289

The Chemical Bond in Inorganic Chemistry - The Bond Valence Model - I. Brown (Oxford, 2002) WW

Embed Size (px)

Citation preview

  • Russia

    P. (Chairman), USA

    G. India

    The Netherlands

    UK

    USA

    UK

    IUCr Monographs on Crystallography

    Accurate molecular structures: their determination and importance

    editors

    2 P. P. Ewald and his dynamical theory of X-ray diffraction

    editors

    Electron diffraction techniques, Volume 1

    editor

    Electron diffraction techniques, Volume

    editor

    The Rietveld method

    editor

    Introduction to crystallographic statistics

    Crystallographic instrumentation

    Direct phasing in crystallography: fundamentals and applications

    The weak hydrogen bond in structural chemistry and biology

    10 Defect and microstructure analysis by diffraction

    11 Dynamical theory of X-ray diffraction

    12 The chemical bond in inorganic chemistry

  • IUCr Texts on Crystallography

    1 The solid state: from superconductors to superalloys

    translated by

    Fundamentals of crystallography

    editor

    X-Ray charge densities and chemical bonding

    The basics of crystallography and diffraction, second edition

    IUCr Crystallographic Symposia

    Patterson and Pattersons: fifty years of the Patterson function

    editors

    2 Molecular structure: chemical reactivity and biological activity

    editors

    Crystallographic computing 4: techniques and new technologies

    editors

    Organic crystal chemistry

    editors

    Crystallographic computing 5: from chemistry to biology

    editors

    Crystallographic computing 6: a window on modern crystallography

    editors

    1 Correlations, transformations, and interactions in organic crystal chemistry

    editors

  • BROWN

    Department of Physics and Astronomy

    McMaster University

    Hamilton

    Ontario

  • OXFORD

  • Preface

  • 11 April 2001

  • Contents

  • R0

    7

  • a priori

  • Historical introduction

    1.1 Introduction

    a

    posteriori

    1.2 Chemical bonds

  • HISTORICAL INTRODUCTION

    Fig.

    et al. et al.

    4

  • MODEL

    U

    1.3 The ionic model

    ionic model

    U,

  • 1.4 Quantum mechanics

    et al. et al.

    1.5 The symmetry model

  • et al.

    1.6 Topological models

  • 1.7 Pauling's electrostatic valence model

    s =

    The rule of parsimony.

  • bond valence

    bond valence model

    et al. et al.

  • 2The ionic bond

    2.1 Introduction

    U

    et al.

  • BOND

    Crystal energy and the Coulomb field

    Eh

    Ei

  • E^oclii

    E^oclii

    EitTnono

    EitTnono i,

    Ei

  • BOND

    Q{,

    Qt

    Q{.

    Every part of the electron density of the crystal must belong to at least one

    atom.

    The partitioning must ensure an appropriate assignment of charges, Qf.

    Qh

    Qt Vt.

    Consistent with the above constraints, the partitioning should be chosen so as

    to minimize Emu\t.

    Emu\t

    et al.

  • Vt.

    2.4 The Madelung field of a crystal

    et al.

    i

    Q{ Qt.

    2

  • BOND

    Fig.

    {(x,y,z);x + y = I } . et al.

    Fig.

    et al.

  • Cy,

    Py,

    qt

    Py,

    Qf

    qt. Ptj

  • Cy

    Cy. Cy,

    Cy

    Qf Cy. Cy

    a priori,

    Cy

    Cy

    Bond networks and bond graphs

    a network consists of an

    array of nodes which are connected by links.

    valences the fluxes

    Na Na connectivity adjacency matrix,

  • Table 2.1

    BlB2HIH2H3H4H5H6

    Bl

    00111010

    B2

    00110101

    HI

    11000000

    H2

    11000000

    H3

    10000000

    H4

    01000000

    H5

    10000000

    H6

    01000000

  • BOND

    Fig. 2.4.

  • Fig. 2.6.

    2.6 Coordination number

    Definition of coordination number. The coordination number of an ion is the

    number of ions to which it is linked by electrostatic flux.

    et al.

    tertiary bonds,5

    secondary bond was

    tertiary bond

  • THE BOND

    Fig.

    et al.

    a c z

  • Conclusions

    The chemical bonding can be completely described in terms of localized bonds

    between neighbouring atoms.

    The bonds have a cation at one end and an anion at the other.

  • The bond valence model

    3.1 Experimental bond valences and bond lengths

    Ctj,

    bond strength,

    3

  • EXPERIMENTAL BOND VALENCES AND BOND LENGTHS

    Fig. 3.1.

    et al.

    experimental

    bond valence, S.

    Rtj j, Sy

    R0, B,

    B

    RQ,

    B

    B

  • 28 THE BOND MODEL

    valence sum rule,

    (Vf

    Qf Vj)

    Sy,

    et al.

