28
THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF STRONTIUM BOROTELLURITE GLASS DOPED WITH EUROPIUM AND DYSPROSIUM ROYSTON UNING UNIVERSITI TEKNOLOGI MALAYSIA

THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF

STRONTIUM BOROTELLURITE GLASS DOPED WITH

EUROPIUM AND DYSPROSIUM

ROYSTON UNING

UNIVERSITI TEKNOLOGI MALAYSIA

Page 2: THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF

STRONTIUM BOROTELLURITE GLASS DOPED WITH

EUROPIUM AND DYSPROSIUM

ROYSTON UNING

A thesis submitted in fulfilment of the

requirements for the award of the degree of

Master of Science (Physics)

Faculty of Science

Universiti Teknologi Malaysia

APRIL 2014

Page 3: THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

iii

Dedicated to my beloved parents and siblings,

for their endless love, supports and encouragements.

Page 4: THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

iv

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to Prof. Dr. Rosli Bin Hussin

who have introduce me to glass science and also being friendly, supportive and

inspiring supervisor throughout my research. I am thankful to my parents and

siblings for their continuous love and hard work that allow me to pursue study.

I am also indebted to Ministry of Higher Education and Universiti Teknologi

Malaysia for funding my studies through Mybrain15 and research grant. My special

thanks go to Mr. Jaafar and Mrs. Anisah for helping in Material Science Lab

(Physics, UTM) and also thanks to all my friends especially in Material Science Lab

(Physics, UTM) and lecturers for sharing ideas. Last, but certainly not least, I thank

Materials Science Lab (FKM, UTM), FT-IR Lab (Chemistry, UTM) and CRIM

(UKM) for providing instruments for measurements.

Page 5: THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

v

ABSTRACT

A series of strontium borotellurite glasses with the general formula

xSrO·(100-x)[0.5B2O3·0.5TeO2], (15 ≤ x ≤ 35 mol%) have been prepared. In

addition, glass samples with the composition 20SrO·40B2O3·40TeO2 and

30SrO·35B2O3·35TeO2 doped with Europium, Eu3+

and Dysprosium, Dy3+

, (1 mol%

each) were also prepared. All the glass samples were prepared using melt quenching

method, followed by annealing process at 400 oC for 6 hours. The structural property

of the glass samples was characterized using X-ray diffractometer (XRD) and Fourier

transform infrared spectrometer and the luminescence property using fluorescence

spectrometer. The XRD diffraction patterns showed the amorphous phase of the glass

sample. Infrared spectra reveals that increased of strontium in borotellurite glass

significantly promote conversion of [BO3] to [BO4] and [TeO4] to [TeO3] in the

structural units. This conversion indicated some disintegration of boroxol rings into

network structures while strontium acted as network modifier. The emission spectra

line of undoped and doped glasses is in the visible range. The emission spectra line

of undoped glass at 513 nm originated from the glass host. The emission spectra lines

from Eu3+

doped glass are due to transition of Eu3+

ion at 5D0→

7F0 (580 nm),

5D0→

7F1 (593 nm),

5D0→

7F2 (613 nm) and

5D0→

7F3 (652 nm). Meanwhile the

emission spectra lines from Dy3+

doped glass are due to transition from 4F9/2→

6H15/2

(483 nm), 4F9/2→

6H13/2 (578 nm) and

4F9/2→

6H11/2 (660 nm). The emission spectra

lines from Eu3+

and Dy3+

doped glass are shown at 483 nm, 513 nm, 578 nm, 613 nm

and 660 nm. The results revealed that the emission intensity of Eu3+

and Dy3+

doped

glass are dependent on host composition. Furthermore, the luminescence decay curve

for Eu3+

doped glass showed multi-exponential decay with lifetimes for 20SBT:1Eu3+

glass are 1 ns and 22 ns, while for 30SBT:1Eu3+

glass, the lifetimes are 1 ns and 18

ns.

Page 6: THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

vi

ABSTRAK

Satu siri kaca strontium borotellurit dengan persamaan umum xSrO·(100-

x)[0.5B2O3·0.5TeO2], (15 ≤ x ≤ 35 mol%) telah dihasilkan. Tambahan pula, sampel

kaca dengan komposisi 20SrO·40B2O3·40TeO2 dan 30SrO·35B2O3·35TeO2 yang

didop dengan Europium, Eu3+

dan Dysprosium, Dy3+

(1 mol%) juga telah dihasilkan.

Kesemua sampel kaca telah dihasilkan menggunakan kaedah pelindapan lebur diikuti

dengan proses sepuh lindap pada suhu 400 oC selama 6 jam. Struktur sampel kaca

telah ditentukan melalui pembelauan sinar-X (XRD) dan spektroskopi inframerah

transformasi Fourier dan sifat luminesen melalui spektrometer luminesen. Corak

pembelauan XRD menunjukkan fasa amorfus. Spektra inframerah menunjukkan

bahawa, pertambahan kandungan strontium di dalam kaca borotellurit, mengalakkan

perubahan struktur unit daripada [BO3] kepada [BO4] dan [TeO4] kepada [TeO3].

