1
11. Acknowledgements This work has been supported by the National Science Foundation Research Experiences for Undergraduates Site in Climate Science at Colorado State University under the cooperative agreement No. AGS-1461270. The Madden-Julian Oscillation moist static energy budget in CMIP5 models Shannon Bohman 1 , Charlotte DeMott 2 , David Randall 2 Stony Brook University, Stony Brook, NY 1 and Colorado State University, Fort Collins, CO 2 Process metric Correlation with MJO skill Vertical longwave heating regressed onto MSE tendency -0.4866 Horizontal MSE advection regressed onto MSE -0.4603 Area averaged U850 in eastern region 0.7755 Pattern correlation between model and ERAI V850 0.7047 Zonal difference in column water vapor 0.6051 σ LH flux 0.6406 σ wind-driven LH flux 0.6350 σ thermodynamic SH flux 0.6316 σ thermodynamic LH flux 0.5841 σ wind-driven SH flux 0.4560 Figure 1. Schematic of the Madden-Julian Oscillation. 3 The Madden-Julian Oscillation (MJO) is a system of alternating enhanced and suppressed atmospheric convection that propagates eastward at 5ms -1 . Originating in the tropical Indian Ocean every 30-70 days, the MJO affects monsoons, tropical cyclones, and jet stream activity. Climate models with coupled ocean feedbacks are known to simulate the MJO more accurately than uncoupled models. 1. Introduction Free tropospheric terms Surface flux terms Horizontal advection Vertical advection Longwave heating Shortwave heating Latent heating Sensible heating 14 coupled CMIP5 models: BCC, BNU, CCCMA, CNRM, FGOALS-g2, GFDL, GFDL- CM3, GFDL-ESM2M, IPSL, IPSL-MR, MIROC5, MPI, MRI, NCC 2 other coupled models: CESM2_265_B1850, SPCCSM Observational data: European Centre for Medium Range Forecasting (ECMWF) Interim Reanalysis (ERAI) 4. Data Sources 5. Models ranked by MJO skill 6. MSE budget analysis Figure 3. Regressing budget terms onto maintenance (MSE) or tendency (dMSE/dt) reveals which terms contribute to each process. Since process metric 1 is in phase with MSE, it contributes to MJO maintenance. Since process metric 2 is in phase with dMSE/dt, it contributes to MJO propagation. 3. MSE budget 2. Measuring MJO skill Generate time lag vs longitude plots for ±20 days from 60-180E for 90E and 150E base points. Mask ±15 degrees about each base point. Compute regression coefficients between model and ERAI plots at 90E and 150E. Average the 90E and 150E regression coefficients to get skill score. Moist static energy (MSE): energy released if all water vapor in an air parcel condenses. Conserved during moist adiabatic processes. 4 12. References 3 Gottschalck, J. (2014, December 31). What is the MJO, and why do we care? | NOAA Climate.gov. Retrieved from https://www.climate.gov/news- features/blogs/enso/what-mjo-and- why-do-we-care 4 Yanai, M., Esbensen, S., & Chu, J. (1973). Determination of Bulk Properties of Tropical Cloud Clusters from Large-Scale Heat and Moisture Budgets (Vol. 30, pp. 611-627, Rep.). American Meteorological Society 5 Ahn, M., Kim, D., Sperber, K. R., Kang, I., Maloney, E., Waliser, D., & Hendon, H. (2017, March 23). MJO simulation in CMIP5 climate models: MJO skill metrics and process-oriented diagnosis(Rep.). doi:10.1007/s00382-017-3558-4 7. MSE advection 8. Ocean surface fluxes Figure 10. Analysis performed over 15S-15N and 30-180E. Latent heat flux and its wind-driven component are positively correlated with MJO skill significantly at the 99% level and the thermodynamic LH flux is positively correlated at the 95% level. Thermodynamic sensible heat flux is positively correlated with MJO skill significantly at the 99% level, but there is no significant correlation between MJO skill and sensible heat flux as a whole. Table 1. Correlation coefficients between different process metrics and MJO skill. All coefficients are significant at the 90% level. Coefficients significant at 95% are bolded. Coefficients significant at the 99% level are bolded and italicized. 