20
Oura, M. Osaka J. Math. 34 (1997), 53-72 THE DIMENSION FORMULA FOR THE RING OF CODE POLYNOMIALS IN GENUS 4 MANABU OURA (Received March 15, 1996) 1. Introduction The purpose of this paper is to study the dimension formula for the invariant ring C[/ α for aeF^] 1 **, which may be considered as the ring of code polynomials in genus 4. We also give all characteristic polynomials of elements in H 4 . The main ingredient is the determination of the conjugacy classes of the symplectic group 5/7(8,2). Our result will be useful for the investigation of the Siegel modular forms in genus four. We recall from [10, 11] that the finite group H g is (up to ±1) just the image of the modular group Γ g = Sp(2g,Z) under the theta representation (of index 1) and that the ring of modular forms of even weight is given by Λ(Γ g ) (2) = Θr *] = (qyj*- / {relation})", 2|fc where N denotes the normalization in its field of fractions and "relation" are the theta relations. However, the generators and the dimension formulas for A(Γ g ) are known only for genus g<3. On the other hand, the invariant ring C[/ α ] Hg may be considered as the ring of code polynomials in genus g. In [9], there is the definition of the g-th weight polynomial for codes (codes mean the binary linear codes) and the connections among codes, lattices, the invariant rings of the finite groups, and the theory of modular forms were studied (cf. [1], [4], [5], [8], [16]). In particular, it was shown that the invariant ring of the group <// g 8 >, which is the subring of C[/ α ] H «, is generated by the g-th weight polynomials for self-dual doubly-even codes, where £ 8 is the primitive 8-th root of unity. This invariant ring corresponds to the ring of the modular forms of weights divisible by 4. The author would like to thank Prof. Bannai for suggesting this work and for his encouragement. He owes thanks to Prof. Runge for his critical comments on the original manuscript. Furthermore, the author would like to thank the referee for providing him with many improvements thoughout the whole paper.

THE DIMENSION FORMULA FOR THE RING OF CODE …

  • Upload
    others

  • View
    3

  • Download
    0

Embed Size (px)

Citation preview

Oura, M.Osaka J. Math.34 (1997), 53-72

THE DIMENSION FORMULA FOR THE RING OFCODE POLYNOMIALS IN GENUS 4

MANABU OURA

(Received March 15, 1996)

1. Introduction

The purpose of this paper is to study the dimension formula for the invariantring C[/α for aeF^]1**, which may be considered as the ring of code polynomialsin genus 4. We also give all characteristic polynomials of elements in H4. Themain ingredient is the determination of the conjugacy classes of the symplecticgroup 5/7(8,2). Our result will be useful for the investigation of the Siegel modularforms in genus four.

We recall from [10, 11] that the finite group Hg is (up to ±1) just the imageof the modular group Γg = Sp(2g,Z) under the theta representation (of index 1)and that the ring of modular forms of even weight is given by

Λ(Γg)(2) = Θ [Γr*] = (qyj*- / {relation})",2|fc

where N denotes the normalization in its field of fractions and "relation" are thetheta relations. However, the generators and the dimension formulas for A(Γg) areknown only for genus g<3.

On the other hand, the invariant ring C[/α]Hg may be considered as the ring

of code polynomials in genus g. In [9], there is the definition of the g-th weightpolynomial for codes (codes mean the binary linear codes) and the connectionsamong codes, lattices, the invariant rings of the finite groups, and the theory ofmodular forms were studied (cf. [1], [4], [5], [8], [16]). In particular, it wasshown that the invariant ring of the group <//g,£8>, which is the subring ofC[/α]

H«, is generated by the g-th weight polynomials for self-dual doubly-evencodes, where £8 is the primitive 8-th root of unity. This invariant ring correspondsto the ring of the modular forms of weights divisible by 4.

The author would like to thank Prof. Bannai for suggesting this work andfor his encouragement. He owes thanks to Prof. Runge for his critical commentson the original manuscript. Furthermore, the author would like to thank thereferee for providing him with many improvements thoughout the whole paper.

54 M. OURA

2. On the group Hg

In this section, we study the group Hg. In addition to Runge, the group Hg

has been studied by several authors, for example, see [4], [7].

Let V be the g-dimensional vector space over the field of two elements, i.e.,K=Ff. For x,ye V, let x-y denote the usual dot product. Set

g'~ v 2

and for a symmetric g x g matrix S9

/)s:=diag(/S[Λ] with aeV),

where S[ά]:=aS*a. Let

7/^:=<7^,Ds|S runs over all symmetric matrices in Matgxg(Z)>

be the subgroup of Gl(28

9C) generated by the elements Tg and the Ds.

We get for the invarint ring C[/a]Hg the dimension formula

Φn.(0= Σ (dιmC[/Jd^ =_^___ ,

series of Hg .

where C[/fl]?g is the rf-th homogeneous part of C[/α]

Hg, ΦHg(0 is called the Molien

s of Hg .The following lemma gives the simplification we use.

Lemma 2.1 (Lemma 2.1 [9]). One has an exact sequence

where Ng:=(i,Dl,T~lDlTgy and the homomorphism φ is given by the conjugation

of Hg on the F2-vector space Λ^/</>. Π

Therefore we have the obvious formula

where {Q} are the conjugacy classes of Sp(2g,2) and zi is some element of Hg

with φ(zi)eCi. Our computation is done using (2.1).Finally we list the sizes of groups.

CODE POLYNOMIALS IN GENUS 4 55

In our case fe = 4), \N4\ = 1,024 = 210, \Sp(8,2)\ = 47,377,612,800 = 2163552 7 17,

\H4\= 48,5 14,675,507, 200 = 2263552 7 17.

REMARK. Hi9 <//1?C8>, //2

are the reflection groups No.8, No.9, No.31 in[14], respectively (cf. Proposition 2.6 [10]).

3. On 5/7(8,2) and its conjugacy classes

In this section, we study the symplectic group Sp(8,2). This is identified

with the Chevalley group of type (C4) over the field of two elements. We give all

the characteristic polynomials of elements in //4 . We remark that we cannot read

off representatives of the conjugacy classes of S/?(8,2) from Atlas [3] although it

is the good reference for the finite simple groups.

As is said, 5X8,2) is one of the Chevalley groups. The properties of such

groups are known and we describe what we need.

