23
Introduction Preliminaries Fractional Laplacian Reference The Fractional Laplacian Fabian Seoanes Correa University of Puerto Rico, R´ ıo Piedras Campus February 28, 2017 F. Seoanes Wave Equation 1/ 15

The Fractional Laplacian - UPR-RPemmy.uprrp.edu/lmedina/courses/spring2017/LaTeX/oralexam.pdf · problems involving the fractional Laplacian. F. Seoanes Wave ... = exp( t j˘j2)Ff(˘)

  • Upload
    lenhu

  • View
    225

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Fractional Laplacian - UPR-RPemmy.uprrp.edu/lmedina/courses/spring2017/LaTeX/oralexam.pdf · problems involving the fractional Laplacian. F. Seoanes Wave ... = exp( t j˘j2)Ff(˘)

IntroductionPreliminaries

Fractional LaplacianReference

The Fractional Laplacian

Fabian Seoanes Correa

University of Puerto Rico, Rıo Piedras Campus

February 28, 2017

F. Seoanes Wave Equation 1/ 15

Page 2: The Fractional Laplacian - UPR-RPemmy.uprrp.edu/lmedina/courses/spring2017/LaTeX/oralexam.pdf · problems involving the fractional Laplacian. F. Seoanes Wave ... = exp( t j˘j2)Ff(˘)

IntroductionPreliminaries

Fractional LaplacianReference

Motivation

During the last ten years it has been an increasing interest inthe study of fractional powers operators. This renewedattention on fractional operators started with the works by L.Caffarelli and L. Silvestre and collaborators [4, 1, 2, 3] onproblems involving the fractional Laplacian.

F. Seoanes Wave Equation 2/ 15

Page 3: The Fractional Laplacian - UPR-RPemmy.uprrp.edu/lmedina/courses/spring2017/LaTeX/oralexam.pdf · problems involving the fractional Laplacian. F. Seoanes Wave ... = exp( t j˘j2)Ff(˘)

IntroductionPreliminaries

Fractional LaplacianReference

Fourier Transform

Schwarts space

S (Rn) :=

{f ∈ C∞(Rn) : ∀m, j ∈ N0 sup

x∈Rn(1 + |x |2)m/2

∣∣∣f (j)(x)∣∣∣ <∞}

An important fact is that S (Rn) = Lp(Rn) for ≤ p <∞

Fourier transform

For any ϕ ∈ S (Rn),

Fϕ(ξ) =1

(2π)n/2

∫Rn

exp(−ix · ξ)ϕ(x)dx

F. Seoanes Wave Equation 3/ 15

Page 4: The Fractional Laplacian - UPR-RPemmy.uprrp.edu/lmedina/courses/spring2017/LaTeX/oralexam.pdf · problems involving the fractional Laplacian. F. Seoanes Wave ... = exp( t j˘j2)Ff(˘)

IntroductionPreliminaries

Fractional LaplacianReference

Fourier Transform

We have that F : S → S , is an isomorphism andcontinuous map.

By the Riemann- Lebesgue Theorem F : L1(Rn)→ C0(Rn) isa continuous, injective but not suprajective

The inversion Fourier transform is:

F−1ϕ(x) =1

(2π)n/2

∫Rn

exp(−ix · ξ)ϕ(ξ)dx

F−1(F (ϕ))(x) = ϕ(x)

F. Seoanes Wave Equation 4/ 15

Page 5: The Fractional Laplacian - UPR-RPemmy.uprrp.edu/lmedina/courses/spring2017/LaTeX/oralexam.pdf · problems involving the fractional Laplacian. F. Seoanes Wave ... = exp( t j˘j2)Ff(˘)

IntroductionPreliminaries

Fractional LaplacianReference

Fourier Transform

Theorem

Let f , g ∈ S (Rn),

a.) F (f ′)(ξ) = iξF (f )(ξ)

b.) F (f ∗ g)(ξ) = F (f )(ξ)F (g)(ξ), where(f ∗ g)(x) = 1

(2π)n/2

∫Rn f (x − y)g(y) dy .

c.) F (exp(−α |x |2)) = 1(2α)n/2 exp(− |ξ|2 /4α)

Clearly the Fourier transform is a linear operator over S .

