49
Introduction Results Distribution Conclusion The Distribution of Generalized Ramanujan Primes Nadine Amersi, Olivia Beckwith, Ryan Ronan Advisors: Steven J. Miller, Jonathan Sondow http://web.williams.edu/Mathematics/sjmiller/ Combinatorial and Additive Number Theory (CANT 2012) May 23, 2012 1

The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

  • Upload
    others

  • View
    9

  • Download
    1

Embed Size (px)

Citation preview

Page 1: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

The Distribution of Generalized RamanujanPrimes

Nadine Amersi, Olivia Beckwith, Ryan Ronan

Advisors: Steven J. Miller, Jonathan Sondow

http://web.williams.edu/Mathematics/sjmiller/

Combinatorial and Additive Number Theory (CANT 2012)May 23, 2012

1

Page 2: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Prime Numbers

Any integer can be written as a unique product ofprime numbers (Fundamental Theorem of Arithmetic).

π(x) ∼ xlog x (Prime Number Theorem).

For fixed c ∈ (0,1), we expect the amount of primesin an interval (cx , x ] to increase with x .

2

Page 3: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Prime Numbers

Any integer can be written as a unique product ofprime numbers (Fundamental Theorem of Arithmetic).

π(x) ∼ xlog x (Prime Number Theorem).

For fixed c ∈ (0,1), we expect the amount of primesin an interval (cx , x ] to increase with x .

3

Page 4: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Prime Numbers

Any integer can be written as a unique product ofprime numbers (Fundamental Theorem of Arithmetic).

π(x) ∼ xlog x (Prime Number Theorem).

For fixed c ∈ (0,1), we expect the amount of primesin an interval (cx , x ] to increase with x .

4

Page 5: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Historical Introduction

Bertrand’s Postulate (1845)For all integers x ≥ 2, there exists at least one prime in(x/2, x ].

5

Page 6: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Ramanujan Primes

DefinitionThe n-th Ramanujan prime Rn is the smallest integer suchthat for any x ≥ Rn, at least n primes are in (x/2, x ].

TheoremRamanujan: For each integer n, Rn exists.Sondow: Rn ∼ p2n.Sondow: As x →∞, 50% of primes ≤ x areRamanujan.

6

Page 7: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Ramanujan Primes

DefinitionThe n-th Ramanujan prime Rn is the smallest integer suchthat for any x ≥ Rn, at least n primes are in (x/2, x ].

TheoremRamanujan: For each integer n, Rn exists.

Sondow: Rn ∼ p2n.Sondow: As x →∞, 50% of primes ≤ x areRamanujan.

7

Page 8: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Ramanujan Primes

DefinitionThe n-th Ramanujan prime Rn is the smallest integer suchthat for any x ≥ Rn, at least n primes are in (x/2, x ].

TheoremRamanujan: For each integer n, Rn exists.Sondow: Rn ∼ p2n.

Sondow: As x →∞, 50% of primes ≤ x areRamanujan.

8

Page 9: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Ramanujan Primes

DefinitionThe n-th Ramanujan prime Rn is the smallest integer suchthat for any x ≥ Rn, at least n primes are in (x/2, x ].

TheoremRamanujan: For each integer n, Rn exists.Sondow: Rn ∼ p2n.Sondow: As x →∞, 50% of primes ≤ x areRamanujan.

9

Page 10: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

c-Ramanujan Primes

DefinitionFor c ∈ (0,1), the n-th c-Ramanujan prime Rc,n is thesmallest integer such that for any x ≥ Rc,n, at least nprimes are in (cx , x ].

10

Page 11: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Preliminaries

Let π(x) be the prime-counting function that gives thenumber of primes less than or equal to x .

The Prime Number Theorem states:

limx→∞

π(x)x/ log(x)

= 1.

11

Page 12: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Preliminaries

The logarithmic integral function Li(x) is defined by

Li(x) =∫ x

2

1log t

dt .

The Prime Number Theorem gives us

π(x) = Li(x) + O(

xlog2 x

),

i.e., there is a C > 0 such that for all x sufficiently large

−Cx

log2 x≤ π(x)− Li(x) ≤ C

xlog2 x

.

12

Page 13: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Existence of Rc,n

Theorem (ABMRS 2011)For all n ∈ Z and all c ∈ (0,1), the n-th c-Ramanujanprime Rc,n exists.

