43
The moving bottleneck problem: a Hamilton-Jacobi approach Guillaume Costeseque in collaboration with Aur´ elien Duret Inria Sophia-Antipolis M´ editerran´ ee & Universit´ e de Lyon, IFSTTAR-ENTPE TRAM3 Terminus Meeting 2016, Sophia-Antipolis January 07, 2016 G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 1 / 42

The moving bottleneck problem: a Hamilton-Jacobi approach moving bottleneck problem: a Hamilton-Jacobi approach ... (1963), Makigami et al(1971), Laval and Leclercq ... The moving

  • Upload
    hadien

  • View
    224

  • Download
    0

Embed Size (px)

Citation preview

The moving bottleneck problem:

a Hamilton-Jacobi approach

Guillaume Costesequein collaboration with Aurelien Duret

Inria Sophia-Antipolis Mediterranee& Universite de Lyon, IFSTTAR-ENTPE

TRAM3 Terminus Meeting 2016, Sophia-AntipolisJanuary 07, 2016

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 1 / 42

Motivation

Example

Congested off-ramp

[Richmond Bridge, c©Bay Area Council]

Traffic flow model for the upstream section?

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 2 / 42

Motivation

Outline

1 Introduction to traffic

2 The moving bottleneck theory

3 Mesoscopic formulation of multiclass multilane models

4 Numerical scheme

5 Conclusion and perspectives

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 3 / 42

Introduction to traffic

Outline

1 Introduction to traffic

2 The moving bottleneck theory

3 Mesoscopic formulation of multiclass multilane models

4 Numerical scheme

5 Conclusion and perspectives

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 4 / 42

Introduction to traffic Macroscopic models

Convention for vehicle labeling

N

x

t

Flow

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 5 / 42

Introduction to traffic Macroscopic models

Three representations of traffic flow

Moskowitz’ surface

Flow x

t

N

x

See also [Moskowitz and Newman(1963), Makigami et al(1971), Laval and

Leclercq(2013)]

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 6 / 42

Introduction to traffic Macroscopic models

Notations(macroscopic)

N(t, x) vehicle label at (t, x)

the flow q(t, x) = lim∆t→0

N(t +∆t, x)− N(t, x)

∆t,

x

N(x , t ±∆t)

the density ρ(t, x) = lim∆x→0

N(t, x) − N(t, x +∆x)

∆x,

x

∆x

N(x ±∆x , t)

the stream speed (mean spatial speed) V (t, x).

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 7 / 42

Introduction to traffic Focus on LWR model

First order: the LWR model

LWR model [Lighthill and Whitham, 1955], [Richards, 1956]

Scalar one dimensional conservation law

∂tρ+ ∂xQ (ρ) = 0, (t, x) ∈ (0,+∞) × R (1)

withQ : ρ 7→ q =: Q (ρ)

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 8 / 42

Introduction to traffic Focus on LWR model

Overview: conservation laws (CL) / Hamilton-Jacobi (HJ)

Eulerian Lagrangiant − x t − n

CLVariable Density ρ Spacing r := 1

ρ

Equation ∂tρ+ ∂xQ(ρ) = 0 ∂t r + ∂nV (r) = 0

HJ

Variable Label N Position X

N(t, x) =

∫ +∞

x

ρ(t, ξ)dξ X (t, n) =

∫ +∞

n

r(t, η)dη

Equation ∂tN − Q (−∂xN) = 0 ∂tX − V (−∂nX ) = 0

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 9 / 42

Introduction to traffic Mesoscopic resolution

Notations(micro and meso)

Speed

Time

(i − 1)Space

x

Spacing

Headway

t

(i)

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 10 / 42

Introduction to traffic Mesoscopic resolution

Mesoscopic resolution of the LWR model

Speed

Time

(i − 1)Space

x

Spacing

Headway

t

(i) Introduce

the pace p :=1

vthe headway h = H(p)

the passing time

T (n, x) :=

∫ x

−∞

p(n, ξ)dξ.

{

∂nT = h, (headway)

∂xT = p, (pace)

[Leclercq and Becarie(2012), Laval and Leclercq(2013)]

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 11 / 42

Introduction to traffic Mesoscopic resolution

Mesoscopic resolution of the LWR model(Continued)

Lagrangian-spacen− x

CLVariable Pace p

Equation ∂np − ∂xH(p) = 0

HJ

Variable Passing time T

T (n, x) =

∫ x

−∞

p(n, ξ)dξ

Equation ∂nT − H (∂xT ) = 0

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 12 / 42

Introduction to traffic Mesoscopic resolution

Lax-Hopf formula

1

u

H

p

1

κ

1

C

1

Assume

H(r) =

1

κr +

1

wκ, if r ≥

1

u,

+∞, otherwise,

Proposition (Representation formula (Lax-Hopf))

