124
The zero temperature limit of interacting corpora Peter Constantin Introduction Onsager Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook The zero temperature limit of interacting corpora Peter Constantin Department of Mathematics The University of Chicago IMA, July 21, 2008

The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

The zero temperature limit of interactingcorpora

Peter Constantin

Department of MathematicsThe University of Chicago

IMA, July 21, 2008

Page 2: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Thanks: N. Masmoudi, A. Zlatos.

Support: NSF

Page 3: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Complex Fluid Models

• Landau Equilibrium models: order parameter (Director =Oseen, Zocher, Frank, Ericksen, Leslie. Tensor = deGennes.)

• Onsager Equilibrium models: (pdf of state), free energyderived from physics

• Passive Kinetic models: Doi, FENE and variants (pdf ofstate) effects of shear on dilute suspensions of rigid orextensible corpora = linear Fokker-Planck

• Tensorial models: (conformation tensors): closure ofcertain kinetic models, e.g. Oldroyd B

• Active Kinetic Models: (pdf) Onsager-Smoluchowski:Nonlinear Fokker-Planck, stochastic models

Page 4: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Applications

• Nanoscale self-assembly

• Microfluidics

• Biomaterials

• Gels and Foams

• Soft Lattices, Jamming

• Pattern recognition

Page 5: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Major Problems

1 Derivation of Micro-Macro Effect

2 Dissipation of Energy: Complex Fluids “Onsager”conjecture

3 PDE existence theory for coupled system

4 Modeling of interactions in the correct moduli space

Page 6: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Major Problems

1 Derivation of Micro-Macro Effect

2 Dissipation of Energy: Complex Fluids “Onsager”conjecture

3 PDE existence theory for coupled system

4 Modeling of interactions in the correct moduli space

Page 7: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Major Problems

1 Derivation of Micro-Macro Effect

2 Dissipation of Energy: Complex Fluids “Onsager”conjecture

3 PDE existence theory for coupled system

4 Modeling of interactions in the correct moduli space

Page 8: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Major Problems

1 Derivation of Micro-Macro Effect

2 Dissipation of Energy: Complex Fluids “Onsager”conjecture

3 PDE existence theory for coupled system

4 Modeling of interactions in the correct moduli space

Page 9: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

• Configuration space: M = compact, separable, metrizablespace. m ∈ M = corpus.

• Reference measure: dµ – Borel Probability on M.

• Corpora measure f (m)dµ(m) – Probabililty, AC w.r. dµ.

• Interaction kernel k : M ×M → R+, symmetric,by-Lipschitz.

• Operator (Kf ) (m) =∫M k(m, p)f (p)dµ(p)

• Potential U = −Kf = micro-micro interaction

• Free Energy

E [f ] =

∫M

f log fdµ− 1

2

∫M

(Kf ) fdµ

• Minima of Free Energy: Onsager Equation

f = Z−1eKf .

Page 10: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

• Configuration space: M = compact, separable, metrizablespace. m ∈ M = corpus.

• Reference measure: dµ – Borel Probability on M.

• Corpora measure f (m)dµ(m) – Probabililty, AC w.r. dµ.

• Interaction kernel k : M ×M → R+, symmetric,by-Lipschitz.

• Operator (Kf ) (m) =∫M k(m, p)f (p)dµ(p)

• Potential U = −Kf = micro-micro interaction

• Free Energy

E [f ] =

∫M

f log fdµ− 1

2

∫M

(Kf ) fdµ

• Minima of Free Energy: Onsager Equation

f = Z−1eKf .

Page 11: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

• Configuration space: M = compact, separable, metrizablespace. m ∈ M = corpus.

• Reference measure: dµ – Borel Probability on M.

• Corpora measure f (m)dµ(m) – Probabililty, AC w.r. dµ.

• Interaction kernel k : M ×M → R+, symmetric,by-Lipschitz.

• Operator (Kf ) (m) =∫M k(m, p)f (p)dµ(p)

• Potential U = −Kf = micro-micro interaction

• Free Energy

E [f ] =

∫M

f log fdµ− 1

2

∫M

(Kf ) fdµ

• Minima of Free Energy: Onsager Equation

f = Z−1eKf .

Page 12: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

• Configuration space: M = compact, separable, metrizablespace. m ∈ M = corpus.

• Reference measure: dµ – Borel Probability on M.

• Corpora measure f (m)dµ(m) – Probabililty, AC w.r. dµ.

• Interaction kernel k : M ×M → R+,

symmetric,by-Lipschitz.

• Operator (Kf ) (m) =∫M k(m, p)f (p)dµ(p)

• Potential U = −Kf = micro-micro interaction

• Free Energy

E [f ] =

∫M

f log fdµ− 1

2

∫M

(Kf ) fdµ

• Minima of Free Energy: Onsager Equation

f = Z−1eKf .

Page 13: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

• Configuration space: M = compact, separable, metrizablespace. m ∈ M = corpus.

• Reference measure: dµ – Borel Probability on M.

• Corpora measure f (m)dµ(m) – Probabililty, AC w.r. dµ.

• Interaction kernel k : M ×M → R+, symmetric,by-Lipschitz.

• Operator (Kf ) (m) =∫M k(m, p)f (p)dµ(p)

• Potential U = −Kf = micro-micro interaction

• Free Energy

E [f ] =

∫M

f log fdµ− 1

2

∫M

(Kf ) fdµ

• Minima of Free Energy: Onsager Equation

f = Z−1eKf .

Page 14: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

• Configuration space: M = compact, separable, metrizablespace. m ∈ M = corpus.

• Reference measure: dµ – Borel Probability on M.

• Corpora measure f (m)dµ(m) – Probabililty, AC w.r. dµ.

• Interaction kernel k : M ×M → R+, symmetric,by-Lipschitz.

• Operator (Kf ) (m) =∫M k(m, p)f (p)dµ(p)

• Potential U = −Kf = micro-micro interaction

• Free Energy

E [f ] =

∫M

f log fdµ− 1

2

∫M

(Kf ) fdµ

• Minima of Free Energy: Onsager Equation

f = Z−1eKf .

Page 15: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

• Configuration space: M = compact, separable, metrizablespace. m ∈ M = corpus.

• Reference measure: dµ – Borel Probability on M.

• Corpora measure f (m)dµ(m) – Probabililty, AC w.r. dµ.

• Interaction kernel k : M ×M → R+, symmetric,by-Lipschitz.

• Operator (Kf ) (m) =∫M k(m, p)f (p)dµ(p)

• Potential U = −Kf = micro-micro interaction

• Free Energy

E [f ] =

∫M

f log fdµ− 1

2

∫M

(Kf ) fdµ

• Minima of Free Energy: Onsager Equation

f = Z−1eKf .

Page 16: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

• Configuration space: M = compact, separable, metrizablespace. m ∈ M = corpus.

• Reference measure: dµ – Borel Probability on M.

• Corpora measure f (m)dµ(m) – Probabililty, AC w.r. dµ.

• Interaction kernel k : M ×M → R+, symmetric,by-Lipschitz.

• Operator (Kf ) (m) =∫M k(m, p)f (p)dµ(p)

• Potential U = −Kf = micro-micro interaction

• Free Energy

E [f ] =

∫M

f log fdµ− 1

2

∫M

(Kf ) fdµ

• Minima of Free Energy: Onsager Equation

f = Z−1eKf .

Page 17: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

• Configuration space: M = compact, separable, metrizablespace. m ∈ M = corpus.

• Reference measure: dµ – Borel Probability on M.

• Corpora measure f (m)dµ(m) – Probabililty, AC w.r. dµ.

• Interaction kernel k : M ×M → R+, symmetric,by-Lipschitz.

• Operator (Kf ) (m) =∫M k(m, p)f (p)dµ(p)

• Potential U = −Kf = micro-micro interaction

• Free Energy

E [f ] =

∫M

f log fdµ− 1

2

∫M

(Kf ) fdµ

• Minima of Free Energy: Onsager Equation

f = Z−1eKf .

