52
The Stern-Gerlach Effect for Electrons* Herman Batelaan Gordon Gallup Julie Schwendiman TJG Behlen Laboratory of Physics University of Nebraska Lincoln, Nebraska 68588-0111 *Work funded by the NSF – Physics Division

The Stern-Gerlach Effect for Electrons*

  • Upload
    marnin

  • View
    71

  • Download
    1

Embed Size (px)

DESCRIPTION

The Stern-Gerlach Effect for Electrons*. Herman Batelaan Gordon Gallup Julie Schwendiman TJG Behlen Laboratory of Physics University of Nebraska Lincoln, Nebraska 68588-0111 * Work funded by the NSF – Physics Division. Electron Polarization. example : P = 0.3: 65% spin-up - PowerPoint PPT Presentation

Citation preview

Page 1: The Stern-Gerlach Effect for Electrons*

The Stern-Gerlach Effect for Electrons

Herman BatelaanGordon Gallup

Julie SchwendimanTJG

Behlen Laboratory of PhysicsUniversity of Nebraska

Lincoln Nebraska 68588-0111

Work funded by the NSF ndash Physics Division

Electron Polarization

σρtrP spin

)N()N(

)N()N(PP

example

P = 03

65 spin-up

35 spin-down

Atomic Collisionsσ

cosθgfA

(from GDFletcher et alii PRA 31 2854 (1985))

Work done at NIST Gaithersburg by MRScheinfein et alii

RSI 61 2510 (1991)

From The Theory of Atomic Collisions NFMott and HSW Massey

-V

N

S

+V

Anti-Bohr Devices

a)

(Knauer)

b)

(Darwin)

N

c)

(Brillouin)

1930 Solvay Conference ndash ldquoLe Magnetismrdquo

See eg

bull Cohen-Tannoudji Diu et Laloeuml

bull Merzbacher

bull Mott amp Massey

bull Baym

bull Keβler

bull Ohanianhelliphelliphellip

I

Z

e-

Which ball arrives first A) high roadB) low roadC) simultaneously

z

H

x

H

0H

zx

y

Hz

Hx

vz

xe-

)1(Δv

v

x

z

z

H

x

H

0H

zx

y

CALCULATIONS

2

1

2

1

zyx

yxzB HiHH

iHHH

dt

di

spinEHvc

e

dt

pdF )(

eigenenergies

integrate

(spin-flip probability lt 10-3)

)( zyxHE Bspin

CHOOSE INITIAL CONDITIONS

2220 )()()( TvxTx

2)()( iie vxm

ei m

Txx

2)()( 0

require Δzspin ~ 1mm

use Bo = 10T a = 1 cm (iexcl105A)

rarr vz ~ 105 ms (30 meV)

rarr t ~ 10μs

rarr Δxi ~ 100 μm

20

2211

20 2)(

tantan2

ze

B

i

fiif

ze

Bspin vm

Ba

za

azz

a

z

a

z

vm

Baz

H Batelaan et al PRL 79 4518 (1997)

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

NB - The net acceleration of the (leading) spin-backward electrons is zero

B

Pauli Case

ΔrΔp ~ ħ2

Landau Case

ΔrΔp ~ ħ2

B

MAGNETIC BOTTLE FORCES

z

BμμF z

BLz

B F

BL

L

S

(always || )B

(always || )B

0z

Bz

eνz

ˆ

0Bz

Fully quantum-mechanical calculation

(field due to a current loop)

Landau Hamiltonian

bull KE

bull ~ -μLB

bull ~ -μBB

GAGallup et alii PRL 86 4508 (2001)

S

W

F = SW

Gedanken apparatus

~~ φ TDC

1m 104 turns 5A

2 cm bore 10T

APERTURES

10μm 1μm

106 Hz

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

Δz Δt = Δzv

Δv

v

B

δ δ δ

bull Gradient = B δ Gradient force = plusmn(μBB δ) acceldecel = plusmn(μBB meδ) = plusmn a

bull If 2aδ ltlt v2 time lag = Δt = 2aδv3

bull Let B = 1T δ = 01m Ebeam = 100 keV (β = 055) rarr Δt = 4 x 10-19 s ()

bull Since the transit time threough the magnet = 2 ns R ~ 10-8

Conclusions

bull The Bohr-Pauli analysis of Brillouinrsquos proposal is wrong

bull More generally their prohibition against the spatial separation of electron spin based on classical trajectories through macroscopic classical fields fails

bull A proper semi-classical analysis of Brillouinrsquos gedanken experiment yields Rayleigh-resolved spin states

bull A rigorous quantum-mechanical analysis (corresponding to reality) yields complete and in principle arbitrarily large separation of spin states

bull Experiments to observe such spin-spitting are feasible (ie not totally insane) but would be very difficult

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 2: The Stern-Gerlach Effect for Electrons*

Electron Polarization

σρtrP spin

)N()N(

)N()N(PP

example

P = 03

65 spin-up

35 spin-down

Atomic Collisionsσ

cosθgfA

(from GDFletcher et alii PRA 31 2854 (1985))

Work done at NIST Gaithersburg by MRScheinfein et alii

RSI 61 2510 (1991)

From The Theory of Atomic Collisions NFMott and HSW Massey

-V

N

S

+V

Anti-Bohr Devices

a)

(Knauer)

b)

(Darwin)

N

c)

(Brillouin)

1930 Solvay Conference ndash ldquoLe Magnetismrdquo

See eg

bull Cohen-Tannoudji Diu et Laloeuml

bull Merzbacher

bull Mott amp Massey

bull Baym

bull Keβler

bull Ohanianhelliphelliphellip

I

Z

e-

Which ball arrives first A) high roadB) low roadC) simultaneously

z

H

x

H

0H

zx

y

Hz

Hx

vz

xe-

)1(Δv

v

x

z

z

H

x

H

0H

zx

y

CALCULATIONS

2

1

2

1

zyx

yxzB HiHH

iHHH

dt

di

spinEHvc

e

dt

pdF )(

eigenenergies

integrate

(spin-flip probability lt 10-3)

)( zyxHE Bspin

CHOOSE INITIAL CONDITIONS

2220 )()()( TvxTx

2)()( iie vxm

ei m

Txx

2)()( 0

require Δzspin ~ 1mm

use Bo = 10T a = 1 cm (iexcl105A)

rarr vz ~ 105 ms (30 meV)

rarr t ~ 10μs

rarr Δxi ~ 100 μm

20

2211

20 2)(

tantan2

ze

B

i

fiif

ze

Bspin vm

Ba

za

azz

a

z

a

z

vm

Baz

H Batelaan et al PRL 79 4518 (1997)

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

NB - The net acceleration of the (leading) spin-backward electrons is zero

B

Pauli Case

ΔrΔp ~ ħ2

Landau Case

ΔrΔp ~ ħ2

B

MAGNETIC BOTTLE FORCES

z

BμμF z

BLz

B F

BL

L

S

(always || )B

(always || )B

0z

Bz

eνz

ˆ

0Bz

Fully quantum-mechanical calculation

(field due to a current loop)

Landau Hamiltonian

bull KE

bull ~ -μLB

bull ~ -μBB

GAGallup et alii PRL 86 4508 (2001)

S

W

F = SW

Gedanken apparatus

~~ φ TDC

1m 104 turns 5A

2 cm bore 10T

APERTURES

10μm 1μm

106 Hz

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

Δz Δt = Δzv

Δv

v

B

δ δ δ

bull Gradient = B δ Gradient force = plusmn(μBB δ) acceldecel = plusmn(μBB meδ) = plusmn a

bull If 2aδ ltlt v2 time lag = Δt = 2aδv3

bull Let B = 1T δ = 01m Ebeam = 100 keV (β = 055) rarr Δt = 4 x 10-19 s ()

bull Since the transit time threough the magnet = 2 ns R ~ 10-8

Conclusions

bull The Bohr-Pauli analysis of Brillouinrsquos proposal is wrong

bull More generally their prohibition against the spatial separation of electron spin based on classical trajectories through macroscopic classical fields fails

bull A proper semi-classical analysis of Brillouinrsquos gedanken experiment yields Rayleigh-resolved spin states

bull A rigorous quantum-mechanical analysis (corresponding to reality) yields complete and in principle arbitrarily large separation of spin states

bull Experiments to observe such spin-spitting are feasible (ie not totally insane) but would be very difficult

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 3: The Stern-Gerlach Effect for Electrons*

Atomic Collisionsσ

cosθgfA

(from GDFletcher et alii PRA 31 2854 (1985))

Work done at NIST Gaithersburg by MRScheinfein et alii

RSI 61 2510 (1991)