Let Δ = {±2f£, ±ξi±ξj (/</)! 1 </',./< 4} be the root system of type (C4), andchoose a = ξί — ξ2, b = ξ2 — ξ^ c = ξ3 — ξ4, d=2ξ4 for a fundamental system Π of

roots. We denote by Δ"1" the set of positive roots with respect to Π. We write an

element αα -f βb + yc + δd of Δ + as aβyδ. For example, we write 1023 for a + 2c + 3d.

Eij is the elementary matrix of size 8 x 8 with 1 in the (/J)-entry. For 1 < ij < 4,

xξi -</=!+ E^ + E4+jA + i (i <y ),

Then 5X8,2) is generated by xr (reΔ) and is known to be one of the finite simple

groups (cf. [3]).

Let Xr be the group generated by xr and put ̂ = AΓ

0100Ar

0010Ar

0110Ar

0001Ύ0011

^o 1 1 1^002 i^o 1 2 1^0221^1 ooo^i i oo^i 1 1 o^i 1 1 i^i 12 i^i 22 1^222 1 Then B is a Sylow2-subgroup of S/?(8,2) and is normal in 5/?(8,2).

Put nr = xrx_rxr and 7V=<« r | reΔ>. Λf is isomorphic to the Weyl group of

type (C4). We fix the following correspondence:

~ 2 :=[0,1,0,0,0,0,0,0],

56 M. OURA

<E3 ~ 3:= [0,0,1,0,0,0,0,0],

£4 ~ 4:= [0,0,0,1,0,0,0,0],

-^ <->-_!:= [0,0,0,0,1,0,0,0],

-ί2~:z2:= [0,0,0,0,0,1,0,0],

- £3 ̂ ^-3:= [0,0,0,0,0,0,1,0],

-ξ4^-4:= [0,0,0,0,0,0,0,1].

An element of N is uniquely determined by its natural action on 1, 2, 3, 4. IfnεN satisfies In = a9 ?« = /?, 3« = y, 4n = δ, then we denote n by w(α,/?,y,(5). Forexample, we have

01000000

00100000

00001000

00000001

00000100

00000010

10000000

00010000

In the following, we give the conjugacy classes of S/?(8,2) and all characteristicpolynomials of elements in 7/4. To determine the conjugacy classes of S/?(8,2),we have to show

(i) No two elements in the list are conjugate in S/?(8,2),

(ii)

where CSp(8>2)(c,) denotes the centralizer group of c{ in 5/?(8,2). These statementsare proved using GAP [13]. Then we compute 1024x81 determinants of size16 x 16. Since H4 is a subgroup of SU(2\Z\^^ (Proposition 2.6 [10]), thepolynomials have the type Σ0:δl^16έi/ with α0 = α16 = l, άi =α1 5, ά2 = α14, ά3 = α1 3,

ά4 = 012, ^5 = ̂ !!, ά6=α1 0, άΊ—ag, and άs = as (A bar denotes complexconjugation).

There are 81 boxes below and the ί'-th box (0<z<80) gives the characteristicpolynomials of elements in z(7V4 . In each box, the first column gives the multiplicityof each polynomial. The next columns give the values of α1,α2, ,α8,respectively. For example, in the first box, the 2 in the first column means thatthere are 2 occurences of the polynomial in the form 1+ (8 — 8/)ί — 64/f2 + (— 168

CODE POLYNOMIALS IN GENUS 4 57

Table.

order = 1, co = 1, \CSp(Λ,2)M\ = 473776128002

5042

256256

22

8-8:0

8 + 8:'00

-8 - 8:-8 + 8:

-64:0

64:8t

-8i64i

-64*

-168- 168:0

-168+168:00

168 - 168i168 + 168:

-644-4

-644-28-28

-644-644

-952 + 952:0

-952 - 952:00

952 + 952:'952 - 952:

2240:0

-2240:-56:

56i-2240:

2240:'

2136 -|- 2136:0

2136 - 2136:00

-2136 + 2136:-2136 - 2136:

33346

33347070

33343334

order = 2, GI = roooi, \CSp(e..2)(cι)\ = 185794560

2

504

2

256

256

2

2

8-8:

0

8 + 8:'

0

0

-8 - 8:

-8 + 8t

-64:

0

64:

8:'

-8:'

64:

-64:

-168- 168:

0

-168 + 168:

0

0

168 - 168:

168 + 168:

-644

-4

-644

-28

-28

-644

-644

-952 + 952:

0

-952 - 952:'

0

0

952 + 952:'

952 - 952:'

2240:

0

-2240:

-56:

56:

-2240:

2240:'

2136 + 2136:

0

2136 - 2136:'

0

0

-2136 + 2136:'

-2136 - 2136:

3334

6

3334

70

70

3334

3334

order = 2, 02 = #0100 » \Csp

4120

768120

444

8000

-8-8i

Si

24-8

08

24-24-24

24000

-2424t

-24i

-3628

-428

-36-36

-36

f 8 ι 2 )(c2)|= 8847360

-120000

120120t

-120i

-88-56

056

-8888

88

88000

-88881

-88i

19870

670

198198198

order = 2, c3 = α?oιoo*oi2i, |CsP(8,2)(c3)l = 29491204

240128128

4512

44

8

000

-80

-8i8ι

320

-8

8320

-32-32

88

000

-880

88i

-88i

188

-428

28188

4188188

328

00

0-328

0

-328i328i

480

0-56

56480

0-480-480

600

000

-6000

600ι-600i

646

67070

6466

646646

1632

38416

51232

1616

order = 2, c4 = 2:0100*0121 x i i i o , \CsP(8,2)(c*)\ = 4915240

0

-400

-4i4ί

8-8

08

08

-8-8

120

0-12

00

12i-12i

1228

-412

428

1212

40

0

-400

-4ι4i

-8-56

0-8

056

88

-200

020

00

-20«20z

-2670

6-26

670

-26-26

58 M. OURA

order = 2, c6 = xoioo^mo, \CSp(B.2)M\ = 73728016

96016

1616

404

-4t4i

000

00

-20

020

-20i20i

-20

-4-20

-20-20

36

0-36

-36ι36t"

640

64

-64-64

-20

020

-20i20ι'

-90

6-90

-90-90

order = 2, cβ = r0ιoo*oooι, \CSp(8 ι2)(c6)| = 147456

8480

864

3846488

4- 4i0

4 + 4i000

-4 + 4i

-4 - 4i

-I6i

0

I6i

Si

0

-Si

-16i

I6i

-20-20t'0

-20+20i0

0

0

20 + 20i

20 - 20t

-36

-4

-36

-28

4

-28

-36

-36

-28 + 28t'