F. Seoanes Wave Equation 5/ 15

Page 6: The Fractional Laplacian - UPR-RPemmy.uprrp.edu/lmedina/courses/spring2017/LaTeX/oralexam.pdf · problems involving the fractional Laplacian. F. Seoanes Wave ... = exp( t j˘j2)Ff(˘)

IntroductionPreliminaries

Fractional LaplacianReference

Fourier Transform

Theorem

Let f , g ∈ S (Rn),

a.) F (f ′)(ξ) = iξF (f )(ξ)

b.) F (f ∗ g)(ξ) = F (f )(ξ)F (g)(ξ), where(f ∗ g)(x) = 1

(2π)n/2

∫Rn f (x − y)g(y) dy .

c.) F (exp(−α |x |2)) = 1(2α)n/2 exp(− |ξ|2 /4α)

Clearly the Fourier transform is a linear operator over S .

F. Seoanes Wave Equation 5/ 15

Page 7: The Fractional Laplacian - UPR-RPemmy.uprrp.edu/lmedina/courses/spring2017/LaTeX/oralexam.pdf · problems involving the fractional Laplacian. F. Seoanes Wave ... = exp( t j˘j2)Ff(˘)

IntroductionPreliminaries

Fractional LaplacianReference

Fourier Transform

Heat equation

We will solve for u(t, x), t > 0, x ∈ Rn.∂tu(t, x) = ∆u , si t > 0

u(0, x) = f (x)(1)

Where ∆u =∑n

j=1∂2u∂x2

jrepresent the Laplace operator. We want

solutions in S (Rn). (u(t, ·) ∈ S (Rn), t > 0 fixed). Therefore,

dFu(t,ξ)

dt = − |ξ|2 Fu(t, ξ)

Fu(0, ξ) = F f (ξ)

(2)

the solution for the ODE is Fu(t, ξ) = exp(−t |ξ|2)F f (ξ).

F. Seoanes Wave Equation 6/ 15

Page 8: The Fractional Laplacian - UPR-RPemmy.uprrp.edu/lmedina/courses/spring2017/LaTeX/oralexam.pdf · problems involving the fractional Laplacian. F. Seoanes Wave ... = exp( t j˘j2)Ff(˘)

IntroductionPreliminaries

Fractional LaplacianReference

Fourier Transform

Heat equation

We will solve for u(t, x), t > 0, x ∈ Rn.∂tu(t, x) = ∆u , si t > 0

u(0, x) = f (x)(1)

Where ∆u =∑n

j=1∂2u∂x2

jrepresent the Laplace operator. We want

solutions in S (Rn). (u(t, ·) ∈ S (Rn), t > 0 fixed). Therefore,

dFu(t,ξ)

dt = − |ξ|2 Fu(t, ξ)

Fu(0, ξ) = F f (ξ)

(2)

the solution for the ODE is Fu(t, ξ) = exp(−t |ξ|2)F f (ξ).

F. Seoanes Wave Equation 6/ 15

Page 9: The Fractional Laplacian - UPR-RPemmy.uprrp.edu/lmedina/courses/spring2017/LaTeX/oralexam.pdf · problems involving the fractional Laplacian. F. Seoanes Wave ... = exp( t j˘j2)Ff(˘)

IntroductionPreliminaries

Fractional LaplacianReference

Fourier Transform

Heat equation

We will solve for u(t, x), t > 0, x ∈ Rn.∂tu(t, x) = ∆u , si t > 0

u(0, x) = f (x)(1)

Where ∆u =∑n

j=1∂2u∂x2

jrepresent the Laplace operator. We want

solutions in S (Rn). (u(t, ·) ∈ S (Rn), t > 0 fixed). Therefore,

dFu(t,ξ)

dt = − |ξ|2 Fu(t, ξ)

Fu(0, ξ) = F f (ξ)

(2)

the solution for the ODE is Fu(t, ξ) = exp(−t |ξ|2)F f (ξ).