From The Theory of Atomic Collisions NFMott and HSW Massey

-V

N

S

+V

Anti-Bohr Devices

a)

(Knauer)

b)

(Darwin)

N

c)

(Brillouin)

1930 Solvay Conference ndash ldquoLe Magnetismrdquo

See eg

bull Cohen-Tannoudji Diu et Laloeuml

bull Merzbacher

bull Mott amp Massey

bull Baym

bull Keβler

bull Ohanianhelliphelliphellip

I

Z

e-

Which ball arrives first A) high roadB) low roadC) simultaneously

z

H

x

H

0H

zx

y

Hz

Hx

vz

xe-

)1(Δv

v

x

z

z

H

x

H

0H

zx

y

CALCULATIONS

2

1

2

1

zyx

yxzB HiHH

iHHH

dt

di

spinEHvc

e

dt

pdF )(

eigenenergies

integrate

(spin-flip probability lt 10-3)

)( zyxHE Bspin

CHOOSE INITIAL CONDITIONS

2220 )()()( TvxTx

2)()( iie vxm

ei m

Txx

2)()( 0

require Δzspin ~ 1mm

use Bo = 10T a = 1 cm (iexcl105A)

rarr vz ~ 105 ms (30 meV)

rarr t ~ 10μs

rarr Δxi ~ 100 μm

20

2211

20 2)(

tantan2

ze

B

i

fiif

ze

Bspin vm

Ba

za

azz

a

z

a

z

vm

Baz

H Batelaan et al PRL 79 4518 (1997)

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

NB - The net acceleration of the (leading) spin-backward electrons is zero

B

Pauli Case

ΔrΔp ~ ħ2

Landau Case

ΔrΔp ~ ħ2

B

MAGNETIC BOTTLE FORCES

z

BμμF z

BLz

B F

BL

L

S

(always || )B

(always || )B

0z

Bz

eνz

ˆ

0Bz

Fully quantum-mechanical calculation

(field due to a current loop)

Landau Hamiltonian

bull KE

bull ~ -μLB

bull ~ -μBB

GAGallup et alii PRL 86 4508 (2001)

S

W

F = SW

Gedanken apparatus

~~ φ TDC

1m 104 turns 5A

2 cm bore 10T

APERTURES

10μm 1μm

106 Hz

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

Δz Δt = Δzv

Δv

v

B

δ δ δ

bull Gradient = B δ Gradient force = plusmn(μBB δ) acceldecel = plusmn(μBB meδ) = plusmn a

bull If 2aδ ltlt v2 time lag = Δt = 2aδv3

bull Let B = 1T δ = 01m Ebeam = 100 keV (β = 055) rarr Δt = 4 x 10-19 s ()

bull Since the transit time threough the magnet = 2 ns R ~ 10-8

Conclusions

bull The Bohr-Pauli analysis of Brillouinrsquos proposal is wrong

bull More generally their prohibition against the spatial separation of electron spin based on classical trajectories through macroscopic classical fields fails

bull A proper semi-classical analysis of Brillouinrsquos gedanken experiment yields Rayleigh-resolved spin states

bull A rigorous quantum-mechanical analysis (corresponding to reality) yields complete and in principle arbitrarily large separation of spin states

bull Experiments to observe such spin-spitting are feasible (ie not totally insane) but would be very difficult

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 4: The Stern-Gerlach Effect for Electrons*

Work done at NIST Gaithersburg by MRScheinfein et alii

RSI 61 2510 (1991)

From The Theory of Atomic Collisions NFMott and HSW Massey

-V

N

S

+V

Anti-Bohr Devices

a)

(Knauer)

b)

(Darwin)

N

c)

(Brillouin)

1930 Solvay Conference ndash ldquoLe Magnetismrdquo

See eg

bull Cohen-Tannoudji Diu et Laloeuml

bull Merzbacher

bull Mott amp Massey

bull Baym

bull Keβler

bull Ohanianhelliphelliphellip

I

Z

e-

Which ball arrives first A) high roadB) low roadC) simultaneously

z

H

x

H

0H

zx

y

Hz

Hx

vz

xe-

)1(Δv

v

x

z

z

H

x

H

0H

zx

y

CALCULATIONS

2

1

2

1

zyx

yxzB HiHH

iHHH

dt

di

spinEHvc

e

dt

pdF )(

eigenenergies

integrate

(spin-flip probability lt 10-3)

)( zyxHE Bspin

CHOOSE INITIAL CONDITIONS

2220 )()()( TvxTx

2)()( iie vxm

ei m

Txx

2)()( 0

require Δzspin ~ 1mm

use Bo = 10T a = 1 cm (iexcl105A)

rarr vz ~ 105 ms (30 meV)

rarr t ~ 10μs

rarr Δxi ~ 100 μm

20

2211

20 2)(

tantan2

ze

B

i

fiif

ze

Bspin vm

Ba

za

azz

a

z

a

z

vm

Baz

H Batelaan et al PRL 79 4518 (1997)

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

NB - The net acceleration of the (leading) spin-backward electrons is zero

B

Pauli Case

ΔrΔp ~ ħ2

Landau Case

ΔrΔp ~ ħ2

B

MAGNETIC BOTTLE FORCES

z

BμμF z

BLz

B F

BL

L

S

(always || )B

(always || )B

0z

Bz

eνz

ˆ

0Bz

Fully quantum-mechanical calculation

(field due to a current loop)

Landau Hamiltonian

bull KE

bull ~ -μLB

bull ~ -μBB

GAGallup et alii PRL 86 4508 (2001)

S

W

F = SW

Gedanken apparatus

~~ φ TDC

1m 104 turns 5A

2 cm bore 10T

APERTURES

10μm 1μm

106 Hz

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

Δz Δt = Δzv

Δv

v

B

δ δ δ

bull Gradient = B δ Gradient force = plusmn(μBB δ) acceldecel = plusmn(μBB meδ) = plusmn a

bull If 2aδ ltlt v2 time lag = Δt = 2aδv3

bull Let B = 1T δ = 01m Ebeam = 100 keV (β = 055) rarr Δt = 4 x 10-19 s ()

bull Since the transit time threough the magnet = 2 ns R ~ 10-8

Conclusions

bull The Bohr-Pauli analysis of Brillouinrsquos proposal is wrong

bull More generally their prohibition against the spatial separation of electron spin based on classical trajectories through macroscopic classical fields fails

bull A proper semi-classical analysis of Brillouinrsquos gedanken experiment yields Rayleigh-resolved spin states

bull A rigorous quantum-mechanical analysis (corresponding to reality) yields complete and in principle arbitrarily large separation of spin states

bull Experiments to observe such spin-spitting are feasible (ie not totally insane) but would be very difficult

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 5: The Stern-Gerlach Effect for Electrons*

From The Theory of Atomic Collisions NFMott and HSW Massey

-V

N

S

+V

Anti-Bohr Devices

a)

(Knauer)

b)

(Darwin)

N

c)

(Brillouin)

1930 Solvay Conference ndash ldquoLe Magnetismrdquo

See eg

bull Cohen-Tannoudji Diu et Laloeuml

bull Merzbacher

bull Mott amp Massey

bull Baym

bull Keβler

bull Ohanianhelliphelliphellip

I

Z

e-

Which ball arrives first A) high roadB) low roadC) simultaneously

z

H

x

H

0H

zx

y

Hz

Hx

vz

xe-

)1(Δv

v

x

z

z

H

x

H

0H

zx

y

CALCULATIONS

2

1

2

1

zyx

yxzB HiHH

iHHH

dt

di

spinEHvc

e

dt

pdF )(

eigenenergies

integrate

(spin-flip probability lt 10-3)

)( zyxHE Bspin

CHOOSE INITIAL CONDITIONS

2220 )()()( TvxTx

2)()( iie vxm

ei m

Txx

2)()( 0

require Δzspin ~ 1mm

use Bo = 10T a = 1 cm (iexcl105A)

rarr vz ~ 105 ms (30 meV)

rarr t ~ 10μs

rarr Δxi ~ 100 μm

20

2211

20 2)(

tantan2

ze

B

i

fiif

ze

Bspin vm

Ba

za

azz

a

z

a

z

vm

Baz

H Batelaan et al PRL 79 4518 (1997)

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

NB - The net acceleration of the (leading) spin-backward electrons is zero

B

Pauli Case

ΔrΔp ~ ħ2

Landau Case

ΔrΔp ~ ħ2

B

MAGNETIC BOTTLE FORCES

z

BμμF z

BLz

B F

BL

L

S

(always || )B

(always || )B

0z

Bz

eνz

ˆ

0Bz

Fully quantum-mechanical calculation

(field due to a current loop)