Page 18: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Goals of Theory:

1 Existence theory for solutions of Onsager’s equation

2 Classification of zero-temperature limits

3 Selection mechanism for zero-temperature limit

4 Stability of states

5 Physical Space Interaction

6 Dynamics

Page 19: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Goals of Theory:

1 Existence theory for solutions of Onsager’s equation

2 Classification of zero-temperature limits

3 Selection mechanism for zero-temperature limit

4 Stability of states

5 Physical Space Interaction

6 Dynamics

Page 20: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Goals of Theory:

1 Existence theory for solutions of Onsager’s equation

2 Classification of zero-temperature limits

3 Selection mechanism for zero-temperature limit

4 Stability of states

5 Physical Space Interaction

6 Dynamics

Page 21: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Goals of Theory:

1 Existence theory for solutions of Onsager’s equation

2 Classification of zero-temperature limits

3 Selection mechanism for zero-temperature limit

4 Stability of states

5 Physical Space Interaction

6 Dynamics

Page 22: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Goals of Theory:

1 Existence theory for solutions of Onsager’s equation

2 Classification of zero-temperature limits

3 Selection mechanism for zero-temperature limit

4 Stability of states

5 Physical Space Interaction

6 Dynamics

Page 23: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Goals of Theory:

1 Existence theory for solutions of Onsager’s equation

2 Classification of zero-temperature limits

3 Selection mechanism for zero-temperature limit

4 Stability of states

5 Physical Space Interaction

6 Dynamics

Page 24: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Example: Rods, Maier-Saupe potential

M = Sn−1, dµ = area.

Kf (p) = b

∫Sn−1

((p · q)2 − 1

n

)f (q)dµ

b = intensity, inverse temperature.

Page 25: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Dimension Reduction, Maier-Saupe

n × n symmetric, traceless matrix S :

S 7→ Z (S)

Z (S) =

∫Sn−1

eb(S ijmimj )dµ.

fS(m) = (Z (S))−1eb(S ijmimj )

σ(S)ij =

∫Sn−1

(mimj −

δij

n

)fS(m)dµ.

TheoremOnsager’s equation with Maier-Saupe potential is equivalent to

σ(S) = S .

Page 26: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Limit b →∞

[φ] =

∫S2

φ(m)f (m)dµ.

Isotropic:

limb→∞

[φ] =1

∫S2

φ(p)dµ

Oblate:

limb→∞

[φ] =1

∫ 2π

0φ(cos ϕ, sin ϕ, 0)dϕ

Prolate:lim

b→∞[φ] = φ(m), m ∈ S2.

Page 27: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Limit b →∞

[φ] =

∫S2

φ(m)f (m)dµ.

Isotropic:

limb→∞

[φ] =1

∫S2

φ(p)dµ

Oblate:

limb→∞

[φ] =1

∫ 2π

0φ(cos ϕ, sin ϕ, 0)dϕ

Prolate:lim

b→∞[φ] = φ(m), m ∈ S2.

Page 28: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Limit b →∞

[φ] =

∫S2

φ(m)f (m)dµ.

Isotropic:

limb→∞

[φ] =1

∫S2

φ(p)dµ

Oblate:

limb→∞

[φ] =1

∫ 2π

0φ(cos ϕ, sin ϕ, 0)dϕ

Prolate:lim

b→∞[φ] = φ(m), m ∈ S2.

Page 29: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Limit b →∞

[φ] =

∫S2

φ(m)f (m)dµ.

Isotropic:

limb→∞

[φ] =1

∫S2

φ(p)dµ

Oblate:

limb→∞

[φ] =1

∫ 2π

0φ(cos ϕ, sin ϕ, 0)dϕ

Prolate:lim

b→∞[φ] = φ(m), m ∈ S2.

Page 30: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Freely Articulated N-corpora

M = M1 × · · · ×MN , dµ = Πdµj

k(p1, q1, p2, q2, . . . ) =∑i ,j

kij(pi , qj)

Kf =N∑

i=1

Ki f , with

Ki f (pi ) =∑

j

∫eM kij(pi , qj)f (q1, . . . qN)dµ(q)

Onsager Equation f = Z−1eeKef

Z = ΠNj=1Zj , with Zj =

∫Mj

eKj fj dµj , fj = (Zj)−1eKj fj

f (p1, . . . pN) = f1(p1)f (p2) . . . fN(pN) product measure

Page 31: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Freely Articulated N-corpora

M = M1 × · · · ×MN , dµ = Πdµj

k(p1, q1, p2, q2, . . . ) =∑i ,j

kij(pi , qj)

Kf =N∑

i=1

Ki f , with

Ki f (pi ) =∑

j

∫eM kij(pi , qj)f (q1, . . . qN)dµ(q)

Onsager Equation f = Z−1eeKef

Z = ΠNj=1Zj , with Zj =

∫Mj

eKj fj dµj , fj = (Zj)−1eKj fj

f (p1, . . . pN) = f1(p1)f (p2) . . . fN(pN) product measure

Page 32: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Freely Articulated N-corpora

M = M1 × · · · ×MN , dµ = Πdµj

k(p1, q1, p2, q2, . . . ) =∑i ,j

kij(pi , qj)

Kf =N∑

i=1

Ki f ,

with

Ki f (pi ) =∑

j

∫eM kij(pi , qj)f (q1, . . . qN)dµ(q)

Onsager Equation f = Z−1eeKef

Z = ΠNj=1Zj , with Zj =

∫Mj

eKj fj dµj , fj = (Zj)−1eKj fj

f (p1, . . . pN) = f1(p1)f (p2) . . . fN(pN) product measure

Page 33: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Freely Articulated N-corpora

M = M1 × · · · ×MN , dµ = Πdµj

k(p1, q1, p2, q2, . . . ) =∑i ,j

kij(pi , qj)

Kf =N∑

i=1

Ki f , with

Ki f (pi ) =∑

j

∫eM kij(pi , qj)f (q1, . . . qN)dµ(q)

Onsager Equation f = Z−1eeKef

Z = ΠNj=1Zj , with Zj =

∫Mj

eKj fj dµj , fj = (Zj)−1eKj fj

f (p1, . . . pN) = f1(p1)f (p2) . . . fN(pN) product measure

Page 34: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Freely Articulated N-corpora

M = M1 × · · · ×MN , dµ = Πdµj

k(p1, q1, p2, q2, . . . ) =∑i ,j

kij(pi , qj)

Kf =N∑

i=1

Ki f , with

Ki f (pi ) =∑

j

∫eM kij(pi , qj)f (q1, . . . qN)dµ(q)

Onsager Equation f = Z−1eeKef

Z = ΠNj=1Zj , with Zj =

∫Mj

eKj fj dµj , fj = (Zj)−1eKj fj

f (p1, . . . pN) = f1(p1)f (p2) . . . fN(pN) product measure

Page 35: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Freely Articulated N-corpora

M = M1 × · · · ×MN , dµ = Πdµj

k(p1, q1, p2, q2, . . . ) =∑i ,j

kij(pi , qj)

Kf =N∑

i=1

Ki f , with

Ki f (pi ) =∑

j

∫eM kij(pi , qj)f (q1, . . . qN)dµ(q)

Onsager Equation f = Z−1eeKef

Z = ΠNj=1Zj , with Zj =

∫Mj

eKj fj dµj , fj = (Zj)−1eKj fj

f (p1, . . . pN) = f1(p1)f (p2) . . . fN(pN) product measure

Page 36: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Freely Articulated N-corpora

M = M1 × · · · ×MN , dµ = Πdµj

k(p1, q1, p2, q2, . . . ) =∑i ,j

kij(pi , qj)

Kf =N∑

i=1

Ki f , with

Ki f (pi ) =∑

j

∫eM kij(pi , qj)f (q1, . . . qN)dµ(q)

Onsager Equation f = Z−1eeKef

Z = ΠNj=1Zj , with Zj =

∫Mj

eKj fj dµj , fj = (Zj)−1eKj fj

f (p1, . . . pN) = f1(p1)f (p2) . . . fN(pN) product measure

Page 37: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Example of Interacting Corpora

M = S1, M = S1 × S1.

