7
!"#$201939 ): 202 - 208 Acta Theriologica Sinica DOI10 16829 / j slxb 150240 !"#$%&'()#*+,- 31722051%&'(./0 1997 - ),12)3456789:;<3=#>?E - mailchenyx@ whu edu cn )*+,2018 - 06 - 19-.+,2018 - 10 - 18 @ABCCorresponding authorE - mailhuabinzhao@ whu edu cn /0123456789:;< ./0 DEF GHI#3J)##KGH 430072=>LM-NO PQRSTUVTWXYSOZ[\]^"_`NOabNOc"deN OfOghiijiklmnopqYrIs 70% RPQ45t\]uSvtopuSRw oPQxy z{|}deNOr~RtopuSRNO"woPQ}>?NOST;R 5NO2woPQ=#3#bu#n3OqR>? woPQST;RT @woQ¡¢£*¤R¥¦§|¨y©ª«?ST¬-* woPQrR®¯°±²³NOST´±R89©2¨uwoPQnY{NOST´±R>?µ¶y ·R¸¹?@AwoPQSTwoT:; BCDEFQ951  GHIJKA  GLMF1000 - 1050 201902 - 0202 - 07 A review of research on the dietary specialization of vampire bats CHEN YuxuanZHAO Huabin College of Life SciencesWuhan UniversityWuhan 430072ChinaAbstractMembers of Chiroptera i e batspossess a huge diversity of dietswhich include insectsfishamphibiansreptilesbirdsmammalsfruitsflowersnectarpollenfoliageand blood. Of batsapproximately 70% of bat species are insectivorouswhile only three species of bats i e vampire batsfeed exclusively on blood. Vampire bats are the on ly group in mammals that drink bloodwhich appear to be unique and have become an attractive animal model to study diet ary shift of mammals. Here we review studies on morphologyphysiologybehaviorsensory systemsand gut microbiota in vampire batsand highlight their adaptive traits of dietary specializations. Following the release of a highquality genome sequence of the common vampire batwe will have opportunities to explore functional changes of dietrelated genes in vam pire batsaiming to dissect the molecular basis of dietary shift in animals. This review will be helpful in future studies of dietary changes in vampire bats and other animals Key wordsVampire batDietBloodfeedingAdaptationAdaptive evolution LM-NOº»PQYOz¼-de½ NOr¾¿ÀÁ-}deNOrRÂÃI" Simmons2005 )。PQSTUVTWXYSO Z[\]Y{ÄÅNO^"_`NOab NOc"deNOfOghiiji klmnop Altringham1996 )。YrIs 70% RPQ45t\]uSvtopuSRwo PQxy z @woQ Desmodus rotundus )、 ÆLwoQ Diaemus youngi nÇÈwoQ Diphylla ecaudata)( Altringham1996 )。Ézw oPQ458¦¿ÊËRrÌnÍÌ Turner1975 ),YÎÏRÐÑÒÒÓÔ@ÕwobuÖ× ØÙ"n&ÚØÛÜÊË%&ÏÝI£RÞßà á Lord1992 Johnson et al 2014 Benavides et al 2016 )。 @woQnÆLwoQ45td eNORopuSvÇÈwoQ45tc"op uS Schutt et al 1997 Hand et al 2009 Bo browiec et al 2015 Ito et al 2016 Bohmann et al 2018 )。â¿woPQtopuSY =ãä3bu3O qåwoRSTæ3çRT:;2 ¨èwoPQST¬-R>?:éêëìÝR 兽类学报 Acta Theriologica Sinica 兽类学报 Acta Theriologica Sinica 兽类学报 Acta Theriologica Sinica

Theriologica Sinica - Wuhan Universityanimal-evolution.whu.edu.cn/PDF/2019-10.pdf˘L w o Q (Diaemusyoungi)n ˙ ¨ w o Q (Diphyllaecaudata )(Altringham,1996)。Ézw oPQ458ƒ¿˚¸RrÌn˝Ì

  • Upload
    others

  • View
    0

  • Download
    0

Embed Size (px)

Citation preview

  • 书书书

    !"#$,2019,39 (2):202 - 208Acta Theriologica Sinica          DOI:10 16829 / j slxb 150240

    !"#$:%&'()#*+,- (31722051)