Perubahan ini menunjukkan bahawa sebahagian daripada cincin boroksol bertukar

menjadi struktur rangkaian sementara strontium bertindak sebagai pengubahsuai

rangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam julat

cahaya nampak. Garis spektra pancaran daripada kaca tak berdop pada 513 nm

adalah dari perumah kaca itu sendiri. Garis spektra pancaran dari kaca berdop Eu3+

adalah daripada peralihan ion Eu3+

pada 5D0→

7F0 (580 nm),

5D0→

7F1 (593 nm),

5D0→

7F2 (613 nm) dan

5D0→

7F3 (652 nm). Sementara garis spektra pancaran kaca

berdop Dy3+

adalah disebabkan oleh peralihan dari 4F9/2→

6H15/2 (483 nm),

4F9/2→

6H13/2 (578 nm) dan

4F9/2→

6H11/2 (660 nm). Garis spektra pancaran dari kaca

berdop Eu3+

dan Dy3+

adalah pada 483 nm, 513 nm, 578 nm, 613 nm dan 660 nm.

Hasil kajian menunjukkan bahawa keamatan garis pancaran kaca berdop Eu3+

dan

Dy3+

bergantung kepada komposisi perumah. Tambahan pula, lengkuk pereputan

luminesen kaca berdop Eu3+

menunjukkan pereputan pelbagai eksponen dengan

jangka hayat bagi kaca 20SBT:1Eu3+

ialah 1 ns dan 22 ns manakala bagi kaca

30SBT:1Eu3+

jangka hayat ialah 1 ns dan 18 ns.

Page 7: THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

vii

TABLE OF CONTENTS

CHAPTER TITLE PAGE

DECLARATION ii

DEDICATION iii

ACKNOWLEDGEMENT iv

ABSTRACT v

ABSTRAK vi

TABLE OF CONTENTS vii

LIST OF TABLES x

LIST OF FIGURES xi

LIST OF SYMBOLS xiv

LIST OF APPENDIXES xv

1 INTRODUCTION 1

1.1 Research Background 1

1.2 Problem Statement 3

1.3 Research Objectives 3

1.4 Scope of Study 4

1.5 Significance of Study 4

1.6 Outline of Study 5

2 LITERATURE REVIEW 6

2.1 Introduction 6

2.2 Glass Formation 6

2.3 Infrared Spectra Studies of Borate Glasses 9

Page 8: THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

viii

2.4 Infrared Spectra Studies of Tellurite Glasses 11

2.5 Infrared Spectra Studies of Borotellurite Glasses 13

2.6 Luminescence Center of Europium and

Dysprosium

14

2.7 Luminescence Characteristic of Borotellurite Glass 15

2.7.1 Borotellurite Glass Doped with Europium 15

2.7.2 Borotellurite Glass Doped with

Dysprosium

17

2.7.3 Borotellurite Glass Doped with Europium

and Dysprosium

18

3 METHODOLOGY 20

3.1 Introduction 20

3.2 Samples Preparation 20

3.3 Samples Characterization 22

3.3.1 X-Ray Diffraction (XRD) 22

3.3.1.1 Basic Principle 22

3.3.1.2 X-Ray Diffractometer 23

3.3.2 Fourier Transform Infrared Spectroscopy

(FT-IR)

24

3.3.2.1 Basic Principle 24

3.3.2.2 FT-IR Spectrometer 25

3.3.3 Photoluminescence Spectroscopy 26

3.3.3.1 Basic Principle 26

3.3.3.2 Fluorescence Spectrometer 28

3.3.4 Energy Dispersive X-Ray Spectrometry

(EDX)

29

3.3.4.1 Basic Principle 29

3.3.4.2 EDX Spectrometer 30

4 RESULTS AND DISCUSSION 31

4.1 Introduction 31

4.2 Prepared Glasses 32

Page 9: THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

ix

4.3 Structural Analysis 35

4.3.1 X-Ray Diffraction Analysis 35

4.3.2 Infrared Spectra Analysis 37

4.4 Luminescence Spectra Analysis 46

4.4.1 Undoped Glass 46

4.4.2 Doped with Europium 47

4.4.3 Doped with Dysprosium 50

4.4.4 Doped with Europium and Dysprosium 52

4.4.5 Decay Analysis 56

4.5 Elemental Compositions Analysis 58

5 CONCLUSIONS AND RECOMMENDATIONS 61

5.1 Conclusions 61

5.2 Recommendations 63

REFERENCES 64

Appendices A - B 72 - 75

Page 10: THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

x

LIST OF TABLES

TABLE

NO.