9. Conclusions Propagation of MJO beyond Maritime Continent is important to skill score. Vertical longwave heating dominates MSE maintenance, but it does not have significant bearing on MJO skill Consistent with other studies 5 Horizontal MSE advection drives MSE propagation. Nearly all models rely on overestimating the zonal moisture gradient to compensate for underestimating the U850 winds. Simulation of MJO is most dependent on large mean state moisture gradients and realistic wind anomalies. 10. Future work Further study the feedbacks of surface fluxes on MJO to understand causation in those relationships SST effect on MJO maintenance and propagation Zonal difference in column water vapor, V850 pattern correlation between model and ERAI V850 Area averaged U850 in eastern region 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Budget terms regressed onto MSE maintenance, Budget terms regressed onto MSE tendency, % & %’ σ LH flux σ wind−driven LH flux σ thermodynamic LH flux σ SH flux σ wind−driven SH flux σ thermodynamic SH flux Figure 4. Models ranked by skill score. Figure 2. Comparing MJO of one model to observations Observations Example model Horizontal advection Surface flux MSE budget -11 -10 -5 0 5 10 15 -11 -10 -5 0 5 10 15 -11 -10 -5 0 5 10 15 -11 -10 -5 0 5 10 15 -11 -10 -5 0 5 10 15 * regressed on regressed on regressed on regressed on regressed on Figure 5. MSE budget terms regressed onto MSE maintenance. Vertical longwave radiation is the dominant term in maintaining MJO convection. Model MJO skill and horizontal MSE advection have a correlation coefficient of -0.4866 significant at the 90% level. 120 0 20 40 60 80 100 * regressed on regressed on regressed on regressed on -5 0 5 15 25 20 10 -10 30 -5 0 5 15 25 20 10 -10 30 -5 0 5 15 30 25 20 10 -10 -5 0 5 15 30 25 20 10 -10 regressed on *Note different scale Figure 6. MSE budget terms regressed onto MSE tendency. Horizontal MSE advection is the dominant term in MJO propagation. Model MJO skill and vertical longwave heating have a correlation coefficient of -0.4603 significant at the 90% level. = 6 + + ; =− * − + + + + MJO skill ranking: 1. CNRM 2. SPCCSM 3. NCC 4. MRI 5. CESM2_265_B1850 6. GDFL-CM3 7. BCC 8. MIROC5 9. BNU 10. FGOALS-g2 11. MPI 12. GDFL-ESM2M 13. GDFL 14. IPSL-MR 15. CCCMA 16. IPSL ERAI displayed in black MSE maintenance: MSE tendency: Longitude 0 3 4 5 6 7 8 9 Zonal difference in column water vapor (kg/m 2 ) 2 1 0 Figure 7. Zonal difference in column water vapor. The western averaging region is 15S-15N and 90-100E, and the eastern averaging region is 15S-15N and 155-165E. Model MJO skill and zonal difference in column water vapor have a correlation coefficient of 0.6051 significant at the 95% level. -0.1 0 U850 (ms -1 ) -0.2 -0.3 -0.4 -0.5 -0.6 -0.7 -0.8 -0.9 Figure 8. Zonal winds averaged over 15S-15N and 100-150E. Model MJO skill and area averaged U850 have a correlation coefficient of -0.7755 significant at the 99% level. 0.8 0.3 Pattern correlation 1 0.9 0.7 0.6 0.5 0.4 Figure 9. Analysis performed over 15S-15N and 30-180E. Pattern skills were calculated between the meridional winds of each model and ERAI. Model MJO skill and V850 pattern correlation have a correlation coefficient of 0.7047 significant at the 99% level. 2 2.5 3 4 3.5 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 MJO skill 1.5 2 3 2.5 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 MJO skill 0 0.5 3 2.5 1 0.8 0.6 0.4 0.2 0 MJO skill 1.5 1 2 -0.2 10 15 20 40 35 1 0.8 0.6 0.4 0.2 0 MJO skill 25 30 10 15 20 40 35 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 MJO skill 25 30 5 10 20 15 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 MJO skill 40 35 30 25 5 0 20 15 10 40 35 30 25 5 0 20 15 10 40 35 30 25 5 0 20 15 10 4 3.5 3 2.5 0.5 0 2 1.5 1 4.5 4 3.5 3 2.5 0.5 0 2 1.5 1 4.5 4 3.5 3 2.5 0.5 0 2 1.5 1 4.5