    %&'(:./0 (1997 -),1,2)3,456789:;?. E - mail:chenyx@ whu edu cn

    )*+,:2018 - 06 - 19;  -.+,:2018 - 10 - 18

    @ABC,Corresponding author,E - mail:huabinzhao@ whu edu cn

    /0123456789:;<./0  DEF

    (GHI#3J)##K,GH 430072)

    =>:LM-NO (PQ)RSTUVTWX,YSOZ[\]、^"、_`NO、abNO、c"、deNO、fOgh、i、ij、ik、lmnopq。Yr,Is 70%RPQ45t\]uS,vtopuSRwoPQxy 3 z,{|}deNOr~RtopuSRNO"。,woPQ}>?NOST;R5NO。2woPQ=#、3#、bu#、n3OqR>?,woPQST;RT。 @woQ¡¢£*¤R¥¦,§|¨y©ª«?ST¬*woPQrR®¯°±,²³NOST´±R89©。2¨uwoPQnY{NOST´±R>?µ¶y·R¸¹。?@A:woPQ;ST;wo;;T:;BCDEF:Q951        GHIJK:A        GLMF:1000 - 1050 (2019)02 - 0202 - 07

    A review of research on the dietary specialization of vampire batsCHEN Yuxuan,ZHAO Huabin(College of Life Sciences,Wuhan University,Wuhan 430072,China)

    Abstract:Members of Chiroptera (i e bats)possess a huge diversity of diets,which include insects,fish,amphibians,reptiles,birds,mammals,fruits,flowers,nectar,pollen,foliage,and blood. Of bats,approximately 70% of bat speciesare insectivorous,while only three species of bats(i e vampire bats)feed exclusively on blood. Vampire bats are the only group in mammals that drink blood,which appear to be unique and have become an attractive animal model to study dietary shift of mammals. Here we review studies on morphology,physiology,behavior,sensory systems,and gut microbiotain vampire bats,and highlight their adaptive traits of dietary specializations. Following the release of a highquality genomesequence of the common vampire bat,we will have opportunities to explore functional changes of dietrelated genes in vampire bats,aiming to dissect the molecular basis of dietary shift in animals. This review will be helpful in future studies ofdietary changes in vampire bats and other animalsKey words:Vampire bat;Diet;Bloodfeeding;Adaptation;Adaptive evolution

        LM-NO,º»PQ,YOz¼-de½NOr¾¿ÀÁ-,}deNOrRÂÃI"(Simmons,2005)。PQSTUVTWX,YSOZ[\]、Y{ÄÅNO、^"、_`NO、abNO、c"、deNO、fOgh、i、ij、ik、lmnop (Altringham,1996)。Yr,Is70%RPQ45t\]uS,vtopuSRwoPQxy 3 z: @woQ (Desmodus rotundus)、ÆLwoQ (Diaemus youngi)nÇÈwoQ(Diphylla ecaudata) (Altringham,1996)。ÉzwoPQ458¦¿ÊËRrÌnÍÌ (Turner,

    1975),YÎÏRÐÑÒÒÓÔ@ÕwobuÖ×ØÙ"n&Ú,ØÛÜÊË%&ÏÝI£RÞßàá (Lord,1992;Johnson et al,2014;Benavideset al,2016)。 @woQnÆLwoQ45tdeNORopuS,vÇÈwoQ45tc"opuS (Schutt et al,1997;Hand et al,2009;Bobrowiec et al,2015; Ito et al,2016;Bohmannet al,2018)。â¿woPQtopuS,Y=ãä、3、、bu、3OqåwoRSTæ3çRT:;,2¨èwoPQST¬R>?:é,êëìÝR

    兽类学报

    Acta Th

    eriologic

    a Sinica

    兽类学报

    Acta Th

    eriologic

    a Sinica

    兽类学报

    Acta Th

    eriologic

    a Sinica

  • 2 í ./0q:woPQST;îY>?ïð

    >?µéñ。1  NOPQR54

    woPQòóôRõö÷ÁnÑÁ、øÌùúûwüVRýþÿ!q= (" 1),#¿$%&OêwSop (Bhatnagar,1988;Greenhall,1988;Koopman,1988)。u'S(Uop,woPQ;¯)*&O'(+oR3#T(" 1)。 @woQ,+o®¯45-.¿/01283R45,+6n7Æ89:R;45@Õ)*?@7Æ:AR´;BC¸R?@7Æ3û,v7Æ89:ÔDEF9G4R?@7Æ (Fry et al,2009)。 @woPQR,+645û8}zHu draculin R,+o9,I9Ô@ÕJKL;9RM7ÆÝNO+oR-R。yPR},QU @woQR'SëRS;Të draculin Uz,+9RVW©K (Low et al,2013)。Uz,+7ÆRæïXY§|ëwoPQZp,+©Ky[R\]。(v,Zpû8îY,+©KY{_zwoPQrì^$。ìÝR>?_5ëY{_zwoPQRZpV2:b`a«?,b}[R,+7ÆîYãän®¯õR;[æïR,+7Æyñ=¿cOdænô=。

