49
The QCD phase diagram at non-zero baryon density Owe Philipsen Durham, 2009 Introduction Lattice techniques for finite temperature and density The phase diagram: the confusion before clarity? Original work with Ph. de Forcrand (ETH/CERN) Annual Theory Meeting

The QCD phase diagram at non-zero baryon density...The QCD phase diagram at non-zero baryon density Owe Philipsen Durham, 2009 Introduction Lattice techniques for finite temperature

  • Upload
    others

  • View
    6

  • Download
    0

Embed Size (px)

Citation preview

  • The QCD phase diagram at non-zero baryon density

    Owe Philipsen

    Durham, 2009

    Introduction

    Lattice techniques for finite temperature and density

    The phase diagram: the confusion before clarity?

    Original work with Ph. de Forcrand (ETH/CERN)

    Annual Theory Meeting

  • QCD at high temperature/density: change of dynamics

    chiral condensate , Cooper pairs

    0.1

    0.2

    0.3

    0.4

    0.5!s

    1 10 100

    Measured

    QCD

    Energy in GeV

    Chiral symmetry: broken (nearly) restored

  • QCD at high temperature/density: change of dynamics

    chiral condensate , Cooper pairs

    0.1

    0.2

    0.3

    0.4

    0.5!s

    1 10 100

    Measured

    QCD

    Energy in GeV

    Chiral symmetry: broken (nearly) restored

    Phase transitions?

  • The QCD phase diagram established by experiment:

    B

    Nuclear liquid gas transition, Z(2) end point

  • QCD phase diagram: theorist’s view

    T

    µ

    confined

    QGP

    Color superconductor

    Tc!

    ~170 MeV

    ~1 GeV?

    Expectation based on models: NJL, NJL+Polyakov loop, linear sigma models, random matrix models, ...

    Until 2001: no finite density lattice calculations, sign problem!

    earl

    y un

    iver

    se

    heavy i

    on coll

    isions

    compact stars ?

    B

  • Model predictions for critical end point (CEP)

  • How to get funding for heavy ion programs:

  • How to get funding for heavy ion programs:

  • Thermal QCD in experimentThis is how experiment probes the phase transition & QGP....

    heavy ion collision experiments at RHIC, LHC, GSI.... have finite baryon density!

  • ?

    Phase boundary from hadron freeze-out?

  • Theory: The Monte Carlo method

    QCD partition fcn:

    links=gauge fields

    lattice spacing a

  • How to measure p.t., critical temperature

    Lee,Yang:

  • The order of the p.t., arbitrary quark masses

    chiral p.t.restoration of global

    µ = 0

    deconfinement p.t.: breaking of global

    SU(2)L × SU(2)R × U(1)A

    Z(3)

    anomalous

  • How to identify the critical surface: Binder cumulant

    B4(ψ̄ψ) ≡〈(δψ̄ψ)4〉

    〈(δψ̄ψ)2〉2V →∞−→

    1.604 3d Ising1 first − order3 crossover

    1.3

    1.4

    1.5

    1.6

    1.7

    1.8

    1.9

    0.018 0.021 0.024 0.027 0.03 0.033 0.036

    B4

    am

    L=8

    L=12

    L=16

    Ising

    B4(m, L) = 1.604 + bL1/ν(m − mc0), ν = 0.63µ = 0 :

    university-logo

    Intro Tc CEP Results Discussion Concl. Others Strategy

    Observable: Binder cumulant

    • Probability distribution of order parameter- distinguishes crossover (Gaussian) vs 1rst order (2 peaks)

    - 2nd order: scale-invariant distribution with known Ising exponents

    - encoded in Binder cumulant

    • Measure B4(!̄!) ≡ 〈("!̄!)4〉

    〈("!̄!)2〉2

    ∣∣∣〈("!̄!)3〉=0

    =

    3 crossover

    1 first−order1.604 3d Ising

    for V → #

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    -1 -0.5 0 0.5 1

    First order

    Crossover

    V1V2 > V1

    V3 > V2 > V1V=$$"

    1.3

    1.4

    1.5

    1.6

    1.7

    1.8

    1.9

    0.018 0.021 0.024 0.027 0.03 0.033 0.036

    B4

    am

    L=8

    L=12

    L=16

    Ising

    • Finite volume, µ= 0: B4(am) = 1.604+ c(L)(am−amc0)+ . . . , c(L) % L1/&

    Ph. de Forcrand INT, Aug. 2008 Controlled crit. pt.