TITLE PAGE

3.1 List of oxides utilizes preparing strontium borotellurite

glasses.

21

4.1 Composition of undoped strontium borotellurite glasses. 32

4.2 Composition of strontium borotellurite glasses doped with

europium and dysprosium.

32

4.3 Profile of undoped xSrO·(100-x)[0.5B2O3·0.5TeO2] glass

with 15 ≤ x ≤ 35 mol%.

33

4.4 Profile of 20SBT and 30SBT glass doped with 1 mol% of

europium and dysprosium.

34

4.5 Infrared characteristic band assignment. 41

Page 11: THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

xi

LIST OF FIGURES

FIGURES

NO.

TITLE PAGE

2.1 Relation between glassy, liquid and crystalline solids. 7

2.2 Two dimensional structural model of (a) glass and

(b) crystal.

8

2.3 X-ray diffraction patterns for bismuth borate system

(a) glass and (b) crystal (Pascuta et al., 2008).

8

2.4 Boroxol ring structures in vitreous borate glasses

(Shelby, 2005).

9

2.5 Infrared spectra of gadolinium bismuth borate glass

(Rada et al., 2008a).

10

2.6 Infrared spectra of iron (Fe) lead tellurite glasses

(a) 0 ≤ Fe ≤ 20 and (b) 20 ≤ Fe ≤ 60 (Rada et al., 2011).

12

2.7 Infrared spectra of ternary tungsten borotellurite glass

(Rada et al., 2013).

13

2.8 Luminescence spectra of borotellurite glass doped with

europium (Selvaraju et al., 2011).

16

2.9 Luminescence spectra of borotellurite glasses doped with

dysprosium (Maheshvaran and Marimuthu, 2011).

17

2.10 Emission spectra of barium phosphate glass doped with

europium and dysprosium (Xu et al., 2010).

18

3.1 The preparation of strontium borotellurite glasses. 21

Page 12: THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

xii

3.2 Principles of Bragg’s diffraction. 22

3.3 The X-ray diffractometer (Siemens Diffractometer

D5000).

23

3.4 FT-IR spectroscopy (Perkin Elmer Spectrum One). 26

3.5 Jablonski energy diagram (Johnson and Davidson, 2012). 27

3.6 Fluorescence spectrometers (Edinburgh Instruments,

FLS920).

28

3.7 Mechanism of EDX. 29

3.8 The Supra 35 VP with EDX-System (EDX Genesis 4000). 30

4.1 X-ray diffraction patterns of xSrO·(100-

x)[0.5B2O3·0.5TeO2] glass with 15 ≤ x ≤ 35 mol%, (a)

15SBT (b) 20SBT (c) 25SBT (d) 30SBT and (e) 35SBT.

35

4.2 X-ray diffraction pattern of glass doped with 1 mol% of

europium and dysprosium, (a) 20SBT:1Eu3+

(b) 20SBT:1Dy3+

(c) 20SBT:1Eu3+

1Dy3+

(d) 30SBT:1Eu3+

(e) 30SBT:1Dy3+

and (f) 30SBT:1Eu3+

1Dy3+

.

36

4.3 Infrared spectra of xSrO·(100-x)[0.5B2O3·0.5TeO2] glass

with 15 ≤ x ≤ 35 mol%.

37

4.4 Finger print infrared spectra of xSrO·(100-

x)[0.5B2O3·0.5TeO2] glass with 15 ≤ x ≤ 35 mol%.

39

4.5 Infrared spectra of (a) undoped 20SBT (b) 20SBT:1Eu3+

(c) 20SBT:1Dy3+

and (d) 20SBT:1Eu3+

1Dy3+

.

42

4.6 Finger print infrared spectra of (a) undoped 20SBT (b)

20SBT:1Eu3+

(c) 20SBT:1Dy3+

and

(d) 20SBT:1Eu3+

1Dy3+

.

43

4.7 Infrared spectra of (a) undoped 30SBT (b) 30SBT:1Eu3+

(c) 30SBT:1Dy3+

and (d) 30SBT:1Eu3+

1Dy3+

.

44

4.8 Finger print infrared spectra of (a) undoped 30SBT (b)

30SBT:1Eu3+

(c) 30SBT:1Dy3+

and

(d) 30SBT:1Eu3+

1Dy3+

.

45

4.9 Luminescence emission spectra of undoped 20SBT and

30SBT glass.

47

Page 13: THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

xiii

4.10 Luminescence emission spectra of 20SBT:1Eu3+

and

30SBT:1Eu3+

glass.

48

4.11 Energy level diagram illustrating europium transitions

between energy level.

49

4.12 Excitation of 396 nm (UV torch) in closed black box

(a) 20SBT:1Eu3+

and (b) 30SBT:1Eu3+

.