0

-28 - 28t

0

0

0

28 - 28i

28 + 28ι

4Sι

0

-48i

-56i

0

56i

48t'

-48i

44 + 44t

0

44 - 44ι

0

0

0

-44 - 44i

-44 + 44i

70

6

70

70

6

70

70

70

order = 3, c7 = n(2,3,l,4), \C

Sp(6>2}(c

7)\ = 12960

16

480

480

16

16

16

4

0

0

-4

-4i

4t

6

-2

2

6

-6

-6

8

0

0

-8

Si

-Si

17

1

1

17

17

17

24

0

0

-24

-24i

24ι

22

-2

2

22

-22

-22

28

0

0

-28

28i

-28ι

36

4

4

36

36

36

order = 3, cβ = (xooιm(-4, -1, -2, -3))5, |C5p(8|2)(c8)| = 77760

256256256256

— 1

i

1-1

0000

5ι-5i

5-5

55

55

0000

-10-10

1010

lOi-10i

10-10

0000

order = 3, c9 = xoooιn(l, 2,3, -4), |C

ί5p(8(2)(c

9)| =4354560

4

504

4

504

4

4

8

0

-8ί

0

-8

Si

36

4

-36

-4

36

-36

112

0

112i

0

-112

-112i

266

10

266

10

266

266

504

0

-504i

0

-504

504i

784

16

-784

-16

784

-784

1016

0

1016z

0

-1016

-1016ι

1107

19

1107

19

1107

1107

order = 3, CJQ = xoooιn(-2, 3, -1, -4), |C'Spί8|2)(cιo)| =3888

64

384384

6464

64

2i

00

2-2i

-2

-3

-11

3-3

3

2i

00

-2-2i

2

-7

11

-7-7-7

-12i00

-1212i12

2

2-2

-22

-2

-8i00

8Si

-S

18

-2-2181818

CODE POLYNOMIALS IN GENUS 4 59

order = 4, cn = 2:0001*1110, l^5P(8.2)(cιι)| = 921608

240

8

240

8

8

512

4 - 4i0

4 + 4t'0

-4 +- 4i-4 - 4t

0

-12z4i

12t-4t

-12t12t

0

-4 - 4t0

-4 + 4«0

4 + 4t4-4i

0

24

-8

24

-8

24

24

4

36 - 36i0

36 + 36t0

-36 + 36t-36 - 36t

0

-28ι'-12t

28t

12t

-28i28t

0

28 + 28t0

28 - 28t0

-28-28t-28 + 28t

0

7814

78

14

78

78

6

order = 4, 012 = #000 1*1000 £1110^1111 , |C'sp(8,2)(ci2)| =921608

240240

8512

88

4- 4»00

4 + 4i0

-4 - 4t-4 + 4i

-20i4i

-4i20t

020t

-20t

-36 - 36t00

-36 + 36t0

36 - 36t36 + 36t

-104-8-8

-104-4

-104-104

-124+ 124:00

-124 - 124t0

124 + 124ί124 - 124t

252t-12t

12t-252t

0-252t

252i

220 + 220i00

220 - 220t0

-220+220t-220 - 220t

3341414

3346

334334

order = 4, 013 = #0100^0121^1100^2221 » I^Sj16

16

16

96

96

16

768

4

4i

-4t

0

0

-4

0

12

-12

-12

4

-4

12

0

28

-28t'28i

0

0

-28

0

52

52

52

4

4

52

4

84

84t

-84t0

0

-84

0

pίβ,2)(ci3)| = 36864116

-116-116

-4

4

116

0

140

-140t'140t

0

0

-1400

150

150

150

-10

-10

150

6

order = 4, cι4 = ^oiooa7oi2ixiioo, |C'sP(8,2)(ci4)| = 1228816

16

96

96

256

512

16

16

4

-4

0

0

0

0

-4i

4t

4

4

-4

4

0

0

-4

-4

-4

4

0

0

0

0

-4t

4t

-12

-12

4

4

4

-4

-12

-12

-12

12

0

0

0

0

12t

-12t

-4

-4

4

-4

0

0

4

4

12

-12

0

0

0

0

12t

-12t

22

22

-10

-10

6

6

22

22

order = 4, 015 = #0100^0001*1110, |C'sp(8,2)(ci5)| = 6144

32

384

32

32

32

512

2 -2z0

2 + 2i-2 + 2i-2 - 2i

0

0

0

0

0

0

0

6 + 6i0

6-61

-6 - 6i

-6 + 6t

0

8

0

8

8

8

4

-6 + 6t

0

-6 - 6i

6-6t

6 + 6t0

16t

0

-16t16i

-16ι0

-2 - 2i0

-2 + 2t2 + 2t2- 2t

0

-18

-2

-18

-18

-18

6

order = 4, GIG = xoιooa:oooι^ιιιo^ιιιι, |C'sp(8,2)(ci6)| = 614432

384323232

512

2 - 2 t0

2 + 2t-2 - 2t-2 + 2i

0

-8t0

8t8t

-8t0

-10- lOt0

-10+ lOt10 - lOt10 + lOi

0

-240

-24-24-24-4

-22 + 22i0

-22 - 22t22 + 22t22 - 22i

0

40i0

-40ι-40i

40i0

30 + 30t0

30 - 30t-30 + 30t-30 - 30t

0

46-24646466

60 M. OURA

order = 4, c17 = 270100*0121^1000, |Csp(8,2)(ci7)| = 307216

128192

12816

256256

1616

4

00

0-4

00

-4i4i

8

-40

48

00

-8-8

12

00

0-12

00

12ί-12z

16

80

816

4-4

1616

20

00

0-20

00

-20t20i

24-12

0

1224

00

-24-24

28000

-28

00

28t-2Si

30

14-2

1430

66

3030

order = 4, ciβ = #oιoo^oooι#Π2i , \C §p(B ,2)(cι*)\ = 3072

323232326464

384384

2- 2i-2 + 2i

2 + 2i-2 - 2i

0000

-4i-4i

4i4i4i

-4i00

-2 - 2i2 + 2i

-2 + 2i2- 2i

0000

-4-4-4-4-4-4-4

4

-6 + 6t6-6ί

-6-6t6 + 6t

0000

12i12t

-12t-12t

4i-4i

00

6 + 6t-6 - 6t

6-6t-6 + 6t'