Kf (p1, p2) =−b

∫T2 ‖e(p1) ∧ e(p2)− e(q1) ∧ e(q2)‖2f (q1, q2)dq1dq2

with e(p) = (cos p, sin p) if p ∈ [0, 2π].

‖e(p1)∧e(p2)−e(q1)∧e(q2)‖2 = (sin(p1 − p2)− sin(q1 − q2))2

Dimension reduction: Onsager’s equation f = Z−1eKf

reduces toa = [sin θ](a)

with [φ](a) =

∫ 2π0 φ(θ)g(θ)dθ

g(θ) = Z−1e−b(sin(θ)−a)2

Z =∫ 2π0 e−b(sin(θ)−a)2dθ

Page 38: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Example of Interacting Corpora

M = S1, M = S1 × S1.

Kf (p1, p2) =−b

∫T2 ‖e(p1) ∧ e(p2)− e(q1) ∧ e(q2)‖2f (q1, q2)dq1dq2

with e(p) = (cos p, sin p) if p ∈ [0, 2π].

‖e(p1)∧e(p2)−e(q1)∧e(q2)‖2 = (sin(p1 − p2)− sin(q1 − q2))2

Dimension reduction: Onsager’s equation f = Z−1eKf

reduces toa = [sin θ](a)

with [φ](a) =

∫ 2π0 φ(θ)g(θ)dθ

g(θ) = Z−1e−b(sin(θ)−a)2

Z =∫ 2π0 e−b(sin(θ)−a)2dθ

Page 39: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Example of Interacting Corpora

M = S1, M = S1 × S1.

Kf (p1, p2) =−b

∫T2 ‖e(p1) ∧ e(p2)− e(q1) ∧ e(q2)‖2f (q1, q2)dq1dq2

with e(p) = (cos p, sin p) if p ∈ [0, 2π].

‖e(p1)∧e(p2)−e(q1)∧e(q2)‖2 = (sin(p1 − p2)− sin(q1 − q2))2

Dimension reduction: Onsager’s equation f = Z−1eKf

reduces toa = [sin θ](a)

with [φ](a) =

∫ 2π0 φ(θ)g(θ)dθ

g(θ) = Z−1e−b(sin(θ)−a)2

Z =∫ 2π0 e−b(sin(θ)−a)2dθ

Page 40: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Example of Interacting Corpora

M = S1, M = S1 × S1.

Kf (p1, p2) =−b

∫T2 ‖e(p1) ∧ e(p2)− e(q1) ∧ e(q2)‖2f (q1, q2)dq1dq2

with e(p) = (cos p, sin p) if p ∈ [0, 2π].

‖e(p1)∧e(p2)−e(q1)∧e(q2)‖2 = (sin(p1 − p2)− sin(q1 − q2))2

Dimension reduction: Onsager’s equation f = Z−1eKf

reduces toa = [sin θ](a)

with [φ](a) =

∫ 2π0 φ(θ)g(θ)dθ

g(θ) = Z−1e−b(sin(θ)−a)2

Z =∫ 2π0 e−b(sin(θ)−a)2dθ

Page 41: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Example of Interacting Corpora

M = S1, M = S1 × S1.

Kf (p1, p2) =−b

∫T2 ‖e(p1) ∧ e(p2)− e(q1) ∧ e(q2)‖2f (q1, q2)dq1dq2

with e(p) = (cos p, sin p) if p ∈ [0, 2π].

‖e(p1)∧e(p2)−e(q1)∧e(q2)‖2 = (sin(p1 − p2)− sin(q1 − q2))2

Dimension reduction: Onsager’s equation f = Z−1eKf

reduces toa = [sin θ](a)

with [φ](a) =

∫ 2π0 φ(θ)g(θ)dθ

g(θ) = Z−1e−b(sin(θ)−a)2

Z =∫ 2π0 e−b(sin(θ)−a)2dθ

Page 42: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Example of Interacting Corpora

M = S1, M = S1 × S1.

Kf (p1, p2) =−b

∫T2 ‖e(p1) ∧ e(p2)− e(q1) ∧ e(q2)‖2f (q1, q2)dq1dq2

with e(p) = (cos p, sin p) if p ∈ [0, 2π].

‖e(p1)∧e(p2)−e(q1)∧e(q2)‖2 = (sin(p1 − p2)− sin(q1 − q2))2

Dimension reduction: Onsager’s equation f = Z−1eKf

reduces toa = [sin θ](a)

with [φ](a) =

∫ 2π0 φ(θ)g(θ)dθ

g(θ) = Z−1e−b(sin(θ)−a)2

Z =∫ 2π0 e−b(sin(θ)−a)2dθ

Page 43: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

The solution is f (θ1, θ2) = g(θ1 − θ2).

Let

u(θ, a) = sin θ − a,

and let

[u](b, a) =

∫ 2π0 u(θ, a)e−bu2(θ,a)dθ∫ 2π

0 e−bu2(θ,a)dθ.

The Onsager equation is equivalent to

[u](b, a) = 0.

This determines a, which in turn determines g , f .a = 0 always a solution. It yields

f0(p1, p2) = Z−1e−b sin2(p1−p2).

As b →∞ this tends to δ((p1 − p2)modπ).

Page 44: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

The solution is f (θ1, θ2) = g(θ1 − θ2). Let

u(θ, a) = sin θ − a,

and let

[u](b, a) =

∫ 2π0 u(θ, a)e−bu2(θ,a)dθ∫ 2π

0 e−bu2(θ,a)dθ.

The Onsager equation is equivalent to

[u](b, a) = 0.

This determines a, which in turn determines g , f .a = 0 always a solution. It yields

f0(p1, p2) = Z−1e−b sin2(p1−p2).

As b →∞ this tends to δ((p1 − p2)modπ).

Page 45: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

The solution is f (θ1, θ2) = g(θ1 − θ2). Let

u(θ, a) = sin θ − a,

and let

[u](b, a) =

∫ 2π0 u(θ, a)e−bu2(θ,a)dθ∫ 2π

0 e−bu2(θ,a)dθ.

The Onsager equation is equivalent to

[u](b, a) = 0.

This determines a, which in turn determines g , f .a = 0 always a solution. It yields

f0(p1, p2) = Z−1e−b sin2(p1−p2).

As b →∞ this tends to δ((p1 − p2)modπ).

Page 46: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

The solution is f (θ1, θ2) = g(θ1 − θ2). Let

u(θ, a) = sin θ − a,

and let

[u](b, a) =

∫ 2π0 u(θ, a)e−bu2(θ,a)dθ∫ 2π

0 e−bu2(θ,a)dθ.

The Onsager equation is equivalent to

[u](b, a) = 0.

This determines a, which in turn determines g , f .a = 0 always a solution. It yields

f0(p1, p2) = Z−1e−b sin2(p1−p2).

As b →∞ this tends to δ((p1 − p2)modπ).

Page 47: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

The solution is f (θ1, θ2) = g(θ1 − θ2). Let

u(θ, a) = sin θ − a,

and let

[u](b, a) =

∫ 2π0 u(θ, a)e−bu2(θ,a)dθ∫ 2π

0 e−bu2(θ,a)dθ.

The Onsager equation is equivalent to

[u](b, a) = 0.

This determines a, which in turn determines g , f .

a = 0 always a solution. It yields

f0(p1, p2) = Z−1e−b sin2(p1−p2).

As b →∞ this tends to δ((p1 − p2)modπ).

Page 48: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

The solution is f (θ1, θ2) = g(θ1 − θ2). Let

u(θ, a) = sin θ − a,

and let

[u](b, a) =

∫ 2π0 u(θ, a)e−bu2(θ,a)dθ∫ 2π

0 e−bu2(θ,a)dθ.