Landau Hamiltonian

bull KE

bull ~ -μLB

bull ~ -μBB

GAGallup et alii PRL 86 4508 (2001)

S

W

F = SW

Gedanken apparatus

~~ φ TDC

1m 104 turns 5A

2 cm bore 10T

APERTURES

10μm 1μm

106 Hz

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

Δz Δt = Δzv

Δv

v

B

δ δ δ

bull Gradient = B δ Gradient force = plusmn(μBB δ) acceldecel = plusmn(μBB meδ) = plusmn a

bull If 2aδ ltlt v2 time lag = Δt = 2aδv3

bull Let B = 1T δ = 01m Ebeam = 100 keV (β = 055) rarr Δt = 4 x 10-19 s ()

bull Since the transit time threough the magnet = 2 ns R ~ 10-8

Conclusions

bull The Bohr-Pauli analysis of Brillouinrsquos proposal is wrong

bull More generally their prohibition against the spatial separation of electron spin based on classical trajectories through macroscopic classical fields fails

bull A proper semi-classical analysis of Brillouinrsquos gedanken experiment yields Rayleigh-resolved spin states

bull A rigorous quantum-mechanical analysis (corresponding to reality) yields complete and in principle arbitrarily large separation of spin states

bull Experiments to observe such spin-spitting are feasible (ie not totally insane) but would be very difficult

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 6: The Stern-Gerlach Effect for Electrons*

-V

N

S

+V

Anti-Bohr Devices

a)

(Knauer)

b)

(Darwin)

N

c)

(Brillouin)

1930 Solvay Conference ndash ldquoLe Magnetismrdquo

See eg

bull Cohen-Tannoudji Diu et Laloeuml

bull Merzbacher

bull Mott amp Massey

bull Baym

bull Keβler

bull Ohanianhelliphelliphellip

I

Z

e-

Which ball arrives first A) high roadB) low roadC) simultaneously

z

H

x

H

0H

zx

y

Hz

Hx

vz

xe-

)1(Δv

v

x

z

z

H

x

H

0H

zx

y

CALCULATIONS

2

1

2

1

zyx

yxzB HiHH

iHHH

dt

di

spinEHvc

e

dt

pdF )(

eigenenergies

integrate

(spin-flip probability lt 10-3)

)( zyxHE Bspin

CHOOSE INITIAL CONDITIONS

2220 )()()( TvxTx

2)()( iie vxm

ei m

Txx

2)()( 0

require Δzspin ~ 1mm

use Bo = 10T a = 1 cm (iexcl105A)

rarr vz ~ 105 ms (30 meV)

rarr t ~ 10μs

rarr Δxi ~ 100 μm

20

2211

20 2)(

tantan2

ze

B

i

fiif

ze

Bspin vm

Ba

za

azz

a

z

a

z

vm

Baz

H Batelaan et al PRL 79 4518 (1997)

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

NB - The net acceleration of the (leading) spin-backward electrons is zero

B

Pauli Case

ΔrΔp ~ ħ2

Landau Case

ΔrΔp ~ ħ2

B

MAGNETIC BOTTLE FORCES

z

BμμF z

BLz

B F

BL

L

S

(always || )B

(always || )B

0z

Bz

eνz

ˆ

0Bz

Fully quantum-mechanical calculation

(field due to a current loop)

Landau Hamiltonian

bull KE

bull ~ -μLB

bull ~ -μBB

GAGallup et alii PRL 86 4508 (2001)

S

W

F = SW

Gedanken apparatus

~~ φ TDC

1m 104 turns 5A

2 cm bore 10T

APERTURES

10μm 1μm

106 Hz

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

Δz Δt = Δzv

Δv

v

B

δ δ δ

bull Gradient = B δ Gradient force = plusmn(μBB δ) acceldecel = plusmn(μBB meδ) = plusmn a

bull If 2aδ ltlt v2 time lag = Δt = 2aδv3

bull Let B = 1T δ = 01m Ebeam = 100 keV (β = 055) rarr Δt = 4 x 10-19 s ()

bull Since the transit time threough the magnet = 2 ns R ~ 10-8

Conclusions

bull The Bohr-Pauli analysis of Brillouinrsquos proposal is wrong

bull More generally their prohibition against the spatial separation of electron spin based on classical trajectories through macroscopic classical fields fails

bull A proper semi-classical analysis of Brillouinrsquos gedanken experiment yields Rayleigh-resolved spin states

bull A rigorous quantum-mechanical analysis (corresponding to reality) yields complete and in principle arbitrarily large separation of spin states

bull Experiments to observe such spin-spitting are feasible (ie not totally insane) but would be very difficult

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 7: The Stern-Gerlach Effect for Electrons*

b)

(Darwin)

N

c)

(Brillouin)

1930 Solvay Conference ndash ldquoLe Magnetismrdquo

See eg

bull Cohen-Tannoudji Diu et Laloeuml

bull Merzbacher

bull Mott amp Massey

bull Baym

bull Keβler

bull Ohanianhelliphelliphellip

I

Z

e-

Which ball arrives first A) high roadB) low roadC) simultaneously

z

H

x

H

0H

zx

y

Hz

Hx

vz

xe-

)1(Δv

v

x

z

z

H

x

H

0H

zx

y

CALCULATIONS

2

1

2

1

zyx

yxzB HiHH

iHHH

dt

di

spinEHvc

e

dt

pdF )(

eigenenergies

integrate

(spin-flip probability lt 10-3)

)( zyxHE Bspin

CHOOSE INITIAL CONDITIONS

2220 )()()( TvxTx

2)()( iie vxm

ei m

Txx

2)()( 0

require Δzspin ~ 1mm

use Bo = 10T a = 1 cm (iexcl105A)

rarr vz ~ 105 ms (30 meV)

rarr t ~ 10μs

rarr Δxi ~ 100 μm

20

2211

20 2)(

tantan2

ze

B

i

fiif

ze

Bspin vm

Ba

za

azz

a

z

a

z

vm

Baz

H Batelaan et al PRL 79 4518 (1997)

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

NB - The net acceleration of the (leading) spin-backward electrons is zero

B

Pauli Case

ΔrΔp ~ ħ2

Landau Case

ΔrΔp ~ ħ2

B

MAGNETIC BOTTLE FORCES

z

BμμF z

BLz

B F

BL

L

S

(always || )B

(always || )B

0z

Bz

eνz

ˆ

0Bz

Fully quantum-mechanical calculation

(field due to a current loop)

Landau Hamiltonian

bull KE

bull ~ -μLB

bull ~ -μBB

GAGallup et alii PRL 86 4508 (2001)

S

W

F = SW

Gedanken apparatus

~~ φ TDC

1m 104 turns 5A

2 cm bore 10T

APERTURES

10μm 1μm

106 Hz

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

Δz Δt = Δzv

Δv

v

B

δ δ δ

bull Gradient = B δ Gradient force = plusmn(μBB δ) acceldecel = plusmn(μBB meδ) = plusmn a

bull If 2aδ ltlt v2 time lag = Δt = 2aδv3

bull Let B = 1T δ = 01m Ebeam = 100 keV (β = 055) rarr Δt = 4 x 10-19 s ()

bull Since the transit time threough the magnet = 2 ns R ~ 10-8

Conclusions

bull The Bohr-Pauli analysis of Brillouinrsquos proposal is wrong

bull More generally their prohibition against the spatial separation of electron spin based on classical trajectories through macroscopic classical fields fails

bull A proper semi-classical analysis of Brillouinrsquos gedanken experiment yields Rayleigh-resolved spin states

bull A rigorous quantum-mechanical analysis (corresponding to reality) yields complete and in principle arbitrarily large separation of spin states

bull Experiments to observe such spin-spitting are feasible (ie not totally insane) but would be very difficult

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 8: The Stern-Gerlach Effect for Electrons*

N

c)

(Brillouin)

1930 Solvay Conference ndash ldquoLe Magnetismrdquo

See eg

bull Cohen-Tannoudji Diu et Laloeuml

bull Merzbacher

bull Mott amp Massey

bull Baym

bull Keβler

bull Ohanianhelliphelliphellip

I

Z

e-

Which ball arrives first A) high roadB) low roadC) simultaneously

z

H

x

H

0H

zx

y

Hz

Hx

vz

xe-

)1(Δv

v

x

z

z

H

x

H

0H

zx

y

CALCULATIONS

2

1

2

1

zyx

yxzB HiHH

iHHH

dt

di

spinEHvc

e

dt

pdF )(

eigenenergies

integrate

(spin-flip probability lt 10-3)

