26
0 1 10 L i -3 0 -2 5 -2 0 -1 5 -1 0 -5 0 5 0 0 0 0 1 10 Be 1 10 100 1000 B 0 1 101001000 10000 100000 Al 1000 1 0 0 0 01 0 0 0 0 0 1000000 Ca 0 0 1 T i 0 1 10 100 1000 Mn -3 0 -2 5 -2 0 -1 5 -1 0 -5 0 5 1 0 10 0 1 0 0 01 0 0 0 0 1 0 00 0 0 F e 0 0 1 10 Co 0 0 1 10 100 Ni 0 1 10 Cu 1 10 100 Z n 0 0 1 10 100 As -3 0 -2 5 -2 0 -1 5 -1 0 -5 0 5 0 0 1 10 Se 0 0 1 10 Rb 1 0 1 0 0 1 0 0 0 Sr 0 0 0 1 10 100 Y 0 0 0 1 Z r 0 0 0 1 10 100 Mo -3 0 -2 5 -2 0 -1 5 -1 0 -5 0 5 0 0 0 0 1 Ag 0 0 0 0 1 10 Cd 0 0 0 0 1 Sn 0 0 0 1 Sb 0 0 0 1 Cs 0 0 0 0 Hf -3 0 -2 5 -2 0 -1 5 -1 0 -5 0 5 0 0 0 1 10 Pb 0 0 0 0 Bi 0 0 0 0 1 T h 0 0 0 1 10 U 0 0 0 0 0 0 1 Eu 0 1 10 L i -4 5 -4 0 -3 5 -3 0 -2 5 -2 0 -1 5 -1 0 -5 0 5 0 0 0 Be 0 1 10 100 B 0 1 10 100 Al 10000 100000 1000000 Ca 0 0 1 10 T i 0 0 1 10 Cr 1 0 1 0 0 1 0 0 0 Mn -4 5 -4 0 -3 5 -3 0 -2 5 -2 0 -1 5 -1 0 -5 0 5 1000 10000 F e 0 0 1 Co 0 0 1 10 Ni 0 0 1 10 Cu 1 10 100 Z n 0 1 10 Ga 0 0 0 1 10 As -4 5 -4 0 -3 5 -3 0 -2 5 -2 0 -1 5 -1 0 -5 0 5 0 0 1 10 Se 0 1 10 Rb 10 1 0 0 1 0 0 0 Sr 0 0 1 Y 0 0 0 1 10 Z r 0 0 0 1 Nb 0 0 1 10 Mo -4 5 -4 0 -3 5 -3 0 -2 5 -2 0 -1 5 -1 0 -5 0 5 0 0 0 0 0 Ag 0 0 0 0 0 1 Cd 0 0 0 0 1 Sn 0 0 0 Sb 0 0 0 Cs 1 0 1 00 1 0 0 0 Ba 0 0 0 0 0 Hf -4 5 -4 0 -3 5 -3 0 -2 5 -2 0 -1 5 -1 0 -5 0 5 0 0 1 Pb 0 0 0 0 Bi 0 0 0 0 0 T h 0 0 0 0 U 0 0 0 0 Eu 0 0 0 1 L a The source of trace The source of trace elements in groundwater elements in groundwater in sandy aquifers in sandy aquifers Marc J.M. Vissers Faculty of geosciences

The source of trace elements in groundwater in sandy aquifers Marc J.M. Vissers Faculty of geosciences

  • View
    219

  • Download
    0

Embed Size (px)