    How to identify the order of the phase transition

    x− xcparameter along phase boundary, T = Tc(x)

  • Hard part: order of p.t., arbitrary quark masses

    0

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    0.35

    0 0.01 0.02 0.03 0.04

    ams

    amu,d

    Nf=2+1

    physical point

    mstric - C mud

    2/5

    phys.point

    00

    N = 2

    N = 3

    N = 1

    f

    f

    f

    m s

    sm

    Gauge

    m , mu

    1st

    2nd orderO(4) ?

    2nd orderZ(2)

    2nd orderZ(2)

    crossover

    1st

    d

    tric

    !

    !

    Pure

    deconf. p.t.

    chir

    al p

    .t.

    physical point: crossover in the continuum Aoki et al 06

    chiral critical line on de Forcrand, O.P. 07

    consistent with tri-critical point at

    But: chiral O(4) vs. 1st still open Di Giacomo et al 05, Kogut, Sinclair 07 anomaly! Chandrasekharan, Mehta 07

    Nt = 4, a ∼ 0.3 fm

    mu,d = 0, mtrics ∼ 2.8T

    Nf = 2UA(1)

    chiral critical line

    µ = 0

  • How to identify the critical surface: Binder cumulant

    B4(ψ̄ψ) ≡〈(δψ̄ψ)4〉

    〈(δψ̄ψ)2〉2V →∞−→

    1.604 3d Ising1 first − order3 crossover

    1.3

    1.4

    1.5

    1.6

    1.7

    1.8

    1.9

    0.018 0.021 0.024 0.027 0.03 0.033 0.036

    B4

    am

    L=8

    L=12

    L=16

    Ising

    B4(m, L) = 1.604 + bL1/ν(m − mc0), ν = 0.63µ = 0 :

    university-logo

    Intro Tc CEP Results Discussion Concl. Others Strategy

    Observable: Binder cumulant

    • Probability distribution of order parameter- distinguishes crossover (Gaussian) vs 1rst order (2 peaks)

    - 2nd order: scale-invariant distribution with known Ising exponents

    - encoded in Binder cumulant

    • Measure B4(!̄!) ≡ 〈("!̄!)4〉

    〈("!̄!)2〉2

    ∣∣∣〈("!̄!)3〉=0

    =

    3 crossover

    1 first−order1.604 3d Ising

    for V → #

    0

    0.5

    1

    1.5

    2

    2.5

    3

    3.5

    4

    -1 -0.5 0 0.5 1

    First order

    Crossover

    V1V2 > V1

    V3 > V2 > V1V=$$"

    1.3

    1.4

    1.5

    1.6

    1.7

    1.8

    1.9

    0.018 0.021 0.024 0.027 0.03 0.033 0.036

    B4

    am

    L=8

    L=12

    L=16

    Ising

    • Finite volume, µ= 0: B4(am) = 1.604+ c(L)(am−amc0)+ . . . , c(L) % L1/&

    Ph. de Forcrand INT, Aug. 2008 Controlled crit. pt.

    How to identify the order of the phase transition

    x− xcparameter along phase boundary, T = Tc(x)

    The ‘sign problem’ is a phase problem

    importance sampling requirespositive weights

    Dirac operator:

    Lattice QCD at finite temperature and density

    Difficult (impossible?): sign problem of lattice QCD

    Z =

    DU [detM(µ)]fe−Sg[U ]

    positivity governed by γ5-hermiticity: D/ (µ)† = γ5D/ (−µ∗)γ5

    ⇒det(M) complex for SU(3), µ #= 0

    ⇒real positive for SU(2), µ = iµi

    N.B.: all expectation values are real, but MC importance sampling impossible

    The following methods evade the sign problem, they don’t cure it!

