19
December 2009 Challenge the future Delft University of Technology The Delft Offshore Wind Turbine Concept (DOT) Antonio Jarquín Laguna A hydraulic solution for offshore wind energy

The Delft Offshore Wind Turbine Concept (DOT) - we-at · PDF fileDecember 2009 Challenge the future Delft University of Technology The Delft Offshore Wind Turbine Concept (DOT) Antonio

Embed Size (px)

Citation preview

Page 1: The Delft Offshore Wind Turbine Concept (DOT) - we-at · PDF fileDecember 2009 Challenge the future Delft University of Technology The Delft Offshore Wind Turbine Concept (DOT) Antonio

December 2009

Challenge the future

DelftUniversity ofTechnology

The Delft Offshore Wind Turbine Concept (DOT)

Antonio Jarquín Laguna

A hydraulic solution for offshore wind energy

Page 2: The Delft Offshore Wind Turbine Concept (DOT) - we-at · PDF fileDecember 2009 Challenge the future Delft University of Technology The Delft Offshore Wind Turbine Concept (DOT) Antonio

2The Delft Offshore Wind Turbine Concept (DOT) | 16

Table of Contents

• Current turbine technology

• Delft Offshore Turbines

• Hydraulic energy transfer

• Overview DOT project

• Preliminary results

• Conclusions

Page 3: The Delft Offshore Wind Turbine Concept (DOT) - we-at · PDF fileDecember 2009 Challenge the future Delft University of Technology The Delft Offshore Wind Turbine Concept (DOT) Antonio

3The Delft Offshore Wind Turbine Concept (DOT) | 16

Current Turbine Technology

General

• Danish concept (3 blades)

• Heavy nacelle

• Huge gearbox + big generator

• Huge amounts of switch gear

Many components

�many failures

� high maintenance

Offshore

• Difficult installation

• Difficult maintenance

� Not yet cost effective without government subsidies

Page 4: The Delft Offshore Wind Turbine Concept (DOT) - we-at · PDF fileDecember 2009 Challenge the future Delft University of Technology The Delft Offshore Wind Turbine Concept (DOT) Antonio

4The Delft Offshore Wind Turbine Concept (DOT) | 16

Delft Offshore Turbines (DOT)

TU Delft: step away from incremental improvements

�Design turbines specifically for offshore

Two main drivers:

• Size

• Cost of energy

So, let us start by… ?

Page 5: The Delft Offshore Wind Turbine Concept (DOT) - we-at · PDF fileDecember 2009 Challenge the future Delft University of Technology The Delft Offshore Wind Turbine Concept (DOT) Antonio

5The Delft Offshore Wind Turbine Concept (DOT) | 16

Delft Offshore Turbines (DOT)

Everything out of the nacelle!

So, we only have:

• rotating kinetic energy• a point to deliver electrons

� Everything in between is for us to design

?

Page 6: The Delft Offshore Wind Turbine Concept (DOT) - we-at · PDF fileDecember 2009 Challenge the future Delft University of Technology The Delft Offshore Wind Turbine Concept (DOT) Antonio

6The Delft Offshore Wind Turbine Concept (DOT) | 16

Power Transmission

• Current systems:

• High top-mass• High cost of components• Dynamic loads• High maintenance

• Solution?

� use hydraulic power transmission: we pump!

Delft Offshore Turbines (DOT)

Page 7: The Delft Offshore Wind Turbine Concept (DOT) - we-at · PDF fileDecember 2009 Challenge the future Delft University of Technology The Delft Offshore Wind Turbine Concept (DOT) Antonio

7The Delft Offshore Wind Turbine Concept (DOT) | 16

Hydraulic energy transfer

Hydraulic Wind Turbines

• Advantages

• Gearless transmission

• More robust than mechanical

gearboxes

• High power-to-weight ratio

• Damping of dynamic loads

• High reliability/Low maintenance

• Challenges

• High efficiency

• Seawater as hydraulic fluid

• Wide operational range (!)