)( zyxHE Bspin

CHOOSE INITIAL CONDITIONS

2220 )()()( TvxTx

2)()( iie vxm

ei m

Txx

2)()( 0

require Δzspin ~ 1mm

use Bo = 10T a = 1 cm (iexcl105A)

rarr vz ~ 105 ms (30 meV)

rarr t ~ 10μs

rarr Δxi ~ 100 μm

20

2211

20 2)(

tantan2

ze

B

i

fiif

ze

Bspin vm

Ba

za

azz

a

z

a

z

vm

Baz

H Batelaan et al PRL 79 4518 (1997)

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

NB - The net acceleration of the (leading) spin-backward electrons is zero

B

Pauli Case

ΔrΔp ~ ħ2

Landau Case

ΔrΔp ~ ħ2

B

MAGNETIC BOTTLE FORCES

z

BμμF z

BLz

B F

BL

L

S

(always || )B

(always || )B

0z

Bz

eνz

ˆ

0Bz

Fully quantum-mechanical calculation

(field due to a current loop)

Landau Hamiltonian

bull KE

bull ~ -μLB

bull ~ -μBB

GAGallup et alii PRL 86 4508 (2001)

S

W

F = SW

Gedanken apparatus

~~ φ TDC

1m 104 turns 5A

2 cm bore 10T

APERTURES

10μm 1μm

106 Hz

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

Δz Δt = Δzv

Δv

v

B

δ δ δ

bull Gradient = B δ Gradient force = plusmn(μBB δ) acceldecel = plusmn(μBB meδ) = plusmn a

bull If 2aδ ltlt v2 time lag = Δt = 2aδv3

bull Let B = 1T δ = 01m Ebeam = 100 keV (β = 055) rarr Δt = 4 x 10-19 s ()

bull Since the transit time threough the magnet = 2 ns R ~ 10-8

Conclusions

bull The Bohr-Pauli analysis of Brillouinrsquos proposal is wrong

bull More generally their prohibition against the spatial separation of electron spin based on classical trajectories through macroscopic classical fields fails

bull A proper semi-classical analysis of Brillouinrsquos gedanken experiment yields Rayleigh-resolved spin states

bull A rigorous quantum-mechanical analysis (corresponding to reality) yields complete and in principle arbitrarily large separation of spin states

bull Experiments to observe such spin-spitting are feasible (ie not totally insane) but would be very difficult

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 9: The Stern-Gerlach Effect for Electrons*

1930 Solvay Conference ndash ldquoLe Magnetismrdquo

See eg

bull Cohen-Tannoudji Diu et Laloeuml

bull Merzbacher

bull Mott amp Massey

bull Baym

bull Keβler

bull Ohanianhelliphelliphellip

I

Z

e-

Which ball arrives first A) high roadB) low roadC) simultaneously

z

H

x

H

0H

zx

y

Hz

Hx

vz

xe-

)1(Δv

v

x

z

z

H

x

H

0H

zx

y

CALCULATIONS

2

1

2

1

zyx

yxzB HiHH

iHHH

dt

di

spinEHvc

e

dt

pdF )(

eigenenergies

integrate

(spin-flip probability lt 10-3)

)( zyxHE Bspin

CHOOSE INITIAL CONDITIONS

2220 )()()( TvxTx

2)()( iie vxm

ei m

Txx

2)()( 0

require Δzspin ~ 1mm

use Bo = 10T a = 1 cm (iexcl105A)

rarr vz ~ 105 ms (30 meV)

rarr t ~ 10μs

rarr Δxi ~ 100 μm

20

2211

20 2)(

tantan2

ze

B

i

fiif

ze

Bspin vm

Ba

za

azz

a

z

a

z

vm

Baz

H Batelaan et al PRL 79 4518 (1997)

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

NB - The net acceleration of the (leading) spin-backward electrons is zero

B

Pauli Case

ΔrΔp ~ ħ2

Landau Case

ΔrΔp ~ ħ2

B

MAGNETIC BOTTLE FORCES

z

BμμF z

BLz

B F

BL

L

S

(always || )B

(always || )B

0z

Bz

eνz

ˆ

0Bz

Fully quantum-mechanical calculation

(field due to a current loop)

Landau Hamiltonian

bull KE

bull ~ -μLB

bull ~ -μBB

GAGallup et alii PRL 86 4508 (2001)

S

W

F = SW

Gedanken apparatus

~~ φ TDC

1m 104 turns 5A

2 cm bore 10T

APERTURES

10μm 1μm

106 Hz

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

Δz Δt = Δzv

Δv

v

B

δ δ δ

bull Gradient = B δ Gradient force = plusmn(μBB δ) acceldecel = plusmn(μBB meδ) = plusmn a

bull If 2aδ ltlt v2 time lag = Δt = 2aδv3

bull Let B = 1T δ = 01m Ebeam = 100 keV (β = 055) rarr Δt = 4 x 10-19 s ()

bull Since the transit time threough the magnet = 2 ns R ~ 10-8

Conclusions

bull The Bohr-Pauli analysis of Brillouinrsquos proposal is wrong

bull More generally their prohibition against the spatial separation of electron spin based on classical trajectories through macroscopic classical fields fails

bull A proper semi-classical analysis of Brillouinrsquos gedanken experiment yields Rayleigh-resolved spin states

bull A rigorous quantum-mechanical analysis (corresponding to reality) yields complete and in principle arbitrarily large separation of spin states

bull Experiments to observe such spin-spitting are feasible (ie not totally insane) but would be very difficult

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 10: The Stern-Gerlach Effect for Electrons*

See eg

bull Cohen-Tannoudji Diu et Laloeuml

bull Merzbacher

bull Mott amp Massey

bull Baym

bull Keβler

bull Ohanianhelliphelliphellip

I

Z

e-

Which ball arrives first A) high roadB) low roadC) simultaneously

z

H

x

H

0H

zx

y

Hz

Hx

vz

xe-

)1(Δv

v

x

z

z

H

x

H

0H

zx

y

CALCULATIONS

2

1

2

1

zyx

yxzB HiHH

iHHH

dt

di

spinEHvc

e

dt

pdF )(

eigenenergies

integrate

(spin-flip probability lt 10-3)

)( zyxHE Bspin

CHOOSE INITIAL CONDITIONS

2220 )()()( TvxTx

2)()( iie vxm

ei m

Txx

2)()( 0

require Δzspin ~ 1mm

use Bo = 10T a = 1 cm (iexcl105A)

rarr vz ~ 105 ms (30 meV)

rarr t ~ 10μs

rarr Δxi ~ 100 μm

20

2211

20 2)(

tantan2

ze

B

i

fiif

ze

Bspin vm

Ba

za

azz

a

z

a

z

vm

Baz

H Batelaan et al PRL 79 4518 (1997)

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

NB - The net acceleration of the (leading) spin-backward electrons is zero

B

Pauli Case

ΔrΔp ~ ħ2

Landau Case

ΔrΔp ~ ħ2

B

MAGNETIC BOTTLE FORCES

z

BμμF z

BLz

B F

BL

L

S

(always || )B

(always || )B

0z

Bz

eνz

ˆ

0Bz

Fully quantum-mechanical calculation

(field due to a current loop)

Landau Hamiltonian

bull KE

bull ~ -μLB

bull ~ -μBB

GAGallup et alii PRL 86 4508 (2001)

S

W

F = SW

Gedanken apparatus

~~ φ TDC

1m 104 turns 5A

2 cm bore 10T

APERTURES

10μm 1μm

106 Hz

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

Δz Δt = Δzv

Δv

v

B

δ δ δ

bull Gradient = B δ Gradient force = plusmn(μBB δ) acceldecel = plusmn(μBB meδ) = plusmn a

bull If 2aδ ltlt v2 time lag = Δt = 2aδv3

bull Let B = 1T δ = 01m Ebeam = 100 keV (β = 055) rarr Δt = 4 x 10-19 s ()

bull Since the transit time threough the magnet = 2 ns R ~ 10-8

Conclusions

bull The Bohr-Pauli analysis of Brillouinrsquos proposal is wrong

bull More generally their prohibition against the spatial separation of electron spin based on classical trajectories through macroscopic classical fields fails

bull A proper semi-classical analysis of Brillouinrsquos gedanken experiment yields Rayleigh-resolved spin states

bull A rigorous quantum-mechanical analysis (corresponding to reality) yields complete and in principle arbitrarily large separation of spin states

bull Experiments to observe such spin-spitting are feasible (ie not totally insane) but would be very difficult

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 11: The Stern-Gerlach Effect for Electrons*