The Onsager equation is equivalent to

[u](b, a) = 0.

This determines a, which in turn determines g , f .a = 0 always a solution. It yields

f0(p1, p2) = Z−1e−b sin2(p1−p2).

As b →∞ this tends to δ((p1 − p2)modπ).

Page 49: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

The solution is f (θ1, θ2) = g(θ1 − θ2). Let

u(θ, a) = sin θ − a,

and let

[u](b, a) =

∫ 2π0 u(θ, a)e−bu2(θ,a)dθ∫ 2π

0 e−bu2(θ,a)dθ.

The Onsager equation is equivalent to

[u](b, a) = 0.

This determines a, which in turn determines g , f .a = 0 always a solution. It yields

f0(p1, p2) = Z−1e−b sin2(p1−p2).

As b →∞ this tends to δ((p1 − p2)modπ).

Page 50: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Consider

λ(a, τ) = b12

∫ 2π

0e−b(sin θ−a)2dθ

with τ = b−1.

Note

[u] =1

2b

∂aλ

λand

∂τλ =1

4∂2

limτ→0

λ(a, τ) = 2√

π1√

1− a2, 0 < a < 1.

Increasing. But things are subtle, ∂λ∂a (1, τ) < 0.

In fact, phase transition at positive τ

∂aλ((a(τ), τ) = 0

and limit limτ→0 a(τ) = 1, and consequently

limb→∞

f (p1 − p2) = δ((

p1 − p2 −π

2

)modπ

)

Page 51: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Consider

λ(a, τ) = b12

∫ 2π

0e−b(sin θ−a)2dθ

with τ = b−1.Note

[u] =1

2b

∂aλ

λ

and

∂τλ =1

4∂2

limτ→0

λ(a, τ) = 2√

π1√

1− a2, 0 < a < 1.

Increasing. But things are subtle, ∂λ∂a (1, τ) < 0.

In fact, phase transition at positive τ

∂aλ((a(τ), τ) = 0

and limit limτ→0 a(τ) = 1, and consequently

limb→∞

f (p1 − p2) = δ((

p1 − p2 −π

2

)modπ

)

Page 52: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Consider

λ(a, τ) = b12

∫ 2π

0e−b(sin θ−a)2dθ

with τ = b−1.Note

[u] =1

2b

∂aλ

λand

∂τλ =1

4∂2

limτ→0

λ(a, τ) = 2√

π1√

1− a2, 0 < a < 1.

Increasing. But things are subtle, ∂λ∂a (1, τ) < 0.

In fact, phase transition at positive τ

∂aλ((a(τ), τ) = 0

and limit limτ→0 a(τ) = 1, and consequently

limb→∞

f (p1 − p2) = δ((

p1 − p2 −π

2

)modπ

)

Page 53: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Consider

λ(a, τ) = b12

∫ 2π

0e−b(sin θ−a)2dθ

with τ = b−1.Note

[u] =1

2b

∂aλ

λand

∂τλ =1

4∂2

limτ→0

λ(a, τ) = 2√

π1√

1− a2, 0 < a < 1.

Increasing.

But things are subtle, ∂λ∂a (1, τ) < 0.

In fact, phase transition at positive τ

∂aλ((a(τ), τ) = 0

and limit limτ→0 a(τ) = 1, and consequently

limb→∞

f (p1 − p2) = δ((

p1 − p2 −π

2

)modπ

)

Page 54: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Consider

λ(a, τ) = b12

∫ 2π

0e−b(sin θ−a)2dθ

with τ = b−1.Note

[u] =1

2b

∂aλ

λand

∂τλ =1

4∂2

limτ→0

λ(a, τ) = 2√

π1√

1− a2, 0 < a < 1.

Increasing. But things are subtle, ∂λ∂a (1, τ) < 0.

In fact, phase transition at positive τ

∂aλ((a(τ), τ) = 0

and limit limτ→0 a(τ) = 1, and consequently

limb→∞

f (p1 − p2) = δ((

p1 − p2 −π

2

)modπ

)

Page 55: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Consider

λ(a, τ) = b12

∫ 2π

0e−b(sin θ−a)2dθ

with τ = b−1.Note

[u] =1

2b

∂aλ

λand

∂τλ =1

4∂2

limτ→0

λ(a, τ) = 2√

π1√

1− a2, 0 < a < 1.

Increasing. But things are subtle, ∂λ∂a (1, τ) < 0.

In fact, phase transition at positive τ

∂aλ((a(τ), τ) = 0

and limit limτ→0 a(τ) = 1, and consequently

limb→∞

f (p1 − p2) = δ((

p1 − p2 −π

2

)modπ

)

Page 56: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

More degrees of freedom

M = [0, L]× [0, L]× [0, π], dµ = 1πL2 dx1dx2dθ.

U[f ](x1, x2, θ) =

∫M

(x1x2 sin(θ)− y1y2 sin(φ))2f (y1, y2, φ)dµ

The solutions of Onsager’s equation are of the form

g(x1, x2, θ) = Z−1e−b(x1x2 sin θ−a)2

with Z determined by the requirement of normalization∫M gdµ = 1, a determined by

a =

∫M

(x1x2 sin θ)g(x1, x2, θ)dµ

Page 57: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

More degrees of freedom

M = [0, L]× [0, L]× [0, π], dµ = 1πL2 dx1dx2dθ.

U[f ](x1, x2, θ) =

∫M

(x1x2 sin(θ)− y1y2 sin(φ))2f (y1, y2, φ)dµ

The solutions of Onsager’s equation are of the form

g(x1, x2, θ) = Z−1e−b(x1x2 sin θ−a)2

with Z determined by the requirement of normalization∫M gdµ = 1, a determined by

a =

∫M

(x1x2 sin θ)g(x1, x2, θ)dµ

Page 58: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

More degrees of freedom

M = [0, L]× [0, L]× [0, π], dµ = 1πL2 dx1dx2dθ.

U[f ](x1, x2, θ) =

∫M

(x1x2 sin(θ)− y1y2 sin(φ))2f (y1, y2, φ)dµ

The solutions of Onsager’s equation are of the form

g(x1, x2, θ) = Z−1e−b(x1x2 sin θ−a)2

with Z determined by the requirement of normalization∫M gdµ = 1, a determined by

a =

∫M

(x1x2 sin θ)g(x1, x2, θ)dµ

Page 59: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

More degrees of freedom

M = [0, L]× [0, L]× [0, π], dµ = 1πL2 dx1dx2dθ.

U[f ](x1, x2, θ) =

∫M

(x1x2 sin(θ)− y1y2 sin(φ))2f (y1, y2, φ)dµ

The solutions of Onsager’s equation are of the form

g(x1, x2, θ) = Z−1e−b(x1x2 sin θ−a)2

with Z determined by the requirement of normalization∫M gdµ = 1,

a determined by

a =

∫M

(x1x2 sin θ)g(x1, x2, θ)dµ

Page 60: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

More degrees of freedom

M = [0, L]× [0, L]× [0, π], dµ = 1πL2 dx1dx2dθ.

U[f ](x1, x2, θ) =

∫M

(x1x2 sin(θ)− y1y2 sin(φ))2f (y1, y2, φ)dµ

The solutions of Onsager’s equation are of the form

g(x1, x2, θ) = Z−1e−b(x1x2 sin θ−a)2

with Z determined by the requirement of normalization∫M gdµ = 1, a determined by

a =

∫M

(x1x2 sin θ)g(x1, x2, θ)dµ

Page 61: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Letu(x1, x2, θ, a) = x1x2 sin θ − a

[u] =

∫M

ugdµ

a is determined by [u] = 0.

λ(a, τ) = τ−1/2

∫M

e−u2/τdµ

obeys the heat equation

∂τλ =1

4∂2

with τ = b−1.