50

4.13 Luminescence emission spectra of 20SBT:1Dy3+

and

30SBT:1Dy3+

glass.

51

4.14 Energy level diagram illustrating dysprosium ion

transitions between energy level.

52

4.15 Luminescence emission spectra of 20SBT:1Eu3+

1Dy3+

and

30SBT:1Eu3+

1Dy3+

glass.

53

4.16 Energy level diagram illustrating doped europium and

dysprosium transitions between energy level.

54

4.17 Excitation of 396nm (UV torch) in closed black box

(a) 20SBT:1Eu3+

1Dy3+

and (b) 30SBT:1Eu3+

1Dy3+

.

55

4.18 Luminescence decay curve for 5D0→

7F2 emission

transition of 20SBT:1Eu3+

glass.

56

4.19 Luminescence decay curve for 5D0→

7F2 emission

transition of 30SBT:1Eu3+

glass.

57

4.20 The EDX spectra of 20SBT glass. 58

4.21 The EDX spectra of 30SBT glass. 58

4.22 The EDX spectra of 20SBT:1Eu3+

glass. 59

4.23 The EDX spectra of 30SBT:1Eu3+

glass. 59

4.24 The EDX spectra of 20SBT:1Dy3+

glass. 59

4.25 The EDX spectra of 30SBT:1Dy3+

glass.

60

4.26 The EDX spectra of 20SBT:1Eu3+

1Dy3+

glass. 60

4.27 The EDX spectra of 30SBT:1Eu3+

1Dy3+

glass. 60

Page 14: THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

xiv

LIST OF SYMBOLS

c - Speed of Light

C - Celsius

d - Length

k - Force Constant

Tf - Freezing Temperature

Tg - Transformation Range Temperature

τ - Tau

o - Degree

μ - Reduced Mass

ν - Frequency

λ - Lambda

θ - Angle

Page 15: THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

xv

LIST OF APPENDIXES

APPENDIX TITLE PAGE

A Example of Batch Calculation 72

B Calculated Batch Composition 73

Page 16: THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

CHAPTER 1

INTRODUCTION

1.1 Research Background

At first, glass is widely utilized in the field of lighting and

telecommunications. It has been define as a solid material lacking in long range,

periodic atomic structure and exhibiting glass transformation range. Common

methods to produce glass are melt quenching, vapor deposition and sol-gel

processing solutions. However, the most conventional way is by melt quenching due

to its simplicity and low cost compare to other methods.

In general, glass making oxides can be divided into glass former and

conditional glass former oxides. Examples of glass former oxides are silicon oxide,

boron oxide, germanium oxide and phosphorus oxide while tellurium oxide,

aluminium oxide and vanadium oxide as conditional glass former oxides. Glass

former readily form glasses and act as the backbone in glasses containing mixed of

oxides. On the other hand, conditional glass former cannot form glass on their own

but possible to form glass by mixing with other oxides at suitable quantity.

Specifically, mixed conditional glass former with other oxides is to lower the

crystallization effect and increase glass forming ability.

Page 17: THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

2

According to Lin et al. (2005), borate glasses highly transparent, low melting

temperature, high thermal stability and good rare earth ions solubility. However, it

have been less utilize due to high phonon energy (1500 cm-1

). On the other hand,

tellurite glasses have been extensively studied due to good properties such as low

melting temperature (733 oC), high chemical stability, good visible-infrared

transmission, low phonon energy (700 cm-1

) and high refractive index (≥ 2.00)

(Ricardo et al., 2008). As a matter of fact, Kumar et al. (2012) state glass with low

phonon energy provide less non-radiative relaxation rates and high quantum

efficiencies thus suitable for producing high efficiency optical materials. As reported

by Maheshvaran et al. (2013a), incorporation between borate and tellurite oxides

possible to produce borotellurite glass of low phonon energy.

Furthermore, many studies have been done on the incorporation between

alkali and alkaline earth metals with borotellurite glass. Some of the reported studies

are by Maheshvaran and Marimuthu (2011) on magnesium potassium borotellurite

glass doped with dysprosium while Selvaraju et al. (2011) worked on magnesium

potassium borotellurite glass doped with europium. The evidence suggests, this glass

is highly potential for laser application. Furthermore, strontium of alkaline earth

metals appeared to be part of many phosphors. As illustration of, works by Zhang et

al. (2007) has shown strontium borate glass doped with europium resulting long

lasting phosphorescence in the range of second’s.

In addition, lanthanide elements namely europium and dysprosium have been

doped into many different systems to obtain desired optical characteristics. In

general, glass doped with europium and dysprosium resulting combination emission

of blue, yellow and reddish orange (Joshi and Dhondiyal, 2005). On the other hand,

glass doped with europium shows intense and narrow emission of reddish orange

(Jamalaiah et al., 2009), meanwhile glass doped with dysprosium resulting

combination of blue and yellow emission (Kumar et al., 2012). Complementary to

this, europium and dysprosium widely used as spectroscopic probe to study the local

structure around the ions in the surrounding ligand in numerous glasses (Lidia,

2013).