I

Z

e-

Which ball arrives first A) high roadB) low roadC) simultaneously

z

H

x

H

0H

zx

y

Hz

Hx

vz

xe-

)1(Δv

v

x

z

z

H

x

H

0H

zx

y

CALCULATIONS

2

1

2

1

zyx

yxzB HiHH

iHHH

dt

di

spinEHvc

e

dt

pdF )(

eigenenergies

integrate

(spin-flip probability lt 10-3)

)( zyxHE Bspin

CHOOSE INITIAL CONDITIONS

2220 )()()( TvxTx

2)()( iie vxm

ei m

Txx

2)()( 0

require Δzspin ~ 1mm

use Bo = 10T a = 1 cm (iexcl105A)

rarr vz ~ 105 ms (30 meV)

rarr t ~ 10μs

rarr Δxi ~ 100 μm

20

2211

20 2)(

tantan2

ze

B

i

fiif

ze

Bspin vm

Ba

za

azz

a

z

a

z

vm

Baz

H Batelaan et al PRL 79 4518 (1997)

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

NB - The net acceleration of the (leading) spin-backward electrons is zero

B

Pauli Case

ΔrΔp ~ ħ2

Landau Case

ΔrΔp ~ ħ2

B

MAGNETIC BOTTLE FORCES

z

BμμF z

BLz

B F

BL

L

S

(always || )B

(always || )B

0z

Bz

eνz

ˆ

0Bz

Fully quantum-mechanical calculation

(field due to a current loop)

Landau Hamiltonian

bull KE

bull ~ -μLB

bull ~ -μBB

GAGallup et alii PRL 86 4508 (2001)

S

W

F = SW

Gedanken apparatus

~~ φ TDC

1m 104 turns 5A

2 cm bore 10T

APERTURES

10μm 1μm

106 Hz

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

Δz Δt = Δzv

Δv

v

B

δ δ δ

bull Gradient = B δ Gradient force = plusmn(μBB δ) acceldecel = plusmn(μBB meδ) = plusmn a

bull If 2aδ ltlt v2 time lag = Δt = 2aδv3

bull Let B = 1T δ = 01m Ebeam = 100 keV (β = 055) rarr Δt = 4 x 10-19 s ()

bull Since the transit time threough the magnet = 2 ns R ~ 10-8

Conclusions

bull The Bohr-Pauli analysis of Brillouinrsquos proposal is wrong

bull More generally their prohibition against the spatial separation of electron spin based on classical trajectories through macroscopic classical fields fails

bull A proper semi-classical analysis of Brillouinrsquos gedanken experiment yields Rayleigh-resolved spin states

bull A rigorous quantum-mechanical analysis (corresponding to reality) yields complete and in principle arbitrarily large separation of spin states

bull Experiments to observe such spin-spitting are feasible (ie not totally insane) but would be very difficult

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 12: The Stern-Gerlach Effect for Electrons*

Which ball arrives first A) high roadB) low roadC) simultaneously

z

H

x

H

0H

zx

y

Hz

Hx

vz

xe-

)1(Δv

v

x

z

z

H

x

H

0H

zx

y

CALCULATIONS

2

1

2

1

zyx

yxzB HiHH

iHHH

dt

di

spinEHvc

e

dt

pdF )(

eigenenergies

integrate

(spin-flip probability lt 10-3)

)( zyxHE Bspin

CHOOSE INITIAL CONDITIONS

2220 )()()( TvxTx

2)()( iie vxm

ei m

Txx

2)()( 0

require Δzspin ~ 1mm

use Bo = 10T a = 1 cm (iexcl105A)

rarr vz ~ 105 ms (30 meV)

rarr t ~ 10μs

rarr Δxi ~ 100 μm

20

2211

20 2)(

tantan2

ze

B

i

fiif

ze

Bspin vm

Ba

za

azz

a

z

a

z

vm

Baz

H Batelaan et al PRL 79 4518 (1997)

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

NB - The net acceleration of the (leading) spin-backward electrons is zero

B

Pauli Case

ΔrΔp ~ ħ2

Landau Case

ΔrΔp ~ ħ2

B

MAGNETIC BOTTLE FORCES

z

BμμF z

BLz

B F

BL

L

S

(always || )B

(always || )B

0z

Bz

eνz

ˆ

0Bz

Fully quantum-mechanical calculation

(field due to a current loop)

Landau Hamiltonian

bull KE

bull ~ -μLB

bull ~ -μBB

GAGallup et alii PRL 86 4508 (2001)

S

W

F = SW

Gedanken apparatus

~~ φ TDC

1m 104 turns 5A

2 cm bore 10T

APERTURES

10μm 1μm

106 Hz

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

Δz Δt = Δzv

Δv

v

B

δ δ δ

bull Gradient = B δ Gradient force = plusmn(μBB δ) acceldecel = plusmn(μBB meδ) = plusmn a

bull If 2aδ ltlt v2 time lag = Δt = 2aδv3

bull Let B = 1T δ = 01m Ebeam = 100 keV (β = 055) rarr Δt = 4 x 10-19 s ()

bull Since the transit time threough the magnet = 2 ns R ~ 10-8

Conclusions

bull The Bohr-Pauli analysis of Brillouinrsquos proposal is wrong

bull More generally their prohibition against the spatial separation of electron spin based on classical trajectories through macroscopic classical fields fails

bull A proper semi-classical analysis of Brillouinrsquos gedanken experiment yields Rayleigh-resolved spin states

bull A rigorous quantum-mechanical analysis (corresponding to reality) yields complete and in principle arbitrarily large separation of spin states

bull Experiments to observe such spin-spitting are feasible (ie not totally insane) but would be very difficult

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 13: The Stern-Gerlach Effect for Electrons*

z

H

x

H

0H

zx

y

Hz

Hx

vz

xe-

)1(Δv

v

x

z

z

H

x

H

0H

zx

y

CALCULATIONS

2

1

2

1

zyx

yxzB HiHH

iHHH

dt

di

spinEHvc

e

dt

pdF )(

eigenenergies

integrate

(spin-flip probability lt 10-3)

)( zyxHE Bspin

CHOOSE INITIAL CONDITIONS

2220 )()()( TvxTx

2)()( iie vxm

ei m

Txx

2)()( 0

require Δzspin ~ 1mm

use Bo = 10T a = 1 cm (iexcl105A)

rarr vz ~ 105 ms (30 meV)

rarr t ~ 10μs

rarr Δxi ~ 100 μm

20

2211

20 2)(

tantan2

ze

B

i

fiif

ze

Bspin vm

Ba

za

azz

a

z

a

z

vm

Baz

H Batelaan et al PRL 79 4518 (1997)

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

NB - The net acceleration of the (leading) spin-backward electrons is zero

B

Pauli Case

ΔrΔp ~ ħ2

Landau Case

ΔrΔp ~ ħ2

B

MAGNETIC BOTTLE FORCES

z

BμμF z

BLz

B F

BL

L

S

(always || )B

(always || )B

0z

Bz

eνz

ˆ

0Bz

Fully quantum-mechanical calculation

(field due to a current loop)

Landau Hamiltonian

bull KE

bull ~ -μLB

bull ~ -μBB

GAGallup et alii PRL 86 4508 (2001)

S

W

F = SW

Gedanken apparatus

~~ φ TDC

1m 104 turns 5A

2 cm bore 10T

APERTURES

10μm 1μm

106 Hz

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

Δz Δt = Δzv

Δv

v

B

δ δ δ

bull Gradient = B δ Gradient force = plusmn(μBB δ) acceldecel = plusmn(μBB meδ) = plusmn a

bull If 2aδ ltlt v2 time lag = Δt = 2aδv3

bull Let B = 1T δ = 01m Ebeam = 100 keV (β = 055) rarr Δt = 4 x 10-19 s ()

bull Since the transit time threough the magnet = 2 ns R ~ 10-8

Conclusions

bull The Bohr-Pauli analysis of Brillouinrsquos proposal is wrong

bull More generally their prohibition against the spatial separation of electron spin based on classical trajectories through macroscopic classical fields fails

bull A proper semi-classical analysis of Brillouinrsquos gedanken experiment yields Rayleigh-resolved spin states

bull A rigorous quantum-mechanical analysis (corresponding to reality) yields complete and in principle arbitrarily large separation of spin states

bull Experiments to observe such spin-spitting are feasible (ie not totally insane) but would be very difficult

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 14: The Stern-Gerlach Effect for Electrons*

CALCULATIONS

2

1

2

1

zyx

yxzB HiHH

iHHH

dt

di

spinEHvc

e

dt

pdF )(

eigenenergies

integrate

(spin-flip probability lt 10-3)