Citation preview

0 1 10

Li

-30

-25

-20

-15

-10

-5

0

5

0 0 0 0 1 10

B e1 10 100 1000

B0 1 10 100100010000100000

Al1000 100001000001000000

C a0 0 1 10

Ti0 0 1 10 1001000

C r

0 1 10 100 1000

M n

-30

-25

-20

-15

-10

-5

0

5

1 0 1 0 0 1 0 0 01 0 0 0 01 0 0 0 0 0

F e0 0 1 10

C o0 0 1 10 100

N i0 1 10

C u1 10 100 1000

Z n0 1 10

G a

0 0 1 10 100

A s

-30

-25

-20

-15

-10

-5

0

5

0 0 1 10

S e0 0 1 10

R b1 0 1 0 0 1 0 0 0

Sr0 0 0 1 10 100

Y0 0 0 1 10

Zr0 0 0 0 1

N b

0 0 0 1 10 100

M o

-30

-25

-20

-15

-10

-5

0

5

0 0 0 0 1

A g0 0 0 0 1 10

C d0 0 0 0 1

S n0 0 0 1

S b0 0 0 1 10

C s1 0 1 0 0 1 0 0 0

B a

0 0 0 0

H f

-30

-25

-20

-15

-10

-5

0

5

0 0 0 1 10

P b0 0 0 0

Bi0 0 0 0 1

T h0 0 0 1 10

U0 0 0 0 0 0 1 10

E u0 0 0 1 10 1001000

L a

0 1 10

Li

-45-40-35-30-25-20-15-10

-505

0 0 0

B e0 1 10 100

B0 1 10 100

Al10000 100000 1000000

C a0 0 1 10

Ti0 0 1 10

C r

1 0 1 0 0 1 0 0 0

M n

-45-40-35-30-25-20-15-10

-505

1000 10000

F e0 0 1

C o0 0 1 10

N i0 0 1 10

C u1 10 100

Z n0 1 10

G a

0 0 0 1 10

A s

-45-40-35-30-25-20-15-10

-505

0 0 1 10

S e0 1 10

R b1 0 1 0 0 1 0 0 0

Sr0 0 1

Y0 0 0 1 10

Zr0 0 0 1

N b

0 0 1 10

M o

-45-40-35-30-25-20-15-10

-505

0 0 0 0 0

A g0 0 0 0 0 1

C d0 0 0 0 1

S n0 0 0

S b0 0 0

C s1 0 1 0 0 1 0 0 0

B a

0 0 0 0 0

H f

-45-40-35-30-25-20-15-10

-505

0 0 1

P b0 0 0 0

Bi0 0 0 0 0

T h0 0 0 0

U0 0 0 0

E u0 0 0 1

L a

The source of trace elements in The source of trace elements in groundwater in sandy aquifersgroundwater in sandy aquifers

Marc J.M. Vissers

Faculty of geosciences

Why trace elements in groundwater

• Geochemistry– Redistribution of trace elements (ore and natural

anomalies)– Global biogeochemical cycle

• Environmental science– Atmospheric pollution / acidification– Agricultural pollution / acidification

• Consumption (direct and indirect)

This talk: Environmental geochemistry

- Study area and processes

- Present a 3-step approach for interpretation:- 1: Equilibrium modeling approach- 2: Coprecipitation- codissolution approach- 3: New: Steady-state input approach

Study area and processes Map of the study area

Sandy, unconsolidated aquifer, with ice-pushed ridge in the east Mainly Agricultural land use, eastern part cultivated in the 1920’s 10 Borings, total of 244 mini screens

NZwolle

Deventer

210 212 214 216 218 220 222 224

482

484

486

A1A2A3A4A5

A6

A7A8

A10

A11

Heeten

Wesepe

HaarleBroekland

Village

R oad

ForestH eather

X -coord ina te

Y-c

oord

ina

te

G rass / ag ricultu re

O verijsselsch C anal

Study area and processes Cross-section of the study area

Filtrated over 0.45μm, analyzed on ICP-MS Sampled in 1989 (no trace elements), 1996 (½), and 2002 (all) Randomly analyzed on > 70 (mostly inorganic) parameters

kk

-40

-30

-20

-10

0

10

Overijssels canal Holterberg

A1A2A3A4A5A6

A7

A8A10A11

Twello Mb. Hydrological base

Groundwater level

Pine / deciduous forest

Arable land (mostly corn)

Calcite saturatedwaters

Boring with name

NO3/Fe redox boundary

SO4 redox boundary

2 km

Dep

th (

m O

D)

Bx

Z

Bx

Tw

Bx

Ap.

BxBxBxBx

Tw

Bx

Z

Tw

Bx

Tw

Surface level

Mini screen with Cl < 20 mg/l

Mini screen with 20 < Cl < 50 mg/l

Mini screen with Cl > 50 mg/l

Bx = Lower boundary of Boxtel Fm

Pz.

Geological boundary

Z = Zutphen Mb layer

Tw = Upper bd. of Twello Mb.

Ap = Appelscha Fm.

Pz = Peize Fm.