[u] =1

2b∂a log λ.

a → 0, as b →∞.

Page 62: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Letu(x1, x2, θ, a) = x1x2 sin θ − a

[u] =

∫M

ugdµ

a is determined by [u] = 0.

λ(a, τ) = τ−1/2

∫M

e−u2/τdµ

obeys the heat equation

∂τλ =1

4∂2

with τ = b−1.

[u] =1

2b∂a log λ.

a → 0, as b →∞.

Page 63: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Letu(x1, x2, θ, a) = x1x2 sin θ − a

[u] =

∫M

ugdµ

a is determined by [u] = 0.

λ(a, τ) = τ−1/2

∫M

e−u2/τdµ

obeys the heat equation

∂τλ =1

4∂2

with τ = b−1.

[u] =1

2b∂a log λ.

a → 0, as b →∞.

Page 64: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Letu(x1, x2, θ, a) = x1x2 sin θ − a

[u] =

∫M

ugdµ

a is determined by [u] = 0.

λ(a, τ) = τ−1/2

∫M

e−u2/τdµ

obeys the heat equation

∂τλ =1

4∂2

with τ = b−1.

[u] =1

2b∂a log λ.

a → 0, as b →∞.

Page 65: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Letu(x1, x2, θ, a) = x1x2 sin θ − a

[u] =

∫M

ugdµ

a is determined by [u] = 0.

λ(a, τ) = τ−1/2

∫M

e−u2/τdµ

obeys the heat equation

∂τλ =1

4∂2

with τ = b−1.

[u] =1

2b∂a log λ.

a → 0, as b →∞.

Page 66: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Letu(x1, x2, θ, a) = x1x2 sin θ − a

[u] =

∫M

ugdµ

a is determined by [u] = 0.

λ(a, τ) = τ−1/2

∫M

e−u2/τdµ

obeys the heat equation

∂τλ =1

4∂2

with τ = b−1.

[u] =1

2b∂a log λ.

a → 0, as b →∞.

Page 67: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Letu(x1, x2, θ, a) = x1x2 sin θ − a

[u] =

∫M

ugdµ

a is determined by [u] = 0.

λ(a, τ) = τ−1/2

∫M

e−u2/τdµ

obeys the heat equation

∂τλ =1

4∂2

with τ = b−1.

[u] =1

2b∂a log λ.

a → 0, as b →∞.

Page 68: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Even More Degrees of Freedom...

V (r) nonnegative, nonincreasing, compactly supported.p = (x1, . . . xN), xi ∈ Ω ⊂ Rn.

Packing energy:

F (p) =∑i<j

V (|xi − xj |).

M = Ω× · · · × Ω ∩ F ≤ F0.

(Kf )(p) = −∫

eM |F (p)− F (q)|2f (q)dq

Connection to the example of freely articulated 2n corpora,jamming, perhaps...

Page 69: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Even More Degrees of Freedom...

V (r) nonnegative, nonincreasing, compactly supported.p = (x1, . . . xN), xi ∈ Ω ⊂ Rn. Packing energy:

F (p) =∑i<j

V (|xi − xj |).

M = Ω× · · · × Ω ∩ F ≤ F0.

(Kf )(p) = −∫

eM |F (p)− F (q)|2f (q)dq

Connection to the example of freely articulated 2n corpora,jamming, perhaps...

Page 70: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Even More Degrees of Freedom...

V (r) nonnegative, nonincreasing, compactly supported.p = (x1, . . . xN), xi ∈ Ω ⊂ Rn. Packing energy:

F (p) =∑i<j

V (|xi − xj |).

M = Ω× · · · × Ω ∩ F ≤ F0.

(Kf )(p) = −∫

eM |F (p)− F (q)|2f (q)dq

Connection to the example of freely articulated 2n corpora,jamming, perhaps...

Page 71: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Even More Degrees of Freedom...

V (r) nonnegative, nonincreasing, compactly supported.p = (x1, . . . xN), xi ∈ Ω ⊂ Rn. Packing energy:

F (p) =∑i<j

V (|xi − xj |).

M = Ω× · · · × Ω ∩ F ≤ F0.

(Kf )(p) = −∫

eM |F (p)− F (q)|2f (q)dq

Connection to the example of freely articulated 2n corpora,jamming, perhaps...

Page 72: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Even More Degrees of Freedom...

V (r) nonnegative, nonincreasing, compactly supported.p = (x1, . . . xN), xi ∈ Ω ⊂ Rn. Packing energy:

F (p) =∑i<j

V (|xi − xj |).

M = Ω× · · · × Ω ∩ F ≤ F0.

(Kf )(p) = −∫

eM |F (p)− F (q)|2f (q)dq

Connection to the example of freely articulated 2n corpora,jamming, perhaps...

Page 73: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

M compact metric space, d distance, µ Borel probabilitymeasure on M.

Let

−k = u : M ×M → R

• symmetric u(m, p) = u(p,m)

• bounded below u(m, n) ≥ 0

• uniformly bi-Lipschitz:

|u(m, n)− u(p, n)| ≤ Ld(m, p)

If f > 0,∫M fdµ = 1, define

E [f ] =

∫M

f log fdµ +b

2

∫M

∫M

u(p, q)f (p)dµ(p)f (q)dµ(q).

Page 74: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

M compact metric space, d distance, µ Borel probabilitymeasure on M. Let

−k = u : M ×M → R

• symmetric u(m, p) = u(p,m)

• bounded below u(m, n) ≥ 0

• uniformly bi-Lipschitz:

|u(m, n)− u(p, n)| ≤ Ld(m, p)

If f > 0,∫M fdµ = 1, define

E [f ] =

∫M

f log fdµ +b

2

∫M

∫M

u(p, q)f (p)dµ(p)f (q)dµ(q).

Page 75: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

M compact metric space, d distance, µ Borel probabilitymeasure on M. Let

−k = u : M ×M → R

• symmetric u(m, p) = u(p,m)

• bounded below u(m, n) ≥ 0

• uniformly bi-Lipschitz:

|u(m, n)− u(p, n)| ≤ Ld(m, p)

If f > 0,∫M fdµ = 1, define

E [f ] =

∫M

f log fdµ +b

2

∫M

∫M

u(p, q)f (p)dµ(p)f (q)dµ(q).

Page 76: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

M compact metric space, d distance, µ Borel probabilitymeasure on M. Let

−k = u : M ×M → R

• symmetric u(m, p) = u(p,m)

• bounded below u(m, n) ≥ 0

• uniformly bi-Lipschitz:

|u(m, n)− u(p, n)| ≤ Ld(m, p)

If f > 0,∫M fdµ = 1, define

E [f ] =

∫M

f log fdµ +b

2

∫M

∫M

u(p, q)f (p)dµ(p)f (q)dµ(q).

Page 77: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

TheoremFor any b > 0 there exists a solution g that minimizes theenergy:

E [g ] = minf≥0,

RM fdµ=1

E [f ]

The function g solves the Onsager equation

g(x) = (Z (b))−1e−bU(x)

with

Z (b) =

∫M

e−bU(x)dµ(x)

and

U(x) =

∫M

u(x , y)g(y)dµ(y).

The function g is normalized∫

gdµ = 1, strictly positive andLipschitz continuous.

Page 78: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

TheoremFor any b > 0 there exists a solution g that minimizes theenergy:

E [g ] = minf≥0,

RM fdµ=1

E [f ]

The function g solves the Onsager equation

g(x) = (Z (b))−1e−bU(x)

with

Z (b) =

∫M

e−bU(x)dµ(x)

and

U(x) =

∫M

u(x , y)g(y)dµ(y).

The function g is normalized∫

gdµ = 1, strictly positive andLipschitz continuous.

Page 79: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

TheoremFor any b > 0 there exists a solution g that minimizes theenergy:

E [g ] = minf≥0,

RM fdµ=1

E [f ]

The function g solves the Onsager equation

g(x) = (Z (b))−1e−bU(x)

with

Z (b) =

∫M

e−bU(x)dµ(x)

and

U(x) =

∫M

u(x , y)g(y)dµ(y).

