20
A Science & Technology Center Theme III: Nanophotonics For Energy-Efficient Communications Theme Leader: Ming C. Wu E3S Retreat September 20, 2018

Theme III: Nanophotonics For Energy-Efficient …...A Science & Technology Center Team Members Theme III inter-institutional postdoc Seth Fortuna Graduate Students: Matin Amani, Nicolas

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

  • A Science & Technology Center

    Theme III: NanophotonicsFor Energy-Efficient Communications

    Theme Leader: Ming C. Wu

    E3S RetreatSeptember 20, 2018

  • A Science & Technology Center

    Optical antenna-enhanced nanoLED

    Electrical injection III-V antenna-LEDs [Wu, Yablonovitch, UCB; Kim/Fitzgerald, MIT]

    Monolayer TMDC antenna-LEDs[Wu, Yablonovitch, Javey, UCB]

    Current Theme Projects & PI’s

    Ultra-sensitive photoreceivers

    Photoreceiver analysis [Yablonovitch, Yablonovitch, UCB]

    Photo-bipolar junction transistor (BJT) [Chang-Hasnain, UCB; Fitzgerald, MIT]

    Link modeling and system analysis[Stojanovic, UCB]

    Page 2

  • A Science & Technology Center

    Team Members Theme III inter-institutional postdoc

    Seth Fortuna

    Graduate Students: Matin Amani, Nicolas Andrade, Sujay Desai, Kevin Han, Sean Hooten,

    Jonas Kapraun, George Zhang, Peida Zhao (UCB)

    Undergrad: Joy Cho (UCB)

    Postdocs: Der-hsien Lien, Kyungmok Kwon

    Alum Chris Heidelberger (MIT-Lincoln Lab), Indrasen Bhattacharya (KLA-

    Tencor), Kevin Messer (Magic Leap), Christopher Keraly (PARC), Ryan Going (Infinera), Michael Eggleston (Bell Labs), Wilson Ko (OURS), Yue Lu (Qualcomm)

    Page 3

  • A Science & Technology Center

    Theme Overview• Main goal: Dramatically improve the interconnect energy

    efficiency to 20 aJ/bit @ 20 photons/bit (Current state of the art: 100s fJ/bit @ 10,000 ph/bit)

    Antenna-LED

    Si Photonic Waveguide

    NanoPhototransistor

    Antenna-Enhanced LED• No threshold (DC bias)• Use optical antenna to enhance

    spontaneous emission rate• Faster than laser

    Ultra-Sensitive Photoreceivers• Ultralow capacitance (< 100aF)

    to enlarge photo signal• Integrate PD with first gain

    stage to eliminate wire capacitance

    Our Approach

    Page 4

  • A Science & Technology Center

    Progress of Antenna LED under E3S

    OpticalPumping

    ElectricalInjection

    III-V III-V

    TMDC

    Page 5

    Focus shift to • Temporal response• Efficiency• Output power

    TMDC

  • A Science & Technology Center

    Electrically-injected III-V antenna-LED

    nanoLED ridgeinterconnect

    Ag

    cavity-backed slot antenna250nm

  • A Science & Technology Center

    No antenna

    Antenna-Enhanced Electroluminescence

    No antenna

    Antenna-LED

    n

    p

    n

    p

    Fortuna et al. ISLC 2016

    Seth Fortuna

  • A Science & Technology Center

    50 Picosecond Spontaneous Emission Lifetime

    antenna-LED

    rad = 1.6 nsτno antenna

    T=77K

    rad = 50 psτ

    Fortuna et al. ISLC 2018

  • A Science & Technology Center

    First Demonstration: Integration of Slot Antenna with Colloidal Quantum Dots

    Page 9

    Au

    3 µm

    Photoluminescence image

    Slots with CdSeS/ZnSquantum dots

    Laser spot

    Slot

    Off-slot

    Seth Fortuna, Michael Bartl, Vladimir Bulovic, et al.

  • A Science & Technology Center

    Waveguide Coupled Antenna-LED schematic

    Top-view: cross-section along cutline

    Perspective view

    Cross-sectional view

    Andrade et al. CLEO 2018.

    NicolasAndrade

  • A Science & Technology Center

    Inverse Design Waveguide Coupler

    y

    x

    Ag

    InP

    nanoLED

    Tapered Coupler After Optimization

    Top View Cross-section

    Top View Cross-section

    Andrade et al. CLEO 2018.

