72
2020-9 (14 th Ed) Chemistry; Energy Science and Technology Myongji University, Yongin, Korea School of Pharmacy East China University of Science and Technology, Shanghai, China

th Ed) 12 Edition (2019.012)

  • Upload
    others

  • View
    4

  • Download
    0

Embed Size (px)

Citation preview

Page 1: th Ed) 12 Edition (2019.012)

12th Edition (2019.012)

Dept. of Chemistry, Dept. of Energy Science

and Technology, Myongji University, Korea

School of Pharmacy

East China University of Science and

Technology, Shanghai, China

2020-9 (14th Ed)

Chemistry; Energy Science and Technology

Myongji University, Yongin, Korea

School of Pharmacy

East China University of Science and

Technology, Shanghai, China

Page 2: th Ed) 12 Edition (2019.012)

- 2 -

Concise and Comprehensive Course Book of Organic Synthesis

Chapter 1: Formation of carbon-carbon single bonds

1.1 Alkylation: importance of enolate anions ………………………………… 4

a. The acidity of the C-H bonds ............................................... 4

b. Formation of Enolate ions ............................................... 4

c. pKa of the conjugate acid of some bases .................................. 5

d. Alkylating agent ......................................................................... 5

e. Medium Effects in the Alkylation of Enolates ………....................... 6

f. O- vs C- alkylation ............................................................ 7

g. Dialkylation ........................................................................ 8

h. Regio- and Stereoselectivity in the Enolate Generation ………....…. 9

1.2 The Enamine and Related Reactions ............................................... 13

1.3 Aldol reaction ……………………………………………………. 15

a. Mixed Aldol Condensation ............................................... 15

b. Directed Aldol Condensation ............................................... 15

c. Control of Stereochemistry ............................................... 15

d. Allylmetal compound with aldehydes .................................. 19

e. Evans’ chiral N-acyl oxazolidinones .................................. 20

Problem-1 ……………………………………………………. 22

Chapter 2: Formation of Carbon-carbon Double Bonds

2.1 -Elimination reaction ............................................................ 23

2.2 Pyrolytic syn eliminations ............................................................ 24

2.3 The Wittig and related reactions ............................................... 25

a. The mechanism of Wittig reaction .................................. 26

b. Wittig reaction with stabilized ylides .................................. 27

c. Schlosser Modification ............................................... 27

d. Horner-Wadsworth - Emmons Modification .................................. 28

e. Horner - Wittig Reaction ............................................... 29

2.4 Peterson Olefination ............................................................ 30

2.5 Sulfur Ylides ……….............................................................. 31

2.6 Alkenes from sulfones ............................................................ 32

a. Ramberg-Backlund reaction ………………………………… 32

b. Julia olefination ………………………………….………. 32

c Julia-Kocienski olefination ………………………………… 34

2.7 Decarboxylation of -lactones ............................................... 36

2.8 Stereoselective synthesis of tri- and tetra-substituted alkenes ….... 37

2-9 Fragmentation reactions ............................................................ 38

2-10 Olefin Metathesis …………………………………………. 39

2-11 Pd–Catalyzed Reaction …………………………………………. 40

Problem-2 …………………………………………………… 45

Page 3: th Ed) 12 Edition (2019.012)

- 3 -

Chapter 3: Pericyclic Reaction

Introduction .......................................................................................... 46

3-1 Claisen Rearrangement of Allyl Vinyl Ethers ................................... 47

a. Preparation of Allyl Vinyl Ethers ................................... 47

b. Stereochemical Control ................................................ 48

3-2 Cope rearrangement ............................................................. 50

3-3 Thio Claisen Rearrangement ............................................... 51

3-4 [2,3]-sigmatropic rearrangement ............................................... 51

3-5 Aza-Cope rearrangement ........................................................... 51

3-6 Diels-Alder reaction ........................................................... 52

