29
The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi [email protected] Purdue University OP.circle – p. 1/1

The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi [email protected]

  • Upload
    others

  • View
    7

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

The circle theorem and relatedtheorems for Gauss-type

quadrature rulesWalter [email protected]

Purdue University

OP.circle – p. 1/15

Page 2: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

Web Site

http : //www.cs.purdue.edu/

archives/2002/wxg/codes

OP.circle – p. 2/15

Page 3: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

The circle theorem for Jacobi weight functions

Jacobi weight function

w(t) = w(α,β)(t) := (1−t)α(1+t)β, α > −1, β > −1

Gauss-Jacobi quadrature formula

∫ 1

−1 f(t)w(t)dt =∑n

ν=1 λGν f(τG

ν ) + RGn (f)

RGn (p) = 0 for all p ∈ P2n−1

Davis and Rabinowitz (1961)

nλGν

πw(α,β)(τGν )

∼√

1 − (τGν )2, n → ∞

OP.circle – p. 3/15

Page 4: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

The circle theorem for Jacobi weight functions

Jacobi weight function

w(t) = w(α,β)(t) := (1−t)α(1+t)β, α > −1, β > −1

Gauss-Jacobi quadrature formula

∫ 1

−1 f(t)w(t)dt =∑n

ν=1 λGν f(τG

ν ) + RGn (f)

RGn (p) = 0 for all p ∈ P2n−1

Davis and Rabinowitz (1961)

nλGν

πw(α,β)(τGν )

∼√

1 − (τGν )2, n → ∞

OP.circle – p. 3/15

Page 5: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

plots

α, β = −.75(.25)1.0(.5)3.0, β ≥ α

n = 20 : 5 : 40 n = 60 : 5 : 80

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

open questions

1. true for more general weight functions?2. what about Gauss-Radau?3. limiting curves other than the circle?

OP.circle – p. 4/15

Page 6: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

plots

α, β = −.75(.25)1.0(.5)3.0, β ≥ α

n = 20 : 5 : 40 n = 60 : 5 : 80

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

open questions

1. true for more general weight functions?2. what about Gauss-Radau?3. limiting curves other than the circle?

OP.circle – p. 4/15

Page 7: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

The circle theorem for weight functions in the

Szegö class

w ∈ S iff

∫ 1

−1

ln w(t)√1 − t2

dt > −∞

Theorem If w ∈ S and 1/(√

1 − t2 w(t)) ∈ L1[∆],where ∆ is any compact subinterval of (−1, 1), then

nλν/(πw(τ ν)) ∼√

1 − τ 2ν on ∆, n → ∞.

Remarks

1. equality holds if w(t) = (1 − t2)−1/2

2. pointwise convergence almost everywhereholds if w ∈ S locally,

supp w = [−1, 1],∫

∆ ln w(t)dt > −∞

OP.circle – p. 5/15

Page 8: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

The circle theorem for weight functions in the

Szegö class

w ∈ S iff

∫ 1

−1

ln w(t)√1 − t2

dt > −∞

Theorem If w ∈ S and 1/(√

1 − t2 w(t)) ∈ L1[∆],where ∆ is any compact subinterval of (−1, 1), then

nλν/(πw(τ ν)) ∼√

1 − τ 2ν on ∆, n → ∞.

Remarks

1. equality holds if w(t) = (1 − t2)−1/2

2. pointwise convergence almost everywhereholds if w ∈ S locally,

supp w = [−1, 1],∫

∆ ln w(t)dt > −∞

OP.circle – p. 5/15

Page 9: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

ProofChristoffel function

λn(x; w) := minp∈Pn−1

p(x)=1

R

p2(t)w(t)dt

Nevai (1979)

nλn(x; w)

πw(x)∼

1 − x2, n → ∞

uniformly for x ∈ ∆

λn(τGν ; w) = λG

ν , ν = 1, 2, . . . , n

OP.circle – p. 6/15

Page 10: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

Example Pollaczek weight function (not in S)

w(t; a, b) =2 exp(ω arccos(t))