0000

6666

-10-10

66

order = 4, cig = :roioo#ooio^ooii^222i» I^5p(8,2)(ci9)| = 1°243232

2563232

2562566464

2- 2i2 + 2i

0-2 + 2t-2 - 2i

0000

-4i4i0

~4i4i00

4t-4i

-2- 2i

-2-f 2t0

2 + 2t2-2t"

0000

000004

-4-8-8

2- 2i2 + 2t

0-2 + 2i-2 - 2i

0000

-4t4t0

-4t4t00

-12t12t'

-2 - 2t

-2 -I- 2t

02 + 2i2- 2i

0000

-2-2-2-2-2

66

1414

order = 4, c2o = a oioo^ooio^iooo, I^Spίβ,64

76864

6464

2

0-2

-2i2t

0

00

00

-2

02

-2t

2t

-4

0-4

-4-4

-6

06

6t

-61

2)(c2θ)| = 7680

00

00

6

0-6

6t-6t

6

-26

66

order = 4, 021 = a7oιoo*ooιo*oon*ιιιo> |C*5p(8,2)(c2i)| = 51264

64512

25664

64

2

-200

-2t2t

0

00

00

0

-2

200

-2t

2*

0

00

-400

2

-200

-2i2t

0

00000

-2

20

0-2t

2i

-2

-2-2

6-2

-2

CODE POLYNOMIALS IN GENUS 4 61

OΓdeΓ = 4, C22 = ̂ 0100^0010^0011^1110^2221, !

C'5pί8,2)(

c22)| = 512

64

64

64

64

512

256

2

2i

-2i

-2

0

0

4

-4

-4

4

0

0

6

-6t

6i

-6

0

0

8

8

8

8

0

4

10

lOt

-lOt

-10

0

0

12

-12

-12

12

0

0

14

-I4i

I4i

-14

0

0

14

14

14

14

-2

6

order = 5, c23 = *oooi^oonn(l, 2, -4,3), |C

f

Sp(8>2)(c23)| = 3600

16

480

16

480

16

16

-4t

0

4

0

4i

-4

-10

-2

10

2

-10

10

20i

0

20

0

-20i

-20

35

3

35

3

35

35

-52i

0

52

0

52i

-52

-68

-4

68

4

-68

68

80t

0

80

0

-80t

-80

85

5

85

5

85

85

order = 5, C24 = #ooio2'oiiin(-4, -3, -1, -2), |Cl

Sp(8(2)(c24 )| =300

256

256

256

256

— i

i

-1

1

0

0

0

0

0

0

0

0

0

0

0

0

3i

-3

3

-3

-3

3

3

0

0

0

0

0

0

0

0

order = 6, c25 = n(-4, -2, -1,3), |C5p(8i2)(c25)| = 864

256

32384

25632

3232

0

2 + 2i0

0-2 - 2i

-2 -f 2i2- 2i

-2i

4i0

2i4i

-4i-4i

0

00

00

00

-1

7

-1

-1777

0

8 + 8ι'0

0-8 - 8i

-8 -|- SiS-Si

2i

4i0

-2i4i

-4i-4i

0

6- 6t0

0-6 -|- 6i

-6 - 6i6 + 6t

4160

4161616

order = 6, c2β = n(-4, -1, -3, -2), \C Sp(

128512

6464

6464

128

00

-2i2ί2

-2

0

20

-2-2

22

-2

00

00

00

0

1

1

-3-3

-3-3

1

00

4t-4i

-4

4

0

8|2)(c26)| =9620

22

-2-2

-2

00

2»-2t

2-2

0

40

44

44

4

order = 6, c27 = n(-4,2,l,3), |Cr

Sp(8)2)(c27)| = 28825632

38432

2563232

02-2i

0-2 -|- 2i

0-2 - 2z

2 + 2i

2i-4i

0-4ι-2i

4i4i

0-4 - 4i

0

4 + 4i0

4- 4i-4 + 4;

-1-9-1-9-1-9-9

0-8 + 8i

08-8ι

08 + 8t

-8 - 8i

-2t12t

012Ϊ

2i-I2i-I2i

010 -f lOt

0-10- lOi

0-10-1- Wi

10 - lOi

4160

164

1616

62 M. OURA

order = 6, c28 = zooιι^oθ2in(2, -4,3, -1), |C

5p(

8|2)(c

28)| = 288

64

128

64

128

64

512

64

-2

0

0

-2t

0

2

2

-2

-2

2

-2

0

2

-4

0

-4i

0

4t'

0

4

5

1

5

1

5

1

5

-4

0

4i

0

-4i

0

4

6

-2

-6

2

-6

0

6

-6

0

-6i

0

6i

0

6

4

4

4

4

4

0

4

order = 6, c29 = ^oooi #0011 #0021 n(l, -2, -4,3), |Cr5p(8>2)(c29)| = 4608

128

51216

1921616

12816

0

0-4

04

4i

0-4t

-40808

-84

-8

0

0-8

08

-Si

08t

10

-22222

102

0

040

-4

-4t0

4t

-1600000

160

0

0-12

012

-12t0

12t

19

3193

19191919

order = 6, c30 = a:oo2in(l,4

l-3,2), |C

Sp(8ι2)(c

30)| = 13824

16

96

768

16

96

16

16

-4t

0

0

-4

0

4t

4

-12

-4

0

12

4

-12

12

24z'

0

0

-24

0

-24t

24

42

10

2

42

10

42

42

-60ι

0

0

-60

0

60i

60

-80

-16

0

80

16

-80

80

92i

0

0

-92

0

-92ϊ

92

99

19

3

99

19

99

99

order = 6, c3ι = :r 0ooiffooιι*oθ2irι(-4, -3, -2, 1), |C*sp(8ι2)(c3ι)| = 288

7686464

6464

0

2

2i-2

-2i

000

00

0

-4

4t4

-4t

-1

-5-5

-5-5

0

00

00

0

4-4

4-4

0

2-2i

-2

2t

0

00

00

order = 6, c32 = :rooιo#oooι*oi2in(l, 4, 3, -2), |Cί

Sp(8)2)(c32)| = 4320480

16

48016

1616

0-4

0

-4»