70 elements for 10 wells x 25 screens

1: Equilibrium modeling approach2: Codissolution-coprecipitation approach3: New: Steady-state input approach

1: Equilibrium modeling Theory and Assumptions

• Using CHEAQS and WATEQP– Al3+(aq) + 3OH-(aq) AlOH3(s) Solid phase– Al3+(aq) + F-(aq) AlF2-(aq) Speciation

Equilibrium modeling assumes- chemical equilibrium (also redox and pH)- pure phases- transport in dissolved phase only

1: Equilibrium modeling Results

Pure phase saturation explains:– Sulfate: Barium (barite)– Carbonate: Calcium and apparently iron and manganese in

reduced zone– Hydroxides: Aluminum, manganese in acid zone– Iron / Calcium / pH: Phosphorous (vivianite and apatite)– Phosphates: REY in acid water– Pure phase: Uranium (uraninite) in reduced water

• Depending on local conditions!

1: Equilibrium modeling Summary

Not many elements are controlled by saturation, so one may conclude:

Source-term limitation

Source-term limitation may be sedimentary and / or input-determined.

2: Coprecipitation-codissolution Assumptions and theory

Codissolution:Ca(1-x)SrxCO3 (1-x)Ca2+ + xSr2+ + CO3

2-

- Congruent, and main source- Where x is the fraction of a TRACE ELEMENT in a MAJOR ELEMENT PHASE- Can (and should be) verified using mineral data

Coprecipitation:When saturation of a major element phase is reached through

increasing concentrations or changing redox or pH conditions, the “opposite” reaction may occur

2: Coprecipitation-codissolution Bulk sediment geochemistry

(a) Be (mg/kg) (b) La (mg/kg)

0 1 10 100

Ca (g/kg)

0.01

0.1

(c) Sr (g/kg)

Feldspar: 1:14

Clays: 1:60

Calcite: 1:307

Clays: 1:2000

Feldspars: 1:3500

Clays: 1:27000

Feldspars: 1:54000

Heavy minerals

10 100

Al (g/kg)

0.1

1

10 100

Al (g/kg)

1

10

2: Codissolution Example 1

1000 10000 100000

Ca (ppb)

1 0

1 0 0

1 0 0 0

Sr

(ppb

) C lay

0.325 w t%

Pollu tedsam ples

Local ra in

C a / S r w t ra tioP lag - 14*C lay - 38*Sea - 51Local ra in - 143C alc ite - 307*C alc ite - 320**Po llu tion - 450

Plag.

Significant aluminosilicate weathering

2: Codissolution / Coprecipitation Example 2

• Al-Be and Al-Ga (also Al-REE): is observed codissolution real dissolution?

Dutch soil

water

0.1 1 10 100 1000 10000

Al (ppb)

0.0001

0.001

0.01

0.1

1

10

Be

(ppb

)

0.1 1 10 100 1000 10000

A l (ppb)

0.0001

0.001

0.01

0.1

1

Ga

(ppb

)

2: Coprecipitation Example

1 0 1 0 0 1 0 0 0 1 0 0 0 0

F e

0

1

10

100

1000M

n Different source,but relation

2: Coprecipitation-codissolution Results

Codissolution:- Ca – Sr (carbonates and feldspar, and clay)- K – Rb (from clay mineral as identified from observed ratios)- Fe – As (iron (oxy-) hydroxides)- Mn – Mo (manganese hydroxides?)- Clay (Ca-Mg-Sr) – Cd-Tl (maybe Pb)- Al – Ga / Be / REY- Zr – Hf

Coprecipitation:- Fe – Mn - Al – REY / Be?- Fe/S – As

3: A novel approach

• But what about the ‘normal’ background (e.g. Cu, Pb, Li, etc) and unexplained anomalies (e.g. Zn, Co).

INPUT SOURCE LIMITATION

3: Steady-state input approach Assumptions

- Atmospheric deposition has been relatively constant in the Holocene, and the sediments have become “saturated” with these TE

- Concentrations should be constant with depth- Differences in evaporative concentration ratio TE/CE

should be constant with depth

X-Na+ + Me+(aq) X-Me+ + Na+(aq)seemingly conservative behavior!

- The start of the “Anthropocene” has caused changes!- Geochemical processes cause changes!

3: Steady-state input approach Results: Absolute concentrations match + Evap.