Page 18: THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

3

1.2 Problem Statement

In the past, combination between borate and tellurite were able to form

borotellurite glass (Rada et al., 2008b). Recently, there were studies incorporating

different metals into borotellurite glass system. For example, Maheshvaran and

Marimuthu (2011) and Selvaraju et al. (2011) have reported studies on alkali and

alkaline earth borotellurite glass. Both studies shows alkali and alkaline earth metals

were part of the system producing borotellurite glasses that suitable for solid state

lighting and laser application. However, there was limited structural information

regarding alkali and alkaline earth metals effect in the glasses. Therefore, it is

interesting to study the aspect of alkali or alkaline earth metal in borotellurite glass

system. More importantly, literature survey shows there were limited studies on

strontium borotellurite system. Thus, in this research, an attempt is made to

investigate strontium borotellurite glass in order to establish the local network

structure changes induced by addition of strontium. In order to throw more light on

this investigation, the ratio of borate to tellurite fixed as 1:1 and luminescent

properties of glass undoped and doped with europium and dysprosium also

characterized.

1.3 Research Objectives

To prepare undoped and doped with europium and dysprosium strontium

borotellurite glasses by melt quenching method.

To determine structural nature and local network structure through X-ray

diffraction and FT-IR spectroscopy.

To determine luminescence emission and decay curve of undoped and doped

with europium and dysprosium strontium borotellurite glasses.

To determine elemental composition of undoped and doped with europium

and dysprosium strontium borotellurite glasses.

Page 19: THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

4

1.4 Scope of Study

Glass system of strontium gradually replacing borate and tellurite were

formulated. Five compositions consist of strontium oxide, boron oxide and tellurite

oxide were mixed through solid state reaction while luminescent strontium

borotellurite glasses was prepared based on two compositions and doped with 1

mol% of europium oxide and dysprosium oxide. By using melt quenching method,

firing temperature for melting oxides mixtures were varies between 900 and 1100 oC.

Apart from that, annealing temperature was set at 400 oC for 6 hours.

The structural nature, local network structure, luminescence emission and

decay curve, and elemental composition of the undoped and doped strontium

borotellurite glasses were evaluated by X-ray diffractometer (XRD), Fourier

transform infrared spectrometer (FT-IR), fluorescence spectrometer and energy

dispersive X-ray spectrometer (EDX).

1.5 Significance of Study

The study of alkaline earth effect in borotellurite glasses is important to

obtain information from the local network structure. The information is useful in

glass technology to develop new material.

Undoped and doped strontium borotellurite glass of low phonon energy,

highly transparent and chemically stable were prepared through melt quenching

method. Melt quenching is simple and cost effective which is suitable for mass

production. Low phonon energy was the major advantage in producing luminescent

glass of higher efficiency for technological application.

Page 20: THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

5

1.6 Outline of Study

This thesis subdivided into five chapters, Chapter 1 is introduction for present

studies. Chapter 2 specifically for literature reviews then Chapter 3 focuses on

methodology. Coming are Chapter 4 which is the most important chapter covering

results and discussion. Finally are Chapter 5 which is conclusions and

recommendation for future work.

Page 21: THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

REFERENCES

Abid, M., Et-tabirou, M. and Taibi, M. (2003). Structure and DC conductivity of lead

sodium ultraphosphate glasses. Materials Science and Engineering B. 97, 20-

24.

Arnaudov, M., Dimizrov, V., Dimitriev, Y. and Markova, L. (1982). Infrared-

Spectral Investigation of Tellurites. Mat. Res. Bull. 17, 1121-1129.

Babu, P. and Jayasankar, C.K. (2000). Spectroscopic properties of Dy3+

ions in

lithium borate and lithium fluoroborate glasses. Optical Materials. 15, 65-79.

Babu, A. M., Jamalaiah, B. C., Suhasini, T., Rao, T. S. and Moorthy, L. R. (2011).

Optical properties of Eu3+

ions in lead tungstate tellurite glasses. Solid State

Sciences. 13, 574-578.

Bhargava, A., Snyder, R.L. and Condrate, R.A. (1987). The Raman and Infrared

Spectra of the Glasses in the System BaO-TiO2-B203. Mat. Res. Bull. 22,

1603-1611.

Cai, J.L., Li, R.Y., Zhao, C.J., Tie, S.L., Wan, X. and Shen, J.Y. (2012). White light

emission and energy transfer in Dy3+

/Eu3+

co-doped aluminoborate glass.

Optical Materials. 34, 1112-1115.