    2  STUV2 1  ef

    e¯µ¶SO}gÔt'SRhi,ÔtjklmSO,vë¿NOR3no5。pqNOR*2ey 5 z:r、s、t、un v (Kinnamon et al, 1996; Lindemann,1996)。senre¯wxyNOëz{O¢RS|;tenue¯}~SOrÔ¯RyO¢,}5Rn©K;veÔtf9R,=t@R= (Lindemann,1996)。u

  • !  "  #  $ 39 ¢

        bu#h£¤³, @woPQ륡Rve、tenueOzòy¥³¦R}~bu,§ëseO¢¨³¦©ª;?¤³,sef2* Tas1r2 3 z

    woPQråæ3¯*; (" 1," 2),vY{PQR Tas1r2 °8±;89:;8²¤³,Tas1r2 woPQR®;?r,Z[woPQ、S]nSgPQR 31 PQOzRre2* Tas1r1 åæ3Çá、¨ÈÉÊËC¯*; (" 1," 2),µº

  • 2 í ./0q:woPQST;îY>?ïð

    TRPV1 RxL (Kurten and Schmidt,1984)。TRPV1 yf'å2æRB=,}áâvçè;#âR9@。U¼NOr,TRPV1éfæu 43℃,vÔX @woQV¿ØIOÚq&OtîPQRq?SC%;vEFyô¿ @woQSTUK,?\uyo^RwoPQr8[opÔtµ¡woPQR_`M,ô¿2Ì8*Ra¦;v®>?¦º,byo^RwoPQÜ?æï,X}

  • !  "  #  $ 39 ¢

    4  YZ[Q\op}zêRSO,IÌ8 (78%)u

    p2,Yw2û8xZy 93%R7Æ¢、1%RM8、Æ£R@3zîI£Ro{TÒA2 (Edwards et al,1957;Breidenstein,1982)。>?æï, @woQnS]、S|PQR3O¥uE®,§},}*¤¼¦º,S]、S|nSgPQR®¯T3Oby³¦R~b; @woQ?ÆLwoQnÇÈwoQR3O,êºwoPQ3Oë¿YSTR。5  ]^_`a

    woPQ}>?NOST;RáNO,-ÍR>?Þ=#、3#、bu#、n3Oq²woPQRST;。§},UÝ>? ¬¥¡o,ñnëST´±R89©KR¢3>?。 @woQ¡¢£*¤R£ (Zepeda Mendoza et al,2018),§|¨y©ª«?ST¬*woPQrR®¯°±,²³NOST´±R89©,u9NOÚ¤3=nÞ·3n¥¦µ¶,SuNORh{、§¨、z{nµ¶)#-。

    " 3  woPQ3OëwoSTRT; ( ¡2}n:©ª¬R*)

    Fig 3  Adaptive evolution of gut microbiota to bloodfeeding in vampire bats (Genes related to metabolic pathways are indicated in blue)

    602

    兽类学报

    Acta Th

    eriologic

    a Sinica

    兽类学报

    Acta Th

    eriologic

    a Sinica

    兽类学报

    Acta Th

    eriologic

    a Sinica

  • 2 í ./0q:woPQST;îY>?ïð

    bcGH:

    Altringham J D. 1996. Bats:Biology and Behavior. Oxford:Oxford

    University Press.

    Bachmanov A A,Beauchamp G K. 2007. Taste receptor genes Annual

    Review of Physiology,27:389 - 414.

    Benavides J A,Valderrama W,Streicker D G. 2016. Spatial expan

    sions and travelling waves of rabies in vampire bats Proceedings of the

    Royal Society B:Biological Sciences,283:20160328.

    Bhatnagar K P. 1988. Ultrastructure of the pineal body of the common

    vampire bat,Desmodus rotundus. Developmental Dynamics,181:

    163 - 178.