)( zyxHE Bspin

CHOOSE INITIAL CONDITIONS

2220 )()()( TvxTx

2)()( iie vxm

ei m

Txx

2)()( 0

require Δzspin ~ 1mm

use Bo = 10T a = 1 cm (iexcl105A)

rarr vz ~ 105 ms (30 meV)

rarr t ~ 10μs

rarr Δxi ~ 100 μm

20

2211

20 2)(

tantan2

ze

B

i

fiif

ze

Bspin vm

Ba

za

azz

a

z

a

z

vm

Baz

H Batelaan et al PRL 79 4518 (1997)

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

NB - The net acceleration of the (leading) spin-backward electrons is zero

B

Pauli Case

ΔrΔp ~ ħ2

Landau Case

ΔrΔp ~ ħ2

B

MAGNETIC BOTTLE FORCES

z

BμμF z

BLz

B F

BL

L

S

(always || )B

(always || )B

0z

Bz

eνz

ˆ

0Bz

Fully quantum-mechanical calculation

(field due to a current loop)

Landau Hamiltonian

bull KE

bull ~ -μLB

bull ~ -μBB

GAGallup et alii PRL 86 4508 (2001)

S

W

F = SW

Gedanken apparatus

~~ φ TDC

1m 104 turns 5A

2 cm bore 10T

APERTURES

10μm 1μm

106 Hz

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

Δz Δt = Δzv

Δv

v

B

δ δ δ

bull Gradient = B δ Gradient force = plusmn(μBB δ) acceldecel = plusmn(μBB meδ) = plusmn a

bull If 2aδ ltlt v2 time lag = Δt = 2aδv3

bull Let B = 1T δ = 01m Ebeam = 100 keV (β = 055) rarr Δt = 4 x 10-19 s ()

bull Since the transit time threough the magnet = 2 ns R ~ 10-8

Conclusions

bull The Bohr-Pauli analysis of Brillouinrsquos proposal is wrong

bull More generally their prohibition against the spatial separation of electron spin based on classical trajectories through macroscopic classical fields fails

bull A proper semi-classical analysis of Brillouinrsquos gedanken experiment yields Rayleigh-resolved spin states

bull A rigorous quantum-mechanical analysis (corresponding to reality) yields complete and in principle arbitrarily large separation of spin states

bull Experiments to observe such spin-spitting are feasible (ie not totally insane) but would be very difficult

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 15: The Stern-Gerlach Effect for Electrons*

CHOOSE INITIAL CONDITIONS

2220 )()()( TvxTx

2)()( iie vxm

ei m

Txx

2)()( 0

require Δzspin ~ 1mm

use Bo = 10T a = 1 cm (iexcl105A)

rarr vz ~ 105 ms (30 meV)

rarr t ~ 10μs

rarr Δxi ~ 100 μm

20

2211

20 2)(

tantan2

ze

B

i

fiif

ze

Bspin vm

Ba

za

azz

a

z

a

z

vm

Baz

H Batelaan et al PRL 79 4518 (1997)

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

NB - The net acceleration of the (leading) spin-backward electrons is zero

B

Pauli Case

ΔrΔp ~ ħ2

Landau Case

ΔrΔp ~ ħ2

B

MAGNETIC BOTTLE FORCES

z

BμμF z

BLz

B F

BL

L

S

(always || )B

(always || )B

0z

Bz

eνz

ˆ

0Bz

Fully quantum-mechanical calculation

(field due to a current loop)

Landau Hamiltonian

bull KE

bull ~ -μLB

bull ~ -μBB

GAGallup et alii PRL 86 4508 (2001)

S

W

F = SW

Gedanken apparatus

~~ φ TDC

1m 104 turns 5A

2 cm bore 10T

APERTURES

10μm 1μm

106 Hz

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

Δz Δt = Δzv

Δv

v

B

δ δ δ

bull Gradient = B δ Gradient force = plusmn(μBB δ) acceldecel = plusmn(μBB meδ) = plusmn a

bull If 2aδ ltlt v2 time lag = Δt = 2aδv3

bull Let B = 1T δ = 01m Ebeam = 100 keV (β = 055) rarr Δt = 4 x 10-19 s ()

bull Since the transit time threough the magnet = 2 ns R ~ 10-8

Conclusions

bull The Bohr-Pauli analysis of Brillouinrsquos proposal is wrong

bull More generally their prohibition against the spatial separation of electron spin based on classical trajectories through macroscopic classical fields fails

bull A proper semi-classical analysis of Brillouinrsquos gedanken experiment yields Rayleigh-resolved spin states

bull A rigorous quantum-mechanical analysis (corresponding to reality) yields complete and in principle arbitrarily large separation of spin states

bull Experiments to observe such spin-spitting are feasible (ie not totally insane) but would be very difficult

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 16: The Stern-Gerlach Effect for Electrons*

require Δzspin ~ 1mm

use Bo = 10T a = 1 cm (iexcl105A)

rarr vz ~ 105 ms (30 meV)

rarr t ~ 10μs

rarr Δxi ~ 100 μm

20

2211

20 2)(

tantan2

ze

B

i

fiif

ze

Bspin vm

Ba

za

azz

a

z

a

z

vm

Baz

H Batelaan et al PRL 79 4518 (1997)

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

NB - The net acceleration of the (leading) spin-backward electrons is zero

B

Pauli Case

ΔrΔp ~ ħ2

Landau Case

ΔrΔp ~ ħ2

B

MAGNETIC BOTTLE FORCES

z

BμμF z

BLz

B F

BL

L

S

(always || )B

(always || )B

0z

Bz

eνz

ˆ

0Bz

Fully quantum-mechanical calculation

(field due to a current loop)

Landau Hamiltonian

bull KE

bull ~ -μLB

bull ~ -μBB

GAGallup et alii PRL 86 4508 (2001)

S

W

F = SW

Gedanken apparatus

~~ φ TDC

1m 104 turns 5A

2 cm bore 10T

APERTURES

10μm 1μm

106 Hz

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

Δz Δt = Δzv

Δv

v

B

δ δ δ

bull Gradient = B δ Gradient force = plusmn(μBB δ) acceldecel = plusmn(μBB meδ) = plusmn a

bull If 2aδ ltlt v2 time lag = Δt = 2aδv3

bull Let B = 1T δ = 01m Ebeam = 100 keV (β = 055) rarr Δt = 4 x 10-19 s ()

bull Since the transit time threough the magnet = 2 ns R ~ 10-8

Conclusions

bull The Bohr-Pauli analysis of Brillouinrsquos proposal is wrong

bull More generally their prohibition against the spatial separation of electron spin based on classical trajectories through macroscopic classical fields fails

bull A proper semi-classical analysis of Brillouinrsquos gedanken experiment yields Rayleigh-resolved spin states

bull A rigorous quantum-mechanical analysis (corresponding to reality) yields complete and in principle arbitrarily large separation of spin states

bull Experiments to observe such spin-spitting are feasible (ie not totally insane) but would be very difficult

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 17: The Stern-Gerlach Effect for Electrons*

H Batelaan et al PRL 79 4518 (1997)

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

NB - The net acceleration of the (leading) spin-backward electrons is zero

B

Pauli Case

ΔrΔp ~ ħ2

Landau Case

ΔrΔp ~ ħ2

B

MAGNETIC BOTTLE FORCES

z

BμμF z

BLz

B F

BL

L

S

(always || )B

(always || )B

0z

Bz

eνz

ˆ

0Bz

Fully quantum-mechanical calculation

(field due to a current loop)

Landau Hamiltonian

bull KE

bull ~ -μLB

bull ~ -μBB

GAGallup et alii PRL 86 4508 (2001)

S

W

F = SW

Gedanken apparatus

~~ φ TDC

1m 104 turns 5A

2 cm bore 10T

APERTURES

10μm 1μm

106 Hz

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

Δz Δt = Δzv

Δv

v

B

δ δ δ

bull Gradient = B δ Gradient force = plusmn(μBB δ) acceldecel = plusmn(μBB meδ) = plusmn a

bull If 2aδ ltlt v2 time lag = Δt = 2aδv3

bull Let B = 1T δ = 01m Ebeam = 100 keV (β = 055) rarr Δt = 4 x 10-19 s ()

bull Since the transit time threough the magnet = 2 ns R ~ 10-8

Conclusions

bull The Bohr-Pauli analysis of Brillouinrsquos proposal is wrong

bull More generally their prohibition against the spatial separation of electron spin based on classical trajectories through macroscopic classical fields fails

bull A proper semi-classical analysis of Brillouinrsquos gedanken experiment yields Rayleigh-resolved spin states

bull A rigorous quantum-mechanical analysis (corresponding to reality) yields complete and in principle arbitrarily large separation of spin states

bull Experiments to observe such spin-spitting are feasible (ie not totally insane) but would be very difficult