The Madden-Julian Oscillation moist static energy budget

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The Madden-Julian Oscillation moist static energy budget

11.AcknowledgementsThisworkhasbeensupportedbytheNationalScienceFoundationResearchExperiencesforUndergraduatesSiteinClimateScienceatColoradoStateUniversityunderthecooperativeagreementNo.AGS-1461270.

TheMadden-JulianOscillationmoiststaticenergybudgetinCMIP5models

ShannonBohman1,CharlotteDeMott2,DavidRandall2StonyBrookUniversity,StonyBrook,NY1 andColoradoStateUniversity,FortCollins,CO2

Process metric CorrelationwithMJOskillVerticallongwaveheatingregressedontoMSEtendency -0.4866HorizontalMSEadvectionregressedonto MSE -0.4603AreaaveragedU850ineasternregion 0.7755PatterncorrelationbetweenmodelandERAIV850 0.7047Zonaldifferenceincolumnwatervapor 0.6051σ LH flux 0.6406σ wind-drivenLHflux 0.6350σthermodynamicSHflux 0.6316σ thermodynamicLHflux 0.5841σ wind-drivenSHflux 0.4560

Figure1.SchematicoftheMadden-JulianOscillation.3

• TheMadden-JulianOscillation(MJO)isasystemofalternatingenhancedandsuppressedatmosphericconvectionthatpropagateseastwardat5ms-1.OriginatinginthetropicalIndianOceanevery30-70days,theMJOaffectsmonsoons,tropicalcyclones,andjetstreamactivity.

• ClimatemodelswithcoupledoceanfeedbacksareknowntosimulatetheMJOmoreaccuratelythanuncoupledmodels.

1.Introduction

Freetroposphericterms Surfacefluxterms

Horizontaladvection

Verticaladvection

Longwaveheating

Shortwaveheating

Latentheating

Sensibleheating

• 14coupledCMIP5models:BCC,BNU,CCCMA,CNRM,FGOALS-g2,GFDL,GFDL-CM3,GFDL-ESM2M,IPSL,IPSL-MR,MIROC5,MPI,MRI,NCC• 2othercoupledmodels:CESM2_265_B1850,SPCCSM• Observationaldata:EuropeanCentreforMediumRangeForecasting(ECMWF)InterimReanalysis(ERAI)

4.DataSources

5.ModelsrankedbyMJOskill 6.MSEbudgetanalysis

Figure3.Regressingbudgettermsontomaintenance(MSE)ortendency(dMSE/dt)revealswhichtermscontributetoeachprocess.Sinceprocessmetric1isinphasewithMSE,itcontributestoMJOmaintenance.Sinceprocessmetric2isinphasewithdMSE/dt,itcontributestoMJOpropagation.

3.MSEbudget

2.MeasuringMJOskill• Generatetimelagvslongitudeplotsfor±20daysfrom60-180Efor90Eand150Ebasepoints.

• Mask±15degreesabouteachbasepoint.• Computeregressioncoefficientsbetween

modelandERAIplotsat90Eand150E.• Averagethe90Eand150Eregression

coefficientstogetskillscore.

• Moiststaticenergy(MSE):energyreleasedifallwatervaporinanairparcelcondenses.

• Conservedduringmoistadiabaticprocesses.4

12.References3Gottschalck,J.(2014,December31).WhatistheMJO,andwhydowecare?|NOAAClimate.gov.Retrievedfromhttps://www.climate.gov/news-features/blogs/enso/what-mjo-and-why-do-we-care4Yanai,M.,Esbensen,S.,&Chu,J.(1973). DeterminationofBulkPropertiesofTropicalCloudClustersfromLarge-ScaleHeatandMoistureBudgets (Vol.30,pp.611-627,Rep.).AmericanMeteorologicalSociety5Ahn,M.,Kim,D.,Sperber,K.R.,Kang,I.,Maloney,E.,Waliser,D.,&Hendon,H.(2017,March23).MJOsimulationinCMIP5climatemodels:MJOskillmetricsandprocess-orienteddiagnosis(Rep.).doi:10.1007/s00382-017-3558-4

7.MSEadvection 8.Oceansurfacefluxes

Figure10.Analysisperformedover15S-15Nand30-180E.Latentheatfluxanditswind-drivencomponentarepositivelycorrelatedwithMJOskillsignificantlyatthe99%levelandthethermodynamicLHfluxispositivelycorrelatedatthe95%level.ThermodynamicsensibleheatfluxispositivelycorrelatedwithMJOskillsignificantlyatthe99%level,butthereisnosignificantcorrelationbetweenMJOskillandsensibleheatfluxasawhole.