4i4

26

-2-6

-66

00

00

00

1-15

1-15

-15-15

024

024t

-24i-24

2-10-210

10-10

0-20

020t

-20t20

436

436

3636

order = 6, c33 = xoi2in(-l, -3, 2, -4), |C5p(8t2)(c33)| = 1152384384

643232323264

000

2 + 2t-2 - 2t-2 -|- 2t

2 - 2i0

00

-4t4i4i

-4i-4i

4i

000

-4 + 4i4 - 4 t4 + 4i

-4 - 4t0

2-2

-10-6-6-6-6

-10

000

-2-2t2 + 2t2 - 2 t

-2 -f 2t0

00

16t0000

-16t

000

-2 + 2i2 - 2t2 + 2i

-2 - 2i0

33

19-5-5-5-519

CODE POLYNOMIALS IN GENUS 4 63

order = 6, 034 = xoooι^oon^oιιι^oo2i^oi2i^(l» 2,3, -4),480

8888

256256

04 - 4 t4 + 4t

-4 - 4i-4 + 4t

00

0-16t

I6iIβi

-16t4t

-4i

0-24 - 24t-24 -f 24t

24 - 24ι24 + 24i

00

2-62-62-62-62-10-10

0-68 -|- 68t-68 - 68t

68 -f 68t68 - 68t

00

<?Sp(β,2)(c34)| = 69120

0128t

-128t-128t

128t-16t

16i

0108 + 108t108 - 108t

-108+ 108i-108- 108t

00

31631631631631919

order = 6, c35 = 0:0001^0111^0021^0121^(3, -4, -2,1), |C5p(8,2)(c35)| = 86476864

6464

64

0-2

22i

-2i

00

000

0000

0

-1

3

33

3

00

00

0

0-4-4

44

02

-22t

-2t

00

00

0

order = 6, 035 = ^oooι^oon^oιιι^oo2i^oi2i^(4, —2, — 1, -3), \CSp

128256

128256128128

-1 - t0

1 - t0

l + i-1 + f'

ti

— i— I

i— i

-1 + i0

1 + i0

1 - t-1 - i

3-1

3-1

33

-2 - 2i0

2-2 i0

2 + 2i-2 + 2t

0

2i0

-2t00

8.2)(c3β)| = 144-2 + 2t

0

2 + 2i0

2 - 2 t-2 - 2i

4-2

4-2

44

order = 6, c3? = (acoooιn(-4 f -2, -1, -3))3, |Cr

Sp(8|2)(c37)| = 1296256256128128

128

128

00

-1 - t

-1 + i1 + i1 - t

t— i

i— i

i

— i

00

3-3i3 + 3i

-3 + 3i-3 - 3i

-1-1

-5-5

-5

-5

00

2 + 2t2 - 2i

-2 - 2i-2 + 2i

2i-2i

-8i

Si-Si

Si

00

-6 + 6t-6 - 6i

6 -6i6 + 6i

-2-2

444

4

order = 6, c38 = (a"oooiaOoii^oii i^oi2in(l, -4, 2,3))2, |C'5p(8(2)(c38)| = 43264

38464

38464

64

20

-2i

0-2

2i

3

1-3-1

3

-3

60

6t0

-6

-6i

9

191

99

12

0-12t

0-12

12t

14-2

-142

14

-14

16

0I6i

0-16

-16t

18-218

-218

18

order = 6, c3g = (̂ oooin(4, 1, -2,3))

2, |C

5p(8|2)(c39)| = 288

256

256

256

256

-1

i

1

— t

0

0

0

0

-1

— t

1

t

1

1

1

1

0

0

0

0

-2

2

-2

2

2

2t

-2

-2t

0

0

0

0

order = 6, 040 = (a7ooιo^ooii^oin^oo2ia:oi2in(-2, -4,1,3))2, |C

f5p(8f2)(c4θ)| = I

728

256

256

256

256

1

— t

t

-1

0

0

0

0

-3

-3i

3i

3

-3

-3

-3

-3

0

0

0

0

2

-2

-2

2

2

2i

-2i

-2

0

0

υ0

64 M. OURA

order = 7, c4J = α:0oiin(-4, 2, 1, -3), |CSp(8ι2)(c4ι)| =42

64

38464

38464

64

-2

02

0-2i

2i

1

-1

1

1-1

-1

0

00

00

0

0

00

00

0

0

00

00

0

0

00

00

0

2

02

02i

-2i

4

04

044

order = 8, c42 = ^oioo^ooio^oooi, |C'sp(8,2)(c42)| = 384

32

19232

19232

32512

2- 2i

02-1- 2i

0-2 + 2i

-2 - Ίi0

-2i2t2i

-2t

-2f2t0

2 + 2ι

02- 2t

0-2 - 2i

-2 + Ίi0

80808

80

6-6t0

6 + 6i

0-6 + 6t-6-6t

0

-2i

2i2i

-2i-2i

2i0

6 + 6t

06-6«

0-6 - 6z

-6 + 6t0

14

-214-214

142

order = 8, 043 = oroioo^ooio^oooi^iiiij |^5p(8,2)(c43)| — 128

64

6464

64512128128

2

-2i2i

-2000

2

-2-2

20

-22

2

2t-2i

-2000

4

444000

6

-6t6t

-6000

6-6-6

602

-2

6

6i-6z-6

000

6

66

62

-2-2

order = 8, c4* = xoioo^ooio^oooi^iooo, |C'sp(8,2)(c44)| = 32128128

128128512

1 - ί

1-H

-! + «'-1 - t

0

00000

1 + i1 - i

-I -i

-1+f0

22220

1 - t

1 + f

-1 + f-1 - f

0

00

00

0

1 + f1 -i

-1 -f

-1+i0

22

22

-2

order = 8, c45 = ^oioo^ooio^oooi^ooii , I^Spίβ^ί^s)! = 38432

19232

1923232

512

2 - 2»0

2 + 2t'0

-2 - 2t-2 -f 2i

0

-6ί-2t'

6t2i6»

-6t0

-6 - 6i0

-6 + 6i0

6-6t6-|-6t'