    Bobrowiec P E D,Lemes M R,Gribel R. 2015. Prey preference of the

    common vampire bat(Desmodus rotundus,Chiroptera)using molecu

    lar analysis. Journal of Mammalogy,96:54 - 63.

    Bohmann K,Gopalakrishnan S,Nielsen M,Nielsen L D S B,Jones G,

    Streicker D G,Gilbert M T P. 2018. Using DNA metabarcoding for

    simultaneous inference of common vampire bat diet and population

    structure. Molecular Ecology Resources,18:1050 - 1063.

    Breidenstein C P. 1982. Digestion and assimilation of bovine blood by a

    vampire bat (Desmodus rotundus). Journal of Mammalogy,63:

    482 - 484.

    Carter G,Leffer L. 2015. Social grooming in bats:are vampire bats

    exceptional?PLoS ONE,10:e0138430.

    Carter G,Wilkinson G. 2013. Does food sharing in vampire bats dem

    onstrate reciprocity? Communicative & Integrative Biology, 6:

    e25783.

    Caterina M J,Schumacher M A,Tominaga M,Rosen T A,Levine J D,

    Julius D. 1997. The capsaicin receptor:a heatactivated ion chan

    nel in the pain pathway. Nature,389:816 - 824.

    Damak S,Rong M Q,Yasumatsu K,Kokrashvili Z,Pérez C A,Shige

    mura N,Yoshida R,Mosinger B Jr,Glendinning J I,Ninomiya Y,

    Margolskee R F. 2006. Trpm5 null mice respond to bitter,sweet,

    and umami compounds. Chemical Senses,31:253 - 264.

    Delpietro H A,Russo R G,Carter G G,Carter G G,Lord R D,Delpi

    etro G L. 2017. Reproductive seasonality,sex ratio and philopatry

    in Argentina’s common vampire bats. Royal Society Open Science,

    4:160959.

    Edwards M A,Kaufman M L,Storvick C A. 1957. Microbiologic assay

    for the thiamine content of blood of various species of animals and

    man American Journal of Clinical Nutrition,5:51 - 55.

    EscaleraZamudio M,ZepedaMendoza M L,LozaRubio E,Rojas

    Anaya E,MéndezOjeda M L,Arias C F,Greenwood A D 2015.

    The evolution of bat nucleic acidsensing Tolllike receptors. Molecu

    lar Ecology,24:5899 - 5909.

    Fry B G,Roelants K,Champagne D E,Scheib H,Tyndall J D,King G

    F,Nevalainen T J,Norman J A,Lewis R J,Norton R S,Renjifo C,

    de la Vega R C. 2009. The toxicogenomic multiverse:convergent

    recruitment of proteins into animal venoms. Annual Review of Genom

    ics and Human Genetics,10:483 - 511.

    GonzalezFernandez F. 2003. Interphotoreceptor retinoidbinding pro

    teinan old gene for new eyes Vision Research,43:3021 - 3036.

    Gracheva E O,CorderoMorales J F,GonzálezCarcacía J A,Ingolia N

    T,Manno C,Aranguren C I,Weissman J S,Julius D. 2011. Gan

    glionspecific splicing of TRPV1 underlies infrared sensation in vam

    pire bats. Nature,476:88 - 91.

    Greenhall A M. 1988. Feeding behavior. In: Greenhall A M,

    Schmidt U eds. Natural History of Vampire Bats. Boca Raton,FL:

    CRC Press,111 - 131.

    Hand S J,Weisbecker V,Beck R M,Archer M,Godthelp H,Tennyson

    A J,Worthy T H. 2009. Bats that walk:a new evolutionary hypoth

    esis for the terrestrial behaviour of New Zealand’s endemic mystacin

    ids. BMC Evolutionary Biology,9:169.

    Herness M S,Gilbertson T A. 1999. Cellular mechanisms of taste

    transduction Annual Review of Physiology,61:873 - 900.

    Hombach S,JanssenBienhold U,Shl G,Schubert T,Büssow H,Ott

    T,Weiler R,Willecke K. 2004. Functional expression of connexin

    57 in horizontal cells of the mouse retina. European Journal of Neu

    roscience,19:2633 - 2640.

    Hong W,Zhao H. 2014. Vampire bats exhibit evolutionary reduction of

    bitter taste receptor genes common to other bats Proceedings of the

    Royal Society BBiological Sciences,281:20141079.