Chapter 4: Oxidation

4-1 Oxidation of alcohols ........................................................... 58

a. Transition metal oxidants .............................................. 58

b. Other oxidant ........................................................... 59

4-2 Oxidation of carbon - carbon double bonds ………………………………… 60

4-2-1 Perhydroxylation ............................................... 60

4-2-2 Epoxidation ............................................................ 62

4-2-3 Cleavage of double bonds ............................................... 63

4-3 Oxidation of Ketones and Aldehydes .................................. 64

a. Transition Metal Oxidant ............................................... 64

b. Peroxy-acid Oxidants ............................................... 64

4-4 Allylic Oxidation ......................................................................... 65

a. Transition Metal Oxidants ............................................... 65

b. SeO2 ......................................................................... 65

Chapter 5: Reduction

5.1 Catalytic Hydrogenation ........................................................... 66

5-2 Diimide ..................................................................................... 67

5-3 Group III Hydride-donor Reagents

5-3-1 Reduction of Carbonyl Compounds ..................... 67

5-3-2 Reduction of Other Functional Groups ..................... 69

5-4 Hydrogen Atom Donors ............................................................ 69

5-5 Dissolving - Metal Reduction

5-5-1 Addition of hydrogen ................................................ 71

5-5-2 Reductive removal of functional group ...................... 71

5-5-3 Reductive carbon-carbon bond formation ...................... 71

5-6 Reductive Deoxygenation of Carbonyl Group ...................... 72

Reference Books: (1) William Carruthers and Iain Coldham, “Modern Methods of Organic Synthesis”

4th Ed; 2004, Cambridge, ISBN 0-521-77830-1; (2) Francis A. Carey and Richard J. Sundberg,

“Advanced Organic Chemistry” 4th Ed, Part B; 2000, Kluwer Academics / Plenum Publisher; New

York, ISBN 0-306-46243-5.

Page 4: th Ed) 12 Edition (2019.012)

- 4 -

Page 5: th Ed) 12 Edition (2019.012)

- 5 -

Page 6: th Ed) 12 Edition (2019.012)

- 6 -

Page 7: th Ed) 12 Edition (2019.012)

- 7 -

Page 8: th Ed) 12 Edition (2019.012)

- 8 -

Page 9: th Ed) 12 Edition (2019.012)

- 9 -

Page 10: th Ed) 12 Edition (2019.012)

- 10 -

Page 11: th Ed) 12 Edition (2019.012)

- 11 -

Page 12: th Ed) 12 Edition (2019.012)

- 12 -

Page 13: th Ed) 12 Edition (2019.012)

- 13 -

Page 14: th Ed) 12 Edition (2019.012)

- 14 -

Page 15: th Ed) 12 Edition (2019.012)

- 15 -

Page 16: th Ed) 12 Edition (2019.012)

- 16 -

Page 17: th Ed) 12 Edition (2019.012)

- 17 -

Page 18: th Ed) 12 Edition (2019.012)

- 18 -

Page 19: th Ed) 12 Edition (2019.012)

- 19 -

Page 20: th Ed) 12 Edition (2019.012)

- 20 -

Page 21: th Ed) 12 Edition (2019.012)

- 21 -

Page 22: th Ed) 12 Edition (2019.012)

- 22 -

Page 23: th Ed) 12 Edition (2019.012)

- 23 -

Page 24: th Ed) 12 Edition (2019.012)

- 24 -

Page 25: th Ed) 12 Edition (2019.012)

- 25 -

Page 26: th Ed) 12 Edition (2019.012)

- 26 -

Page 27: th Ed) 12 Edition (2019.012)

- 27 -

Page 28: th Ed) 12 Edition (2019.012)

- 28 -

Page 29: th Ed) 12 Edition (2019.012)

- 29 -

Page 30: th Ed) 12 Edition (2019.012)

- 30 -

Page 31: th Ed) 12 Edition (2019.012)

- 31 -

Page 32: th Ed) 12 Edition (2019.012)

