34
Christchurch Earthquake Series: The Case for Structural Steel Systems Presentation by G Charles Clifton AP of Civil Engineering Specialist in Structural Steel and Composite Construction to the: Canterbury Earthquakes Royal Commission ENG.UOA.0006.1

The Case for Structural Steel Systems

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Case for Structural Steel Systems

Christchurch Earthquake Series: The  Case for Structural Steel Systems

Presentation by G Charles Clifton

AP of  Civil EngineeringSpecialist in Structural Steel and Composite Construction

to the:Canterbury Earthquakes Royal Commission 

ENG.UOA.0006.1

Page 2: The Case for Structural Steel Systems

The Earthquake Sequence: Impact  on Christchurch CBD

Magnitude and Intensity of events to date:

4 Sept 2010: M 7.1, MM 7, ≈

0.7 x design*

26 Dec 2010: M 5.5?, MM 7 to 8

22 Feb 2011: M 6.3, MM 9 to 10, ≈

1.8 x design* 

6 June 2011: M 5.3?, MM 7 to 8

13 June, 2011: M 5.4?, MM 7 to 8

13 June 2011: M 6.3, MM 8 to 9, ≈

0.9 x design*

design* = design for ultimate limit state to current seismic loading  standard

Cumulative  effect ≡

close to maximum considered event

ENG.UOA.0006.2

Page 3: The Case for Structural Steel Systems

22 February Earthquake – Intensity of  Shaking and Duration

Above the MCE level (data courtesy of GNS)CENTRAL CITY AND NZS1170 SPECTRA

CLASS D DEEP OR SOFT SOILLarger Horizontal Components

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Period T(s)

SA(T

) (g)

NZS1170 2500-yr Class D

NZS1170 500-yr Class D Deep orSoft Soil

CHHC_MaxH_FEB

CCCC_MaxH_FEB

CBGS_MaxH_FEB

REHS_MaxH_FEB

GM_Larger_FEB

ENG.UOA.0006.3

Page 4: The Case for Structural Steel Systems

Performance requirements of modern  buildings in this level of event (> DLE)

For normal importance buildings  to conventional ductile design, 

they are:•Shall remain standing under DLE, 

should under MCE•Structural and non structural 

damage will occur•Building will probably require 

replacement•Actual performance needs to be 

viewed in this light

ENG.UOA.0006.4

Page 5: The Case for Structural Steel Systems

EBF Systems•

V braced (K braced) and D 

braced both present; V  braced shown opposite

Capacity design  procedure to force 

inelastic demand into the  active link

This was first earthquake  worldwide severe enough  to push the frames into 

the inelastic range•

Minor yielding only; no 

link replacement required  except in one instance

Repair cracking stairwells  and light‐weight walls

Minimum floor slab  damage

Buildings typically self‐ centred

ENG.UOA.0006.5

Page 6: The Case for Structural Steel Systems

Case Study: Pacific Tower 23 storey mixed EBF and MRF, composite floors, transfer diaphragm level 6

Building has effectively self centred:–

60 mm out of plumb midheight

30 mm out of plumb at top–

under 0.1% residual deflection

Minimum damage compared with  other buildings

Minimal structural or non structural  repair or replacement needed

Requires only realignment of lift guide  rails

Could re‐occupy but is in red zone so no  public access

All other buildings of same height  severely damaged; replacement likely

ENG.UOA.0006.6

Page 7: The Case for Structural Steel Systems

Case Study: Club Tower 12 storey mixed EBF and MRF, composite floors, torsionally irregular

Building has effectively self centred:–

45;35 mm out of plumb top; within 

construction tolerances–

0.14% maximum residual deflection

Minimum damage–

Lift guide rail realignment required: 

this will cost approx $250k–

No other structural or non structural 

repair or replacement needed–

Building now fully occupied including 

CERA and CCC–

The only normal importance high‐

rise building in Christchurch now  reoccupied (other is Police Station)