    N.B.: all expectation values real, imaginary parts cancel, but importance sampling config. by config. impossible!

    D/ (µ)† = γ5D/ (−µ∗)γ5

    Z =

    ∫DU [detM(µ)]fe−Sg[U ]

    Lattice QCD at finite temperature and density

    Difficult (impossible?): sign problem of lattice QCD

    Z =

    DU [detM(µ)]fe−Sg[U ]

    positivity governed by γ5-hermiticity: D/ (µ)† = γ5D/ (−µ∗)γ5

    ⇒det(M) complex for SU(3), µ #= 0

    ⇒real positive for SU(2), µ = iµi

    N.B.: all expectation values are real, but MC importance sampling impossible

    The following methods evade the sign problem, they don’t cure it!

    µu = −µd

    Same problem in many condensed matter systems!

  • 1dim. illustration

  • Finite density: methods to evade the sign problem

    Reweighting:

    Taylor expansion:

    Imaginary : no sign problem, fit by polynomial, then analytically continue

    All require !

    U

    Sµ=0 finite µ

    ~exp(V) statistics needed,overlap problem

    coeffs. one by one, convergence?

    requires convergencefor anal. continuation

    µ/T < 1

    〈O〉(µi) =N∑

    k=0

    ck( µi

    πT

    )2k, µi → −iµ

    〈O〉(µ) = 〈O〉(0) +∑

    k=1

    ck( µ

    πT

    )2k

    Z =∫

    DU det M(0)det M(µ)det M(0)

    e−Sg

    use for MC calculate

    µ = iµi

    inte

    gran

    d

  • Comparing approaches: the critical line

    university-logo

    Intro Tc CEP Results Discussion Concl.

    The good news: curvature of the pseudo-critical line

    All with Nf = 4 staggered fermions, amq = 0.05,Nt = 4 (a∼ 0.3 fm)PdF & Kratochvila

    4.8

    4.82

    4.84

    4.86

    4.88

    4.9

    4.92

    4.94

    4.96

    4.98

    5

    5.02

    5.04

    5.06

    0 0.5 1 1.5 2

    1.0

    0.95

    0.90

    0.85

    0.80

    0.75

    0.70

    0 0.1 0.2 0.3 0.4 0.5!

    T/T

    c

    µ/T

    a µ

    confined

    QGP ~ 0.85(1)

    ~ 0.45(5)

    ~ 0.1(1)

    D’Elia, Lombardo 163

    Azcoiti et al., 83

    Fodor, Katz, 63

    Our reweighting, 63

    deForcrand, Kratochvila, 63

    imaginary µ

    2 param. imag. µ

    dble reweighting, LY zeros

    Same, susceptibilities

    canonical

    Agreement for µ/T ! 1

    Ph. de Forcrand INT, Aug. 2008 Controlled crit. pt.

    de Forcrand, Kratochvila LAT 05

    ; same actions (unimproved staggered), same massNt = 4, Nf = 4

    The good news: comparing Tc(µ) de Forcrand, Kratochvila 05

  • The (pseudo-) critical temperature

    very flat, but not yet physical masses, coarse lattices

    indications that curvature does not grow towards continuum de Forcrand, O.P. 07

    extrapolation to physical masses and continuum is feasible! Budapest-Wuppertal 08

  • Comparison with freeze-out curve so far

    freeze-out

  • The calculable region of the phase diagram

    T

    µ

    confined

    QGP

    Color superconductor

    Tc!

    Upper region: equation of state, screening masses, quark number susceptibilities etc.under control

    Here: phase diagram itself, most difficult!

  • Much harder: is there a QCD critical point?

  • Much harder: is there a QCD critical point?