1 + exp(ωπ), |t| ≤ 1, a > |b|

where

ω = ω(t) = (at + b)(1 − t2)−1/2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

a = b = 0 a = 4, b = 1n = 380(5)400

OP.circle – p. 7/15

Page 11: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

Example Pollaczek weight function (not in S)

w(t; a, b) =2 exp(ω arccos(t))

1 + exp(ωπ), |t| ≤ 1, a > |b|

where

ω = ω(t) = (at + b)(1 − t2)−1/2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

a = b = 0 a = 4, b = 1n = 380(5)400

OP.circle – p. 7/15

Page 12: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

Gauss-Radau formula∫ 1

−1

f(t)w(t)dt = λR0 f(−1) +

n∑

ν=1

λRν f(τR

ν ) + RRn (f)

Theorem Under the conditions of the previoustheorem, the Gauss-Radau formula admits a circletheorem.

Proof Let wR(t) = (t + 1)w(t). Then

τRν are the zeros of πn( · ; wR)

Define

`∗ν(t) =∏

µ6=ν

t − τRµ

τRν − τR

µ

, ν = 1, 2, . . . , n

OP.circle – p. 8/15

Page 13: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

Gauss-Radau formula∫ 1

−1

f(t)w(t)dt = λR0 f(−1) +

n∑

ν=1

λRν f(τR

ν ) + RRn (f)

Theorem Under the conditions of the previoustheorem, the Gauss-Radau formula admits a circletheorem.Proof Let wR(t) = (t + 1)w(t). Then

τRν are the zeros of πn( · ; wR)

Define

`∗ν(t) =∏

µ6=ν

t − τRµ

τRν − τR

µ

, ν = 1, 2, . . . , n

OP.circle – p. 8/15

Page 14: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

proof (cont’) Gauss-Radau is interpolatory,

λRν =

∫ 1

−1(t+1)πn(t;wR)

(τRν +1)(t−τR

ν )π′n(τR

ν ;wR) w(t)dt

=∫ 1

−1(t+1)`∗ν(t)

τRν +1 w(t)dt.

Let λ∗ν , ν = 1, 2, . . . , n, be the Gauss weights for wR,

λ∗ν =

∫ 1

−1 `∗ν(t)wR(t)dt =

∫ 1

−1 `∗ν(t)(t + 1)w(t)dt

= (τRν + 1)λR

ν

Then

nλRν

πw(τRν ) = nλ∗

ν

π(τRν +1)w(τR

ν ) = nλ∗

ν

πwR(τRν ) ∼

1 − (τRν )2 �

OP.circle – p. 9/15

Page 15: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

proof (cont’) Gauss-Radau is interpolatory,

λRν =

∫ 1

−1(t+1)πn(t;wR)

(τRν +1)(t−τR

ν )π′n(τR

ν ;wR) w(t)dt

=∫ 1

−1(t+1)`∗ν(t)

τRν +1 w(t)dt.

Let λ∗ν , ν = 1, 2, . . . , n, be the Gauss weights for wR,

λ∗ν =

∫ 1

−1 `∗ν(t)wR(t)dt =

∫ 1

−1 `∗ν(t)(t + 1)w(t)dt

= (τRν + 1)λR

ν

Then

nλRν

πw(τRν ) = nλ∗

ν

π(τRν +1)w(τR

ν ) = nλ∗

ν

πwR(τRν ) ∼

1 − (τRν )2 �

OP.circle – p. 9/15

Page 16: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

proof (cont’) Gauss-Radau is interpolatory,

λRν =

∫ 1

−1(t+1)πn(t;wR)

(τRν +1)(t−τR

ν )π′n(τR

ν ;wR) w(t)dt

=∫ 1

−1(t+1)`∗ν(t)

τRν +1 w(t)dt.