    RQ, B,

    3.2 Empirical network equations

  • Sy

    valence sum

    rule loop, equal valence, rule,

    network equations.

    theoretical bond valences

    s.

    S,

    s,

    unstrained

    structures,

    S.

    strained structures

    (3-

  • Table 3.1 s, S, R,

    s S s-S

    Qh Vt,

    sy,

    for unstrained structures at equilibrium all bonds have the same bond capacitance.

    R0 B,

    et al.

    2

  • THE BOND MODEL 31

    Vi

    sy

    the bond valence model cannot distinguish between ionic and covalent

    bonding.

    The bond valence model

    Principle of maximum

    symmetry,

  • THE BOND MODEL

    Rule 3.1 As far as allowed by the chemical

    and geometric constraints, all atoms and all bonds in a compound will be

    chemically and geometrically indistinguishable.

    Rule The breaking of symmetry is always the consequence of an

    identifiable chemical or spatial constraint.

    Rule The sum of the valences of all the bonds

    formed by an ion is equal to the valence of the ion.

  • Condition 3.1. The stoichiometry must obey the electroneutrality principle, namely

    that the sum of all the atomic valences (formal ionic charges), having regard to

    their sign, is zero.

    Condition The bond graph must be bipartite as described in Section 3.5, i.e. all

    of the bonds must connect a cation, e.g. Na+, to an anion, e.g. Cl~.

    loop, equal valence rule.

    Rule 3.4 The sum of bond valences around any

    loop in the bond network, having regard to the direction of the bond, is zero.

    The valence of each atom is distributed as uniformly as possible among the bonds

    that it forms.

    Rule Increasing

    the bond valence between two ions reduces the distance between them as shown

    in Fig. 3.1.

    3.4 The distortion theorem

    Rule 3.6 For any ion, lengthening some of its bonds and

    shortening others, keeping the bond valence sum the same, will always increase the

    average bond length.

    AR,

  • 34 THE BOND MODEL

    AR

    Rule 3.6a For any ion,

    lengthening some of its bonds and shortening others, keeping the average bond

    length the same, will always increase the valence sum.

    Rule If an ion is placed in an environment in which the average

    bond length is too long, i.e. in a cavity which is too large for the ion, the

    environment will distort in such a way as to increase the lengths of some bonds and

    decrease the lengths of others in order to raise the bond valence sum to the

    expected value.

    3.5 Bond networks with non-bipartite graphs

  • BOND NETWORKS WITH NON-BIPARTITE GRAPHS 35

    Fig. 3.3.

  • Fig. 3.4.

    CF3CO^

    C\+

    C4+Q\~]~

    36 THE BOND MODEL

  • Fig.

    Fig. 3.6.

  • 38 THE BOND MODEL

    (T

    TT

    a

  • et al.

    et al.

  • Anion and cation bonding strengths

    4.1 Bond graphs and coordination number

    Rule 4.1 A bond exists between a cationand an anion if its experimental bond valence is larger than 0.04 the cation

    valence.

    4

  • BONDING STRENGTHS

    ideal coordination

    numbers

  • BONDING STRENGTH

    4.2 Anion bonding strength

    anion bonding strength, sa,

    P-O

    Fig. 4.1.

  • BONDING STRENGTHS

    maximum and minimum anion bonding strengths.

  • BONDING STRENGTH 47

    pKa,

    pK^

    Lewis base strength.

    strong weak anions

    4.3 Cation bonding strength

    cation bonding strengths, sc,

    vc

    Fig. 4.3. pKa.

  • BONDING STRENGTHS

    strong weak cation

    Lewis acid

    strength.

    Fig. 4.4.

    Fig. 4.5.

  • 4.4 The valence matching principle

    Valence matching principle,

    Rule The most stable compounds are formed

    between cations and anions that have the same bonding strength.

    (sa = (sc =

    (sc =

    (sc=

  • BONDING STRENGTHS

    4.5 Hard and soft acids and bases

    hard soft,

  • APPLICATIONS OF THE MATCHING PRINCIPLE

    4.6 Applications of the valence matching principle

    Fig. 4.6.

    sc/sa

  • BONDING STRENGTHS

    s^Sn

  • 5Liquids

    5.1 Introduction

    The cation and anion bonding strength of water

  • Fig. 5.1.

    sjsa

    sc/sasjsa

    (sc =

  • Reactions of cations with water

  • et al. et al.

    n,

    n.

  • 5.4 Reactions of unions with water

  • Fig. 5.4.

    PO^~

    PO34~

  • (sc =

    pK^,

    Aqueous solubility

  • Mg(H2O)6SO4

    CO\

    CG>\ +

  • Fig.

    (sc Sg)

    A=

  • 5.6 Aqueous solutions of soft ions

    (sc =

    Non-aqueous solutions and melts

    (sc = Q.Q6

  • Fig. 5.6.

    likeweak

  • Cation coordination number

    6.1 Introduction

    ab initio

    mutatis mutandis,

    6.2 Anion-anion repulsion

  • Fig. 6.1.