The solution under smooth boundary conditions is given by

T (n, x) = max{

T (n, 0) +x

u︸ ︷︷ ︸

= free flow

, T(

0, x +n

κ

)

+n

wκ︸ ︷︷ ︸

= congested

}

. (2)

See [Laval and Leclercq(2013)]G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 13 / 42

Introduction to traffic Mesoscopic resolution

Lax-Hopf formula

0

1

κ

x

n

n

x T (n, x)

T (n, 0)

T (0, x)

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 14 / 42

Introduction to traffic Mesoscopic resolution

Dynamic programming

n

x +∆x

x −∆x

n −∆n

x

1

κ

x

n

∆x

∆n

T (n, x)

Introduce a grid with steps(∆n,∆x) satisfying

∆n = κ∆x

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 15 / 42

Introduction to traffic Mesoscopic resolution

Mesoscopic: what for?

Strengths1 Consistent with micro and macro representations2 Large scale networks // spatial discontinuities OK3 Data assimilation (from Eulerian and Lagrangian sensors)

Weakness1 Single pipe2 Mono class3 No capacity drop at junctions

Developments1 Multilane and multiclass approach2 Friction term

−→ Moving bottleneck theory

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 16 / 42

The moving bottleneck theory

Outline

1 Introduction to traffic

2 The moving bottleneck theory

3 Mesoscopic formulation of multiclass multilane models

4 Numerical scheme

5 Conclusion and perspectives

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 17 / 42

The moving bottleneck theory

Some definitionsFollowing [Gazis and Herman(1992), Newell(1998), Laval and Leclercq(2013)],

Definition

A moving bottleneck (MB) is defined as a vehicle with a maximal free flowspeed strictly lower than the free flow speed of its immediate followingvehicle.

A moving bottleneck is said to be active if and only if it generates queuesat upstream positions with respect to the moving bottleneck and if theupstream state is different from the downstream state.

The passing rate is the maximal flow that can overtake the movingbottleneck in the Eulerian framework.

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 18 / 42

The moving bottleneck theory

Notations

vB

−w

−w

vB

k

Q

(N − 1) lanes N lanes

R(vB , qD)

(D) (U)

ξN(t)

x

(U) (D)

vB

kD (N − 1)κ Nκ

qD

NC

Q∗(vB)

u

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 19 / 42

The moving bottleneck theory

Notations

vB

−w

−w

vB

k

Q

(N − 1) lanes N lanes

R(vB , qD)

(D) (U)

ξN(t)

x

(U) (D)

vB

kD (N − 1)κ Nκ

qD

NC

Q∗(vB)

u

ξN(t) = trajectory of the MB in t − x

ξT (n) = location where the vehicle ncrosses the MB

vB(t) := ξN(t) MB speed

kD := k (t, ξN(t)+) downstream

density,

qD := Q(kD) downstream flow,

R(vB , qD) = passing rate

R(vB , qD) := qD − kDvB

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 20 / 42

The moving bottleneck theory

Math problem in Eulerian framework

Coupled ODE-PDE problem on [0,+∞)× R

∂tk + ∂x (Q(k)) = 0,

Q(k(t, ξN(t)))− ξN(t)k(t, ξN(t)) ≤N − 1

NQ∗

(

ξN(t))

,

ξN(t) = min {vb, V (k(t, ξN(t)+))} ,

(3)

with {

k(0, x) = k0(x), on R,

ξN(0) = ξ0.(4)

Theorem (Existence result [Delle Monache and Goatin(2014)])

For BV initial data, there exist weak solutions of (3)-(4).Uniqueness is still an open problem.

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 21 / 42

The moving bottleneck theory

Interpretation

Remark

Upper bound on the passing rate in (3) depends on the moving bottleneckspeed

vB(t) 7→ Q∗(vB(t))

and it is the Legendre-Fenchel transform of the flow-density FD Q

Q∗(v) := supρ∈Dom(Q)

{Q(ρ)− vρ} .

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 22 / 42

Mesoscopic formulation of multiclass multilane models

Outline

1 Introduction to traffic

2 The moving bottleneck theory

3 Mesoscopic formulation of multiclass multilane models

4 Numerical scheme

5 Conclusion and perspectives

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 23 / 42

Mesoscopic formulation of multiclass multilane models

Stretch of road [x0, x1] composed by N separate lanes

Two classes of users: “rabbits” (I = 1) and “slugs” (I = 2).

Class-dependent Hamiltonian

H : (r , I ) 7→ H(r , I )

for a given class attribute I ∈ {1, 2}

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 24 / 42

Mesoscopic formulation of multiclass multilane models

Stretch of road [x0, x1] composed by N separate lanes

Two classes of users: “rabbits” (I = 1) and “slugs” (I = 2).