Chaussedent, S., Teboul, V. and Monteil, A. (2003). Molecular dynamics simulations

of rare-earth-doped glasses. Current Opinion in Solid State and Materials

Science. 7, 111-116.

Page 22: THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

65

Chen, G.R., Yun, X.W., Yang, Zhao, D.H., and Xia, F. (2005). Composition Effects

on Optical Properties of Tb31-Doped Heavy Germanate Glasses. J. Am.

Ceram. Soc. 88, 293-296.

Doweidar, H. and Saddeek, Y. B. (2009). FTIR and ultrasonic investigations on

modified bismuth borate glasses. Journal of Non-Crystalline Solids. 355,

348-354.

El-Mallawany, R.A.H. (2002). Tellurite Glasses Handbook: Physical Properties and

Data. (1st Ed.). Boca Raton, Florida: CRC Press Taylor & Francis Group.

Faoro, R., Moglia, F., Tonelli, M., Magnani, N. and Cavalli, E. (2009). Energy levels

and emission parameters of the Dy3+

ion doped into the YPO4 host lattice. J.

Phys.: Condens. Matter. 21, 275501.

Fayon, F., Bessada, C., Coutures, J. P. and Massiot, D. (1999). High-Resolution

Double-Quantum 31

P MAS NMR Study of the Intermediate-Range Order in

Crystalline and Glass Lead Phosphates. Inorg. Chem. 38, 5212-5218.

Gao, G.J., Reibstein, S., Peng, M.Y. and Wondraczek, L. (2011). Tunable dual-mode

photoluminescence from nanocrystalline Eu-dopedLi2ZnSiO4 glass ceramic

phosphors. J. Mater. Chem. 21, 3156-3161.

Hoppe, U., Yousef, E., Rüssel, C., Neuefeind, J. and Hannon, A.C. (2002). Structure

of vanadium tellurite glasses studied by neutron and X-ray diffraction. Solid

State Communications. 123, 273-278.

Jamalaiah, B.C., Kumar, J.S., Babu, A.M., and Moorthy L.R. (2009). Spectroscopic

Studies of Eu3+

ions in LBTAF Glasses, Journal of Alloys and Compounds.

470, 63-67.

Jayasankar, C.K. and Rukmini, E. (1997). Spectroscopic investigations of Dy3+

ions

in borosulphate glasses. Physica B. 240, 273-28.

Page 23: THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

66

Jiao, H., Liao, F.H., Tian, S. J., and Jing, X. P. (2003). Luminescent Properties of

Eu3+

 and Tb3+

 Activated Zn3Ta2O8. J. Electrochem. Soc. 150(9), 220-224.

Joshi, B.C., Dhondiyal, C.C. (2005). Sensitizing Eu3+

by Dy3+

in Zinc Phosphate

Glass, Indian Journal of Pure & Applied Physics. 43, 21-23.

Johnson, I.D. and Davidson, M.W. (2012). Jablonski Energy Diagram. Olympus

America Inc. Retrieved July 23, 2013, from http://www.olympusmicro.com

Karunakaran, R.T., Marimuthu, K., Babu, S.S. and Arumugam, S. (2010).

Dysprosium doped alkali fluoroborate glasses-Thermal, structural and optical

investigations. Journal of Luminescence. 130, 1067-1072.

Kumar, M.V.V., Jamalaiah, B.C., Gopal, K.R. and Reddy, R.R. (2012). Optical

Absorption and Fluorescence Studies of Dy3+

-Doped Lead Telluroborate

Glasses. Journal of Luminescence. 132, 86-90.

Konijnendijk, W.L. and Stevels, J.M. (1975). The Structure of Borate Glasses

Studied by Raman Scattering. Journal of Non-Crystalline Solids. 18, 307-

331.

Kozhukharov, V., Nikolov, S. and Marinov, M. (1979). Studies of Glass Structure in

the TeO2-Fe203 System. Mat. Res. Bull. 14, 735-741.

Lavín, V., Babu, P., Jayasankar, C.K., Martín, I.R. and Rodríguez, V.D. (2011). On

the local structure of Eu3+

ions in oxyfluoride glasses. Comparison with

fluoride and oxide glasses. Journal of Chemical Physics. 115, 10935-10944.

Leigh, M.A. High Power Pulsed Fiber Laser Sources and Their Use in Terahertz

Generation. Doctor of Philosophy. The University of Arizona; 2008.

Lidia, Z. (2013). Structural and Luminescence Properties of Eu3+

, Dy3+

and Tb3+

ions

in Lead Germanate Glasses Obtained by Conventional High-temperature

Melt-quenching Technique. Journal of Molecular Structure. 1041, 50-54.