    Fig. a.

  • Table 6.1

    et al.

  • Fig. 6.3.

    a,

    s'',

    s

  • COORDINATION

    RQ = b =

    s'.

    s'

    Sh s'.

    Rmin s' >

    Rmin. Sh

    Rmin.

    Sh,

    s', Sh s'

  • Fig.

    S^ Q.4vu,

    S^>Q.2vu,

    The normal hydrogen bond

    normal hydrogen bond

  • STRONG HYDROGEN BONDS

    Strong hydrogen bonds

    Strong hydrogen

    bonds

  • ROO

  • Fig. 7.6.

    Weak hydrogen bonds

    Rmin,

    (Sh 3~,

    r, 6)

    6 r

    D.

    9,

    9.

    al.

  • et al.

  • 8.3 Transition metals

  • TRANSITION

    8.3.1 Jahn- Teller distorted cations

    Fig. 8.6.

  • dx2_y2

    dx2_y2

    x-y

    8.3.2 Transition-metal cations with empty or near-empty d shells

  • TRANSITION

  • et al.

    et al.

    Fig. 8.9.

  • TRANSITION

    Fig. 8.10.

  • Table

    8.4 Conclusions

  • 9Physical properties of bonds

    9.1 Introduction

  • 9.2 Bond lengths and bond angles

    R0,

    B

    q,

    V, k

  • BOND LENGTHS AND BOND

    RQ.1

    k

    k

    RQ,

    RQ

    TT

    R0

    RQ

    TT

    TT

    TT

    RQ

    TT RQ et al.

    et al.

    k k

  • et al.

    x = [(Si + S2)/2V]

    Si S2, 0

    V/4, V

    (S =

  • BOND LENGTHS AND BOND

  • 9.3 Bond force constants and thermal vibrations

    Fig. 9.1.

  • G,

    S.

    S> a b,1 1 1

    a = 1 1 b = 1 .

    A, G,

    (A2),

    Fig. 9.2.

  • T,

    k A.

    (A2}

    U,

    (A2) U

    (A2)

    et al.

    (A2),

    U,

    (A2)

    d(A2)/dT

    dUuncoi/dT

  • THERMAL

    Fig. 9.3.

    9.4 Thermal expansion

    et al.

    R&.

  • 114 PHYSICAL PROPERTIES OF BONDS

    R'

    (R) (R) Re SR

    S',

    SR/B SR/B

    SR

    S' S

    Re.

    S

    (R) Re = AR

    AR

    (SR2),

    (SR2)

    (A2)

    B = 37 G

  • Fig. 9.4.

    G pS, p S

    R S Rp

    et al.

  • (A*),

    R,

    Fig. 9.5.

  • R',

    (A2)/2R.

    Gt

    Fig. 9.6.

  • 9.5 The variation of R0 with temperature

    RQ,

    AR.

    R + AR R%,

    R0 T,

    T dR/dT

    S

  • Solids

  • 10

    Space and space groups

    10.1 Introduction

  • SPACE AND SPACE GROUPS

    10.2 The crystal lattice and translational symmetry

    R(l, m, n),

    b, c

    m, n)

    b unit cell

    R(l, m, n)

    R(l,m,ri)

  • THE CRYSTAL SYMMETRY

    Fig. 10.1.

    Fig. 10.2.

  • 124 SPACE AND SPACE GROUPS

    Fig. 10.3.

    Fig. 10.4.

  • 10.3 Space groups

    asymmetric unit

    G,

    space group.

  • x, y, z x, y, z.

    p/n p ri)

    G,

    ofmG R,

    mG mG =

    10.4 Special positions

    mG

  • Fig.

    CO\

    mG =

    ofmG/2 =

    non-translational unit. mN,

    mG,

  • Fig. 10.6. nis mw

    (ms 2,mwT). ms6, mw

    ms3, mwT), ms 2, mw

    ms mw

    mN.

    mN

    S

    W, S

    mw mw\&

    S, ms,

    S W* S= N,

    Rule 10.1. In a given space group, all the Wyckoff positions with the same multi-

    plicity, mw, have site symmetries of the same order, ms.

  • Fig. 10.7. ms,

    Rule 10.2. The order of the site symmetry of any Wyckoff position is in inverse

    proportion to its multiplicity.

    S,

    mw,

    10.5 Matching the special positions to the chemistry

    his fundamental law of crystal chemistry

    Rule 10.3. Since all the atoms in the chemical formula must exist on one or other

    of the Wyckoff positions of a crystal, the multiplicity of an occupied Wyckoff

    position must correspond to the frequency with which the corresponding atom

    appears in the chemical formula, and the site symmetry of the Wyckoff position

    must correspond to a possible symmetry of the atom's bonded environment.

  • spectrum

    mN,

    10.6 The symmetry of bonded neighbours

    inter alia

    ms = 4%,

    ms = 24).