    NicolasAndrade

    Sean Hooten

  • A Science & Technology Center

    Inverse Design Power Flow

    Cross section of power flow coupled to single mode InP waveguide

    InP

    AgAir

    x

    z200nm

    nanoLED

    SOG

    Cross section of power flowon bulk InP

  • A Science & Technology Center

    ID: High Power

    ID: High Speed

    Tapered Coupler

    Bulk

    Inverse Design Optimization

    ID: High Power

    ID: High Speed

    Tapered Coupler

    Bulk

    Average Enhancement: 168.9Average Waveguide-Coupled EQE: 60.8%

  • A Science & Technology Center

    Metal-Dielectric Antenna

    0Gap d (nm)

    Effic

    ienc

    y

    d

    Si

    20nm

    Ag

    5 10 15 20

    d20nm

    0%

    25%

    50%

    75%

    100%

    Metal-Dielectric

    All MetalEn

    hanc

    emen

    t

    103104105106107

    0Gap d (nm)

    5 10 15 20

    Sean Hooten

  • A Science & Technology Center

    Metal-Dielectric Antenna LEDb

    b

    50nm

    20nm

    20nm

    50nm

    50nm Cylindrical

    Lithographically Patterned

    Electrical injection compatible High efficiency (~70%)

  • A Science & Technology Center

    Bridge Width b (nm)

    b

    InP

    bInP

    Enha

    ncem

    ent 104

    105

    103

    102100 20 30 40

    Metal-Dielectric Antenna LED

  • A Science & Technology Center

    Electrical Injection LED with Monolayer WSe2 Emitter

    Device Device lifetime Brightness External quantum efficiencyDual-gated PIN diodeDC; no solventArea ~ 20 um2

    30 min ~400 pW >10-4

    Pulsed device 1(8 kHz)

    Pulsed device 2(8 kHz)

    DC dual-gate device

    Current (nA)

    Coun

    ts/s

    L-I curves

    p++ SiAg gate + reflector

    Al2O3 (60 nm)

    Au contact

    Au contact

    WSe2

    p++ SiAg back reflector

    Al2O3 (60 nm)Au gate Au gate

    WSe2hBN

    Pt contact

    Ni contact

    Old dual-gate New single-gate VnVp

    Kevin Han

    In collaboration with Javey Group

  • A Science & Technology Center

    High efficiency Monolayer WSe2 LEDs

    Page 18

    ~

    +-

    ~Vp

    Vn

    Vg +

    IQE

    (%)

    Equivalent current (nA)

    PL

    EL

    Equivalent current (nA)

    Out

    put p

    ower

    (nW

    )

    ELPL

    Process improvements yield EL efficiency close to PL (~1%),indicating material-limited efficiency

    N contactP contact

    Al2O3WSe2

    5 um

    Kevin Han

  • A Science & Technology Center

    EL long-term stability

    Page 19

    Time (s)

    Inte

    nsity

    (cou

    nts/

    s)

    EL with pulsed injection is stable over hours

    Pulsed injection20 kHz

    DC injection

  • A Science & Technology Center

    Summary

    First temporal measurement of III-V antenna-LED 50 ps spontaneous emission lifetime measured at 77K Compared with 1.6 ns without antenna

    High coupling efficiency to single mode waveguide by inverse design Overall efficiency > 60% (including metal loss)

    First demonstration of quantum dot emitters with slot antenna Electrical bipolar injection LED with monolayer WSe2 Very sensitive method to characterize surface recombination

    velocity Collaboration with Jesús del Alamo group

    Page 20

    Theme III: Nanophotonics �For Energy-Efficient CommunicationsCurrent Theme Projects & PI’s�Team MembersTheme OverviewProgress of Antenna LED under E3SElectrically-injected III-V antenna-LEDAntenna-Enhanced Electroluminescence 50 Picosecond Spontaneous Emission LifetimeFirst Demonstration: Integration of Slot Antenna with Colloidal Quantum DotsWaveguide Coupled Antenna-LED schematicInverse Design Waveguide CouplerInverse Design Power FlowInverse Design OptimizationMetal-Dielectric AntennaMetal-Dielectric Antenna LEDSlide Number 16Electrical Injection LED with Monolayer WSe2 EmitterHigh efficiency Monolayer WSe2 LEDsEL long-term stabilitySummary