Page 24: THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

67

Lin, H., Yang, D., Liu, G., Ma, T., Zhai, B., An, Q., Yu, J., Wang, X., Liu, X. and

Edwin, P.E.Y. (2005). Optical Absorption and Photoluminescence in Sm3+

and Eu3+

Doped Rare-Earth Borate Glasses. Journal of Luminescence. 113,

121-128.

Lavín, V., Babu, P., Jayasankar, C.K., Martín, I.R. and Rodríguez, V.D. (2001). On

the local structure of Eu3+

ions in oxyfluoride glasses. Comparison with

fluoride and oxide glasses. Journal of Chemical Physics. 115, 10935-10944.

Liang, X. L., Yang, Y. X., Zhu, C. F., Yuan, S. L., Chen, G. R., Pring, A., and Fang

Xia. (2007). Luminescence properties of Tb3+–Sm3+ codoped glasses for

white light emitting diodes. Appl. Phys. Lett. 91, 091104.

Lidia, Z. (2013). Structural and Luminescence Properties of Eu3+

, Dy3+

and Tb3+

ions

in Lead Germanate Glasses Obtained by Conventional High-temperature

Melt-quenching Technique. Journal of Molecular Structure. 1041, 50-54.

Liu, S., Zhao, G., Ying, H., Wang, J., and Han, G. (2008). Eu/Dy Ions Co-Doped

White Light Luminescence Zinc–Aluminoborosilicate Glasses for White

LED. Opt. Mater. 31, 47-50.

Lin, H., Yang, D., Liu, G., Ma, T., Zhai, B., An, Q., Yu, J., Wang, X., Liu, X. and

Edwin, P.E.Y. (2005). Optical Absorption and Photoluminescence in Sm3+

and Eu3+

Doped Rare-Earth Borate Glasses. Journal of Luminescence. 113,

121-128.

Maheshvaran, K. and Marimuthu, K. (2011). Structural and Optical Investigations on

Dy3+

Doped Boro-tellurite Glasses. Journal of Alloys and Compounds. 509,

7427-7433.

Maheshvaran, K. and Marimuthu, K. (2012). Concentration dependent Eu3+

doped

boro-tellurite glasses-Structural and optical investigations. Journal of

Luminescence. 132, 2259-2267.

Page 25: THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

68

Maheshvaran, K., Veeran, P.K. and Marimuthu, K. (2013a). Structural and Optical

Studies on Eu3+

Doped Boro-tellurite Glasses. Solid State Sciences. 17, 54-

62.

Maheshvaran, K., Arunkumar, S., Sudarsan, V., Natarajan, V. and Marimuthu, K.

(2013b). Structural and Luminescence Studies on Er3+

/Yb3+

Co-doped Boro-

tellurite Glasses. Journal of Alloys and Compounds. 561, 142-150.

Marimuthu, K., Babu,S.S., Muralidharan, G., Arumugam, S. and Jayasankar, C.K.

(2009). Structural and optical studies of Eu3+

ions in alkali borate glasses.

Phys. Status Solidi A 206. 1, 131-139.

Pal, M., Roy, B. and Pal, M. (2011). Structural Characterization of Borate Glasses

Containing Zinc and Manganese Oxides. Journal of Modern Physics. 2,

1062-1066.

Pascuta, P., Borodi, G. and Culea, E. (2008). Influence of europium ions on structure

and crystallization properties of bismuth borate glasses and glass ceramics.

Journal of Non-Crystalline Solids. 354, 5475-5479.

Pascuta, P., Pop, L. and Rada, S. (2008). The local structure of bismuth borate g

lasses doped with europium ions evidenced by FT-IR spectroscopy. J Mater

Sci: Mater Electron. 19, 424-428.

Pisarski, W.A., Pisarska, J., Zur, L., and Goryczka, T. (2013). Structural and optical

aspects for Eu3+

and Dy3+

ions in heavy metal glasses based on PbO–Ga2O3–

XO2 (X = Te, Ge, Si). Optical Materials. 35, 1051–1056.

Rada, S., Pascuta, P., Bosca, M., Culea, M., Pop, L. and Culea, E. (2008a). Structural

properties of the boro-bismuthate glasses containing gadolinium ions.

Vibrational Spectroscopy. 48, 255-258.

Page 26: THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

69

Rada, S., Culea, M. and Culea, E. (2008b). Structure of TeO2·B2O3 glasses inferred

from infrared spectroscopy and DFT calculations. Journal of Non-Crystalline

Solids. 354, 5491-5495.

Rada, S., Culea, E., Rada, M., M., Pascuta, P. and Maties, P. (2009). Structural and

electronic properties of tellurite glasses. J. Mater Sci. 44, 3235-3240.

Rada, S., Dan, V., Rada, M. and Culea, E. (2010). Gadolinium-environment in

borate–tellurate glass ceramics studied by FTIR and EPR spectroscopy.

Journal of Non-Crystalline Solids. 356, 474-479.