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 18: The Stern-Gerlach Effect for Electrons*

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

NB - The net acceleration of the (leading) spin-backward electrons is zero

B

Pauli Case

ΔrΔp ~ ħ2

Landau Case

ΔrΔp ~ ħ2

B

MAGNETIC BOTTLE FORCES

z

BμμF z

BLz

B F

BL

L

S

(always || )B

(always || )B

0z

Bz

eνz

ˆ

0Bz

Fully quantum-mechanical calculation

(field due to a current loop)

Landau Hamiltonian

bull KE

bull ~ -μLB

bull ~ -μBB

GAGallup et alii PRL 86 4508 (2001)

S

W

F = SW

Gedanken apparatus

~~ φ TDC

1m 104 turns 5A

2 cm bore 10T

APERTURES

10μm 1μm

106 Hz

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

Δz Δt = Δzv

Δv

v

B

δ δ δ

bull Gradient = B δ Gradient force = plusmn(μBB δ) acceldecel = plusmn(μBB meδ) = plusmn a

bull If 2aδ ltlt v2 time lag = Δt = 2aδv3

bull Let B = 1T δ = 01m Ebeam = 100 keV (β = 055) rarr Δt = 4 x 10-19 s ()

bull Since the transit time threough the magnet = 2 ns R ~ 10-8

Conclusions

bull The Bohr-Pauli analysis of Brillouinrsquos proposal is wrong

bull More generally their prohibition against the spatial separation of electron spin based on classical trajectories through macroscopic classical fields fails

bull A proper semi-classical analysis of Brillouinrsquos gedanken experiment yields Rayleigh-resolved spin states

bull A rigorous quantum-mechanical analysis (corresponding to reality) yields complete and in principle arbitrarily large separation of spin states

bull Experiments to observe such spin-spitting are feasible (ie not totally insane) but would be very difficult

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 19: The Stern-Gerlach Effect for Electrons*

NB - The net acceleration of the (leading) spin-backward electrons is zero

B

Pauli Case

ΔrΔp ~ ħ2

Landau Case

ΔrΔp ~ ħ2

B

MAGNETIC BOTTLE FORCES

z

BμμF z

BLz

B F

BL

L

S

(always || )B

(always || )B

0z

Bz

eνz

ˆ

0Bz

Fully quantum-mechanical calculation

(field due to a current loop)

Landau Hamiltonian

bull KE

bull ~ -μLB

bull ~ -μBB

GAGallup et alii PRL 86 4508 (2001)

S

W

F = SW

Gedanken apparatus

~~ φ TDC

1m 104 turns 5A

2 cm bore 10T

APERTURES

10μm 1μm

106 Hz

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

Δz Δt = Δzv

Δv

v

B

δ δ δ

bull Gradient = B δ Gradient force = plusmn(μBB δ) acceldecel = plusmn(μBB meδ) = plusmn a

bull If 2aδ ltlt v2 time lag = Δt = 2aδv3

bull Let B = 1T δ = 01m Ebeam = 100 keV (β = 055) rarr Δt = 4 x 10-19 s ()

bull Since the transit time threough the magnet = 2 ns R ~ 10-8

Conclusions

bull The Bohr-Pauli analysis of Brillouinrsquos proposal is wrong

bull More generally their prohibition against the spatial separation of electron spin based on classical trajectories through macroscopic classical fields fails

bull A proper semi-classical analysis of Brillouinrsquos gedanken experiment yields Rayleigh-resolved spin states

bull A rigorous quantum-mechanical analysis (corresponding to reality) yields complete and in principle arbitrarily large separation of spin states

bull Experiments to observe such spin-spitting are feasible (ie not totally insane) but would be very difficult

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 20: The Stern-Gerlach Effect for Electrons*

B

Pauli Case

ΔrΔp ~ ħ2

Landau Case

ΔrΔp ~ ħ2

B

MAGNETIC BOTTLE FORCES

z

BμμF z

BLz

B F

BL

L

S

(always || )B

(always || )B

0z

Bz

eνz

ˆ

0Bz

Fully quantum-mechanical calculation

(field due to a current loop)

Landau Hamiltonian

bull KE

bull ~ -μLB

bull ~ -μBB

GAGallup et alii PRL 86 4508 (2001)

S

W

F = SW

Gedanken apparatus

~~ φ TDC

1m 104 turns 5A

2 cm bore 10T

APERTURES

10μm 1μm

106 Hz

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

Δz Δt = Δzv

Δv

v

B

δ δ δ

bull Gradient = B δ Gradient force = plusmn(μBB δ) acceldecel = plusmn(μBB meδ) = plusmn a

bull If 2aδ ltlt v2 time lag = Δt = 2aδv3

bull Let B = 1T δ = 01m Ebeam = 100 keV (β = 055) rarr Δt = 4 x 10-19 s ()

bull Since the transit time threough the magnet = 2 ns R ~ 10-8

Conclusions

bull The Bohr-Pauli analysis of Brillouinrsquos proposal is wrong

bull More generally their prohibition against the spatial separation of electron spin based on classical trajectories through macroscopic classical fields fails

bull A proper semi-classical analysis of Brillouinrsquos gedanken experiment yields Rayleigh-resolved spin states

bull A rigorous quantum-mechanical analysis (corresponding to reality) yields complete and in principle arbitrarily large separation of spin states

bull Experiments to observe such spin-spitting are feasible (ie not totally insane) but would be very difficult

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 21: The Stern-Gerlach Effect for Electrons*

MAGNETIC BOTTLE FORCES

z

BμμF z

BLz

B F

BL

L

S

(always || )B

(always || )B

0z

Bz

eνz

ˆ

0Bz

Fully quantum-mechanical calculation

(field due to a current loop)

Landau Hamiltonian

bull KE

bull ~ -μLB

bull ~ -μBB

GAGallup et alii PRL 86 4508 (2001)

S

W

F = SW

Gedanken apparatus

~~ φ TDC

1m 104 turns 5A

2 cm bore 10T

APERTURES

10μm 1μm

106 Hz

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

Δz Δt = Δzv

Δv

v

B

δ δ δ

bull Gradient = B δ Gradient force = plusmn(μBB δ) acceldecel = plusmn(μBB meδ) = plusmn a

bull If 2aδ ltlt v2 time lag = Δt = 2aδv3

bull Let B = 1T δ = 01m Ebeam = 100 keV (β = 055) rarr Δt = 4 x 10-19 s ()

bull Since the transit time threough the magnet = 2 ns R ~ 10-8

Conclusions

bull The Bohr-Pauli analysis of Brillouinrsquos proposal is wrong

bull More generally their prohibition against the spatial separation of electron spin based on classical trajectories through macroscopic classical fields fails

bull A proper semi-classical analysis of Brillouinrsquos gedanken experiment yields Rayleigh-resolved spin states

bull A rigorous quantum-mechanical analysis (corresponding to reality) yields complete and in principle arbitrarily large separation of spin states

bull Experiments to observe such spin-spitting are feasible (ie not totally insane) but would be very difficult

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 22: The Stern-Gerlach Effect for Electrons*

Fully quantum-mechanical calculation

(field due to a current loop)

Landau Hamiltonian

bull KE

bull ~ -μLB

bull ~ -μBB

GAGallup et alii PRL 86 4508 (2001)

S

W

F = SW

Gedanken apparatus

~~ φ TDC

1m 104 turns 5A

2 cm bore 10T

APERTURES

10μm 1μm

106 Hz

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

Δz Δt = Δzv

Δv

v

B

δ δ δ

bull Gradient = B δ Gradient force = plusmn(μBB δ) acceldecel = plusmn(μBB meδ) = plusmn a

bull If 2aδ ltlt v2 time lag = Δt = 2aδv3

bull Let B = 1T δ = 01m Ebeam = 100 keV (β = 055) rarr Δt = 4 x 10-19 s ()

bull Since the transit time threough the magnet = 2 ns R ~ 10-8

Conclusions

bull The Bohr-Pauli analysis of Brillouinrsquos proposal is wrong

bull More generally their prohibition against the spatial separation of electron spin based on classical trajectories through macroscopic classical fields fails

bull A proper semi-classical analysis of Brillouinrsquos gedanken experiment yields Rayleigh-resolved spin states

bull A rigorous quantum-mechanical analysis (corresponding to reality) yields complete and in principle arbitrarily large separation of spin states

bull Experiments to observe such spin-spitting are feasible (ie not totally insane) but would be very difficult