F. Seoanes Wave Equation 6/ 15

Page 10: The Fractional Laplacian - UPR-RPemmy.uprrp.edu/lmedina/courses/spring2017/LaTeX/oralexam.pdf · problems involving the fractional Laplacian. F. Seoanes Wave ... = exp( t j˘j2)Ff(˘)

IntroductionPreliminaries

Fractional LaplacianReference

Fourier Transform

Consider n = 1, for the previous theorem part(c), we have

exp(−t |ξ|2) = F

(√1

2texp(− |x |2 /4t)

)

So that,

Fu(t, ξ) = F

(√1

2texp(− |x |2 /4t) ∗ f

)(ξ)

= F

(1√4πt

∫R

exp(− |x − y |2 /4t)f (y)dy

)(ξ)

Hence, u(t, x) = 1√4πt

∫R exp(− |x − y |2 /4t)f (y)dy

F. Seoanes Wave Equation 7/ 15

Page 11: The Fractional Laplacian - UPR-RPemmy.uprrp.edu/lmedina/courses/spring2017/LaTeX/oralexam.pdf · problems involving the fractional Laplacian. F. Seoanes Wave ... = exp( t j˘j2)Ff(˘)

IntroductionPreliminaries

Fractional LaplacianReference

Fourier Transform

Consider n = 1, for the previous theorem part(c), we have

exp(−t |ξ|2) = F

(√1

2texp(− |x |2 /4t)

)

So that,

Fu(t, ξ) = F

(√1

2texp(− |x |2 /4t) ∗ f

)(ξ)

= F

(1√4πt

∫R

exp(− |x − y |2 /4t)f (y)dy

)(ξ)

Hence, u(t, x) = 1√4πt

∫R exp(− |x − y |2 /4t)f (y)dy

F. Seoanes Wave Equation 7/ 15

Page 12: The Fractional Laplacian - UPR-RPemmy.uprrp.edu/lmedina/courses/spring2017/LaTeX/oralexam.pdf · problems involving the fractional Laplacian. F. Seoanes Wave ... = exp( t j˘j2)Ff(˘)

IntroductionPreliminaries

Fractional LaplacianReference

Fourier Transform

Consider n = 1, for the previous theorem part(c), we have

exp(−t |ξ|2) = F

(√1

2texp(− |x |2 /4t)

)

So that,

Fu(t, ξ) = F

(√1

2texp(− |x |2 /4t) ∗ f

)(ξ)

= F

(1√4πt

∫R

exp(− |x − y |2 /4t)f (y)dy

)(ξ)

Hence, u(t, x) = 1√4πt

∫R exp(− |x − y |2 /4t)f (y)dy

F. Seoanes Wave Equation 7/ 15

Page 13: The Fractional Laplacian - UPR-RPemmy.uprrp.edu/lmedina/courses/spring2017/LaTeX/oralexam.pdf · problems involving the fractional Laplacian. F. Seoanes Wave ... = exp( t j˘j2)Ff(˘)

IntroductionPreliminaries

Fractional LaplacianReference

Equivalent definitionsExample

Remember that for f ∈ S the fourier transform gives

F ((−∆)f )(ξ) = |ξ|2 F (ξ), ξ ∈ Rn

Then it is clear how to define the powers of the Laplacian.

Definition:

For s > 0(our interest is in s ∈ (0, 1)) the fractional Laplacian(−∆)s acts as

By Fourier transform:

lims→1−

(−∆)s f = −∆f lims→0+

(−∆)s f = f

F. Seoanes Wave Equation 8/ 15

Page 14: The Fractional Laplacian - UPR-RPemmy.uprrp.edu/lmedina/courses/spring2017/LaTeX/oralexam.pdf · problems involving the fractional Laplacian. F. Seoanes Wave ... = exp( t j˘j2)Ff(˘)

IntroductionPreliminaries

Fractional LaplacianReference

Equivalent definitionsExample

Remember that for f ∈ S the fourier transform gives

F ((−∆)f )(ξ) = |ξ|2 F (ξ), ξ ∈ Rn

Then it is clear how to define the powers of the Laplacian.