Let λ∗ν , ν = 1, 2, . . . , n, be the Gauss weights for wR,

λ∗ν =

∫ 1

−1 `∗ν(t)wR(t)dt =

∫ 1

−1 `∗ν(t)(t + 1)w(t)dt

= (τRν + 1)λR

ν

Then

nλRν

πw(τRν ) = nλ∗

ν

π(τRν +1)w(τR

ν ) = nλ∗

ν

πwR(τRν ) ∼

1 − (τRν )2 �

OP.circle – p. 9/15

Page 17: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

Example w(t) = tα ln(1/t) on [0, 1], α > −1Gauss-Radau∫ 1

0 f(t)tα ln(1/t)dt = λ0f(0) +∑n

ν=1 λνf(τν) + Rn(f)

circle theorem (transformed to [0, 1])

nλν

πταν ln(1/τν) ∼

(12)

2 − (τν − 12)

2, n → ∞.

plot (α = −.75(.25)1.0(.5)3)

0 0.2 0.4 0.6 0.8 1−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

n = 20(5)40 n = 60(5)80

OP.circle – p. 10/15

Page 18: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

Example w(t) = tα ln(1/t) on [0, 1], α > −1Gauss-Radau∫ 1

0 f(t)tα ln(1/t)dt = λ0f(0) +∑n

ν=1 λνf(τν) + Rn(f)

circle theorem (transformed to [0, 1])

nλν

πταν ln(1/τν) ∼

(12)

2 − (τν − 12)

2, n → ∞.

plot (α = −.75(.25)1.0(.5)3)

0 0.2 0.4 0.6 0.8 1−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.2 0.4 0.6 0.8 1−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

n = 20(5)40 n = 60(5)80OP.circle – p. 10/15

Page 19: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

Gauss-Lobatto formula∫ 1

−1 f(t)w(t)dt = λL0 f(−1) +

∑nν=1 λL

ν f(τLν )

+λLn+1f(1) + RL

n(f)

Theorem Under the conditions of the previoustheorem, the Gauss-Lobatto formula admits a circletheorem.

Proof Similar to Gauss-Radau:

nλLν

πw(τLν )

=nλ∗

ν

π(1 − (τLν )2)w(τL

ν )

=nλ∗

ν

πwL(τLν )

∼√

1 − (τLν )2 �

OP.circle – p. 11/15

Page 20: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

Gauss-Lobatto formula∫ 1

−1 f(t)w(t)dt = λL0 f(−1) +

∑nν=1 λL

ν f(τLν )

+λLn+1f(1) + RL

n(f)

Theorem Under the conditions of the previoustheorem, the Gauss-Lobatto formula admits a circletheorem.Proof Similar to Gauss-Radau:

nλLν

πw(τLν )

=nλ∗

ν

π(1 − (τLν )2)w(τL

ν )

=nλ∗

ν

πwL(τLν )

∼√

1 − (τLν )2 �

OP.circle – p. 11/15

Page 21: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

Gauss-Kronrod formula

(GK)∫ 1

−1 f(t)w(t)dt =∑n

ν=1 λKν f(τG

ν )

+∑n+1

µ=1 λ∗Kµ f(τK

µ ) + RKn (f)

Theorem Assume (GK) exists with τKµ distinct

nodes in (−1, 1) and τKµ 6= τG

ν , all µ, ν, and the Gaussformula for w admits a circle theorem. Then, undersome additional (technical) conditions,

2nλKν

πw(τGν )

∼√

1 − (τGν )2,

2nλ∗Kµ

πw(τKµ )

∼√

1 − (τKµ )2

Proof Similar to previous proofs. �

OP.circle – p. 12/15

Page 22: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

Gauss-Kronrod formula

(GK)∫ 1

−1 f(t)w(t)dt =∑n

ν=1 λKν f(τG

ν )

+∑n+1

µ=1 λ∗Kµ f(τK

µ ) + RKn (f)

Theorem Assume (GK) exists with τKµ distinct

nodes in (−1, 1) and τKµ 6= τG

ν , all µ, ν, and the Gaussformula for w admits a circle theorem. Then, undersome additional (technical) conditions,

2nλKν

πw(τGν )

∼√

1 − (τGν )2,

2nλ∗Kµ

πw(τKµ )