Class-dependent Hamiltonian

H : (r , I ) 7→ H(r , I )

for a given class attribute I ∈ {1, 2}

If triangular, then u1 > u2

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2Density (veh/m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Flo

w (

veh/

s)

Fundamental Diagrams

RabbitsSlugs

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 24 / 42

Mesoscopic formulation of multiclass multilane models Capacity drop

Capacity drop parameter

(U)(D)

(U)Case FIFOCase non−FIFO

(U) (D)

Flow

(MB)

vB

R(vB , qD)

δ = 1δ = 0

r

H

1

κ

1

urB =

1

vB

hB =1

qD

1

R(vB , qD)

vB

1

C1

Introduce parameter δ ∈ [0, 1]

If δ = 0, strictly non-FIFO

If 0 < δ < 1, reduction of theresidual headway on the passinglane(s)

If δ = 1, strictly FIFO

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 25 / 42

Mesoscopic formulation of multiclass multilane models Capacity drop

Illustration of the capacity drop effect

Link composed of two lanesA single vehicle from class 2 (MB)No capacity drop occurs δ = 0

Time (s)40 60 80 100 120 140 160 180

Spa

ce (

m)

0

100

200

300

400

500

600

700

800

900

1000

Trajectories

T2(n, x)

T1(n, x)

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 26 / 42

Mesoscopic formulation of multiclass multilane models Capacity drop

Time (s)40 60 80 100 120 140 160 180

Spa

ce (

m)

0

100

200

300

400

500

600

700

800

900

1000

Trajectories

T2(n, x)

T1(n, x)

Time (s)40 60 80 100 120 140 160 180

Spa

ce (

m)

0

100

200

300

400

500

600

700

800

900

1000

Trajectories

T2(n, x)

T1(n, x)

δ = 1 δ = 0.6

Time (s)40 60 80 100 120 140 160 180

Spa

ce (

m)

0

100

200

300

400

500

600

700

800

900

1000

Trajectories

T2(n, x)

T1(n, x)

Time (s)40 60 80 100 120 140 160 180

Spa

ce (

m)

0

100

200

300

400

500

600

700

800

900

1000

Trajectories

T2(n, x)

T1(n, x)

δ = 0.4 δ = 0.2

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 27 / 42

Mesoscopic formulation of multiclass multilane models Expression of the MCML model

System of coupled PDEs

∂nT1 − H (∂xT1, I1) = 0,

∂nT2 − H (∂xT2, I2) = 0,

H (∂xT1(n, ξ(n)), I1)− (1− δ)ξ (n∗2) ∂xT1(n, ξ(n))

≥N

N − 1H⊠

(

(1− δ)ξ (n∗2) , I1

)

,

T2 (n, ξ(n)) ≥ T1(n∗

1, ξ(n)) + H (∂xT1(n∗

1, ξ(n)), I2) ,

(5)

whereH⊠(s, I ) = inf

r∈Dom(H(·,I )){H(r , I ) − sr}

{

n∗2 := argmax T2(·, ξ(n)) and ξ(n) = ξ(n∗2), for n ∈ [n0,+∞),

n∗1 := argmax T1(·, ξ(n)) for n ∈ [n0,+∞),

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 28 / 42

Mesoscopic formulation of multiclass multilane models Expression of the MCML model

+ mixed Neumann-Dirichlet boundary conditions

∂nTi (n, x0) = gi (n), on [n0,+∞),

∂nTi (n, x1) = gi (n), on [n0,+∞),

Ti (n0, x) = Gi(x), on [x0, x1],

for i ∈ {1, 2} . (6)

x

nn0

x1

x0

Downstream Supply

Upstream Demand

First trajectory

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 29 / 42

Mesoscopic formulation of multiclass multilane models Expression of the MCML model

Assumptions

1

ur

1

(N − 1)κ

ξ(n∗2) ξ(n∗2)

N lanes

(N − 1) lanes

1

hB =1

(N − 1)C

rB

1

NC

1

Nwκ

H∗(

ξ(n∗2))

hB −ξ(n∗2)

u

H

n∗i (i ∈ {1, 2}: the nearestleader from class i for vehicle nof class j 6= i

Modified passing headway H

H =1

1− δhB −

ξT (n∗2)

u1

where hB =1

(N − 1)Cis the

residual headway

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 30 / 42

Numerical scheme

Outline

1 Introduction to traffic

2 The moving bottleneck theory

3 Mesoscopic formulation of multiclass multilane models

4 Numerical scheme

5 Conclusion and perspectives

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 31 / 42

Numerical scheme Setting of the IBV Problem

Finite steps (∆n,∆x) > 0

∆n = κ∆x .