Table1.CorrelationcoefficientsbetweendifferentprocessmetricsandMJOskill.Allcoefficientsaresignificantatthe90%level.Coefficientssignificantat95%arebolded.Coefficientssignificantatthe99%levelareboldedanditalicized.

9.Conclusions• PropagationofMJObeyondMaritimeContinentisimportanttoskillscore.

• VerticallongwaveheatingdominatesMSEmaintenance,butitdoesnothavesignificantbearingonMJOskill

• Consistentwithotherstudies5

• HorizontalMSEadvectiondrivesMSEpropagation.• NearlyallmodelsrelyonoverestimatingthezonalmoisturegradienttocompensateforunderestimatingtheU850winds.

• SimulationofMJOismostdependentonlargemeanstatemoisturegradientsandrealisticwindanomalies.

10.Futurework• FurtherstudythefeedbacksofsurfacefluxesonMJOtounderstandcausationinthoserelationships

• SSTeffectonMJOmaintenanceandpropagation

Zonaldifferenceincolumnwatervapor,𝛻𝑞

V850patterncorrelationbetweenmodelandERAI

V850

AreaaveragedU850ineasternregion

1 2

3 4 5

6 7 8

9 10 11

12 13 14

15 16

BudgettermsregressedontoMSEmaintenance, 𝑚 BudgettermsregressedontoMSEtendency,% &%'

σLHflux σwind−drivenLHflux σthermodynamicLHflux

σSHflux σwind−drivenSHflux σthermodynamicSHflux

Figure4.Modelsrankedbyskillscore.

Figure2.ComparingMJOofonemodeltoobservations

Observatio

nsExam

plemod

el

Horizontaladvection

Surfaceflux

MSEbudget

-11

-10

-5

0

5

10

15

-11

-10

-5

0

5

10

15

-11

-10

-5

0

5

10

15

-11

-10

-5

0

5

10

15

-11

-10

-5

0

5

10

15

− 𝑉 * 𝛻𝑞 regressedon 𝑚

𝜔𝜕𝑞𝜕𝑝

regressedon 𝑚

𝐿𝑊 regressedon 𝑚

𝐿𝐻regressedon 𝑚

𝑆𝐻regressedon 𝑚

Figure5.MSEbudgettermsregressedontoMSEmaintenance.VerticallongwaveradiationisthedominantterminmaintainingMJOconvection.ModelMJOskillandhorizontalMSEadvectionhaveacorrelationcoefficientof-0.4866significantatthe90%level.

120

0

20

40

60

80

100

− 𝑉 * 𝛻𝑞 regressed

on𝜕 𝑚𝜕𝑡

𝐿𝑊 regressed

on𝜕 𝑚𝜕𝑡

𝐿𝐻regressed

on𝜕 𝑚𝜕𝑡

𝑆𝐻regressed

on𝜕 𝑚𝜕𝑡

-5

0

5

15

25

20

10

-10

30

-5

0

5

15

25

20

10

-10

30

-5

0

5

15

30

25

20

10

-10

-5

0

5

15

30

25

20

10

-10

𝜔𝜕𝑞𝜕𝑝

regressed

on𝜕 𝑚𝜕𝑡

*Notedifferentscale

Figure6.MSEbudgettermsregressedontoMSEtendency.HorizontalMSEadvectionisthedominantterminMJOpropagation.ModelMJOskillandverticallongwaveheatinghaveacorrelationcoefficientof-0.4603significantatthe90%level.

