxels, the LLP provides the unprecedented ability to image and feedback real-time brain activity. More recently, the optional Kaiser Brodmann sLORETA imaging and training has been added, plus access to the SKIL normative database. The use of LLP event-related potentials for client response analysis and interpretation will also be covered. Peripheral biofeedback using skin conductance, heart-rate, EMG, respiration, temperature, and HEG will be included. Our new live TOVA (Test of Variables of Attention) continuous performance task interface will also be described and demonstrated.

VS 2: The LENS Vendor Workshop Len Ochs, PhD, Ochs Labs, [email protected]

This Vendor Workshop gives an overview of the LENS, • how it is different from traditional neurofeedback, • why it has an overall average of 20 sessions treatment duration, • why it can have a 6-session average treatment duration for mild traumatic head

injury, • what makes treatment have an either shorter or longer duration of treatment.

Also covered are the concepts underlying it, the practical elements of the LENS. It is also the goal of this presentation to clear up misinformation and incomplete information about the LENS as a neurofeedback system. Ample time will be devoted to answering questions.

VS 3: Zukorʼs Grind & Next-Generation Feedback Games

Samuel Turcotte, President and Chief Technical Officer of Zukor Interactive, [email protected]

Allen Novian, PhD, Chief Clinical Advisor to Zukor Interactive

Overview

This workshop will demonstrate and explain the next-generation feedback game features

Page 162: th Annual&Conference September19 23,2012isnr-org.securec21.ezhostingserver.com/ISNR2012FullSchedule.pdf · Clinical Applications for Diagnosis and Treatment; Juri Kropotov 10:10-10:40

of Zukorʼs Grind for clinical neurofeedback and biofeedback. This game, the first of a series from Zukor Interactive, has dozens of features, from basic to advanced, never before seen in the industry.

Live Demos

After the presentation, live demos of the game will be conducted on four major neurofeedback systems: BrainMaster, EEGer, Mind Media and Thought Technology.

VS 4: The Many Applications of the Thought Technology Infiniti Product Line

Thought Technology, Ltd. Marc Saab, M.Eng, [email protected]

Didier Combatalade, D.C., [email protected] Jane Arave, [email protected]

Abstract

Attend our vendor seminar and learn about the use of Thought Technology Ltd. Products in various clinical environments. This year’s special guest is Jane Arave, MA, LPC, BCB, BCN. Jane is a Licensed Professional Counselor and is BCIA certified in both Biofeedback (BF) and Neurofeedback (NF). She has been in private practice at Northeast Counseling & Learning Center in Columbia, SC since 2002. In 2006, she designed, developed and implemented a 12-session optimum performance program for golfers. “The Mental Game of Golf” is a combination of cognitive strategies, mindfulness exercises, breathing techniques, and psychophysiological BF and NF protocols. Jane began working with the Biofeedback Foundation of Europe (BFE) in 2008. As a software developer and on-line instructor for the BFE, she worked closely with Dr. Paul Swingle to develop the QuickQ Suite for the ProComp Infiniti. Her most recent accomplishment for the BFE was the development of the ProGolf Suite using her golf program as her main source of reference. Jane contributed a golf case study chapter for Case Studies in Applied Psychophysiology (W. Alex Edmonds and Gershon Tenenbaum, editors) which was published in 2012. In addition to maintaining her private practice, Jane is currently contributing to research at the William Jennings Bryan Dorn VA Medical Center in Columbia, studying the use of Heart Rate Variability (HRV) training with patients diagnosed with Post Traumatic Stress Disorder (PTSD).

Jane will be presenting the specialized BFE software applications she helped develop, namely Dr. Swingle’s QuickQ and BrainDryver Suite and the ProGolf Suite.

For more information on these and other suites available from the BFE, visit http://www.bfe.org/buy/advanced_search_result.php?keywords=francois+dupont&x=48&y=8. Register for Thought Technology’s vendor seminar for a chance to win one of these BFE suites!

In addition, come and see why BioGraph Infiniti is the best and most widely used bio and neurofeedback platform in the world. See a sneak preview of Biograph Infiniti v 6.0 and receive a chance to win a free upgrade! With features like true real-time artifacting, enhanced zscore biofeedback features and amazing new event marking tools, BioGraph Infiniti v 6.0 is clearly in a league of its own!