The function g is normalized∫

gdµ = 1, strictly positive andLipschitz continuous.

Page 80: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

TheoremFor any b > 0 there exists a solution g that minimizes theenergy:

E [g ] = minf≥0,

RM fdµ=1

E [f ]

The function g solves the Onsager equation

g(x) = (Z (b))−1e−bU(x)

with

Z (b) =

∫M

e−bU(x)dµ(x)

and

U(x) =

∫M

u(x , y)g(y)dµ(y).

The function g is normalized∫

gdµ = 1, strictly positive andLipschitz continuous.

Page 81: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

TheoremFor any b > 0 there exists a solution g that minimizes theenergy:

E [g ] = minf≥0,

RM fdµ=1

E [f ]

The function g solves the Onsager equation

g(x) = (Z (b))−1e−bU(x)

with

Z (b) =

∫M

e−bU(x)dµ(x)

and

U(x) =

∫M

u(x , y)g(y)dµ(y).

The function g is normalized∫

gdµ = 1, strictly positive andLipschitz continuous.

Page 82: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

TheoremFor any b > 0 there exists a solution g that minimizes theenergy:

E [g ] = minf≥0,

RM fdµ=1

E [f ]

The function g solves the Onsager equation

g(x) = (Z (b))−1e−bU(x)

with

Z (b) =

∫M

e−bU(x)dµ(x)

and

U(x) =

∫M

u(x , y)g(y)dµ(y).

The function g is normalized∫

gdµ = 1, strictly positive andLipschitz continuous.

Page 83: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

The ur-corpus

Let M be a compact metrizable space and let u(x , y) besymmetric, bi-Lipschitz and bounded below.

In addition,assume:

u(x , x) = 0.

Theorem(C-Zlatos) Let ν be a weak limit of a sequence fndµ ofminima of the free energy E corresponding to bn →∞. Thenthere exists m ∈ M such that ν is concentrated on the level setΣ(m) = p | u(m, p) = 0.

Page 84: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

The ur-corpus

Let M be a compact metrizable space and let u(x , y) besymmetric, bi-Lipschitz and bounded below. In addition,assume:

u(x , x) = 0.

Theorem(C-Zlatos) Let ν be a weak limit of a sequence fndµ ofminima of the free energy E corresponding to bn →∞. Thenthere exists m ∈ M such that ν is concentrated on the level setΣ(m) = p | u(m, p) = 0.

Page 85: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

The ur-corpus

Let M be a compact metrizable space and let u(x , y) besymmetric, bi-Lipschitz and bounded below. In addition,assume:

u(x , x) = 0.

Theorem(C-Zlatos) Let ν be a weak limit of a sequence fndµ ofminima of the free energy E corresponding to bn →∞. Thenthere exists m ∈ M such that ν is concentrated on the level setΣ(m) = p | u(m, p) = 0.

Page 86: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Idea of proof:

limb→∞

1

b

min

f >0,RM fdµ=1

E [f ]

= 0

and

ε

∫ ∫u(p,q)≥ε

f (p)dµ(p)f (q)dµ(q) ≤ 2

bE [f ].

if ε2n = 2bnE [fn], 0 < εn → 0, and

Q(p, ε) = q|u(p, q) ≤ ε,

then ∫M

fn(p)

[∫Q(p,εn)

fn(q)dµ(q)

]dµ(p) ≥ 1− εn

∃ pn,∫Q(pn,εn)

fn(q)dµ(q) ≥ 1− 2εn. Pass to subsequencepn → p.

Page 87: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Idea of proof:

limb→∞

1

b

min

f >0,RM fdµ=1

E [f ]

= 0

and

ε

∫ ∫u(p,q)≥ε

f (p)dµ(p)f (q)dµ(q) ≤ 2

bE [f ].

if ε2n = 2bnE [fn], 0 < εn → 0, and

Q(p, ε) = q|u(p, q) ≤ ε,

then ∫M

fn(p)

[∫Q(p,εn)

fn(q)dµ(q)

]dµ(p) ≥ 1− εn

∃ pn,∫Q(pn,εn)

fn(q)dµ(q) ≥ 1− 2εn. Pass to subsequencepn → p.

Page 88: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Idea of proof:

limb→∞

1

b

min

f >0,RM fdµ=1

E [f ]

= 0

and

ε

∫ ∫u(p,q)≥ε

f (p)dµ(p)f (q)dµ(q) ≤ 2

bE [f ].

if ε2n = 2bnE [fn], 0 < εn → 0,

and

Q(p, ε) = q|u(p, q) ≤ ε,

then ∫M

fn(p)

[∫Q(p,εn)

fn(q)dµ(q)

]dµ(p) ≥ 1− εn

∃ pn,∫Q(pn,εn)

fn(q)dµ(q) ≥ 1− 2εn. Pass to subsequencepn → p.

Page 89: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Idea of proof:

limb→∞

1

b

min

f >0,RM fdµ=1

E [f ]

= 0

and

ε

∫ ∫u(p,q)≥ε

f (p)dµ(p)f (q)dµ(q) ≤ 2

bE [f ].

if ε2n = 2bnE [fn], 0 < εn → 0, and

Q(p, ε) = q|u(p, q) ≤ ε,

then ∫M

fn(p)

[∫Q(p,εn)

fn(q)dµ(q)

]dµ(p) ≥ 1− εn

∃ pn,∫Q(pn,εn)

fn(q)dµ(q) ≥ 1− 2εn. Pass to subsequencepn → p.

Page 90: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Idea of proof:

limb→∞

1

b

min

f >0,RM fdµ=1

E [f ]

= 0

and

ε

∫ ∫u(p,q)≥ε

f (p)dµ(p)f (q)dµ(q) ≤ 2

bE [f ].

if ε2n = 2bnE [fn], 0 < εn → 0, and

Q(p, ε) = q|u(p, q) ≤ ε,

then ∫M

fn(p)

[∫Q(p,εn)

fn(q)dµ(q)

]dµ(p) ≥ 1− εn

∃ pn,∫Q(pn,εn)

fn(q)dµ(q) ≥ 1− 2εn. Pass to subsequencepn → p.

Page 91: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Idea of proof:

limb→∞

1

b

min

f >0,RM fdµ=1

E [f ]

= 0

and

ε

∫ ∫u(p,q)≥ε

f (p)dµ(p)f (q)dµ(q) ≤ 2

bE [f ].

if ε2n = 2bnE [fn], 0 < εn → 0, and

Q(p, ε) = q|u(p, q) ≤ ε,

then ∫M

fn(p)

[∫Q(p,εn)

fn(q)dµ(q)

]dµ(p) ≥ 1− εn

∃ pn,∫Q(pn,εn)

fn(q)dµ(q) ≥ 1− 2εn.

Pass to subsequencepn → p.

Page 92: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Idea of proof:

limb→∞

1

b

min

f >0,RM fdµ=1

E [f ]

= 0

and

ε

∫ ∫u(p,q)≥ε

f (p)dµ(p)f (q)dµ(q) ≤ 2

bE [f ].

if ε2n = 2bnE [fn], 0 < εn → 0, and

Q(p, ε) = q|u(p, q) ≤ ε,

then ∫M

fn(p)

[∫Q(p,εn)

fn(q)dµ(q)

]dµ(p) ≥ 1− εn

∃ pn,∫Q(pn,εn)

fn(q)dµ(q) ≥ 1− 2εn. Pass to subsequencepn → p.

Page 93: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Principle: if a µ measure-preserving transformation Texists such that locally around p = p0,u(Tp, Tq) ≤ cu(p, q) with c < 1, then p0 cannot be anur-corpus.

If a local u-preserving transformation around p = p0 hasthe property that µ(T (B)) ≥ Cµ(B) for small balls aroundp0, with C > 1, then p0 cannot be an ur-corpus.