- 32 -

Page 33: th Ed) 12 Edition (2019.012)

- 33 -

Page 34: th Ed) 12 Edition (2019.012)

- 34 -

Page 35: th Ed) 12 Edition (2019.012)

- 35 -

Page 36: th Ed) 12 Edition (2019.012)

- 36 -

Page 37: th Ed) 12 Edition (2019.012)

- 37 -

Page 38: th Ed) 12 Edition (2019.012)

- 38 -

Page 39: th Ed) 12 Edition (2019.012)

- 39 -

Page 40: th Ed) 12 Edition (2019.012)

- 40 -

Page 41: th Ed) 12 Edition (2019.012)

- 41 -

Page 42: th Ed) 12 Edition (2019.012)

- 42 -

Page 43: th Ed) 12 Edition (2019.012)

- 43 -

Page 44: th Ed) 12 Edition (2019.012)

- 44 -

Page 45: th Ed) 12 Edition (2019.012)

- 45 -

Page 46: th Ed) 12 Edition (2019.012)

- 46 -

Page 47: th Ed) 12 Edition (2019.012)

- 47 -

Page 48: th Ed) 12 Edition (2019.012)

- 48 -

Page 49: th Ed) 12 Edition (2019.012)

- 49 -

Page 50: th Ed) 12 Edition (2019.012)

- 50 -

Page 51: th Ed) 12 Edition (2019.012)

- 51 -

Page 52: th Ed) 12 Edition (2019.012)

- 52 -

Page 53: th Ed) 12 Edition (2019.012)

- 53 -

Page 54: th Ed) 12 Edition (2019.012)

- 54 -

Page 55: th Ed) 12 Edition (2019.012)

- 55 -

Page 56: th Ed) 12 Edition (2019.012)

- 56 -

Page 57: th Ed) 12 Edition (2019.012)

- 57 -

Page 58: th Ed) 12 Edition (2019.012)

- 58 -

Cr

O

O O

Cr

O

O OCr

O

OHHO

O

Cr

O

HO

O

Cr

O

OH

O

O

Cr

O

OAcHO

O

Cr

O

O OCr

O

AcO

O

Cr

O

OAc

O

O

Cr

O

O O

N Cr

O

NO

O

Cr

O

ClHO

O

N Cr

O

ClO

O

NH

Chapter 4. Oxidation

4-1. Oxidation of alcohols to aldehydes, ketones or carboxylic acids

Oxidants

a. Transition metal oxidants

Cr

O

O

O

1) Cr(VI) - based reagents

Jones' reagent

+ H2O

Cr

O

O

O

+ H2O

chromium(IV) trioxide

(concentration, pH)

O

aicdic aqueous solution of chromic acid

chromic acid dichromic acid

HNNH

CrO3 + aq. H2SO4

CrO3 in AcOH

+ AcOH H2O

Collin's reagent: CrO3 in pyridine

General Mechanism of Alcohol Oxidation

OH

+

R

R

H

++

_

+ Cr

O

OHHO

O

good for acid sensitive substrates

CH2Cl2

pyridinium chlorochromate

CrO3 in HCl

Cr

O

OHO

O

+ pyridine + +_

R

R

H

pyridinium dichromate

CrO3 in H2O (small amount)

+ H2O

slow

OR

R

+ pyridine

_ _

+ CrO

O

OH

+

solvent: DMF or CH2Cl2

oxidation of 2o

alcohols or allylic alcohols

+

_

+ H+

Dropwise addition of the reagent to an acetone solution of alcohols at 0 oC

PCC

PDC

Page 59: th Ed) 12 Edition (2019.012)

- 59 -

O

OH

H

C3H7 CH2C3H7

C O

O

C3H7 CH2C3H7

HO

HO CH3

HOHO

CH3O

O

H3C

b. Other Oxidant

HO

HO CH3

Na2Cr2O7C3H7CH2OH

O

H2O, H2SO4

OH

C3H7CHO

O

C3H7CH2OH

CH3CHO

S O

H+

1. CrO3, pyridine

2) Mn(VII), Mn(IV)