0

-12_ 4

-12-4

-12-12

0

-10 -f Wi0

-10 - lOt0

10 -f Wi10 - 10ί

0

18t6t

-18i-6i

-I8i18i

0

14 -f 14<0

14 - 14t0

-14-f 14ι'-14- 14t

0

226

226

2222

2

order _ 8, c4β = #oιoo^ooιo^oooι#ooιι#ιooo> |C^5p(8f2)(c46)| = 32128

128128

128512

1 - t

1 + i-1 - t

-1 + i0

-2i

2i2i

-2i0

-1 -i

-1 + ί1 - i

1 + i0

-2

-2-2

-20

-1 + i-1 - ί

1 + i1 - ί

0

2f

-2ί-2ί

2f0

1+i1 -ί

-1 + i-1 - ί

0

2

22

22

CODE POLYNOMIALS IN GENUS 4 65

order = 8, 047 = ίCθl00^0010^0001ίPθ011^1110^1111^2221» I^Sρ(8,2)(c47)| = 128

6464

6464

512128

128

2-2t

2t-2

00

0

2-2

-22

0-2

2

2

2t-2t-2

00

0

00

00

04

4

-22t

-2t2

00

0

-22

2-2

0-6

6

-2-2i

2t2

00

0

-2-2

-2-2

26

6

order = 9, c48 = :roooira(-4, -l,3,-2), \CS

64

6464

384384

64

2t2

-2t

00

-2

o

3-3-1

1

3

-4t4

4t00

-4

5

55

11

5

6t

6

-6t00

-6

Pί8,2)(c48)| = 54

-7

7-7

-11

7

-8t

8

8i00

-8

9

991

1

9

order = 9, 049 = #ιιii^ii2iπ(-4, -1, -3, -2), \CSp(St

256

256256

256

— t

t1

-1

000

0

— tt

-1

1

-1

-1-1

-1

0

00

0

-1

-11

1

2)(C49)| = 27

I

—i1

-1

0

00

0

order = 10, c50 = xooιm(-4, -2,-lf-3), |C'sp(8,2)(c5θ)| = 8051264

12864

64

12864

0-2t

0

2t2

0-2

0-2

2-2

2

-22

0

2ι0

-2t

2

0-2

-1333

333

0-2ι

02i

2

0-2

0040

0

-4O

0000

000

1

151

151

order = 10, c5ι = xooiιn(-4, -1, -3, -2), |CSp(8t2)(c5ι)| = 20

256256256

256

I

— i

1-1

000

0

000

0

000

0

— t

t-1

1

1

1-1

-1

000

0

0

000

order = 10, c52 = x0oiin(-4, 2, -1, -3), \CSp(Bι2)

32

384256

32256

3232

2 + 2i

00

-2 - 2i

0-2 + 2i

2 - 2ί

4i

0-2i

4i2i

-4t

-4t

-2 + 2t00

2- 2i0

2 + 2t-2 - 2ι

11

-3

1-3

1

1

2 + 2i00

-2 - 2i

0-2 + 2i

2- 2i

(c52)| = 2400

04t

0

-4i00

4-4t00

-4 + 4t0

-4 - 4t

4 + 4i

9

15

95

99

66 M. OURA

order = 10, c5s = ̂ oooiΛ oonn(2, 1,4, -3), |C

Sp(8(2)(c53)| = 240

64

768

64

64

64

-2

0

-2i

2i

2

4

0

-4

-4

4

-6

0

6t'

-6i

6

9

1

9

9

9

-10

0

-lOi

lOt'

10

12

0

-12

-12

12

-12

0

12«

-I2i

12

13

1

13

13

13

order = 12, c54 = x0ooin(-4, -3, 2, 1), |CsP(8,2)(c54)| = 48

512

128128

128128

0

-1 -i

-1+t1 + ί1 -t

0

00

00

0

00

00

1

-1

-1

-1-1

0

00

00

0

2i

-2i

2i-2i

0

1 - i

1 + t

-i + i-1 - t

0

00

00

order = 12, 055 = xoooιn(-2, 1, -3, -4), |Cf

5p(8|2)(c55)| = 96

256128

25664

12864

64

64

00

02i

02

-2i

-2

0-2

0-2

22

-2

2

00

00

00

0

0

22

-2-2

2-2

-2

-2

00

0-2i

0-2

2t

2

00

00

00

0

0

00

0-2i

02

-2

3-1

33

-1

3

3

3

order = 12, c56 = #0001̂ (4, 1, -2,3), \C

Sp(

256

256

256

256

— t

-1

t

1

0

0

0

0

— t

1

t

-1

-1

-1

-1

-1

0

0

0

0

8,2)(C56)| = 24

0

0

0

0

0

0

0

0

0

0

0

0

order = 12, c57 = :r0oil^oo2in(-4, -1,3, -2), |CsP( 8 ,2)^57)1 = 48128

128128128512

1 - i

1 + i-1+t-1 - i

0

-2i

2i-2i

2i0

-2 - 2i

-2 + 2t2 + 2t

2-2ί0

-3-3-3

-3-1

-2 + 2t-2 - 2i

2-2i

2 + 2i0

4ί-4ι

4i

-4t0

3 + 3t3-3t

-3 - 3t'

-3 + 3ί0

4

44

40

order = 12, c58 = xoiii#oθ2ira(2,3, 1, -4), \CSp(8>2)(c5s)\ = 144128128128512128

-1 -i1 + i1 -i

0

2i2i

0-2t

00000

111

-11

-2 - 2i

2-2i

0-2 + 2i

0

00

00

1 - i

0-1 -i

4

4404

order = 12, 059 = xoooι^ooiizΌiιi27oi2in(l, —4,2,3), |C75p(8f2)(c59)| = 72

64384

64384

6464

-2i0

20

2i-2

-3-1

31

-33

2t020

-2i-2

11

11

11

0000

00

-2-2

22

-22

4t040

-4i-4

6262

66

CODE POLYNOMIALS IN GENUS 4 67

order = 12, c6o = zoooι*ooιixoi2i™(-l, -2,4, -3), iCs^β^ί^Go)! = 24

256

128256

128128

128

0

-1 - t0

1 - i

1 + i

-1+i

I

i— i

— i

i

— i

0

1 - i

0

-1 - t

-1 + i

1 + i

-1

-1-1

-1

-1

-1

0

00

00

0

-2i

02i

00

0

0

00

00

0

2

02

00

0

order = 12, c6ι = r0oil^olii^o02i^oi2in(l,3, -2, -4), |C5p(8)2)(c6ι )| = 57651232

19232

1923232

0-2 + 2t'

0-2-2i

02 + 2t2-2t '

0-6t-2t

6t2t6t

-6t

08 + 8t

08-8t

0-8 + 8t-8 - 8t'

-2-18-2

-18-2

-18-18

018 - 18t

018 + 18t

0-18- 18t-18 + 18t'

032t'

0-32i

0-32t

32t

0-26 - 26t

0-26 + 26t'

026 - 26t'26 + 26t

339-139-13939

order = 12, cβ2 = ^0111^0121 n(l, 4, 3, -2), \CSp

32192

32512

19232

32

-2 - 2i

0

2 + 2t'0

02 - 2t

-2 + 2t'