Class-specific Hamiltonians H are triangular

H(r , Ii ) =

1

κN(Ii )

(

r +1

w

)

, if r ≥1

ui,

+∞, otherwise,

(7)

N(Ii ) stands for the number of lanes that are accessible for the class i

N(Ii ) :=

{

N, for i = 1,

1, for i = 2.

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 32 / 42

Numerical scheme Setting of the IBV Problem

Dynamic programming

∆n

n

x +∆x

x −∆x

n −∆n

x

1

κ

T (n, x)

ξMB(n)

∆x

x

n

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 33 / 42

Numerical scheme Lax-Hopf formulæ for the MCML model

Representation formulæ

For any (n, x) ∈ [n0, nmax ]× [x0, x1],

T1(n, x) = max

{

T1(n, x −∆x) +∆x

u1,T1(n −∆n, x +∆x) +

∆x

w

}

,

T2(n, x) = max

{

T2(n, x −∆x) +∆x

u2, T2(n −∆n, x +∆x) +

∆x

w

}

(8)

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 34 / 42

Numerical scheme Lax-Hopf formulæ for the MCML model

Representation formulæ

For any (n, x) ∈ [n0, nmax ]× [x0, x1],

T1(n, x) = max{

T1(n, x −∆x) +∆x

u1,T1(n −∆n, x +∆x) +

∆x

w,

T2(n∗

2, x) +1

1− δhB

}

T2(n, x) = max

{

T2(n, x −∆x) +∆x

u2, T2(n −∆n, x +∆x) +

∆x

w,

T1(n∗

1, x) + H

(T1(n

1, x) − T1(n∗

1, x −∆x)

∆x, I2

)}

(9)with {

n∗1 := argmax T1(·, x)

n∗2 := argmax T2(·, x)

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 35 / 42

Numerical scheme Some mathematical results

Proposition (Existence of a continuous solution to (5)-(6))

Assume that r 7→ H (r , Ii ) is convex for any i ∈ {1, 2}. Then, the IBVproblem (5)-(6) admits a solution (T1,T2) continuous on[n0,+∞]× [x0, x1].

Proposition (Convergence)

Assume that r 7→ H (r , Ii ) is convex for any i ∈ {1, 2}. Then the numericalsolution (T ε

1 ,Tε

2 ) of the scheme (9) converges towards a continuoussolution (T1,T2) of the IBV problem (5)-(6) when ε := (∆n,∆x) goestoward zero.

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 36 / 42

Numerical scheme Simulation with a mixed traffic

Distribution per class: class 1 = 60% and class 2 = 40%

Capacity drop: δ = 0.8

50 100 150 200 250 300 350 400 450 500 550Time (s)

0

100

200

300

400

500

600

700

800

900

1000

Spa

ce (

m)

(alpha, delta) = (0.6, 0.8)

T2(n, x)

T1(n, x)

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 37 / 42

Numerical scheme Simulation with a mixed traffic

20 40 60 80 100 120 140 160 180 200 220 240Vehicle label

40

60

80

100

120

140

160

180

Tra

vel t

ime

(s)

Class 1

20 40 60 80 100 120 140 160Vehicle label

40

60

80

100

120

140

160

180

Tra

vel t

ime

(s)

Class 2

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 38 / 42

Conclusion and perspectives

Outline

1 Introduction to traffic

2 The moving bottleneck theory

3 Mesoscopic formulation of multiclass multilane models

4 Numerical scheme

5 Conclusion and perspectives

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 39 / 42

Conclusion and perspectives

A new event-based mesoscopic model for multi-class traffic flowmodeling on multi-lane sections

Theory of moving bottlenecks

Wide networks

Among the perspectives:

Well posedness

Sensitivity analysis (→ Regis’ presentation)

Validation with real traffic data

Data assimilation for real-time applications (→ Francesca’spresentation)

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 40 / 42

References

Some references I

Delle Monache, M. L., Goatin, P., 2014. Scalar conservation laws with movingconstraints arising in traffic flow modeling: an existence result. Journal ofDifferential equations 257 (11), 4015–4029.

Gazis, D. C., Herman, R., 1992. The moving and “phantom” bottlenecks.Transportation Science 26 (3), 223–229.

Laval, J. A., Leclercq, L., 2013. The Hamilton–Jacobi partial differential equationand the three representations of traffic flow. Transportation Research Part B:Methodological 52, 17–30.

Leclercq, L., Becarie, C., 2012. A meso LWR model designed for networkapplications. In: Transportation Research Board 91th Annual Meeting. Vol. 118. p.238.

Newell, G. F., 1998. A moving bottleneck. Transportation Research Part B:Methodological 32 (8), 531–537.

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 41 / 42

References

Thanks for your attention

Any question?

[email protected]

G. Costeseque (Inria) Moving Bottleneck & HJ equations Valbonne, Jan. 07 2016 42 / 42