• Vital components not available

(Scaling effects)

Page 8: The Delft Offshore Wind Turbine Concept (DOT) - we-at · PDF fileDecember 2009 Challenge the future Delft University of Technology The Delft Offshore Wind Turbine Concept (DOT) Antonio

8The Delft Offshore Wind Turbine Concept (DOT) | 16

Overview DOT

Fixed displacement

pump

-No need of control without

significant loss of efficiency

- ηvol can be improved (internal seals and

scaling effects)

Fixed displacement

motor

Variable displacement

pump

-No need of control, high efficiency

-Control to get high performance

with high pressures and low flows

-Constant pressure to allow

connection with other turbines

-Reduced friction losses

Seawater line

Page 9: The Delft Offshore Wind Turbine Concept (DOT) - we-at · PDF fileDecember 2009 Challenge the future Delft University of Technology The Delft Offshore Wind Turbine Concept (DOT) Antonio

9The Delft Offshore Wind Turbine Concept (DOT) | 16

Centralized electricity generation

Hydro Plant

Electricity to shore

Page 10: The Delft Offshore Wind Turbine Concept (DOT) - we-at · PDF fileDecember 2009 Challenge the future Delft University of Technology The Delft Offshore Wind Turbine Concept (DOT) Antonio

10The Delft Offshore Wind Turbine Concept (DOT) | 16

Centralized electricity generation

• Hydraulic turbines

• Hydro- power plants have the highest operating

efficiency of all known generation systems

• No need of dam or large reservoir

• Large capacities up to 400 MW per unit

• High efficiency at partial loads (>90 %)

• Onshore operation and control

• Largely automated (operating costs are relatively low)

• High Voltage

Page 11: The Delft Offshore Wind Turbine Concept (DOT) - we-at · PDF fileDecember 2009 Challenge the future Delft University of Technology The Delft Offshore Wind Turbine Concept (DOT) Antonio

11The Delft Offshore Wind Turbine Concept (DOT) | 16

Hydraulic wind developments

Current hydraulic wind developments(Hydraulic transmission)

Page 12: The Delft Offshore Wind Turbine Concept (DOT) - we-at · PDF fileDecember 2009 Challenge the future Delft University of Technology The Delft Offshore Wind Turbine Concept (DOT) Antonio

12The Delft Offshore Wind Turbine Concept (DOT) | 16

Preliminary Results

For a single turbine

• Comparable power

compared with a

commercial turbine

• Limited by rotor loads

No longer limited by Max torque of individual generators!!

0 2 4 6 8 10 12 14 160

2

4

6

8

10

12Powercurves

Wind Speed U [m/s]

Pow

er [

MW

]

PDOT single turbine

PRePow er 5 MW

Page 13: The Delft Offshore Wind Turbine Concept (DOT) - we-at · PDF fileDecember 2009 Challenge the future Delft University of Technology The Delft Offshore Wind Turbine Concept (DOT) Antonio

13The Delft Offshore Wind Turbine Concept (DOT) | 16

Preliminary Results

For 20x turbinesConnected in parallel

• Lower energy

production for low

wind speeds

• High potential for high

wind speeds

0 2 4 6 8 10 12 14 160

50

100

150

200

Powercurves Total

Wind Speed U [m/s]

Pow

er [

MW

]

PDOT

PRePow er 5MW W20x

Page 14: The Delft Offshore Wind Turbine Concept (DOT) - we-at · PDF fileDecember 2009 Challenge the future Delft University of Technology The Delft Offshore Wind Turbine Concept (DOT) Antonio

14The Delft Offshore Wind Turbine Concept (DOT) | 16

Preliminary Results

Efficiencies

• Main limitation driven

by the variable

displacement pump

performance

0 2 4 6 8 10 12 14 160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Energy transfer performance

Wind Speed U [m/s]

η

ηgenerator

0 2 4 6 8 10 12 14 160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Energy transfer performance

Wind Speed U [m/s]

η

ηgenerator

ηpiping

0 2 4 6 8 10 12 14 160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Energy transfer performance

Wind Speed U [m/s]

η

ηgenerator

ηpiping

ηclosed loop

0 2 4 6 8 10 12 14 160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Energy transfer performance