Definition:

For s > 0(our interest is in s ∈ (0, 1)) the fractional Laplacian(−∆)s acts as

By Fourier transform:

lims→1−

(−∆)s f = −∆f lims→0+

(−∆)s f = f

F. Seoanes Wave Equation 8/ 15

Page 15: The Fractional Laplacian - UPR-RPemmy.uprrp.edu/lmedina/courses/spring2017/LaTeX/oralexam.pdf · problems involving the fractional Laplacian. F. Seoanes Wave ... = exp( t j˘j2)Ff(˘)

IntroductionPreliminaries

Fractional LaplacianReference

Equivalent definitionsExample

Remember that for f ∈ S the fourier transform gives

F ((−∆)f )(ξ) = |ξ|2 F (ξ), ξ ∈ Rn

Then it is clear how to define the powers of the Laplacian.

Definition:

For s > 0(our interest is in s ∈ (0, 1)) the fractional Laplacian(−∆)s acts as

By Fourier transform:

lims→1−

(−∆)s f = −∆f lims→0+

(−∆)s f = f

F. Seoanes Wave Equation 8/ 15

Page 16: The Fractional Laplacian - UPR-RPemmy.uprrp.edu/lmedina/courses/spring2017/LaTeX/oralexam.pdf · problems involving the fractional Laplacian. F. Seoanes Wave ... = exp( t j˘j2)Ff(˘)

IntroductionPreliminaries

Fractional LaplacianReference

Equivalent definitionsExample

Proposition

Let s ∈ (0, 1) and f ∈ S , then

(−∆)s f (x) = cn,s limε→0

∫Rn−Bε(x)

f (x)− f (y)

|x − y |n+2sdy

where

cn,s = π−n/2 Γf

(n+2s

2

)Γf (−s)

Proposition

Let s ∈ (0, 1) and f ∈ S , then we also have

(−∆)s f (x) =cn,s

2

∫Rn

2f (x)− f (x + y)− f (x − y)

|y |n+2sdy

∀x ∈ Rn

Proof.

See [4].

F. Seoanes Wave Equation 9/ 15

Page 17: The Fractional Laplacian - UPR-RPemmy.uprrp.edu/lmedina/courses/spring2017/LaTeX/oralexam.pdf · problems involving the fractional Laplacian. F. Seoanes Wave ... = exp( t j˘j2)Ff(˘)

IntroductionPreliminaries

Fractional LaplacianReference

Equivalent definitionsExample

Proposition

Let s ∈ (0, 1) and f ∈ S , then

(−∆)s f (x) = cn,s limε→0

∫Rn−Bε(x)

f (x)− f (y)

|x − y |n+2sdy

where

cn,s = π−n/2 Γf

(n+2s

2

)Γf (−s)

Proposition

Let s ∈ (0, 1) and f ∈ S , then we also have

(−∆)s f (x) =cn,s

2

∫Rn

2f (x)− f (x + y)− f (x − y)

|y |n+2sdy

∀x ∈ Rn

Proof.

See [4].

F. Seoanes Wave Equation 9/ 15

Page 18: The Fractional Laplacian - UPR-RPemmy.uprrp.edu/lmedina/courses/spring2017/LaTeX/oralexam.pdf · problems involving the fractional Laplacian. F. Seoanes Wave ... = exp( t j˘j2)Ff(˘)

IntroductionPreliminaries

Fractional LaplacianReference

Equivalent definitionsExample

In the theory of stochastic process we are interested in the solutionto the fractional diffusion equation

Example ∂tu(t, x) = −(−∆)su(t, x)

u(0, x) = f (x)

F. Seoanes Wave Equation 10/ 15

Page 19: The Fractional Laplacian - UPR-RPemmy.uprrp.edu/lmedina/courses/spring2017/LaTeX/oralexam.pdf · problems involving the fractional Laplacian. F. Seoanes Wave ... = exp( t j˘j2)Ff(˘)

IntroductionPreliminaries

Fractional LaplacianReference

Reference

W. Arendt, Vector-valued Laplace transforms and CauchyProblems, Israel. J. Math. 59 (1987), 327-352. MR 89:47064.

W. Arendt, C.J.K. Batty, M. Hieber, and F. Neubrander,Vector-valued Laplace transforms and Cauchy Problems,Monographs in Mathematics 96, Birkhauser, 2001.