2t-2i

2i

0

2t-2i

-2t

00

00

00

0

-2-2

-22

-2-2

-2

2 + 2i

0

-2 - 2i0

0

-2 + 2i

2 - 2t

f8,2)(c62)| = 576

00

00

00

0

-2 + 2t*0

2-2t'0

0

2 + 2ϊ

-2 - 2i

7-1

7

3-1

7

7

order = 12, CGS = tfoooι#ooιια;oιiιsoi2in(4, -3, 1, -2), \CSp(

128

128512

128128

0

1 -i-1 - i

0

00

00

-2 - 2i

2-2i

02 + 2i

-2 + 2i

3

31

33

0

00

00

2i

0

8,2)(C63)| = 144

-1 - i

1 - i0

0

0000

order = 12, c64 = (#oooi^ooιι^oθ2in(-4, -1, -2, -3))2, |Cί5p(8ι2.)(c64)| = 152

64

76864

6464

2t0

-2

2-2i

000

00

4i04

-4

-4i

-2-2-2

-2-2

6t'0

-6

6

-6i

-808

8-8

2i02

-2

-2i

-9

3-9

-9-9

order = 12, c65 = (xoιιι*oθ2in(-4 f -2, -3, -I))2, |Cί

5p(8t2)(c65)| = 384

64

51264

6464

256

2t0

-2

-2i2

0

-4

04

-44

0

-4t0

-4

4i4

0

626

66

-2

6i0

-6

-6i6

0

-808

-88

0

-6t'0

-6

6i6

0

7

37

77

3

68 M. OURA

order = 12, c6e = ^ooιo^ooιιxoιιι^oo2ia7oi2in(~2, -4, 1,3), \CSp(&t2)(cββ)\ = 144256256256256

-1— i

i

1

0000

-1

i— t

1

11

11

0000

2-2-2

2

-22t

-2t2

0000

order = 14, c67 = xooιιn(-4, -2, l,-3), |CSp(βι2)(cβ7)| = 14256128128128256128

0

1+i-1 - t

-1 + i0

1 - t

— tt

t— i

i— i

000000

000000

000000

000000

01 - t

-1 - f t-1 - t

0

1 + i

02

22

02

order = 15, c6β = ^ooiι^(-4, 2, -3, 1), \CSj

64

64384

38464

64

2

-20

0

-2i

2i

1

1-1

1

-1

-1

-2

20

0-2t

2i

-4

-40

0-4

-4

-4

40

0

4i-4i

X8.2)(C68) | = 90

-1

-1

1

-1

1

1

4

-40

0

4i-4t

7

7

-1

-17

7

order = 15, c69 = (*oonzoo2in(2, -4, -1, -3))2, |C5p(8

256256

256256

-1

1t

— t

11

-1-I

-22

-2t

2i

22

22

1

1

t

— i

22

-2-2

2)(C69)|=90

-22

-2t

2i

1

1

11

order = 15, c70 = a7ooiι̂ (-4, -1, -2, -3), |C'

Sp(8f2)(c7o)| = 15

256

256

256

256

— i

i

I1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

order = 17, c7J = xoooι^ooιιn(-4, -1, -2,3), |C

f

5ί,(8|2)(c

7ι)| = 17

256

256

256

256

1

i

-1

— t

1

-1

1

-1

1

— i

-1

t

1

1

1

1

1

t

-1

— i

1

-1

1

-1

1

— i

-1

t

1

1

1

1

order = 17, c72 = (*oooι*ooιιπ(-4, -1, -2,3))3, |C5p(8

256256

256256

1

i

-1

— i

1

-1

1

-1

1

— t-1

i

11

1

1

1

i-1

— t

1-1

1

-1

2)(C72)| = 17

1

— i-1

t*

1

1

1

1

CODE POLYNOMIALS IN GENUS 4 69

order = 18, c73 = x

0ooιn(-4, -2, -1, -3), |C

Sp(8|2)(c

73)| = 18

256

256

128

128

128

128

0

0

1 - t

-1 -i

-1+i

1 + i

— ii

— i

i

— i

i

0

0

0

0

0

0

-1

-1

1

1

1

1

0

0

1 - t

-1 -i

-1+i

1 + i

i

— i

— i

i

— i

i

0

0

0

0

0

0

1

1

1

1

1

1

order = 20, en - *oooi*ooiin(-2, 1, -4,3), |Csp(8,2)(c74)| = 40

512128

128128128

0

-1 - t1 -i

0

2i

2i

0

1 - t-1 - t

-1-1

-1

-1-1

01 - i

-1 - t

0

2t

2i

0-2 - 2i

-2 + 2i2 + 2i

2 - 2i

13

333

order = 20, c75 = a?ιma?ιi2in(-4, -1,3, -2), |C5

128

128512

128128

1 + i-1 -i

0

-1+i1 - t

0

0000

1 - t

-1 + i0

-1 - t1 + i

1

1

11

1

-1 - t

1 + i0

1-t

-1 + i

pfβ.2)(c75)| =40

-2i-2i

0

2t2i

0

00

00

-1

-1

1-1

-1

order = 21, c?e = #oooι#ooιiπ(-4, -1, -3, -2), \C SP[B ,2)(C7*)\ = 21

256

256

256

256

1

-1

— t

i

I

1

-1

-1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

-1

t'

— t

1

1

1

1

order = 24, 077 = ίΌooi^oon^oθ2in(-4, -1, -2, -3), |Cf

5p(8t2)(c77)| = 48

128512

128128

128

-1 - i

0

-1 + i1 - t

1 + i

00

00

0

00

00

0

00

00

0

-1 -i

0

-1 + f1 -t

1+i

00

000

-1 + i0

-1 -i

1 + i1 - i

1-1

1

11

order = 24, c78 = a?om*oo2in(-4, -2, -3, -1), |CSp(8|2)(c78)| = 48

128

512128

128128

1 -i

0-1 - i

-1 + i1+i

-2t0

2i-2t

2t

-2 - 2i

02 - 2i

2 + 2i-2 + 2i

-4

0-4

-4-4

-3 + 3t

03 + 3i

3-3i-3 - 3i

4i

0-4i

-4i

3 + 3i0

-3 + 3i-3 - 3i

3-3i

5

-15

55

order = 30, c79 = *ooii*oo2in(2, -4, -1, -3), |C

5p(βi2)(c79)| = 30

256

256

256

256

1

t

— i

-1

1

-1

-1

1

0

0

0

0

0

0

0

0

-1

— t

t

1

0

0

0

0

0

0

0

0

1

1

1

1

70 M. OURA

order = 30, c80 = zooiin(-4, -2, -3, 1), |CsP(8,2)(c8θ)| = 30256

128128

128256

128

0

-1 - t

1 + t-1 + t

0

1 -i

-

-

-

0

1 - t-1 + i

1 + t'0

-1 -i

0

-2-2

-20

-2

0

2 + 2ϊ-2 - 2i

2 - 2t0

-2 + 2t

— t-3i

-3i

3ii

3i

0

-2 + 2x2-2ι

-2 - 2t0

2 + 2i

-1

33

3-1

3

REMARK. The determination of the conjugacy classes of Chevalley groupswere studied by several authors. For example, see [2], [6], [15].