1000 10000 100000N a

0.00

0.01

0.10

1.00

10.00

100.00Copper

Seawater

Rain SallandRain Sweden

Evaporative concentration

Sorption, depending on pH

1000 10000 100000

N a

0.00

0.00

0.00

0.01

0.10

1.00

10.00

1000 10000 100000N a

0

1

10

1000 10000 100000N a

0.1

1.0

10.0

100.0

1000.0

C adm ium Lith ium

R ubid ium

0.00

0.01

0.10

1.00

10.00

100.00Arsenic

0.00

0.01

0.10

1.00

10.00

100.00

0.00

0.01

0.10

1.00

10.00

100.00

1000.00C obalt N ickel

3: Steady-state input approach Results: Absolute concentrations match + Evap.

0.1 1 10 100Major Element (mg/l)

0.01

0.1

1

10

100

1000

3-10 * Evaporativ

e concentratio

n

Trace Element (µg/l)

P'

Legend:P = Current rainwater composition and ratioP' = Historic rainwater compositionO = Seawater ratio

zTE:

zME =

2:1

sor

ptio

n

zTE:zME = 1:2 sorption

P

Equal valence sorptio

n

O

Boron

3: Steady-state input approach Lithium normalizing on Sodium (Na)

0 1 10

-60

-40

-20

0

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123124

125126

127128

129130

131132

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

219220

221222

223224225

227

301

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320321

322323

324325

326327

328329

330

401

402

403

404

405

406

407

408

409

410

411

413

414

415

416

417

418419

420421

422423

424425

426

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517518519

520521

522523

524525

526

601

602

603

604

605

606

607

608

609

610611

612613

614615

616617

618619

620621

622623

701

702

703

704

705

706

707

708

709710

711712

713714

715716

717718

719720

801

802

803

805

806

807

808

809

810

811

813814

815816

817818

819820

821822

823824

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

10121013

10141015

10161017

10181019

1020

1101

1102

1103

1104

1105

1106

1107

1108

11091110

11111112

111311141115

11181119

0 0 0

-60

-40

-20

0

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123124

125126

127128

129130

131132

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

219220

221222

223224

225

227

301

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320321

322323

324325

326327

328329

330

401

402

403

404

405

406

407

408

409

410

411

413

414

415

416

417

418419

420421

422423

424425

426

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517518519

520521

522523

524525

526

601

602

603

604

605

606

607

608

609

610611

612613

614615616617

618619

620621

622623

701

702

703

704

705

706

707

708

709710

711712

713714

715716717

718719

720

801

802

803

805

806

807

808

809

810

811

813814

815816

817818

819820821822

823824

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

10121013

10141015

10161017

10181019

1020

1101

1102

1103

1104

1105

1106

1107

1108

11091110

11111112

11131114

1115

11181119

2 log units 2 log units

Age

3: Steady-state input approach Lithium, Cobalt, Nickel, Rubidium, and Copper

- 5 - 4 - 3log[L i] - log [N a]

-60

-50

-40

-30

-20

-10

0

Dep

th (

M +

SL)

- 6 - 5 - 4 - 3log [C o] - log [N a]

- 5 - 4 - 3 - 2log [N i] - log [N a]

- 5 - 4 - 3 - 2log [R b] - log [N a]

- 5 - 4 - 3log [C u] - log [N a]

Sodium norm alized TE-D epth profiles of L i, Co, N i, R b, and Cu (w tbasis), Num bers indicate boring num ber of anom aly from base line