O. El-Mennaoui, Traces de semi-groupes holomorphessinguliers a l’origine et comportement asymptotique, These,Besancon, 1992.

O. El-Mennaoui and V. Keyantuo, On the Schrodingerequation in Lp-spaces, Math. Ann. 304 (1996), 293-302.

H. O. Fattorini, Second Order Linear Differential Equations inBanach spaces, North-Holland, Amsterdam, 1985.

F. Seoanes Wave Equation 11/ 15

Page 20: The Fractional Laplacian - UPR-RPemmy.uprrp.edu/lmedina/courses/spring2017/LaTeX/oralexam.pdf · problems involving the fractional Laplacian. F. Seoanes Wave ... = exp( t j˘j2)Ff(˘)

IntroductionPreliminaries

Fractional LaplacianReference

Reference

J. A. Goldstein, Semigroups of Linear Operators andApplications, Oxford Univ. Press, 1985.

M. Hieber, Integrated semigroups and differential operators onLp(RN)-spaces, Math. Ann.291 (1991), 1-16. MR 92g:47052.

E. Hille and R.S Phillips, Functional analysis and semigroups,Coll. Publ. 31, American Math. Society, 1957.

L. Hormander, Estimates for translation invariant operators inLp spaces, Acta. Math. 104 (1960), pages 93-140. MR22:12389.

F. Seoanes Wave Equation 12/ 15

Page 21: The Fractional Laplacian - UPR-RPemmy.uprrp.edu/lmedina/courses/spring2017/LaTeX/oralexam.pdf · problems involving the fractional Laplacian. F. Seoanes Wave ... = exp( t j˘j2)Ff(˘)

IntroductionPreliminaries

Fractional LaplacianReference

Reference

A. V. Balakrishnan, Fractional powers of closed operators andthe semigroups generated by them, Pacific J. Math. 10 (1960),419-437

S. Bochner, Diffusion equation and stochastic processes, Proc.Nat. Acad. Sci. U. S. A. 35 (1949), 368-370.

T. Kato, Fractional powers of dissipative operators, J. Math.Soc. Japan 13 (1961), 246-274.

L. A. Caffarelli, S. Salsa and L. Silvestre, Regularity estimatesfor the solution and the free boundary of the obstacle problemfor the fractional Laplacian, Invent. Math.171 (2008), 425-461.

F. Seoanes Wave Equation 13/ 15

Page 22: The Fractional Laplacian - UPR-RPemmy.uprrp.edu/lmedina/courses/spring2017/LaTeX/oralexam.pdf · problems involving the fractional Laplacian. F. Seoanes Wave ... = exp( t j˘j2)Ff(˘)

IntroductionPreliminaries

Fractional LaplacianReference

Reference

L. A. Caffarelli and L. Silvestre, An extension problem relatedto the fractional Laplacian, Comm. Partial DifferentialEquations 32 (2007), 1245-1260.

L. Silvestre, PhD thesis, The University of Texas at Austin,2005.

L. Silvestre, Regularity of the obstacle problem for a fractionalpower of the Laplace operator, Comm. Pure Appl. Math. 60(2007), 67-112.

Valdinoci E., Palatucci G., and Di Nezza E., Hitchhikers guideto the fractional Sobolev spaces (April 2011), available athttp://arxiv.org/abs/1104.4345.

K. Yosida, Functional analysis, Grund. Math. Wiss. 123,Springer-Verlag 1965.

F. Seoanes Wave Equation 14/ 15

Page 23: The Fractional Laplacian - UPR-RPemmy.uprrp.edu/lmedina/courses/spring2017/LaTeX/oralexam.pdf · problems involving the fractional Laplacian. F. Seoanes Wave ... = exp( t j˘j2)Ff(˘)

IntroductionPreliminaries

Fractional LaplacianReference

Thank You

University of Puerto RicoMathtematics Departmentwww.math.uprrp.edu

F. Seoanes Wave Equation 15/ 15