Wind Speed U [m/s]

η

ηgenerator

ηpiping

ηclosed loop

ηvarpump

0 2 4 6 8 10 12 14 160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Energy transfer performance

Wind Speed U [m/s]

η

ηgenerator

ηpiping

ηclosed loop

ηvarpump

ηFinal

Page 15: The Delft Offshore Wind Turbine Concept (DOT) - we-at · PDF fileDecember 2009 Challenge the future Delft University of Technology The Delft Offshore Wind Turbine Concept (DOT) Antonio

15The Delft Offshore Wind Turbine Concept (DOT) | 16

Conclusions

• Centralized electricity generation can be possible with hydraulics

transmission

• High potential for high wind speeds

• Further analysis in dynamics and control

• Economical study needed

• Challenges

• Seawater as an hydraulic fluid (wear and corrosion)

• Availability of components

A solution for large wind offshore

Page 16: The Delft Offshore Wind Turbine Concept (DOT) - we-at · PDF fileDecember 2009 Challenge the future Delft University of Technology The Delft Offshore Wind Turbine Concept (DOT) Antonio

16The Delft Offshore Wind Turbine Concept (DOT) | 16

es, we can!

Thank you!!

Questions…?

Page 17: The Delft Offshore Wind Turbine Concept (DOT) - we-at · PDF fileDecember 2009 Challenge the future Delft University of Technology The Delft Offshore Wind Turbine Concept (DOT) Antonio

17The Delft Offshore Wind Turbine Concept (DOT) | 16

General configuration

~

M

20x

300 bar

∆p up to 350 bar

High pressure

Low

pressure

Rotor

Pump 1

Motor

Pump 2

Seawater

Pelton

turbine

Synch

Generator

Page 18: The Delft Offshore Wind Turbine Concept (DOT) - we-at · PDF fileDecember 2009 Challenge the future Delft University of Technology The Delft Offshore Wind Turbine Concept (DOT) Antonio

18The Delft Offshore Wind Turbine Concept (DOT) | 16

Concept of the DOT energy transfer system

Mechanical

Energy

Hydraulic

Energy

Electrical

Energy

Wind

Energy (KE)

RotorWind SpeedT

ωHydraulic

Pump

p

Q

Generato

r

Platform

Electrical

power

Page 19: The Delft Offshore Wind Turbine Concept (DOT) - we-at · PDF fileDecember 2009 Challenge the future Delft University of Technology The Delft Offshore Wind Turbine Concept (DOT) Antonio

19The Delft Offshore Wind Turbine Concept (DOT) | 16

0 2 4 6 8 10 12 14 160.7

0.75

0.8

0.85

0.9

0.95

1Energy transfer performance

Wind Speed U [m/s]

η max

Fix Dp

Var Dp

Variable displacement pump

0 2 4 6 8 10 12 14 160

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2Volumetric displacement of the pump

Wind Speed U [m/s]

Dp [

m3 /r

pm]

0 2 4 6 8 10 12 14 160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Energy transfer performance

Wind Speed U [m/s]

η

0.05 Dpnom

0 2 4 6 8 10 12 14 160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Energy transfer performance

Wind Speed U [m/s]

η

0.05 Dpnom

0.10 Dpnom

0 2 4 6 8 10 12 14 160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Energy transfer performance

Wind Speed U [m/s]

η

0.05 Dpnom

0.10 Dpnom

0.15 Dpnom

0 2 4 6 8 10 12 14 160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Energy transfer performance

Wind Speed U [m/s]

η

0.05 Dpnom

0.10 Dpnom

0.15 Dpnom

0.25 Dpnom

0 2 4 6 8 10 12 14 160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Energy transfer performance

Wind Speed U [m/s]

η

0.05 Dpnom

0.10 Dpnom

0.15 Dpnom

0.25 Dpnom

0.50 Dpnom

0 2 4 6 8 10 12 14 160

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1Energy transfer performance

Wind Speed U [m/s]

η

0.05 Dpnom

0.10 Dpnom

0.15 Dpnom

0.25 Dpnom

0.50 Dpnom

1.0 Dpnom