    (D^k)

    ms=

    ms=8)

  • ms =

    ms=6.

    Table 10.1

    m3

    m+12

  • Table 10.2

    m6

    26

  • 10.7 Summary

  • Modelling inorganic structures

    11.1 The problem of a priori modelling

    topology structure,

    geometry,

    relative

    stability.

  • THE TOPOLOGY 135

    11.2 Determining the topology

    Principle of electroneutrality

    Rule 11.1 Since the sum of all atomic valences is

    zero, the sum of the atomic valences of the cations is equal to the sum of the atomic

    valences of the anions.

    Coordination number rule

    Rule 6.1 Since each bond starts on a cation and ends

    on an anion, the sum of the coordination numbers of the cations equals the sum ofthe coordination numbers of the anions, and both are equal to the total number of

    bonds in the formula unit.

    Rule 11.2 The ratio of the average coordination number of the

    cations, (Na), to the average coordination number of the anions, (Nx), is the same

    as the ratio of the number of anions, x, to the number of cations, a.

  • Rule 11.3 Compounds that have a high anion content will stabilize

    high cation coordination numbers.

    Principle of maximum symmetry

    Rule 3.1 As far as allowed by chemical and

    geometric constraints, all atoms and all bonds in a compound will be chemically

    and geometrically indistinguishable.

    Principle of close packing

    Rule 11.4 Like ions tend to lie on close packed

    lattices, since this arrangement minimizes their repulsive energy when they are

    confined to a fixed volume.

    Shubnikov's fundamental law of crystal chemistry

    Rule 10.3 Atoms will occupy Wyckoff positions

    in the crystal that are compatible in both multiplicity and symmetry with the

    bond graph.

    11.2.1 Space-based approaches

  • THE TOPOLOGY

    Random structure approaches

  • et al.

    et al.

    Lattice models

  • THE TOPOLOGY

    Fig.

    HCP

    FCC

    et al.

    139

  • et al.

    11.2.2 Chemistry-based approaches

  • THE TOPOLOGY 141

    Rule 11.5 When generating a chemical structure, the

    strongest bonds are formed first, followed by the others in decreasing order of their

    valence.

  • a priori

    Creating the bond graph

  • Fig. 11.2.

    THE TOPOLOGY 143

  • Fig. 11.3.

  • THE TOPOLOGY 145

    Sy

    Sy

    Fundamental building blocks

  • Fig. 11.4.

  • THE TOPOLOGY 147

    OPb64+.

    et al. et al.

    Polyhedral linkage

  • Fig. 11.5.

    Fig. 11.6.

  • THE TOPOLOGY 149

    et al.

  • Fig. 11.7.

  • THE TOPOLOGY 151

    The space group method

  • ms =

    ms=

    ms=

    ms =

    ms=

  • ms =

    V2

  • ms =

    P4i23,

  • 'a).

    Weakly bonded structures

  • a priori

    11.2.3 Valence maps

  • Fig. 11.8.

    pt

    pt

  • THE TOPOLOGY 159

    Fig. 11.9.

    c

    in ph pf

    pt

    c

    et al.

  • Fig. 11.10.

    11.3 Refining the geometry

    et al.

  • et al.

    et al.

    et al.

    11.4 Modelling defect structures

  • et al.

    et al.

    11.5 Modelling glasses

    al.

    11.6 Summary

  • Lattice-induced strain

    12.1 The origins of lattice-induced strain

    Fig. 12.1.

  • Fig. 12.2.

    et al.

  • lattice-induced strains

    12.2 Structures with lattice-induced strain

    bond strain index

    et al. cr3

    S

    s

    global instability

    index et al.

    Gil

    Gil

    Gil

  • et al.

    et al.

  • Fig. 12.4.

    I992a).

    12.3 Relaxation of lattice-induced strain

    12.3.1 Relaxation of the geometry

  • (S= (S =

    12.3.2 Relaxation by defects

    Fig. 12.5.

  • et al.

    12.3.3 Electronic relaxation

  • 8.

    12.3.4 Relaxation of symmetrydisplacive phase transitions

  • 12.3.5 Changing the bond graphreconstructive phase transitions

  • Fig. 12.6.

  • 12.4 Incommensurate structures

    et al.

    RQ = 2l4pm

  • STRUCTURES 175

    Fig. 12.8.

    et al.

  • Fig. 12.9.

    et al.

    et al.

  • et al. et al.

    et al.

    12.5 Summary

    s s

  • 13

    Applications

    13.1 Introduction

    13.2 Crystallography

    13.2.1 Structure solution

    ab initio,

  • ab initio et al.

    et al.

    (p\

    V\ YiS\ ^S2

    V\

    V2

    S,

    andp2,

  • i p

    i.

    et al.

    et al. et al.

    p\

  • et al.

    et al.

    et al.