Rada, S., Dehelean, A. and Culea, E. (2011). FTIR, Raman, and UV-Vis

spectroscopic and DFT investigations of the structure of iron–lead–tellurate

glasses. J. Mol. Model. 17, 2103-2111.

Rada, S., Rada, M. and Culea, E. (2013). Structure and molecular modeling of

tungsten borotellurate glasses. Journal of Alloys and Compounds. 552, 10-13.

Rao, R.B. and Gerhardt, R.A. (2008). Effect of alkaline earth modifier ion on the

optical, magnetic and electrical properties of lithium nickel borate glasses.

Materials Chemistry and Physics. 112, 186-197.

Reisfeld, R. and Boehm, L. (1973). Energy Transfer between Samarium and

Europium in Phosphate Glasses. Journal of Solid State Chemistry. 4, 417-

424.

Reddy, Y.P., Buddhudu, S. and Hussain, N.S. (2001). Luminescence Spectra of Eu3+

Doped GeO2–PbO–Bi2O3 Glasses. Mater. Res. Bull. 36, 1813-1821.

Ricardo, D. A., Davinson, M. D. S., Luciana, R. P. K., Cid, B. D. A. (2008). Eu3+

Luminescence in Tellurite Glasses with Gold Nanostructures, Optics

Communications. 281, 108-112.

Page 27: THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

70

Salman, A.A., Tortschanoff, A., Zwan, G.V.D., Mourik, F.V.and Chergui, M.

(2009). A model for the multi-exponential excited-state decay of CdSe

nanocrystals. Chemical Physics. 357, 96-101.

Santosh, K. G., Kumar, M., Natarajan, V., Godbole, S.V. (2013). Optical properties

of sol–gel derived Sr2SiO4:Dy3+

– Photo and thermally stimulated

luminescence. Optical Materials. 35, 2320-2328.

Selvaraju, K., Marimuthu, K., Seshagirib, T.K., Godbole, S.V. (2011). Thermal,

Structural and Spectroscopic Investigations on Eu3+

Doped Boro-tellurite

Glasses. Materials Chemistry and Physics. 131, 204-210.

Selvaraju, K. and Marimuthu, K. (2012). Structural and spectroscopic studies on

concentration dependent Er3+

doped boro-tellurite glasses. Journal of

Luminescence. 132, 1171-1178.

Sun, H.T., Dai, S.X., Xu, S.Q., Hu, L.L. and Jiang, Z.H. (2004). Frequency

Upconversion Emission of Er3+

-Doped Strontium-Lead-Bismuth Glasses.

Chin. Phys. Lett. 21, 2292-2294.

Shelby, J.E. (1997). Introduction to Glass Science and Technology. (1st Ed.).

Cambridge, UK.: Royal Society of Chemistry.

Shelby, J.E. (2005). Introduction to Glass Science and Technology. (2nd

Ed.).

Cambridge, UK.: Royal Society of Chemistry.

Venkatramu, V., Urrios, D.N., Babu, P., Jayasankar, C.K., and Lavin, V. (2005).

Fluorescence line narrowing spectral studies of Eu3+

-doped lead borate glass.

Journal of Non-Crystalline Solids. 351, 929-935.

Venkatramu, V., Babu, P. and Jayasankar, C.K. (2006). Fluorescence properties of

Eu3+

ions doped borate and fluoroborate glasses containing lithium, zinc and

lead. Spectrochimica Acta Part A. 63, 276-281.

Page 28: THE STRUCTURAL AND LUMINESCENCE PROPERTIES OF …eprints.utm.my/id/eprint/48858/25/RoystonUningMFS2014.pdfrangkaian. Spektra pancaran daripada kaca tak berdop dan berdop adalah dalam

71

Wu, J. (2005). Thulium Doped Microsphere Laser and Fiber Laser. University of

Arizona, College of Optical Science.

Xu, W.N., Peng, Q.W., Dong, J.H., Gao, Y., Liang, X.L., Wang, S.F., and Chen,

G.R. (2010). Photoluminescence Properties and Energy Transfer of Dy3+

-

Eu3+

Codoped Phosphate Glasses. J. Am. Ceram. Soc. 93, 3064-3067.

Zachariasen, W.H. (1932). The Atomic Arrangement in Glass. J. Am. Chem. Soc. 54,

3841–3851.

Zhang, T., Wang, B., Fang, S.Q., Ma, D.C., Zhao, Y.Q. and Xua, Y.H. (2004).

Optical damage resistance of In:Fe:LiNbO3 crystals related to the defect

structure. Materials Letters. 58, 3074-3078.

Zhang, L., Li, C., Wang, S. and Sua, Q. (2007). Long lasting phosphorescence of

Eu2+

in reduced SrO-B2O3 glasses. Journal of Luminescence. 126, 551-555.