Potassium permanganate KMnO4

Very strong oxidant - overoxidation problem

Manganese dioxide MnO2

selective for allylic and benzylic alcohol

S O

preparation

MnSO4 + KMnO4 + 2NaOH 2MnO2 + Na2SO4 + KOH + H2O

X

1) DMSO + electrophile (X+)

DCC, Ac2O, Tf2O, Oxalic chloride

S ORCH2O X

2. H3O+

35%

MnO2

acetone

RHC O

H

S

<mechanism>

+ _

+ X+

O X

+ HOCH2R

+RHC O +

_

+(CH3)2S

base

insoluble in most organic solvents Use 18-Cr-6 or PTCatalyst

[examples]

OH O

Hacetone(80%)

CrO3, H2SO4

Page 60: th Ed) 12 Edition (2019.012)

- 60 -

OH O

S O C C

O O

Cl Cl

S O C

O

C

O

ClS Cl

S O

R

R'

H

RR'C O

SCH3 CH3 S Cl

CH2OH

S Cl

CH2OS(CH3)2 CHO

Al

O

H

O

H3C

CH3

R

R

Al

O

H

O

H3C

CH3

R

R

1.

2. Et3N

CH2Cl2, -50 oC

DMSO, (COCl)2

95%

+

HO

+

Cl_

O

++ CO

C CHO OH

+ CO2

Cl_

RR'CHOH

+

base

+

OMn

OR

R

(CH3)2S

2) Corey - Kim procedure

++

R

R

++

Cl_

+

O

O

Cl_

Et3N

Mn

O

O

O

O

NCS or Cl2

(93%)

3) Oppenauer oxidation

Oppenauer

Meerwein-Pondorff-Verley

OH

OHR

R

4-2-1. Perhydroxylation

a) KMnO4

4-2. Oxidation of carbon - carbon double bonds

Al(Oi-Pr)3

H

H

acetone

potassium permanganate

syn - perhydroxylation

_

Mn

HO

HO

O

O

cyclic intermediate

+

_

+

_H2O

OH_

control further oxidation (ketol formation) : glycol formation in alkaline solution

VII V V

Swern Oxidation

Page 61: th Ed) 12 Edition (2019.012)

- 61 -

H

OMn

OR

R O

O

HO

OR

R

Mn

O

O

O

OHR

R

Mn

O

OHO

OOs

OR

R

R

R O

O

Os

O

O

O

O OH

OHR

R

H

H

Os

HO

HO

O

O

N

O

O

CH3O2C

CH3O2C

_

V

CH3O2C

CH3O2C

ketol formation

H2O

H

OHOH

_

IV

H2O _

OH

IV

+

Selective and mild glycol formation

OH

OH

OH

b) Osmium tetroxide

Stereospecific syn addition through cyclic osmate ester

+ +

toxic and expensive

Upjohn Process

Use amine oxide as a stoichiometric oxidant: N-methylmorpholine-N-oxide

I

H2O

_

NMP

t-BuOOH or BaClO3 can also be used.

OsO4 (cat.)

I

OO

aq. acetone

NMP

OsO4 (cat.)

OO

c) Iodine and silvercarbonate

Prevost condition (anhydrous condition) trans-glycol derivative

NMP

Woodward condition (aqueous condition) cis-glycol derivatives

OO

I2

+

HO

AgOAcOHO

OOAc

_

+ AgI

+

H2O

OAc

OAc

OAc_

Page 62: th Ed) 12 Edition (2019.012)