    1

  • Much harder: is there a QCD critical point?

    12

  • Fodor,Katz JHEP 04

    abrupt change: physics or problem of the method? Splittorff 05; Han, Stephanov 08

    Lee-Yang zero:

    Critical point from reweighting

    physical quark masses, unimproved staggered fermionsNt = 4, Nf = 2 + 1

    Approach 1a: CEP from reweighting

    (entire curve generated from one point!)

    Fodor, Katz 04

    Splittorf 05, Stephanov 08

  • Approach 1b: CEP from Taylor expansion

    p

    T 4=∞∑

    n=0

    c2n(T )( µ

    T

    )2n

    Nearest singularity=radius of convergence

    Different definitions agree only for not n=1,2,3 CEP may not be nearest singularity, control of systematics?

    µETE

    = limn→∞

    √∣∣∣∣c2n

    c2n+2

    ∣∣∣∣, limn→∞

    ∣∣∣∣c0c2n

    ∣∣∣∣

    12n

    n→∞

    0.75

    0.8

    0.85

    0.9

    0.95

    1

    1.05

    1.1

    1.15

    1.2

    0 1 2 3 4 5 6

    µB / Tc(0)

    T / Tc(0)

    !2 !4

    nf=2+1, m"=220 MeVnf=2, m"=770 MeV

    CEP from [5]CEP from [6]

    Bielefeld-Swansea-RBC

    FK

    Gavai, Gupta

    Nf = 2

    improved staggered Nt = 4

  • Approach 2: follow chiral critical line surface

    mc(µ)mc(0)

    = 1 +∑

    k=1

    ck( µ

    πT

    )2k

    chir

    al p

    .t.

    chir

    al p

    .t.

    hard/easyde Forcrand, O.P. 08,09

  • Approach 2: imaginary rather than imagined (?) CEP

    mc(µ)mc(0)

    = 1 +∑

    k=1

    ck( µ

    πT

    )2k

    chir

    al p

    .t.

    chir

    al p

    .t.

    hard/easyde Forcrand, O.P. 08,09

  • Finite density: chiral critical line critical surface

    phys.point

    00

    N = 2

    N = 3

    N = 1

    f

    f

    f

    m s

    sm

    Gauge

    m , mu

    1st

    2nd orderO(4) ?

    2nd orderZ(2)

    2nd orderZ(2)

    crossover

    1st

    d

    tric

    !

    !

    Pure

    * QCD critical point

    crossover 1rst0

    !

    Real world

    X

    Heavy quarks

    mu,dms

    !

    QCD critical point DISAPPEARED

    crossover 1rst0

    !

    Real world

    X

    Heavy quarks

    mu,dms

    !

    mc(µ)

    mc(0)= 1 +

    k=1

    ck

    ( µ

    πT

    )2k

    T

    µ

    confined

    QGP

    Color superconductor

    m > mc(0)

    Tc

    T

    !

    confined

    QGP

    Color superconductor

    m > > mc(0)

    Tc!

  • Finite density: chiral critical line critical surface

    phys.point

    00

    N = 2

    N = 3

    N = 1

    f

    f

    f

    m s

    sm

    Gauge

    m , mu

    1st

    2nd orderO(4) ?

    2nd orderZ(2)

    2nd orderZ(2)

    crossover

    1st

    d

    tric

    !

    !

    Pure

    * QCD critical point

    crossover 1rst0

    !

    Real world

    X

    Heavy quarks

    mu,dms

    !

    QCD critical point DISAPPEARED

    crossover 1rst0

    !

    Real world

    X

    Heavy quarks

    mu,dms

    !

    mc(µ)

    mc(0)= 1 +

    k=1

    ck

    ( µ

    πT

    )2k

    T

    µ

    confined

    QGP

    Color superconductor

    m > mc(0)

    Tc

    T

    !

    confined

    QGP

    Color superconductor

    m > > mc(0)

    Tc!