Sketch:The number of primes in (cx , x ] is π(x)− π(cx).Using the Prime Number Theorem and Mean ValueTheorem, there exists a bc ∈ [0,− log c],

π(x)− π(cx) =(1− c)x

log x − bc+ O

(x

log2 x

).

For any integer n and for all x sufficiently large,π(x)− π(cx) ≥ n.

13

Page 14: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Existence of Rc,n

Theorem (ABMRS 2011)For all n ∈ Z and all c ∈ (0,1), the n-th c-Ramanujanprime Rc,n exists.

Sketch:

The number of primes in (cx , x ] is π(x)− π(cx).Using the Prime Number Theorem and Mean ValueTheorem, there exists a bc ∈ [0,− log c],

π(x)− π(cx) =(1− c)x

log x − bc+ O

(x

log2 x

).

For any integer n and for all x sufficiently large,π(x)− π(cx) ≥ n.

14

Page 15: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Existence of Rc,n

Theorem (ABMRS 2011)For all n ∈ Z and all c ∈ (0,1), the n-th c-Ramanujanprime Rc,n exists.

Sketch:The number of primes in (cx , x ] is π(x)− π(cx).

Using the Prime Number Theorem and Mean ValueTheorem, there exists a bc ∈ [0,− log c],

π(x)− π(cx) =(1− c)x

log x − bc+ O

(x

log2 x

).

For any integer n and for all x sufficiently large,π(x)− π(cx) ≥ n.

15

Page 16: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Existence of Rc,n

Theorem (ABMRS 2011)For all n ∈ Z and all c ∈ (0,1), the n-th c-Ramanujanprime Rc,n exists.

Sketch:The number of primes in (cx , x ] is π(x)− π(cx).Using the Prime Number Theorem and Mean ValueTheorem, there exists a bc ∈ [0,− log c],

π(x)− π(cx) =(1− c)x

log x − bc+ O

(x

log2 x

).

For any integer n and for all x sufficiently large,π(x)− π(cx) ≥ n.

16

Page 17: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Existence of Rc,n

Theorem (ABMRS 2011)For all n ∈ Z and all c ∈ (0,1), the n-th c-Ramanujanprime Rc,n exists.

Sketch:The number of primes in (cx , x ] is π(x)− π(cx).Using the Prime Number Theorem and Mean ValueTheorem, there exists a bc ∈ [0,− log c],

π(x)− π(cx) =(1− c)x

log x − bc+ O

(x

log2 x

).

For any integer n and for all x sufficiently large,π(x)− π(cx) ≥ n.

17

Page 18: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Asymptotic Behavior

Theorem (ABMRS 2011)For any fixed c ∈ (0,1), the n-th c-Ramanujan prime isasymptotic to the n

1−c -th prime as n→∞.

Sketch:

By the triangle inequality∣∣∣Rc,n − p n1−c

∣∣∣ ≤∣∣∣∣Rc,n −

n1− c

log Rc,n

∣∣∣∣+ ∣∣∣∣ n1− c

log Rc,n −n

1− clog n

∣∣∣∣+

∣∣∣∣ n1− c

log n − n1− c

logn

1− c

∣∣∣∣+

∣∣∣∣ n1− c

log n − p n1−c

∣∣∣∣≤ γcn log log n.

Since n log log np n

1−c

→ 0 as n→∞⇒ Rc,n ∼ p n1−c

.

18

Page 19: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Asymptotic Behavior

Theorem (ABMRS 2011)For any fixed c ∈ (0,1), the n-th c-Ramanujan prime isasymptotic to the n

1−c -th prime as n→∞.

Sketch:By the triangle inequality∣∣∣Rc,n − p n

1−c

∣∣∣ ≤∣∣∣∣Rc,n −

n1− c

log Rc,n

∣∣∣∣+ ∣∣∣∣ n1− c

log Rc,n −n

1− clog n

∣∣∣∣+

∣∣∣∣ n1− c

log n − n1− c

logn

1− c

∣∣∣∣+

∣∣∣∣ n1− c

log n − p n1−c

∣∣∣∣

≤ γcn log log n.

Since n log log np n

1−c

→ 0 as n→∞⇒ Rc,n ∼ p n1−c

.