ENG.UOA.0006.7

Page 8: The Case for Structural Steel Systems

ENG.UOA.0006.8

Page 9: The Case for Structural Steel Systems

ENG.UOA.0006.9

Page 10: The Case for Structural Steel Systems

ENG.UOA.0006.10

Page 11: The Case for Structural Steel Systems

ENG.UOA.0006.11

Page 12: The Case for Structural Steel Systems

ENG.UOA.0006.12

Page 13: The Case for Structural Steel Systems

ENG.UOA.0006.13

Page 14: The Case for Structural Steel Systems

ENG.UOA.0006.14

Page 15: The Case for Structural Steel Systems

ENG.UOA.0006.15

Page 16: The Case for Structural Steel Systems

Examples of Low/Medium Rise EBF  and CBFs

2 to 5  storey

No structural or non  structural damage to  frame or suspended 

floors•

Some instances ground 

has slumped from under  building

Two cases brace system  failure due to bad 

detailing

ENG.UOA.0006.16

Page 17: The Case for Structural Steel Systems

ENG.UOA.0006.17

Page 18: The Case for Structural Steel Systems

ENG.UOA.0006.18

Page 19: The Case for Structural Steel Systems

ENG.UOA.0006.19

Page 20: The Case for Structural Steel Systems

Connections

Performed as intended

No damage to splices and secondary element  connections

Gusset plate connections out of plane  movement in endplates to column as 

intended

Sliding connections in stairs etc worked as  intended

ENG.UOA.0006.20

Page 21: The Case for Structural Steel Systems

ENG.UOA.0006.21

Page 22: The Case for Structural Steel Systems

Steel Moment Frames

No visible  damage to  frames 

themselves•

No visible 

structural or  non‐

structural  damage

ENG.UOA.0006.22

Page 23: The Case for Structural Steel Systems

Summary of Steel Frame, Composite  Floor System Building Behaviour

Steel frame EBF or MRF

Composite floor system, concrete on steel deck on steel beams

All existing buildings have delivered low damage performance

in  MCE earthquake

Minimal floor slab cracking, no frame elongation or unexpected  behaviour

Capacity design procedure has been robust

Why? –

still finding out, but key points appear to be:•

Capacity design procedure ensures only primary member 

undergoes inelastic demand

Elastic columns assist in building self centering

Composite floor slab assists in building self centering, including  pushing the EBF collector beams back to level

ENG.UOA.0006.23

Page 24: The Case for Structural Steel Systems

Recommended Low Damage Solutions for New  Construction (or Retrofitted Construction): 1 of 2

EBF system with bolted in active  links; or

Rotational bolted active links; or•

CBFs with buckling restrained 

braces•

Dual frames with MRF semi‐rigid 

connections•

Designed for limited ductile or 

lower levels of ductility demand•

Proven performance in 

Christchurch earthquakes (only  well performing multi‐storey 

system in that earthquake)

or, a REBF

ENG.UOA.0006.24

Page 25: The Case for Structural Steel Systems

sacrificialposition bolts

bottom flange bolts

beamcolumn

Sliding Hinge Joint general viewSliding Hinge Joint general view

ENG.UOA.0006.25

Page 26: The Case for Structural Steel Systems

Structure sways to rightStructure sways to right

beamcolumn

Action of the Sliding Hinge Joint in Severe Earthquakes

ENG.UOA.0006.26

Page 27: The Case for Structural Steel Systems

Structure sways to leftStructure sways to left

Action of the Sliding Hinge Joint in Severe Earthquakes

beamcolumn

ENG.UOA.0006.27

Page 28: The Case for Structural Steel Systems

Recommended Low Damage Solutions for New  Construction (or Retrofitted Construction): 2 of 2

Columns with self  centering, no residual 

rotation bases, eg as  in Te Puni building, in  conjunction with SHJs

Sliding hinge joints  for rotation with no  replacement

Composite floor  system with slab,  enhancing resistance 

and self centering  capability

ENG.UOA.0006.28

Page 29: The Case for Structural Steel Systems

Long Span Composite Floor Solutions

Use composite slab on  steel deck on welded, 

cellular secondary beams•

Easy to pass services 

through•

Clear spans of 20 m readily 

achieved•

Slab Panel Design for fire 

means only approx 30% of  beams need passive fire 

protection

Britomart East Building –

12m 

x 12m column grid; every 7th

secondary beam passive fire 

protected

ENG.UOA.0006.29

Page 30: The Case for Structural Steel Systems

Steel in Strengthening of Existing Buildings

When added  with care is 

very effective

Tying together  masonry 

Stiff frames in  concrete 

buildings

ENG.UOA.0006.30

Page 31: The Case for Structural Steel Systems

Innovative Uses For Steel Containers

Road  barriers

Rock fall  stoppers

Shop  windows

Temporary  pubs

ENG.UOA.0006.31

Page 32: The Case for Structural Steel Systems

Light Steel Framed Housing

Not that many  houses in 

affected region•

Excellent 

performance; no  internal cracking  and minor 

loosening of  bricks only issues

ENG.UOA.0006.32

Page 33: The Case for Structural Steel Systems

Has a Building’s Earthquake Life Been  Used Up? : 1 of 2

Depends on design and  construction of building  and nature of 

earthquake(s)

Older buildings: often  decision is clear but this 

depends on importance  of building

Decision = demolish

Decision ?  rebuild or demolish

ENG.UOA.0006.33

Page 34: The Case for Structural Steel Systems

Has a Building’s Earthquake Life Been  Used Up? : 2 of 2

Modern buildings:–

Designed for controlled damage

in earthquake for life safety(Like crumple zone in car)

What reserve of strength and ductility is left depends on:

Strains in steel (structural or rebar)•

Number of cycles

Extent of concrete crushing•

Integrity of overall structural system

Difficult decision to make: need  understanding of failure mechanisms and 

representative test data•

Easier with steel framed buildings as can 

see main structural components

RC beams: damage in lab 

(top) and in actual buildings 

(right)

EBF active links: leave 

in place (top  left and 

right ) and replace 

(bottom right)

ENG.UOA.0006.34