  • Curvature of the chiral critical surface

    de Forcrand, O.P. 08,09

  • The chiral critical surface on a coarse lattice:

    Higher order terms? Convergence?

    Cut-off effects?

    In any case: picture for QCD phase diagram not as clear as anticipated.....

    08

  • Un-discovering a critical point feels like...

  • Un-discovering a critical point feels like...

  • Scenario unusual? ...the same happens for heavy quark masses!

    effective heavy quark theory, same universality class: 3-state Potts model

    -3 -2 -1 0 1 2 3 4 5

    (µ/!)^2

    0

    2

    4

    6

    8

    10

    12

    M/T

    from µ_"from µM_infinity limit

    critical M in Potts, 72^3

    first order transition

    cross-over

    QCD critical point DISAPPEARED

    crossover 1rst0

    #

    Real world

    X

    Heavy quarks

    mu,dms

    µ

    Real µ: first order region shrinking! de Forcrand, Kim, Takaishi

    also for finite isospin chemical potential Kogut, Sinclair

    N.B.: non-chiral critical point still possible!

  • Recent model studies with similar results

    0 0.5 1 1.5 2 2.5 0 2

    4 6

    8 10

    0

    50

    100

    150

    200

    250

    300

    Light Quark Mass [MeV] Strang

    e Quar

    k Mass

    [MeV

    ]

    Qua

    rk C

    hem

    ical

    Pot

    entia

    l [M

    eV] GV = 0.8GS

    K. Fukushima 08

    NJL-Polyakov loop model with vector-vector interaction

    Bowman, Kapusta 08

    Linear sigma model with quarks

    Qualitative behaviour as in exotic lattice scenario!

  • Towards the continuum: Nt = 6, a ∼ 0.2 fm

    phys.point

    00

    N = 2

    N = 3

    N = 1

    f

    f

    f

    m s

    sm

    Gauge

    m , mu

    1st

    2nd orderO(4) ?

    2nd orderZ(2)

    2nd orderZ(2)

    crossover

    1st

    d

    tric

    !

    !

    Pure

    Nt=4

    Nt=6

    mcπ(Nt = 4)mcπ(Nt = 6)

    ≈ 1.77

    Physical point deeper in crossover region as

    Cut-off effects stronger than finite density effects!

    Curvature of crit. surface (so far) consistent with 0; strong quark mass sensitivity!

    a→ 0

    Nf = 3 de Forcrand, Kim, O.P. 07Endrodi et al 07

  • The interplay of Nf=2 and Nf=2+1

    Xphys.

    O(4)

  • The interplay of Nf=2 and Nf=2+1

    Xphys.

    O(4)

  • The interplay of Nf=2 and Nf=2+1

    Xphys.

    O(4)

  • The interplay of Nf=2 and Nf=2+1

    Xphys.

    which critical surface do we need?

    O(4)

  • More (and non-chiral) critical points?

    Good time for models: NJL with vector interactions Zhang, Kunihiro, Fukushima 09 Ginzburg-Landau approach Baym et al. 06 for quark condensates ...

  • Conclusions

    Working lattice methods available for

    , EoS under control at small density

    On coarse lattices a~0.3 fm no chiral critical point for

    Large cut-off and quark mass effects

    Uncharted territory: do QCD critical points exist?

    Tc(µ)

    µ < T

    µ < T

  • Conclusions

    Working lattice methods available for

    , EoS under control at small density

    On coarse lattices a~0.3 fm no chiral critical point for

    Large cut-off and quark mass effects

    Uncharted territory: do QCD critical points exist?

    Tc(µ)

    µ < T

    µ < T

  • The equation of state

    Continuum extrapolation with physical quarks feasible in the near future

  • Equation of state at finite baryon density

    Taylor expansion, second order Bielefeld-Swansea Reweighting Wuppertal

  • The nature of the phase transition at the physical point Fodor et al. 06

    ...in the staggered approximation...in the continuum...is a crossover!

    The nature of the transition for phys. masses Aoki et al. 06