15
Exploring the redox states and reactivity of a vanadium bistetrazinylpyridine complex with DFT tetrazinylpyridine complex with DFT Adam M. Terwilliger (GVSU) Kenneth G. Caulton (Indiana) Kenneth G. Caulton (Indiana) Richard L. Lord (GVSU)

the redox states and reactivity of a vanadium bis

  • Upload
    others

  • View
    5

  • Download
    0

Embed Size (px)

Citation preview

Page 1: the redox states and reactivity of a vanadium bis

Exploring the redox states and p greactivity of a vanadium bis‐

tetrazinylpyridine complex with DFTtetrazinylpyridine complex with DFT

Adam M. Terwilliger (GVSU)

Kenneth G. Caulton (Indiana)Kenneth G. Caulton (Indiana)

Richard L. Lord (GVSU)

Page 2: the redox states and reactivity of a vanadium bis

Redox‐Active Ligands

• Polypyridine ligands popular in redox catalysisPolypyridine ligands popular in redox catalysis

• Recognized for ability to “accept” an electron

• Idea: make the ligand more electron acceptingIdea: make the ligand more electron accepting by introducing additional nitrogens

Luca, O.R.; Crabtree, R.H. Chem. Soc. Rev. 2013, 42, 1440‐1459. Caulton, K.G. Eur. J. Inorg. Chem. 2012, 13, 435‐443.

Page 3: the redox states and reactivity of a vanadium bis

Redox‐Active Ligands

• btzp + electron rich V(III) sourcebtzp + electron rich V(III) source

• Expected: (btzp)VCl3 with one ofVIII bt 0– VIII + btzp0

– VIV + btzp1–

V 2– VV + btzp2–

• Found: (btzp‐H)VCl2O

• What are the redox states?What are the redox states?

Page 4: the redox states and reactivity of a vanadium bis

Vanadium‐Oxo Applications

• Biological reactions and enzyme inhibitionBiological reactions and enzyme inhibition

Figure from: Crans, D.C.; Smee, J.J.; Ernestas, G.; Yang, L. Chem. Rev. 2004, 104, 849‐902.

Page 5: the redox states and reactivity of a vanadium bis

Vanadium‐Oxo Applications

• Oxidation catalysts in organic chemistryOxidation catalysts in organic chemistry

Figures from: Hirao, T. Chem. Rev. 1997, 97, 2707‐2724.

Page 6: the redox states and reactivity of a vanadium bis

Methods

• Calculations used Gaussian09Calculations used Gaussian09 

• B3LYP/LANL2DZ/6‐31G(d,p) level of theory

f i fi d b bl• Wavefunctions confirmed to be stable

• Minima verified through harmonic analysis

• Redox states were assigned by– visualizing spin densitiessua g sp de s es

– analyzing corresponding orbitals

– comparing bond lengthscomparing bond lengths

Page 7: the redox states and reactivity of a vanadium bis

Goals

• What are the oxidation states of the metal andWhat are the oxidation states of the metal and ligands in the lowest energy spin state of [(btzp)VCl2O]0?[(btzp)VCl2O] ?

• Which N atom does H atom prefer to bind to in this complex?in this complex?

• How does the electron distribution change h h H bi d b ?when the H atom binds to btzp?

Page 8: the redox states and reactivity of a vanadium bis

doublet(S = 1/2)

quartet(S = 3/2)( / ) ( / )

N1‐N2 1.307 1.321

N1‐C3 1.361 1.356

N2 C2 1 349 1 339N2‐C2 1.349 1.339

C2‐N3 1.346 1.356

N3‐N4 1.321 1.320

C3‐N4 1.333 1.335

Relative Free Energy

0.00 +42.49

Unpaired electron Spin density

Page 9: the redox states and reactivity of a vanadium bis

Conclusions for [(btzp)VCl2O]0

• The spin density and SOMO show that thep yunpaired electron density is concentrated aroundthe metal center with no concentration on thebtzp ligandbtzp ligand.

• The spin density plot shows a slight excess of spin (white) at the oxygen; however, thecorresponding orbital analysis (used to generatethe SOMO) did not identify an unpaired electronon Oon O.

• This finding of one unpaired electron at the metalis consistent with VIV and btzp0.

Page 10: the redox states and reactivity of a vanadium bis

Which N Does H Bind To?

• H atom can bind to N2, N3, N4, ,

• Proton or H(dot)?

• If H+ where does that• If H+, where does thatelectron go to?

III / ( )• VIII / btzp‐H+ (seems unlikely)

• VIV / btzp‐H0 (where is radical?)

• VV / btzp‐H– (can btzp oxidize VIV?)

• [(btzp)VCl O] + (triplet) or (singlet)[(btzp)VCl2O] +  (triplet) or  (singlet)

Page 11: the redox states and reactivity of a vanadium bis

Species Spin State H PositionRelative

Species Spin State H PositionFree Energy

2S Singlet N2 –1.54

2T Triplet N2 +0.38T

3S Singlet N3 0.00

3T Triplet N3 +1.36

4 Singlet N4 +7 474S Singlet N4 +7.47

4T Triplet N4 +7.21

2 /3 l t i 3 t h ll ith• 2S/3S lowest in energy. 3S matches well with experimental structure. Is 2S artificially stabilized?

Page 12: the redox states and reactivity of a vanadium bis

intramolecular H‐bondintramolecular H‐bond

Top‐down view ofthe optimizedstructures showingH‐bonding in 2S (left)vs. 3S (right).

Page 13: the redox states and reactivity of a vanadium bis

What Are Redox/Spin States in 3S?

• Consistent with VIV and btzp‐H0, AF‐coupled

Page 14: the redox states and reactivity of a vanadium bis

Conclusions for [(btzp‐H)VCl2O]0Conclusions for [(btzp H)VCl2O]

• Excellent structural agreement with expExcellent structural agreement with exp.

• Crystallography suggested anionic btzp‐H 

C l l i h b i h d• Calculations show btzp‐H is uncharged

• The metal SOMO does notmix significantly with the ligand SOMO (S = 0.36); spatial separation of opposite spins is found to give a more stable electronic structure 

Submitted to Acta Crystallographica C

Page 15: the redox states and reactivity of a vanadium bis

AcknowledgementsAcknowledgements

• Prof. Caulton and his group at IU for provoking o . Cau to a d s g oup at U o p o o gour interest in this chemistry (NSF/CHE‐0822838)

• GVSU Office of Undergraduate Research and gScholarship for a Modified Student Summer Scholar Award to Adam Terwilliger

• GVSU Center for Scholarly and Creative Excellence Faculty Research Grant‐in‐Aid to Richard LordRichard Lord

• MU3C for Computational Resources (NSF/CHE‐1039925)1039925)