- 62 -

L-(+)-diethyl tartrate

CH2Cl2, -20 oC

OV

O O

O

O

OO

CH3

OV

O O

O

O

OO

CH3

C4H9

CH3 OHH

C4H9

CH3 OHH

O

OH

C9H19

OH

C9H19O

OH

C9H19

OH

C9H19O

OH

R2 R1

R3

EtO2C

CO2EtOH

OHH

H

CO2Et

EtO2C OH

HOH

H

4-2-2 Epoxidation

t-BuOOH as a stoichiometric oxidant

V, Mo, Ti as a catalyst

t-BuOOH

Epoxidation of allylic alcohol

a) Transition metal oxidants

O

TiO O

O

O

Asymmetric epoxidation of allylic alcohol - Sharpless epoxidation

>99% selectivityVO(acac)2

benzene, reflux

Ti(Oi-Pr)4(+)-diethyl tartrate

EtO2C

CO2Et

t-BuOOH

R

Ti(Oi-Pr)4

t-BuOOH

O

TiO O

O

O

90% ee

82%(-)-diethyl tartrate

CH2Cl2, -20 oC 80%

90% ee

EtO2C

CO2Et

D-(-)-diethyl tartrate

R

(+) (+)

b) Peroxidic reagents

MCPBA, peracetic acid perbenzoic acid etc.

RCOOH + H2O2 H2O + RCO3H

Page 63: th Ed) 12 Edition (2019.012)

- 63 -

Page 64: th Ed) 12 Edition (2019.012)

- 64 -

HO

HO

O

O

OH

OH

O

R HR

H

OH

O Cr

O

O

OHR

O

OH

OCH3

HO

CHO

OCH3

HO

CO2H

O

R'

H

R

R

Pb(OAc)2

R

O

R'

R

O

OO

R'AcO

R R

R R

O

R' O OH

O

c) Pb(OAc)4

Pb(OAc)4

fast

Pb(OAc)4

R

O

R

O O

O

R'

slow

cyclic intermediate

4-3 Oxidation of Ketones and Aldehydes

a) Transition Metal Oxidant

H2CrO4

H2O

+

H

H+

R OR

O

+ HCrO3

1. Ag2O, NaOH

2. HCl(83~95%)

BF3

Pb(OAc)4+ Pb(OAc)2

O

IIIV

b) Peroxy-acid Oxidants: Baeyer - Villiger oxidation

O

O

+ +

O

O

R'CO2H

O

Concerted Mechanism

Migratory Aptitude

t-alkyl, s-alkyl > benzyl, phenyl > primary-alkyl > cyclopropyl > methyl

PhCO3H

O

CHCl3

MCPBA

CHCl3

O

O

CH3CO3H

CH3CO2H

Page 65: th Ed) 12 Edition (2019.012)

- 65 -

N Cr

O

O

ON

N Cr

O

OH

O

H

N

N Cr

O

OH

O

Cr

OHO

O

H

OCrHO

O

O

O

CH2

R

HSe

O

O

CH2

R

SeHO

OCH

R

SeO

HO

a) Transition Metal Oxidants

4-4 Allylic Oxidation

H

C

R

CrO3 Py_

H

O

+CrO3 3,5-dimethylpyrazole

C

R

=

H

OAc

=

68%

H

b) SeO2

SeO2

Alkenes -unsaturated carbonyl compounds (major product)

allylic alcohols or esters

"ene" reaction

Catalytic process

1.5-2 mol% SeO2 / t-BuOOH (stoichiometric reagent)

allylic alcohol is the major product

OAcAcOHAc2O

OH

AcOH

O

+ +

35% 18% 8%

CrO3 Py

Page 66: th Ed) 12 Edition (2019.012)

- 66 -

Page 67: th Ed) 12 Edition (2019.012)

- 67 -

Page 68: th Ed) 12 Edition (2019.012)

- 68 -

Page 69: th Ed) 12 Edition (2019.012)

- 69 -

Page 70: th Ed) 12 Edition (2019.012)

- 70 -

Page 71: th Ed) 12 Edition (2019.012)

- 71 -

Page 72: th Ed) 12 Edition (2019.012)

- 72 -