𝑚 = 𝐶6𝑇 + 𝑔𝑍 + 𝐿;𝑞

𝜕 𝑚𝜕𝑡

= − 𝑉 * 𝛻𝑞 − 𝜔𝜕𝑞𝜕𝑝

+ 𝐿𝑊 + 𝑆𝑊 + 𝐿𝐻 + 𝑆𝐻

MJOskillranking:1. CNRM2. SPCCSM3. NCC4. MRI5. CESM2_265_B18506. GDFL-CM37. BCC8. MIROC59. BNU10. FGOALS-g211. MPI12. GDFL-ESM2M13. GDFL14. IPSL-MR15. CCCMA16. IPSL

ERAIdisplayedinblack

MSEmaintenance:

MSEtendency:

Longitude

0

3

4

5

6

7

8

9

Zonaldifferen

ceincolum

nwatervapor(kg/m

2 )

2

1

0

Figure7.Zonaldifferenceincolumnwatervapor.Thewesternaveragingregionis15S-15Nand90-100E,andtheeasternaveragingregionis15S-15Nand155-165E.ModelMJOskillandzonaldifferenceincolumnwatervaporhaveacorrelationcoefficientof0.6051significantatthe95%level.

-0.1

0

U85

0(m

s-1)

-0.2

-0.3

-0.4

-0.5-0.6

-0.7

-0.8

-0.9

Figure8.Zonalwindsaveragedover15S-15Nand100-150E.ModelMJOskillandareaaveragedU850haveacorrelationcoefficientof-0.7755significantatthe99%level.

0.8

0.3

Patterncorrelation

1

0.9

0.7

0.6

0.5

0.4

Figure9.Analysisperformedover15S-15Nand30-180E.PatternskillswerecalculatedbetweenthemeridionalwindsofeachmodelandERAI.ModelMJOskillandV850patterncorrelationhaveacorrelationcoefficientof0.7047significantatthe99%level.

2 2.5 3 43.5𝜎𝑆𝐻𝑓𝑙𝑢𝑥

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

MJOsk

ill

1.5 2 32.5𝜎𝑤𝑖𝑛𝑑 − 𝑑𝑟𝑖𝑣𝑒𝑛𝑆𝐻𝑓𝑙𝑢𝑥

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

MJOsk

ill

0 0.5 32.5𝜎𝑡ℎ𝑒𝑟𝑚𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑆𝐻𝑓𝑙𝑢𝑥

1

0.8

0.6

0.4

0.2

0

MJOsk

ill

1.51 2

-0.2

10 15 20 4035

𝜎𝐿𝐻𝑓𝑙𝑢𝑥

1

0.8

0.6

0.4

0.2

0

MJOsk

ill

25 30 10 15 20 4035

𝜎𝑤𝑖𝑛𝑑 − 𝑑𝑟𝑖𝑣𝑒𝑛𝐿𝐻𝑓𝑙𝑢𝑥

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

MJOsk

ill

25 30 5 10 2015

𝜎𝑡ℎ𝑒𝑟𝑚𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝐿𝐻𝑓𝑙𝑢𝑥

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

MJOsk

ill

40

35

30

25

5

0

𝜎𝐿𝐻𝑓𝑙𝑢𝑥

20

15

10

40

35

30

25

5

0

𝜎𝑤𝑖𝑛𝑑−𝑑𝑟𝑖𝑣𝑒𝑛𝐿𝐻𝑓𝑙𝑢𝑥

20

15

10

40

35

30

25

5

0

𝜎𝑡ℎ𝑒𝑟𝑚𝑜𝑑𝑦𝑛𝑎𝑚

𝑖𝑐𝐿𝐻𝑓𝑙𝑢𝑥

20

15

10

4

3.5

3

2.5

0.5

0

𝜎𝑆𝐻𝑓𝑙𝑢𝑥

2

1.5

1

4.5

4

3.5

3

2.5

0.5

0

𝜎𝑤𝑖𝑛𝑑−𝑑𝑟𝑖𝑣𝑒𝑛𝑆𝐻𝑓𝑙𝑢𝑥

2

1.5

1

4.5

4

3.5

3

2.5

0.5

0

𝜎𝑡ℎ𝑒𝑟𝑚𝑜𝑑𝑦𝑛𝑎𝑚

𝑖𝑐𝑆𝐻𝑓𝑙𝑢𝑥

2

1.5

1

4.5