18
1 The Online Labeling Problem Jan Bulánek (Institute of Math, Prague) Martin Babka (Charles University) Vladimír Čunát (Charles University) Michal Koucký (Institute of Math, Prague) Michael Saks (Rutgers University)

The Online Labeling Problem

  • Upload
    adli

  • View
    33

  • Download
    0

Embed Size (px)

DESCRIPTION

The Online Labeling Problem. Jan Bul ánek ( Institute of Math , Prague) M artin Babka (Charles University) Vladimír Čunát (Charles University ) Michal Kouck ý ( Institute of Math , Prague ) Michael Saks (Rutgers University). Sorted Arrays. Basis of many algorithms - PowerPoint PPT Presentation

Citation preview

Page 1: The Online  Labeling Problem

1

The Online Labeling Problem

Jan Bulánek(Institute of Math, Prague)

Martin Babka (Charles University)Vladimír Čunát (Charles University)

Michal Koucký (Institute of Math, Prague)Michael Saks (Rutgers University)

Page 2: The Online  Labeling Problem

2

Sorted Arrays Basis of many algorithms Easy to work with

Dynamization?Online Labeling

Page 3: The Online  Labeling Problem

Storing elements in the array

3

12

3 1915117 12

1 -5 32 7… 14

Stream of n elements

Array of size Θ(n)

Gaps in the arrayMuze pohnout co chce

Page 4: The Online  Labeling Problem

4

Online labelingInput:

A stream of n numbers An array of size m

For the size Θ(n) File maintenance problem

Want: maintain a sorted array of all already seen items minimize the total number of item moves (cost)

Naïve solution O(n) per insertion

Page 5: The Online  Labeling Problem

ApplicationsMany applications, e.g.:

[Bender, Demaine, Farach-Colton ’00] Cache-oblivous B-trees

[Emek, Korman ’11] Distributed Controllers Lower bounds

5

Page 6: The Online  Labeling Problem

6

Linear array algorithm [Itai, Konheim, Rodeh ’81] O(log2 n) per insertion, amortized[Itai, Katriel ’07] Simpler algorithm

Basic ideas Small gaps Spread items evenly Density threshold function

Page 7: The Online  Labeling Problem

7

Algorithm for linear arrays – cont.How to find segment to rearrange

Too denseGood densityRearrange items evenly

Page 8: The Online  Labeling Problem

Array size (m) Amortized insertion costm=n O(log3 n) [Z 93]

m=Θ(n) O(log2 n) [IKR 81][W92, BCD+02]*m=n1+o(1) O( ) [IKR 81]m=n1+ℇ O(log n)m=nΩ(log n) O( ) [BKS 12]

9

Upper bounds

TIGHT!

!

Page 9: The Online  Labeling Problem

10

Lower Bounds[Zhang ’93] m=O(n) Ω(log2 n) per insertion, amortized Only smooth strategies

[Dietz, Seiferas, Zhang ’94] m=n1+Θ(1) Ω(log n) per insertion, amortized Proof contains a gap

Page 10: The Online  Labeling Problem

11

Lower Bounds – cont.[B., Koucký, Saks STOC’12] All strategies Uses some ideas from [Zhang 93]

m=n Ω(log3 n)m=Θ(n) Ω(log2 n)

Page 11: The Online  Labeling Problem

Lower Bounds – proof techniqueAdversary Generates input stream Reacts on the state of the array Inserts to dense areas

Only deterministic case

12

Page 12: The Online  Labeling Problem

13

Lower Bounds – cont.[Babka, B., Čunát, Koucký, Saks ESA’12] All strategies Fills the gap in [DSZ ’04] and extends their result Tight bounds for the bucketing game

m=n1+Θ(1) Ω()m=n1+Ω (1) Ω( )

Page 13: The Online  Labeling Problem

14

Lower Bounds – cont.[Babka, B., Čunát, Koucký, Saks 12, manuscript] All strategies Extends results of [BKS 12]

m=n1+o(1) Ω( )

Page 14: The Online  Labeling Problem

15

Lower Bounds – Sumary

Array size (m) Insertion cost

m=n+a(n) Ω(log2 n )m=cn Ω()m=n∙f(n)f(n)∊o(n) Ω( )m=ne(n)e(n)∊Ω(1) Ω( )

Page 15: The Online  Labeling Problem

Trivial for r<mLimited universe

16

m …

1 2 3 4 … r-1 rU

Page 16: The Online  Labeling Problem

Maybe easier for r small

Limited universe – cont.

17

3 4 …

1 2 3 4 … r-1 rU

Page 17: The Online  Labeling Problem

Limited universe – cont.

18

Page 18: The Online  Labeling Problem

Open problems Randomized algorithms? Limited universe m log n

19

The End!