4. Main result

We have obtained the surjective homomorphism

φ:H4-+Sp(*92)

with Kerφ = ΛΓ4 and a set {ci}0<i<8o of representatives of conjugacy classes of>$p(8,2) in the preceding sections. Our main result can be stated as follows:

Theorem 4.1. The Molien series of H4 is given by

+ 87/44 + 172f48 + 279ί52 + 550/56 + 960ί60 + 1782f64

where

D = (1 - - ί24)4(l - ί28χi - - r48)(l - r56χi - ί60χi - tβs)

x 1 - ί

4- 157f52 + 335ί56 + 549f60 + 1094ί64-h 186 U68 + 350H72 + 5965Γ6

4- 10728ί80 + 18041f84 + 31051/88 + 51025ί92 + 84427f96 + 134865ί100

1688292/124-f2447124^1284-3487706/132+4922301ί136

CODE POLYNOMIALS IN GENUS 4 71

+ 105549085/180+132161437f184 +

+ 247823660* 1 96 + 301 389903f 20° + 363960630* 204 + 4368 14071 f208

+ 1730214602ί244+1963201767?248 + 2216376776<2

+ 2785299743f260 + 31009837 10ί264 + 3436532034/268 + 3792023955*272

+ 7625054128ί308 + 8080605429?312 + 8530781308/316 + 8973489231ί320

+ 9404047193/324 + 9820361028ί328 + 10217690359ί332 + 10594101406ί336

+ 10944974102ί340 + 1 1268698558/344 + 1 1560953224ί348 + 1 1820605627/352

+ 12545212616/372 + 12566910422?376 + 12545212616ί380 + 12481889419ί384

+ 12375970644/388 + 12230003475ί392 + 12043796179/396 + 1 1820605627ί400

+ 11560953224ί404 + 11268698558/408 + 10944974102ί412 + 10594101406ί416

+ 10217690359ί420 + 9820361028ί424+9404047193ί428 + 8973489231/432

+ 853078 1308/436 + 8080605429/440 + 7625054128;444 + 7168581264?448

+ 6713128315ί452 + 6262771 875/456 + 5819175192ί460 + 53859171 15ί464

+ 496428443 1 ί468 + 4557273329ί472 + 41 6573 11 23ί476 + 3792023955/480

+ 3436532034ί484 + 3100983710ί488 + 2785299743ί492 + 2490597453<496

+ 2216376776/500+1963201767ί504+1730214602ί508

+ 1323941514/516+1149232929ί520

+ 363960630*548 + 301389903/552 +247823660ί556 + 202451 163ί560

+ 164140047ί564+132161437ί568 + 105549085ί572 + 83679250<576

+ 65756890ί580 + 51272203?584 + 39594318/588 + 30324507/592 + 22980000ί596

+ 17262549/600 + 12816307ί604 + 9427941ί608 + 6845055ί612+4922301ί616

+ 3487706ί620 + 2447124/624 + 1688292ί628 + 1 153627ί632 + 773052*636

72 M. OURA

12f 72° + f

724 + 3ί

728 + 2ί

736 - <

740 + ί

744 + ί

752. Π

References

[1] M. Broue and M. Enguehard: Polynόmes des poids de certains codes et functions theta de certainsreseaux, Ann. Scien. EC. Norm. Sup. 5 (1972), 157-181.

[2] B. Chang: The conjugate classes ofChevalley groups of type (G2\ J. Algebra 9 (1968), 190-211.[3] Conway, Curtis, Norton, Parker and Wilson: Atlas of finite groups, Oxford University

Press, 1985.[4] W. Duke: On codes and Siegel modular forms, Int. Math. Research Notices (1993), 125-136.[5] W. Ebeling: Lattices and Codes, A course partially based on lectures by F. Hirzeburch,

Vieweg, 1994.[6] H. Enomoto: The conjugacy classes of Chevalley groups of type (G2) over finite fields of

characteristic 2 or 3, J. Fac. Sci. Univ. Tokyo Sect. IA (1970), 497-512.[7] S.P. Glasby: On the faithful representations, of degree 2", of certain extensions of 2-groups by

orthogonal and symplectic groups, J. Austral. Math. Soc. (Series A) 58 (1995), 232-247.[8] W.C. Huffman: The biweight enumerator of selforthogonal binary codes, Disc. Math. 26

(1979), 129-143.[9] B. Runge: Codes and Siegel modular forms, Disc. Math. 148 (1996), 175-204.

[10] B. Runge: On Siegel modular forms, part I, J. Reine angew. Math. 436 (1993), 57-85.[11] B. Runge: On Siegel modular forms, part II, Nagoyya Math. J. 138 (1995), 179-197.[12] B. Runge: The Schottky ideal, in "Abelian Varieties" (Proceedings of the International Con-

ference held in Eggloffstein, Germany, October, 1993), Walter de Gruyter, Berlin-New York,1995, pp. 251-272.

[13] M. Schόnert, et. al: GAP: Groups, Algorithms and Programing, Lehrstuhl D fur Mathemtik,RWTH Aachen, 1994.

[14] G.C. Shephard and J.A. Todd: Finite unitary reflection groups, Canad. J. Math. 6 (1954),274-304.

[15] K. Shinoda: The conjugacy classes of Chevalley groups of type (F4) over finite fields ofcharacteristic 2, J. Fac. Sci. Univ. Tokyo 21 (1974), 133-159.

[16] N.J.A. Sloane: Error-correcting codes and invariant theory:New applications of a nineteenth-century technique, Amer. Math. Mathly 84 (1977), 82-107.

Graduate School of MathematicsKyushu UniversityHakozaki 6-10-1, Higashi-ku,Fukuoka, 812-81, Japane-mail address: [email protected]