    13.2.2 Analysis of crystal structures

  • primae

    facie

    et al.

    bond valences (vu) bond valence sums (vu)

    Sum

    0.30

    0.26, 0.25

    0.24

    1.05

    0.28, 0.27

    0.31

    1.12

    S

    1.54

    1.48

    1.49

    1.49

    6.00

    0.15

    0.04

    (0.76)

    (1.00)

    0.03

    (0.82), 0.15

    (1.00)

    Sum

    1.99

    2.07

    2.00

    2.08

    2.04

  • 13.3 Physics

    13.3.1 Perovskite-related solids

  • Fig. 13.1.

    13.3.2 Electrical properties

  • et al.

  • APPLICATIONS

    et al.

    Fig. 13.2.

    V(O)

    = = = = = = =

  • et al.

    13.3.3 Magnetic properties

  • Fig. 13.3.

    et al.

    et al.

    13.3.4 Grain boundaries

  • et al. et al.

    et al.

    et al.

    et al.

    13.4 Mineralogy

  • et al.

    13.4.1 Soil chemistry

  • et al.

    et al.

    et al.

    et al. (I997a,b,c)

  • et al. (1997 a,b)

    et al.

    et al.

    13.4.2 Zeolites

  • CHEMISTRY 197

    13.4.3 Glasses

    et al.

    13.5 Chemistry

    et al.

    13.5.1 Nuclear magnetic resonance

  • et al.

    et al.

    fy

    A M

    et al.

    et al.

    NMR

    et al. NMR

    13.5.2 Transition-metal complexes

  • et al. et al.

    TT

    TT

    et al. et al.

  • et al.

    13.5.3 Heterogeneous catalysis

    s, E:

  • CHEMISTRY 201

    et al.

    et al.

    13.5.4 Esterification and hydrolysis

    Fig. 13.4.

  • Table 13.3

    Fig. 13.5.

  • BIOLOGY 203

    13.6 Biology

    13.6.1 Enzymes

    et al. et al. et al. et al.

  • et al.

    et al.

    et al. et al.

    13.6.2 Calcium and sodium binding by proteins

  • BIOLOGY 205

    et al.

    et al.

    et al.

    (cis-

  • 13.7 Databases

    et al.

    et al.

    et al.

    et al.

  • 14

    Chemical implications of the bond valence model

    14.1 Why is the bond valence model so robust?

    14.1.1 The attractive force

  • WHY IS THE BOND MODEL SO ROBUST? 209

    14.1.2 The repulsive force

    R0 B

    TT

    TT

    RQ TT

  • 14.2 Two-body potential models

    14.3 The properties of the bond graph

  • ELECTRON-PAIR MODEL 211

    14.4 The Lewis electron-pair model

    Fig. 14.1.

  • WHY ARE FROM

    et al.

    14.5 Why are cations different from anions?

  • Fig. 14.2.

  • 14.6 Orbital models

    ad hoc

  • PO^"

    14.7 Electron density models

    et al. et al.

  • a, b, c d

    Fig. 14.3.

  • et al. et al.

  • 14.8 The topology of the Madelung field

    1

    14.9 Conclusions

    et al.

    et al.

  • Bond valence parameters

    Al.l Introduction

    et al.

    S

    S = R

    A1.2 Determination of bond valence parameters

  • Table Al.l

    o2-o2-o2-F-

    o2-cro2-o2-

    B(pm)

  • (Continued)

    RQ, B N,

    S, s,

  • B

    B N) RQ.

    B R0

    RQ B N),

    B N),

    RQ.

    R0 B

    B

    B

    1

    RQ B

    RQ

    i.

    RQi, RQ V

    B

  • 228 APPENDIX 1

    RQi B

    Rw

    Rw B

    RQi RQ

    R0.

    RQ.

    B RQ.

    (R) et al.

    RQi

    RQ

    a b RQ

    RQ

  • BOND PARAMETERS 229

    RQ R0

    R0

    rt ct Cj

    RQ RQi

    et al.

    R00, R0^, Ros

    R00 R0^.

    RQ

    I997a,b,c; I999a,b; et al.

    R0

    RQ

    et al. et al. R0

    R0

  • 230 APPENDIX 1

    RQ

    et al.

    et al.

    B

    et al.'s

    RQ B,

    A1.3 Other bond valence expressions

    rc,

    a, b, c, d

    e

  • BOND PARAMETERS 231

    S

    g,

    S = 0 R e/c.

    R e/(l +g).

    e = et al.

    e =

    et al.

    a (= RI

    av

  • 232 APPENDIX 1

    R SQ,

    B

  • Space group spectra

    mw,

    Table A2.1

    Table

    Table A2.3

    8

  • 234 APPENDIX 2

    Table A2.4

  • Table (Continued)

    111

  • 236 APPENDIX 2

    Table

  • Table (Continued)

  • 238 APPENDIX 2

    Table A2.9 (Continued)

    1 1

    12,2,2,

    2,1

    * *

    2,1

    2,1

    2,1

    * * 2,1

    * *

    2,1

  • Table A2.10

    P2l

  • Appendix 3

    Solution of the network equations

    N&+1

    Nb

    Nb Nb s.