∼√

1 − (τKµ )2

Proof Similar to previous proofs. �

OP.circle – p. 12/15

Page 23: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

Gauss-Kronrod formula

(GK)∫ 1

−1 f(t)w(t)dt =∑n

ν=1 λKν f(τG

ν )

+∑n+1

µ=1 λ∗Kµ f(τK

µ ) + RKn (f)

Theorem Assume (GK) exists with τKµ distinct

nodes in (−1, 1) and τKµ 6= τG

ν , all µ, ν, and the Gaussformula for w admits a circle theorem. Then, undersome additional (technical) conditions,

2nλKν

πw(τGν )

∼√

1 − (τGν )2,

2nλ∗Kµ

πw(τKµ )

∼√

1 − (τKµ )2

Proof Similar to previous proofs. �

OP.circle – p. 12/15

Page 24: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

Example Jacobi weight w(α,β), α, β ∈ [0, 52)

Peherstorfer and Petras (2003)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

1.2

n = 20(5)40 60(5)80α, β = 0(.4)2, β ≥ α

OP.circle – p. 13/15

Page 25: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

Connection with potential theory

density of the equilibrium measure ω[−1,1] of theinterval [−1, 1]

ω′[−1,1](t) = 1

π1√

1−t2, 0 < t < 1

Christoffel function and equilibrium measure

nλn(t; w)

w(t)∼ 1

ω′[−1,1](t)

, n → ∞

In general, for E ⊂ R a regular set and ∆ ⊂ E acompact set on which w satisfies the Szegö condition(Totik, 2000),

nλGν

w(τGν )

∼ 1

ω′E(τG

ν )on ∆

OP.circle – p. 14/15

Page 26: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

Connection with potential theory

density of the equilibrium measure ω[−1,1] of theinterval [−1, 1]

ω′[−1,1](t) = 1

π1√

1−t2, 0 < t < 1

Christoffel function and equilibrium measure

nλn(t; w)

w(t)∼ 1

ω′[−1,1](t)

, n → ∞

In general, for E ⊂ R a regular set and ∆ ⊂ E acompact set on which w satisfies the Szegö condition(Totik, 2000),

nλGν

w(τGν )

∼ 1

ω′E(τG

ν )on ∆

OP.circle – p. 14/15

Page 27: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

Example weight function supported on two intervals

w(t) =

|t|γ(t2 − ξ2)p(1 − t2)q, t ∈ [−1,−ξ] ∪ [ξ, 1],

0 elsewhere,

plot (for ξ = 12 and p = q = ±1

2 , γ = ±1)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

n = 60(5)80

density of equilibrium measure

ω′[−1,−ξ]∪[ξ,1](t) = π−1|t|(t2 − ξ2)−1/2(1 − t2)−1/2

OP.circle – p. 15/15

Page 28: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

Example weight function supported on two intervals

w(t) =

|t|γ(t2 − ξ2)p(1 − t2)q, t ∈ [−1,−ξ] ∪ [ξ, 1],

0 elsewhere,

plot (for ξ = 12 and p = q = ±1

2 , γ = ±1)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

n = 60(5)80

density of equilibrium measure

ω′[−1,−ξ]∪[ξ,1](t) = π−1|t|(t2 − ξ2)−1/2(1 − t2)−1/2

OP.circle – p. 15/15

Page 29: The circle theorem and related theorems for Gauss-type quadrature … · 2006-01-17 · The circle theorem and related theorems for Gauss-type quadrature rules Walter Gautschi wxg@cs.purdue.edu

Example weight function supported on two intervals

w(t) =

|t|γ(t2 − ξ2)p(1 − t2)q, t ∈ [−1,−ξ] ∪ [ξ, 1],

0 elsewhere,

plot (for ξ = 12 and p = q = ±1

2 , γ = ±1)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

n = 60(5)80

density of equilibrium measure

ω′[−1,−ξ]∪[ξ,1](t) = π−1|t|(t2 − ξ2)−1/2(1 − t2)−1/2

OP.circle – p. 15/15