Example: Rhombi centered at the origin. The ur-rhombus isthe square.

Page 94: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Principle: if a µ measure-preserving transformation Texists such that locally around p = p0,u(Tp, Tq) ≤ cu(p, q) with c < 1, then p0 cannot be anur-corpus.If a local u-preserving transformation around p = p0 hasthe property that µ(T (B)) ≥ Cµ(B) for small balls aroundp0, with C > 1, then p0 cannot be an ur-corpus.

Example: Rhombi centered at the origin. The ur-rhombus isthe square.

Page 95: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Kinetics

M compact connected Riemannian manifold with metric g .

∂t f = divg

(f∇g

(δEδf

))δEδf

= log f −Kf

dEdt

= −∫

Mf |∇g (log f −Kf )|2 dµ(p)

Gradient system, steady solutions = Onsager equation.

∂t f = ∆g f − divg (f∇g (Kf ))

Page 96: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Kinetics

M compact connected Riemannian manifold with metric g .

∂t f = divg

(f∇g

(δEδf

))

δEδf

= log f −Kf

dEdt

= −∫

Mf |∇g (log f −Kf )|2 dµ(p)

Gradient system, steady solutions = Onsager equation.

∂t f = ∆g f − divg (f∇g (Kf ))

Page 97: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Kinetics

M compact connected Riemannian manifold with metric g .

∂t f = divg

(f∇g

(δEδf

))δEδf

= log f −Kf

dEdt

= −∫

Mf |∇g (log f −Kf )|2 dµ(p)

Gradient system, steady solutions = Onsager equation.

∂t f = ∆g f − divg (f∇g (Kf ))

Page 98: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Kinetics

M compact connected Riemannian manifold with metric g .

∂t f = divg

(f∇g

(δEδf

))δEδf

= log f −Kf

dEdt

= −∫

Mf |∇g (log f −Kf )|2 dµ(p)

Gradient system, steady solutions = Onsager equation.

∂t f = ∆g f − divg (f∇g (Kf ))

Page 99: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Embedding in Physical Space

f : Rn ×M × [0,∞) → (0,∞):

∂t f = ∆x f + divg (f∇g (log f −Kf ))

Example: n = 1, M = S1, Maier-Saupe potential:

f (x , θ, t) = 12π + 1

π

∑∞j=1 yj(x , t) cos(2jθ)

∂tyj = ∂2xyj − 4j2yj + bjy1(yj−1 − yj+1)

Boundary conditions

limx→±∞

f (x , θ, t) = g±(θ)

g±(θ) steady solutions.

Standing Waves, Traveling Waves.

Page 100: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Embedding in Physical Space

f : Rn ×M × [0,∞) → (0,∞):

∂t f = ∆x f + divg (f∇g (log f −Kf ))

Example: n = 1, M = S1, Maier-Saupe potential:

f (x , θ, t) = 12π + 1

π

∑∞j=1 yj(x , t) cos(2jθ)

∂tyj = ∂2xyj − 4j2yj + bjy1(yj−1 − yj+1)

Boundary conditions

limx→±∞

f (x , θ, t) = g±(θ)

g±(θ) steady solutions.

Standing Waves, Traveling Waves.

Page 101: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Embedding in Physical Space

f : Rn ×M × [0,∞) → (0,∞):

∂t f = ∆x f + divg (f∇g (log f −Kf ))

Example: n = 1, M = S1, Maier-Saupe potential:

f (x , θ, t) = 12π + 1

π

∑∞j=1 yj(x , t) cos(2jθ)

∂tyj = ∂2xyj − 4j2yj + bjy1(yj−1 − yj+1)

Boundary conditions

limx→±∞

f (x , θ, t) = g±(θ)

g±(θ) steady solutions.

Standing Waves, Traveling Waves.

Page 102: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Embedding in Physical Space

f : Rn ×M × [0,∞) → (0,∞):

∂t f = ∆x f + divg (f∇g (log f −Kf ))

Example: n = 1, M = S1, Maier-Saupe potential:

f (x , θ, t) = 12π + 1

π

∑∞j=1 yj(x , t) cos(2jθ)

∂tyj = ∂2xyj − 4j2yj + bjy1(yj−1 − yj+1)

Boundary conditions

limx→±∞

f (x , θ, t) = g±(θ)

g±(θ) steady solutions.

Standing Waves, Traveling Waves.

Page 103: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Embedding in Physical Space

f : Rn ×M × [0,∞) → (0,∞):

∂t f = ∆x f + divg (f∇g (log f −Kf ))

Example: n = 1, M = S1, Maier-Saupe potential:

f (x , θ, t) = 12π + 1

π

∑∞j=1 yj(x , t) cos(2jθ)

∂tyj = ∂2xyj − 4j2yj + bjy1(yj−1 − yj+1)

Boundary conditions

limx→±∞

f (x , θ, t) = g±(θ)

g±(θ) steady solutions.

Standing Waves, Traveling Waves.

Page 104: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Passive

∂t f + v · ∇x f + divg (Wf ) = divg (f∇g (log f −Kf ))

withW (x ,m, t) =

=(∑n

i ,j=1 c ji (m)∂v i

∂x j (x , t))

c ji (m) ∈ Tm(M).

Example, rods in 3D:

W (x ,m, t) = (∇xv(x , t))m − ((∇xu(x , t))m ·m)m.

Macro-Micro Effect: from first principles, in principle...

Page 105: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Passive

∂t f + v · ∇x f + divg (Wf ) = divg (f∇g (log f −Kf ))

withW (x ,m, t) =

=(∑n

i ,j=1 c ji (m)∂v i

∂x j (x , t))

c ji (m) ∈ Tm(M).

Example, rods in 3D:

W (x ,m, t) = (∇xv(x , t))m − ((∇xu(x , t))m ·m)m.

Macro-Micro Effect: from first principles, in principle...

Page 106: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Passive

∂t f + v · ∇x f + divg (Wf ) = divg (f∇g (log f −Kf ))

withW (x ,m, t) =

=(∑n

i ,j=1 c ji (m)∂v i

∂x j (x , t))

c ji (m) ∈ Tm(M).

Example, rods in 3D:

W (x ,m, t) = (∇xv(x , t))m − ((∇xu(x , t))m ·m)m.

Macro-Micro Effect: from first principles, in principle...

Page 107: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Passive

∂t f + v · ∇x f + divg (Wf ) = divg (f∇g (log f −Kf ))

withW (x ,m, t) =

=(∑n

i ,j=1 c ji (m)∂v i

∂x j (x , t))

c ji (m) ∈ Tm(M).

Example, rods in 3D:

W (x ,m, t) = (∇xv(x , t))m − ((∇xu(x , t))m ·m)m.

Macro-Micro Effect: from first principles, in principle...

Page 108: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Passive

∂t f + v · ∇x f + divg (Wf ) = divg (f∇g (log f −Kf ))

withW (x ,m, t) =

=(∑n

i ,j=1 c ji (m)∂v i

∂x j (x , t))

c ji (m) ∈ Tm(M).

Example, rods in 3D:

W (x ,m, t) = (∇xv(x , t))m − ((∇xu(x , t))m ·m)m.

Macro-Micro Effect: from first principles, in principle...

Page 109: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Active: Navier-Stokes

∂tv + v · ∇v +∇p = ν∆v +∇ · σ∇ · v = 0

σ = σij (x , t)

added stress tensor.

Micro-Macro Effect

σij (x) = −

∫M

(divgc i

j + c ij · ∇gKf (x ,m)

)f (x ,m)dµ(m) ∗

Page 110: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Active: Navier-Stokes

∂tv + v · ∇v +∇p = ν∆v +∇ · σ∇ · v = 0

σ = σij (x , t)

added stress tensor.