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 23: The Stern-Gerlach Effect for Electrons*

GAGallup et alii PRL 86 4508 (2001)

S

W

F = SW

Gedanken apparatus

~~ φ TDC

1m 104 turns 5A

2 cm bore 10T

APERTURES

10μm 1μm

106 Hz

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

Δz Δt = Δzv

Δv

v

B

δ δ δ

bull Gradient = B δ Gradient force = plusmn(μBB δ) acceldecel = plusmn(μBB meδ) = plusmn a

bull If 2aδ ltlt v2 time lag = Δt = 2aδv3

bull Let B = 1T δ = 01m Ebeam = 100 keV (β = 055) rarr Δt = 4 x 10-19 s ()

bull Since the transit time threough the magnet = 2 ns R ~ 10-8

Conclusions

bull The Bohr-Pauli analysis of Brillouinrsquos proposal is wrong

bull More generally their prohibition against the spatial separation of electron spin based on classical trajectories through macroscopic classical fields fails

bull A proper semi-classical analysis of Brillouinrsquos gedanken experiment yields Rayleigh-resolved spin states

bull A rigorous quantum-mechanical analysis (corresponding to reality) yields complete and in principle arbitrarily large separation of spin states

bull Experiments to observe such spin-spitting are feasible (ie not totally insane) but would be very difficult

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 24: The Stern-Gerlach Effect for Electrons*

S

W

F = SW

Gedanken apparatus

~~ φ TDC

1m 104 turns 5A

2 cm bore 10T

APERTURES

10μm 1μm

106 Hz

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

Δz Δt = Δzv

Δv

v

B

δ δ δ

bull Gradient = B δ Gradient force = plusmn(μBB δ) acceldecel = plusmn(μBB meδ) = plusmn a

bull If 2aδ ltlt v2 time lag = Δt = 2aδv3

bull Let B = 1T δ = 01m Ebeam = 100 keV (β = 055) rarr Δt = 4 x 10-19 s ()

bull Since the transit time threough the magnet = 2 ns R ~ 10-8

Conclusions

bull The Bohr-Pauli analysis of Brillouinrsquos proposal is wrong

bull More generally their prohibition against the spatial separation of electron spin based on classical trajectories through macroscopic classical fields fails

bull A proper semi-classical analysis of Brillouinrsquos gedanken experiment yields Rayleigh-resolved spin states

bull A rigorous quantum-mechanical analysis (corresponding to reality) yields complete and in principle arbitrarily large separation of spin states

bull Experiments to observe such spin-spitting are feasible (ie not totally insane) but would be very difficult

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 25: The Stern-Gerlach Effect for Electrons*

Gedanken apparatus

~~ φ TDC

1m 104 turns 5A

2 cm bore 10T

APERTURES

10μm 1μm

106 Hz

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

Δz Δt = Δzv

Δv

v

B

δ δ δ

bull Gradient = B δ Gradient force = plusmn(μBB δ) acceldecel = plusmn(μBB meδ) = plusmn a

bull If 2aδ ltlt v2 time lag = Δt = 2aδv3

bull Let B = 1T δ = 01m Ebeam = 100 keV (β = 055) rarr Δt = 4 x 10-19 s ()

bull Since the transit time threough the magnet = 2 ns R ~ 10-8

Conclusions

bull The Bohr-Pauli analysis of Brillouinrsquos proposal is wrong

bull More generally their prohibition against the spatial separation of electron spin based on classical trajectories through macroscopic classical fields fails

bull A proper semi-classical analysis of Brillouinrsquos gedanken experiment yields Rayleigh-resolved spin states

bull A rigorous quantum-mechanical analysis (corresponding to reality) yields complete and in principle arbitrarily large separation of spin states

bull Experiments to observe such spin-spitting are feasible (ie not totally insane) but would be very difficult

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 26: The Stern-Gerlach Effect for Electrons*

Landau States

0 +12

1 -12

0 -12

1 +12

2 -12

(n ms)E-(pz

22m)

0

En = (pz22m) + (2n + 1)μBB plusmn μBB

n = (0123hellip)

Δz Δt = Δzv

Δv

v

B

δ δ δ

bull Gradient = B δ Gradient force = plusmn(μBB δ) acceldecel = plusmn(μBB meδ) = plusmn a

bull If 2aδ ltlt v2 time lag = Δt = 2aδv3

bull Let B = 1T δ = 01m Ebeam = 100 keV (β = 055) rarr Δt = 4 x 10-19 s ()

bull Since the transit time threough the magnet = 2 ns R ~ 10-8

Conclusions

bull The Bohr-Pauli analysis of Brillouinrsquos proposal is wrong

bull More generally their prohibition against the spatial separation of electron spin based on classical trajectories through macroscopic classical fields fails

bull A proper semi-classical analysis of Brillouinrsquos gedanken experiment yields Rayleigh-resolved spin states

bull A rigorous quantum-mechanical analysis (corresponding to reality) yields complete and in principle arbitrarily large separation of spin states

bull Experiments to observe such spin-spitting are feasible (ie not totally insane) but would be very difficult

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 27: The Stern-Gerlach Effect for Electrons*

Δz Δt = Δzv

Δv

v

B

δ δ δ

bull Gradient = B δ Gradient force = plusmn(μBB δ) acceldecel = plusmn(μBB meδ) = plusmn a

bull If 2aδ ltlt v2 time lag = Δt = 2aδv3

bull Let B = 1T δ = 01m Ebeam = 100 keV (β = 055) rarr Δt = 4 x 10-19 s ()

bull Since the transit time threough the magnet = 2 ns R ~ 10-8

Conclusions

bull The Bohr-Pauli analysis of Brillouinrsquos proposal is wrong

bull More generally their prohibition against the spatial separation of electron spin based on classical trajectories through macroscopic classical fields fails

bull A proper semi-classical analysis of Brillouinrsquos gedanken experiment yields Rayleigh-resolved spin states

bull A rigorous quantum-mechanical analysis (corresponding to reality) yields complete and in principle arbitrarily large separation of spin states

bull Experiments to observe such spin-spitting are feasible (ie not totally insane) but would be very difficult

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 28: The Stern-Gerlach Effect for Electrons*

Conclusions

bull The Bohr-Pauli analysis of Brillouinrsquos proposal is wrong

bull More generally their prohibition against the spatial separation of electron spin based on classical trajectories through macroscopic classical fields fails

bull A proper semi-classical analysis of Brillouinrsquos gedanken experiment yields Rayleigh-resolved spin states

bull A rigorous quantum-mechanical analysis (corresponding to reality) yields complete and in principle arbitrarily large separation of spin states

bull Experiments to observe such spin-spitting are feasible (ie not totally insane) but would be very difficult

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 29: The Stern-Gerlach Effect for Electrons*

y

z

Hz

Hx

vz

xe-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 30: The Stern-Gerlach Effect for Electrons*

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 31: The Stern-Gerlach Effect for Electrons*

-0002

0002

b

-01

01x

(mm

)

a

0999 1000z (m)0

50

09997 10003z (m)0

50

num

ber

of e

-

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility
Page 32: The Stern-Gerlach Effect for Electrons*

Feasibility

  • The Stern-Gerlach Effect for Electrons
  • Electron Polarization
  • Atomic Collisions
  • Slide 4
  • Slide 5
  • Slide 6
  • Slide 7
  • Slide 8
  • Slide 9
  • Slide 10
  • Slide 11
  • Slide 12
  • Slide 13
  • Slide 14
  • Slide 15
  • Slide 16
  • See eg
  • Slide 18
  • Slide 19
  • Slide 20
  • Slide 21
  • CALCULATIONS
  • CHOOSE INITIAL CONDITIONS
  • require Δzspin ~ 1mm use Bo = 10T a = 1 cm (iexcl105A) rarr vz ~ 105 ms (30 meV) rarr t ~ 10μs rarr Δxi ~ 100 μm
  • Slide 25
  • Slide 26
  • Landau States
  • Slide 28
  • Slide 29
  • Slide 30
  • Fully quantum-mechanical calculation
  • Slide 32
  • Slide 33
  • Slide 34
  • Gedanken apparatus
  • Slide 36
  • Slide 37
  • Conclusions
  • Slide 39
  • Slide 40
  • Slide 41
  • Slide 42
  • Slide 43
  • Slide 44
  • Slide 45
  • Slide 46
  • Slide 47
  • Slide 48
  • Slide 49
  • Slide 50
  • Slide 51
  • Feasibility