    M:

    s NA +

    M

    et al.

  • Vjv

    V v

    a, b, c, d, e,

  • 242 APPENDIX 3

    d=\-a,

    e=l-2b.

    c = Ib,

    f=(lb-\}/2.

    b = 1/21 =

    c =

    f=a =

    e =

    d =

    5/27 = 011/27 =21/54 =13/27 =33/54 =

    .18vu,0.41 vu,0.39 vu,0.48 vu,0.61 vu.

  • Appendix 4

    Cation and anion bonding strengths

  • Table A4.1 (Continued)

  • Table A4.2

    Table A4.3

  • Appendix 5

    References to the ICSD and the CSD

    Table A5.1

    et al.

    Acta Cryst.

    Acta Cryst.

    Acta

    Cryst.

    Acta

    Cryst.

    Can. J. Chem.

    Solid State Chem.

    Zeit. Kristallogr.

    Proc. Japan. Acad.

    Acta Cryst.

    C. R. Acad. Sci.

    Inorg. Chem.

    Mater. Res. Bull.

    Amer. Miner.

    Zeit. Kristallogr.

    Acta Cryst.

    Acta Cryst.

    Ferroelectrics

  • Table A5.1 (Continued}

    Acta Cryst. 11,

    Acta Cryst. 18,

    Acta Cryst. 18,

    Dokl. Akad. Nauk

    SSSR239,

    Zeit. Anorg. Allgem. Chem.

    Ann. Acad. Sci. Fenn. Ser.

    A6 Physica 313,

    Nature

    Acta Cryst. 26,

    Zeit. Anorg. Allgem. Chem. 480,

    Solid State Chem.

    Acta Cryst. B26,

    Amer. Miner.

    60,

    Zeit. Kristallogr.

    90,

    Acta Cryst.

    Acta Cryst.

    Acta Cryst.

    Amer. Chem. Soc.

    C. R. Acad. Sci.

    et al. Physica Statu Solidi

    226,

  • Table A5.1 (Continued)

    Acta Cryst.

    Naturwissenschaften

    Acta Cryst.

    Ark. Kemi.

    Zeit. Kristallogr.

    Norsk Geol.

    Tijdskr.

    Chem. Phys.

    Ark. Kemi.

    Australian

    J. Chem.

    Acta Cryst.

    Kobutsugaku

    ZasshilS,

    Acta Cryst.

    Acta Cryst.

    Zeit.

    Electrochem.

    Zeit. Electrochem.

    Adv. X-ray Anal.

    Chem. Phys.

    Acta Cryst.

    Zeit. Kristallogr.

  • Table A5.1 (Continued}

    Phys Rev. B

    Solid State

    Chem.

    Zeit. Kristallogr.

    Phys. Rev.

    Miner. J. (Japan)

    Acta Cryst.

    Phys. Stat. Solidi

    Acta

    Cryst. B46,

    Solid State

    Comm.

    Amer. Miner.

    Amer.Miner.

    Solid State Chem.

    Powder Diffraction

    Acta Cryst.

    Mat. Res. Bull.

  • Table A5.1 (Continued)

    Physica C

    Physica C 235,

    Acta Chem. Scand. 148,

    Zeit. Kristallogr. 145,

    Zeit. Kristallogr.

    156,

    Solid State

    Comm. 24,

    Carnegie Inst. (Washington)

    Yearbook

    Zeit. Kristallogr. 147,

    Phys. C

    Phys.

    C

    Solid

    State Chem. 61,

    Amer. Chem. Soc. 109,

  • 252 APPENDIX 5

    et al.

    Curr. Sci.

    Proc. Roy. Soc.

    Land.

    Can. J. Chem.

    Acta

    Cryst.

    Acta

    Cryst.

    Zeit. Kristallogr.

  • References

    Ada Cryst.

    Zeit. Kristallogr. 211,

    Acta Cryst.

    Solid State Ionics 105,

    Phys. Rev. Leu.

    Phys.

    Rev. B63,

    Acta Cryst. B49, Adv. Inorg.

    Rad. Chem. 15,

    Zeit. Kristallogr. 209,

    Mol. Struct. (Theochem) 496,

    Amer. Chem. Soc. Ill,

    et al.

    Acta

    Cryst.

    Monatshefte Chem. 106,

  • Phys.

    Rev. B

    Acta Cryst. B41,

    Solid State Chem.

    Amer. Miner.

    Acta Cryst. B36,

    Atoms in Molecules, A Quantum Theory.

    Acta Cryst. B56,

    Geochim. Cosmochim. Acta 61,

    Geochim. Cosmochim. Acta 61,

    Colloid. Interface. Sci. 185,

    Trans. Amer. Cryst. Ass.