19

Page 20: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Asymptotic Behavior

Theorem (ABMRS 2011)For any fixed c ∈ (0,1), the n-th c-Ramanujan prime isasymptotic to the n

1−c -th prime as n→∞.

Sketch:By the triangle inequality∣∣∣Rc,n − p n

1−c

∣∣∣ ≤∣∣∣∣Rc,n −

n1− c

log Rc,n

∣∣∣∣+ ∣∣∣∣ n1− c

log Rc,n −n

1− clog n

∣∣∣∣+

∣∣∣∣ n1− c

log n − n1− c

logn

1− c

∣∣∣∣+

∣∣∣∣ n1− c

log n − p n1−c

∣∣∣∣≤ γcn log log n.

Since n log log np n

1−c

→ 0 as n→∞⇒ Rc,n ∼ p n1−c

.

20

Page 21: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Asymptotic Behavior

Theorem (ABMRS 2011)For any fixed c ∈ (0,1), the n-th c-Ramanujan prime isasymptotic to the n

1−c -th prime as n→∞.

Sketch:By the triangle inequality∣∣∣Rc,n − p n

1−c

∣∣∣ ≤∣∣∣∣Rc,n −

n1− c

log Rc,n

∣∣∣∣+ ∣∣∣∣ n1− c

log Rc,n −n

1− clog n

∣∣∣∣+

∣∣∣∣ n1− c

log n − n1− c

logn

1− c

∣∣∣∣+

∣∣∣∣ n1− c

log n − p n1−c

∣∣∣∣≤ γcn log log n.

Since n log log np n

1−c

→ 0 as n→∞

⇒ Rc,n ∼ p n1−c

.

21

Page 22: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Asymptotic Behavior

Theorem (ABMRS 2011)For any fixed c ∈ (0,1), the n-th c-Ramanujan prime isasymptotic to the n

1−c -th prime as n→∞.

Sketch:By the triangle inequality∣∣∣Rc,n − p n

1−c

∣∣∣ ≤∣∣∣∣Rc,n −

n1− c

log Rc,n

∣∣∣∣+ ∣∣∣∣ n1− c

log Rc,n −n

1− clog n

∣∣∣∣+

∣∣∣∣ n1− c

log n − n1− c

logn

1− c

∣∣∣∣+

∣∣∣∣ n1− c

log n − p n1−c

∣∣∣∣≤ γcn log log n.

Since n log log np n

1−c

→ 0 as n→∞⇒ Rc,n ∼ p n1−c

.22

Page 23: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Frequency of c-Ramanujan Primes

Theorem (ABMRS 2011)In the limit, the probability of a generic prime being ac-Ramanujan prime is 1− c.

Sketch:

Define N = b n1−c c.

|aN

|pN

|

bN

Worst cases:Rc,n = aN and every prime in (aN ,pN ] is c-Ramanujan,Rc,n = bN and every prime in [pN ,bN) is c-Ramanujan.

Goal: π(bN)−π(aN)π(pN)

→ 0 as N →∞.

23

Page 24: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Frequency of c-Ramanujan Primes

Theorem (ABMRS 2011)In the limit, the probability of a generic prime being ac-Ramanujan prime is 1− c.

Sketch:

Define N = b n1−c c.|

aN|

pN|

bN

Worst cases:Rc,n = aN and every prime in (aN ,pN ] is c-Ramanujan,Rc,n = bN and every prime in [pN ,bN) is c-Ramanujan.

Goal: π(bN)−π(aN)π(pN)

→ 0 as N →∞.

24

Page 25: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Frequency of c-Ramanujan Primes

Theorem (ABMRS 2011)In the limit, the probability of a generic prime being ac-Ramanujan prime is 1− c.

Sketch:

Define N = b n1−c c.|

aN|

pN|

bN

Worst cases:

Rc,n = aN and every prime in (aN ,pN ] is c-Ramanujan,Rc,n = bN and every prime in [pN ,bN) is c-Ramanujan.

Goal: π(bN)−π(aN)π(pN)

→ 0 as N →∞.

25

Page 26: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Frequency of c-Ramanujan Primes

Theorem (ABMRS 2011)In the limit, the probability of a generic prime being ac-Ramanujan prime is 1− c.

Sketch:

Define N = b n1−c c.|

aN|

pN|

bN

Worst cases:Rc,n = aN and every prime in (aN ,pN ] is c-Ramanujan,

Rc,n = bN and every prime in [pN ,bN) is c-Ramanujan.