A 7

A 6

A 1

A 2

A 1

A 1

A 4

A 2

A 2

A 1

A 2

A 3

A 1

A 8

A 1

A 1

A 2

A 3

A 1

A 1 / A 4

Element EQ CD-CP SEQSSI ratioSEQSS

IOther Details

Li CD 15*103 Na X Low-pH weathering, slow ubiquitous IDIS4

Be CD Low-pH weathering

B 2.4*103 Na

Al X Gibbsite

P X Apatite, Vivianite

V 28*104 -

Mn X CP EQ: Mn(hydr)oxides/rhodochrosite, CP: siderite

Fe X Siderite

Co CD 2*104 Ca X Low-pH weathering, mobilization in reduced acid GW

Ni CD 5*104 Na X Low-pH weathering, mobilization in reduced acid GW

Cu 5*104 Na/Ca

Zn CD 3*103 Ca X Low-pH weathering, mobilization in reduced acid GW

As CD X CD: Fe oxyhydroxides; Sedimentary control in #A3

Rb CD 5*104 Na X Low-pH weathering, slow ubiquitous IDIS4

Sr CD Calcite and Al-silicates

Mo X Redox-control

Cd CD 12*106 Ca Low-pH weathering

Cs CD 5*106 Na X Low-pH weathering, slow ubiquitous IDIS4

Ba X CD EQ: Barite, CD: Calcite and Al-silicates

U X X EQ: Uraninite, S: Mobilisation at Mn redox boundary

REY CD Low-pH weathering

Ga* CD Low-pH weathering

Sb* Behaviour similar to U

Tl* CD Low-pH weathering

Pb* 1*105 Ca

Zr* Mobilization on organic complexation

Hf* CD Zircon

Vissers, M.J.M., 2005, Patterns of groundwater quality, NGS335

Conclusions

• The steady-state input approach significantly increases the understanding of trace element behavior in the subsurface– Anomalies can be identified

• Anomalously high weathering releasing Be, Cd, Tl, Ga, Co, Ni• Kinetic incongruent “dissolution”, releasing Li, Rb, Cs• Mobilization in specific redox environments, Zn, Co, Ni• Diffuse atmospheric / agricultural pollution

• The true baseline concentrations can be predicted!

[email protected]

Conclusions

- For many elements rain is the main source.- Apart from breakthrough of K and Rb, also Cu,

Pb and many other elements are observed to be anthropogenically enriched in groundwater

- “Groundwater enrichment factors” of many trace elements vary from 1 (Lithium) to more than 100 (Co, Ni, Zn)

[email protected]

0 1 10

Li

-45-40-35-30-25-20-15-10

-505

0 0 0

B e0 1 10 100

B0 1 10 100

Al10000 100000 1000000

C a0 0 1 10

Ti0 0 1 10

C r

1 0 1 0 0 1 0 0 0

M n

-45-40-35-30-25-20-15-10

-505

1000 10000

F e0 0 1

C o0 0 1 10

N i0 0 1 10

C u1 10 100

Z n0 1 10

G a

0 0 0 1 10

A s

-45-40-35-30-25-20-15-10

-505

0 0 1 10

S e0 1 10

R b1 0 1 0 0 1 0 0 0

Sr0 0 1

Y0 0 0 1 10

Zr0 0 0 1

N b

0 0 1 10

M o

-45-40-35-30-25-20-15-10

-505

0 0 0 0 0

A g0 0 0 0 0 1

C d0 0 0 0 1

S n0 0 0

S b0 0 0

C s1 0 1 0 0 1 0 0 0

B a

0 0 0 0 0

H f

-45-40-35-30-25-20-15-10

-505

0 0 1

P b0 0 0 0

Bi0 0 0 0 0

T h0 0 0 0

U0 0 0 0

E u0 0 0 1

L a

0 1 10

Li

-30

-25

-20

-15

-10

-5

0

5

0 0 0 0 1 10

B e1 10 100 1000

B0 1 10 100100010000100000

Al1000 100001000001000000

C a0 0 1 10

Ti0 0 1 10 1001000

C r

0 1 10 100 1000

M n

-30

-25

-20

-15

-10

-5

0

5

1 0 1 0 0 1 0 0 01 0 0 0 01 0 0 0 0 0

F e0 0 1 10

C o0 0 1 10 100

N i0 1 10

C u1 10 100 1000

Z n0 1 10

G a

0 0 1 10 100

A s

-30

-25

-20

-15

-10

-5

0

5

0 0 1 10

S e0 0 1 10

R b1 0 1 0 0 1 0 0 0

Sr0 0 0 1 10 100

Y0 0 0 1 10

Zr0 0 0 0 1

N b

0 0 0 1 10 100

M o

-30

-25

-20

-15

-10

-5

0

5

0 0 0 0 1

A g0 0 0 0 1 10

C d0 0 0 0 1

S n0 0 0 1

S b0 0 0 1 10

C s1 0 1 0 0 1 0 0 0

B a

0 0 0 0

H f

-30

-25

-20

-15

-10

-5

0

5

0 0 0 1 10

P b0 0 0 0

Bi0 0 0 0 1

T h0 0 0 1 10

U0 0 0 0 0 0 1 10

E u0 0 0 1 10 1001000

L a

?