    Acta Cryst. B28,

    Zeit. Kristallogr. 91,

    Biochem.

    Chem. Inf. Comp. Sci.

    Acta Cryst.

  • Phys. Rad.

    Rev. Geo-

    phys.

    Amer. Chem. Soc. 118,

    Phys.

    Chem. Miner.

    Sitsungsber. Preuss. Akad. Wissen.

    Berlin

    Zeit.

    Phys.

    Acta Cryst.

    Zeit. Kristallogr.

    ActaCryst.

    Acta

    Cryst. B47,

    Solid State Ionics

    Can. J. Chem. 48,

    Chem. Mater.

    Solid State Chem. 11,

    Acta Cryst.

    ActaCryst.

    Acta Cryst.

    Chem. Soc. Rev.

  • Amer. Chem.Soc.

    Chem.

    Soc. Dalton Trans.

    Struc-

    ture and Bonding in Crystals,

    Solution Chem. 16,

    Phys. Chem. Miner. Acta

    Cryst. B44,

    Solid

    State Ionics

    Chemistry of Electronic Materials.

    Solid State

    Chem. 90, Zeit. Kristallogr.

    Acta

    Cry st. B48,

    Can. J. Phys. Appl. Cryst.

    29,

    Acta Cryst.

    Chem. Edu.

    Acta

    Cryst.

    Solid State Chem. 95,

    Acta Cryst.

  • Acta Cryst. A29,

    Amer. Chem. Soc. 112,

    Inorg. Chem.

    Rev. Miner.

    Acta Cryst.

    Phys. D

    YBa2Cu3O7_s Physica C

    Phys.

    Rev. B

    Amer.Ceram. Soc.

    Wiss.

    Zeit. Tech. Univ. Dresden

    Molecular Shapes.

    Amer. Miner.

    Amer. Miner.

    Acta Cryst.

    Acta Cryst.

    Acta Chem. Scand.

    Chem. Phys. 69,

    Chem. Rev.

  • Solid State Chem.

    Computer Modelling in Inorganic Crystallography.

    Miner. Soc. Amer. Sp. Papers

    et al.

    Amer. Chem. Soc.

    Valence,

    Electrical and Magnetic Properties of Low-DimensionalSolids.

    Biochem.

    Amer. Chem.

    Soc.

    Zeit. Kristallogr.

    Solid State Chem. The Weak Hydrogen Bond in Structural

    Chemistry and Biology.

    Amer. Miner.

    Amer. Chem. Soc.

    Solid State Chem.

    Adv.

    Inorg. Chem. Radiochem.

  • Acta Cryst.

    Russ. Chem. Rev.

    Chem. Soc.

    Dalton Trans.

    Ann. Physik

    Proc. 30th Internal.

    Geol. Congress 16,

    Mathematical Modelling of Composite Objects.

    Solid State Chem.

    ab initio

    Acta Cryst.

    Solid State Chem.

    Acta

    Cryst.

    Phil. Trans. R. Soc. Land. A

    Solid State Chem.

    Phys. Chem. Miner.

    The VSEPR Model of Molecular Geo-metry.

    Angew. Chem. Int. Ed.

    Electrical and

  • Magnetic Properties of Low-Dimensional Solids.

    Adv. Protein Chem.

    Appl. Cryst.

    Phys. Chem. A

    Chem. Soc.

    Dalton Trans.

    Amer. Miner.

    Zeit. Kristallogr.

    The Stability of Minerals.

    Acta

    Cryst.

    Can. Miner.

    Miner. Mag.

    Comparative Crystal Chemistry.

    Temperature Pressure Composition and the Variation of Crystal Structure.

    Colloid Interface Sci.

    Zeit. Kristallogr.

    Amer. Miner.

    Solid State Chem.

    Inorganic Crystal Structures.

  • International Tables for Crystallography.

    Physica C

    Mol. Struct.

    (Theochem) 260, Some Thermodynamic Aspects of Inorganic Chemistry.

    Inorg. Chem.

    Phil. Mag. 79,

    IsraelJ. Chem.

    Phys. Chem. 98,

    Amer. J. Sci. 298,

    Amer. Miner.

    84,

    et al.

    Zeit. Kristallogr. 199,

    Mol. Structure 24,

    Synch. Rod.

    Solid State Chem. 115,

    Phys. Chem. B102,

  • Acta Cryst.

    Valence and the Structure of Atoms and Molecules.

    Structural Chemistry of Silicates. Structure, Bonding and

    Classification.

    Solid State Chem. 16,

    Inorg. Chem.

    ACS Symposium Series, Inorganic Chemistry in Biology and Medi-

    cine,

    Biophys. J.

    Phys. Rev. B

    et al.

    Science

    Phil. Mag.

    Computer Modelling in Inorganic Crystal-

    lography.

    Physik. Zeit. 19,

    et al.

    Amer. Chem. Soc. 118,

    Clay and Clay Miner.

    Phys.