Goal: π(bN)−π(aN)π(pN)

→ 0 as N →∞.

26

Page 27: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Frequency of c-Ramanujan Primes

Theorem (ABMRS 2011)In the limit, the probability of a generic prime being ac-Ramanujan prime is 1− c.

Sketch:

Define N = b n1−c c.|

aN|

pN|

bN

Worst cases:Rc,n = aN and every prime in (aN ,pN ] is c-Ramanujan,Rc,n = bN and every prime in [pN ,bN) is c-Ramanujan.

Goal: π(bN)−π(aN)π(pN)

→ 0 as N →∞.

27

Page 28: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Frequency of c-Ramanujan Primes

Theorem (ABMRS 2011)In the limit, the probability of a generic prime being ac-Ramanujan prime is 1− c.

Sketch:

Define N = b n1−c c.|

aN|

pN|

bN

Worst cases:Rc,n = aN and every prime in (aN ,pN ] is c-Ramanujan,Rc,n = bN and every prime in [pN ,bN) is c-Ramanujan.

Goal: π(bN)−π(aN)π(pN)

→ 0 as N →∞.28

Page 29: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Frequency of c-Ramanujan Primes

Let:

aN = pN − βcN log log N, bN = pN + βcN log log N.

Then, Rc,n ∈ [aN ,bN ].Using the Prime Number Theorem, we can show

π(bN)− π(aN)

π(pN)≤ ξc

log log Nlog N

→ 0 as N →∞.

29

Page 30: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Frequency of c-Ramanujan Primes

Let:

aN = pN − βcN log log N, bN = pN + βcN log log N.

Then, Rc,n ∈ [aN ,bN ].

Using the Prime Number Theorem, we can show

π(bN)− π(aN)

π(pN)≤ ξc

log log Nlog N

→ 0 as N →∞.

30

Page 31: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Frequency of c-Ramanujan Primes

Let:

aN = pN − βcN log log N, bN = pN + βcN log log N.

Then, Rc,n ∈ [aN ,bN ].Using the Prime Number Theorem, we can show

π(bN)− π(aN)

π(pN)≤ ξc

log log Nlog N

→ 0 as N →∞.

31

Page 32: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Prime Numbers

2 3 5 7 11 13 1719 23 29 31 37 41 4347 53 59 61 67 71 7379 83 89 97 101 103 107109 113 127 131 137 139 149151 157 163 167 173 179 181191 193 197 199 211 223 227

32

Page 33: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Ramanujan Primes (c = 12 )

2 3 5 7 11 13 1719 23 29 31 37 41 4347 53 59 61 67 71 7379 83 89 97 101 103 107109 113 127 131 137 139 149151 157 163 167 173 179 181191 193 197 199 211 223 227

33

Page 34: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Coin Flipping Model (Variation on Cramer Model)

We defineγ = 0.5772 . . ., the Euler-Mascheroni constant,

P, the probability of Heads,N, the number of trials,LN , the longest run of Heads.

E[LN ] ≈ log Nlog(1/P)

−(

12− log(1− P) + γ

log(1/P)

),

Var[LN ] ≈ π2

6 log2 (1/P)+

112.

34

Page 35: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Coin Flipping Model (Variation on Cramer Model)

We defineγ = 0.5772 . . ., the Euler-Mascheroni constant,P, the probability of Heads,

N, the number of trials,LN , the longest run of Heads.

E[LN ] ≈ log Nlog(1/P)

−(

12− log(1− P) + γ

log(1/P)

),

Var[LN ] ≈ π2

6 log2 (1/P)+

112.

35

Page 36: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Coin Flipping Model (Variation on Cramer Model)

We defineγ = 0.5772 . . ., the Euler-Mascheroni constant,P, the probability of Heads,N, the number of trials,

LN , the longest run of Heads.

E[LN ] ≈ log Nlog(1/P)

−(

12− log(1− P) + γ

log(1/P)

),

Var[LN ] ≈ π2

6 log2 (1/P)+

112.

36

Page 37: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Coin Flipping Model (Variation on Cramer Model)

We defineγ = 0.5772 . . ., the Euler-Mascheroni constant,P, the probability of Heads,N, the number of trials,LN , the longest run of Heads.