Micro-Macro Effect

σij (x) = −

∫M

(divgc i

j + c ij · ∇gKf (x ,m)

)f (x ,m)dµ(m) ∗

Page 111: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Active: Navier-Stokes

∂tv + v · ∇v +∇p = ν∆v +∇ · σ∇ · v = 0

σ = σij (x , t)

added stress tensor.

Micro-Macro Effect

σij (x) = −

∫M

(divgc i

j + c ij · ∇gKf (x ,m)

)f (x ,m)dµ(m) ∗

Page 112: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Theorem3DNS + Fokker-Planck eqns with *. Then

E (t) = 12

∫|v |2dx+

+∫

f log f − 12(Kf )f

dxdµ.

is nondecreasing on solutions.

If (v , f ) is a smooth solution then

dEdt = −ν

∫|∇xv |2dx−

−∫ ∫

M

f |∇g (log f −Kf )|2 dmdx .

If the smooth solution is time independent, then v = 0 and fsolves the Onsager equation

f = Z−1eK[f ].

Page 113: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Theorem3DNS + Fokker-Planck eqns with *. Then

E (t) = 12

∫|v |2dx+

+∫

f log f − 12(Kf )f

dxdµ.

is nondecreasing on solutions.If (v , f ) is a smooth solution then

dEdt = −ν

∫|∇xv |2dx−

−∫ ∫

M

f |∇g (log f −Kf )|2 dmdx .

If the smooth solution is time independent, then v = 0 and fsolves the Onsager equation

f = Z−1eK[f ].

Page 114: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Theorem3DNS + Fokker-Planck eqns with *. Then

E (t) = 12

∫|v |2dx+

+∫

f log f − 12(Kf )f

dxdµ.

is nondecreasing on solutions.If (v , f ) is a smooth solution then

dEdt = −ν

∫|∇xv |2dx−

−∫ ∫

M

f |∇g (log f −Kf )|2 dmdx .

If the smooth solution is time independent, then v = 0 and fsolves the Onsager equation

f = Z−1eK[f ].

Page 115: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

NFP + 3D time-dependent Stokes

∂t f + v · ∇x f + divg (Wf ) = divg (f∇g (log f −Kf )),∂tv − ν∆xv +∇xp = divxσ + F , ∇x · v = 0.

TheoremLet v0 divergence-free, in W 2,r (T3), r > 3, f0 positive,∫M f0(x ,m)dµ = 1,

f0 ∈ L∞(dx ; C(M)) ∩∇x f0 ∈ Lr (dx ;H−s(M)), s ≤ d2 + 1.

Then the solution exists for all time and

‖v‖Lp[(0,T );W 2,r (dx)] < ∞,

‖∇x f ‖L∞[(0,T );Lr (dx ;H−s(M))] < ∞

for any p > 2rr−3 , T > 0.

Page 116: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

NFP + 3D time-dependent Stokes

∂t f + v · ∇x f + divg (Wf ) = divg (f∇g (log f −Kf )),∂tv − ν∆xv +∇xp = divxσ + F , ∇x · v = 0.

TheoremLet v0 divergence-free, in W 2,r (T3), r > 3, f0 positive,∫M f0(x ,m)dµ = 1,

f0 ∈ L∞(dx ; C(M)) ∩∇x f0 ∈ Lr (dx ;H−s(M)), s ≤ d2 + 1.

Then the solution exists for all time and

‖v‖Lp[(0,T );W 2,r (dx)] < ∞,

‖∇x f ‖L∞[(0,T );Lr (dx ;H−s(M))] < ∞

for any p > 2rr−3 , T > 0.

Page 117: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

NFP + 3D time-dependent Stokes

∂t f + v · ∇x f + divg (Wf ) = divg (f∇g (log f −Kf )),∂tv − ν∆xv +∇xp = divxσ + F , ∇x · v = 0.

TheoremLet v0 divergence-free, in W 2,r (T3), r > 3, f0 positive,∫M f0(x ,m)dµ = 1,

f0 ∈ L∞(dx ; C(M)) ∩∇x f0 ∈ Lr (dx ;H−s(M)), s ≤ d2 + 1.

Then the solution exists for all time and

‖v‖Lp[(0,T );W 2,r (dx)] < ∞,

‖∇x f ‖L∞[(0,T );Lr (dx ;H−s(M))] < ∞

for any p > 2rr−3 , T > 0.

Page 118: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

NFP + 2D time dependent Navier-Stokes

Theorem(C-Masmoudi) Let v0 ∈

(W α,r ∩ L2

)(R2), divergence-free,

f0 ∈ W 1,r (H−s(M)), with r > 2, α > 1, s ≤ d2 + 1 and f0 ≥ 0,∫

M f0dµ ∈ (L1 ∩ L∞)(R2). Then the coupled NS and nonlinearFokker-Planck system in 2D has a global solutionv ∈ L∞loc(W

1,r ) ∩ L2loc(W

2,r ) and f ∈ L∞loc(W1,r (H−s)).

Moreover, for T > T0 > 0, we have v ∈ L∞((T0,T );W 2−0,r ).

Page 119: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

NFP + 2D time dependent Navier-Stokes

Theorem(C-Masmoudi) Let v0 ∈

(W α,r ∩ L2

)(R2), divergence-free,

f0 ∈ W 1,r (H−s(M)), with r > 2, α > 1, s ≤ d2 + 1 and f0 ≥ 0,∫

M f0dµ ∈ (L1 ∩ L∞)(R2).

Then the coupled NS and nonlinearFokker-Planck system in 2D has a global solutionv ∈ L∞loc(W

1,r ) ∩ L2loc(W

2,r ) and f ∈ L∞loc(W1,r (H−s)).

Moreover, for T > T0 > 0, we have v ∈ L∞((T0,T );W 2−0,r ).

Page 120: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

NFP + 2D time dependent Navier-Stokes

Theorem(C-Masmoudi) Let v0 ∈

(W α,r ∩ L2

)(R2), divergence-free,

f0 ∈ W 1,r (H−s(M)), with r > 2, α > 1, s ≤ d2 + 1 and f0 ≥ 0,∫

M f0dµ ∈ (L1 ∩ L∞)(R2). Then the coupled NS and nonlinearFokker-Planck system in 2D has a global solutionv ∈ L∞loc(W

1,r ) ∩ L2loc(W

2,r ) and f ∈ L∞loc(W1,r (H−s)).

Moreover, for T > T0 > 0, we have v ∈ L∞((T0,T );W 2−0,r ).

Page 121: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

NFP + 2D time dependent Navier-Stokes

Theorem(C-Masmoudi) Let v0 ∈

(W α,r ∩ L2

)(R2), divergence-free,

f0 ∈ W 1,r (H−s(M)), with r > 2, α > 1, s ≤ d2 + 1 and f0 ≥ 0,∫

M f0dµ ∈ (L1 ∩ L∞)(R2). Then the coupled NS and nonlinearFokker-Planck system in 2D has a global solutionv ∈ L∞loc(W

1,r ) ∩ L2loc(W

2,r ) and f ∈ L∞loc(W1,r (H−s)).

Moreover, for T > T0 > 0, we have v ∈ L∞((T0,T );W 2−0,r ).

Page 122: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Outlook

1 n-gons, Hausdorff-Gromov distance

2 soft sphere packing, jamming

3 kinetics w/o Riemannian structure

Page 123: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Outlook

1 n-gons, Hausdorff-Gromov distance

2 soft sphere packing, jamming

3 kinetics w/o Riemannian structure

Page 124: The zero temperature limit of interacting corpora...Equation General Goals Examples Onsager equation for general corpora Kinetics Physical space connections Embedding in Fluid Outlook

The zerotemperature

limit ofinteracting

corpora

PeterConstantin

Introduction

OnsagerEquation

General Goals

Examples

Onsagerequation forgeneralcorpora

Kinetics

Physical spaceconnections

Embedding inFluid

Outlook

Outlook

1 n-gons, Hausdorff-Gromov distance

2 soft sphere packing, jamming

3 kinetics w/o Riemannian structure