    Chem. Miner.

    Zeit. Kristallogr. 100,

  • Atlas of Zeolite Structure Types,

    Can.

    J. Chem.

    Acta

    Cryst.

    Amer. Chem. Soc.

    Acta

    Cryst.

    Proc. Natl. Acad. Sci. USA

    Mol. Biol.

    Geometrische Kristallographie des Diskontinuums.

    Structure and Bonding

    Chemistry of Electronic Ceramic Materials.

    Mater. Res.

    Amer. Chem. Soc.

    Solid State Chem.

    Nature

    Struc-

    ture and Bonding

    Solid State

    Chem.

    J. Struct. Chem.

    Solid State Chem.

  • 'a).

    RQ Inorg. Chem. 36,

    R0

    Inorg. Chem. 36,

    (1997c).

    RQ

    Inorg. Chem. 36,

    Nature 346,

    Elements of Inorganic Structural Chemistry. Selected Efforts

    to Predict Structural Features.

    A History of Chemistry,

    Amer. Chem. Soc.

    Amer.

    Chem. Soc. 69,

    The Nature of the Chemical Bond,

    ab initio

    Rev. Mod. Phys. 64,

    Hard and Soft Acids and Bases.

    Ross,

    Phys. Rev. B

    Phys. Chem. B

    Inorg. Chem.

    Chem. Rev. 97,

    Zeit. Anorg. Allgem. Chem. 624,

    Acta Cryst.

    Sov. Phys. Cryst.

  • ActaCryst.

    Phys.: Con-

    dens. Matter 10,

    Phys.: Condens. Matter 11,

    Biochem.

    Chem. Mater.

    Acta Cryst.

    ActaCryst. B46,

    Acta Cryst.

    Solid State Chem. 100,

    Solid State Chem.

    Solid State Chem.

    Rikagi Denki J.

    Ab initio

    Prog. Zeolite Microporous Mater.

    et al.

    Biochem. V. C.,

    Chem. Mater. 12,

    Inorg. Chem.

  • Acta Cryst.

    Acta Cryst. B25,

    Solid State Chem. 12,

    Nature

    Acta Cryst. B56,

    Izv. Ross.Akad. Nauk 16,

    Biochem.

    Phys. Chem. 100,

    Inorg. Chem.

    Acta Cryst.

    Acta Cryst. B50,

    Comput. Math. Applic.

    16,

    Chem. Rev.

    Chem. Comm.

    Chem. Soc. Perkins Trans. II

    Chem. Comm.

    Chem. Comm.

  • Phys. Chem. A

    Amer. Chem. Soc. 114,

    Acta Cryst. B50,

    Phys. Rev. B64,

    Physica C

    Jap. J.

    Appl. Phys. 29,

    Ace. Chem. Res.

    Ferroelectrics A System of Chemistry,

    (x =

    Solid State Chem.

    Inorg. Chem.

    Inorg. Chem.

    Zeit. Kristallogr.

    200,

    Infrared and Raman Spectra of Crystals.

    (MOX x > Structure and Bonding

    Acta Cryst.

    Crystallogr. Rep.

    Polyhedron

  • Europhys. Lett.

    Colloid. Interface Sci.

    DLS Manual.

    Amer. Ceram. Soc.

    Acta Cryst.

    Surface Sci.

    Solid State

    Chem.

    Structural Inorganic Chemistry,

    Ab initio Acta Cryst.

    Solid State Chem.

    Prog.

    in Solid State Chem.

    Inorg. Chem.

    RQ Inorg. Chem.

    Inorg. Chem.

    Inorg. Chem.

    Phys. Chem. Phys.

  • 'a).

    Acta Cryst.

    Acta Cryst.

    Phys. Rev. B

    Amer. Miner.

    Physica B,

    Geochim. Cosmochim. Acta 61,

    Geochim. Cosmochim. Acta 61,

    Biochem.

    Electron

    Microscopy

    Acta Cryst.

    Acta

    Cryst. 12,

    Catal. 81,

    Catal. 84,

    J. Solid State Chem.

    Catal. 100,

    Surface Sci. 209,

  • Solid State Chem.

    Catal. 90,

    Nature 401,

  • List of symbols

    B

    NaNbR

    R0

    r

    s

    s'

    S

    V

    f

  • Index

    see

    see

    see see

    see

    see

    see also

    see also

    see also

    see also

  • (cont.):

    see also

    see also

    see

    see

    see also

    see

    Cr(H2O)l+

    see

    see also

  • see

    see also

    see also

    see

    see

    see

    see

    see

    see

    see

    (A3B2(XO4)3)

    see

    see also

  • (cont.):

    see

    see

    see

    see see

    see

    see

    see

    see

    (A2MN2O1) 111

    see also

    see

    see also

    see

  • see also

    see

    see

    see also

    see

    see also

    see

    see also

    see

    see

  • (cont.):

    see

    see also

    see also

    see

    see