E[LN ] ≈ log Nlog(1/P)

−(

12− log(1− P) + γ

log(1/P)

),

Var[LN ] ≈ π2

6 log2 (1/P)+

112.

37

Page 38: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Coin Flipping Model (Variation on Cramer Model)

We defineγ = 0.5772 . . ., the Euler-Mascheroni constant,P, the probability of Heads,N, the number of trials,LN , the longest run of Heads.

E[LN ] ≈ log Nlog(1/P)

−(

12− log(1− P) + γ

log(1/P)

),

Var[LN ] ≈ π2

6 log2 (1/P)+

112.

38

Page 39: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Coin Flipping Model (Variation on Cramer Model)

We defineγ = 0.5772 . . ., the Euler-Mascheroni constant,P, the probability of Heads,N, the number of trials,LN , the longest run of Heads.

E[LN ] ≈ log Nlog(1/P)

−(

12− log(1− P) + γ

log(1/P)

),

Var[LN ] ≈ π2

6 log2 (1/P)+

112.

39

Page 40: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

What is P?

Define Pc as the frequency of c-Ramanujan primesamongst the primes,

As N →∞,Pc = 1− c,

For finite intervals [a,b], Pc is a function of a and b,

Choose a = 105,b = 106.

40

Page 41: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

What is P?

Define Pc as the frequency of c-Ramanujan primesamongst the primes,

As N →∞,Pc = 1− c,

For finite intervals [a,b], Pc is a function of a and b,

Choose a = 105,b = 106.

41

Page 42: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

What is P?

Define Pc as the frequency of c-Ramanujan primesamongst the primes,

As N →∞,Pc = 1− c,

For finite intervals [a,b], Pc is a function of a and b,

Choose a = 105,b = 106.

42

Page 43: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

What is P?

Define Pc as the frequency of c-Ramanujan primesamongst the primes,

As N →∞,Pc = 1− c,

For finite intervals [a,b], Pc is a function of a and b,

Choose a = 105,b = 106.

43

Page 44: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Distribution of Ramanujan primes (Sondow, Nicholson, Noe 2011)

Length of the longest run in [105,106] ofc-Ramanujan primes Non-c-Ramanujan primes

c Expected Actual Expected Actual

0.50 14 20 16 36

44

Page 45: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Distribution of generalized c-Ramanujan primes (ABMRS 2011)

Length of the longest run in [105,106] ofc-Ramanujan primes Non-c-Ramanujan primes

c Expected Actual Expected Actual0.10 70 58 5 30.20 38 36 7 70.30 25 25 10 120.40 18 21 13 160.50 14 20 16 360.60 11 17 22 420.70 9 14 30 780.80 7 9 46 1540.90 5 11 91 345

45

Page 46: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Open Problems

1 Sondow and Laishram: p2n < Rn < p3n for n > 1.Can we find good choices of ac and bc such thatpacn ≤ Rc,n ≤ pbcn for all n?

2 For a given prime p, for what values of c is p ac-Ramanujan prime?

3 Is there any explanation for the unexpecteddistribution of c-Ramanujan primes amongst theprimes?

46

Page 47: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Open Problems

1 Sondow and Laishram: p2n < Rn < p3n for n > 1.Can we find good choices of ac and bc such thatpacn ≤ Rc,n ≤ pbcn for all n?

2 For a given prime p, for what values of c is p ac-Ramanujan prime?

3 Is there any explanation for the unexpecteddistribution of c-Ramanujan primes amongst theprimes?

47

Page 48: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Open Problems

1 Sondow and Laishram: p2n < Rn < p3n for n > 1.Can we find good choices of ac and bc such thatpacn ≤ Rc,n ≤ pbcn for all n?

2 For a given prime p, for what values of c is p ac-Ramanujan prime?

3 Is there any explanation for the unexpecteddistribution of c-Ramanujan primes amongst theprimes?

48

Page 49: The Distribution of Generalized Ramanujan Primesweb.williams.edu/.../cant2012/ramanujan_cant_final.pdfRamanujan Primes Definition The n-th Ramanujan prime R n is the smallest integer

Introduction Results Distribution Conclusion

Acknowledgments

This work was supported by the NSF, Williams College,University College London.

We would like to thank our advisors Steven J. Miller andJonathan Sondow, as well as our colleagues from the2011 REU at Williams College.

49