    Huguin M,ArechigaCeballos N,Delaval M,Guidez A,de Castro I J,

    Lacoste V,Salmier A,Setién A A,Silva C R,Lavergne A,de

    Thoisy B. 2018. How social structure drives the population dyna

    mics of the common vampire bat (Desmodus rotundus,Phyllostomid

    ae)?Journal of Heredity,109:393 - 404.

    Ito F,Bernard E,Torres R A. 2016. What is for Dinner?First report of

    human blood in the diet of the hairylegged vampire bat Diphylla

    ecaudata. Acta Chiropterologica,18:509 - 515.

    Johnson N,ArechigaCeballos N,AguilarSetien A. 2014. Vampire bat

    rabies:ecology,epidemiology and control Viruses,6:1911 - 1928.

    Kinnamon S C,Margolskee R F. 1996. Mechanisms of taste transduc

    tion Current Opinion in Neurobiology,6:506 - 513.

    Kishida R,Goris R C,Terashima S,Dubbeldam J L. 1984. A suspec

    ted infraredrecipient nucleus in the brainstem of the vampire bat,

    Desmodus rotundus. Brain Research,322:351 - 355.

    Koopman K F. 1988. Systematics and distribution. In:Greenhall A

    M,Schmidt U eds. Natural history of Vampire Bats. Boca Raton,

    FL:CRC Press,7 - 17.

    Kürten L,Schmidt U. 1982. Thermoperception in the common vampire

    bat (Desmodus rotundus). Journal of Comparative Physiology,146:

    223 - 228.

    Kürten L,Schmidt U. 1984. Warm and cold receptors in the nose of the

    vampire bat Desmodus rotundus. Naturwissenschaften,71:327 -

    328.

    Leone A M,Crawshaw G J,Garner M M,Frasca S Jr,Stasiak I,Rose

    K,Neal D,Farina L L. 2016. A retrospective study of the lesions

    associated with iron storage disease in captive egyptian fruit bats

    (Rousettus aegyptiacus). Journal of Zoo and Wildlife Medicine,47:

    702

    兽类学报

    Acta Th

    eriologic

    a Sinica

    兽类学报

    Acta Th

    eriologic

    a Sinica

    兽类学报

    Acta Th

    eriologic

    a Sinica

  • !  "  #  $ 39 ¢

    45 - 55.

    Lindemann B. 1996. Taste reception. Physiological Reviews,76:

    718 - 766.

    Lord R D. 1992. Seasonal reproduction of vampire bats and its relation

    to seasonality of bovine rabies. Journal of Wildlife Diseases,28:

    292 - 294.

    Low D H W,Sunagar K,Undheim E A,Ali S A,Alagon A C,Ruder

    T,Jackson T N,Pineda Gonzalez S,King G F,Jones A,Antunes

    A,Fry B G. 2013. Dracula’s children:molecular evolution of

    vampire bat venom. Journal of Proteomics,89:95 - 111.

    Macdonald D. 1984. Encyclopedia of Mammals. New York:Facts on

    File.

    Pan F,Keung J,Kim I B,Snuggs M B,Mills S L,O’Brien J,Massey

    S C. 2012. Connexin 57 is expressed by the axon terminal network

    of Btype horizontal cells in the rabbit retina. Journal of Comparative

    Neurology,520:2256 - 2274.

    Roper S D. 1989. The cell biology of vertebrate taste receptors Annual

    Review of Physiology,12:329 - 353.

    Schafer K,Braun H A,Kürten L. 1988. Analysis of cold and warm re

    ceptor activity in vampire bats and mice. Pflugers Archiv,412:

    188 - 194.

    Schutt W A Jr,Altenbach J S,Chang Y H,Cullinane D M,Hermanson

    J W,Muradali F,Bertram J E. 1997. The dynamics of flightinitia

    ting jumps in the common vampire bat Desmodus rotundus. Journal of

    Experimental Biology,200:3003 - 3012.

    Simmons N B. 2005. Order Chiroptera. In:Wilson D E,Reeder D M

    eds. Mammal Species of the World:A Taxonomic and Geographic

    Reference. Washington,DC:Smithsonian Institution Press.

    Shen B,Fang T,Dai M,Jones G,Zhang S. 2013. Independent losses

    of visual perception genes Gja10 and Rbp3 in echolocating bats (Or

    der:Chiroptera). PLoS ONE,8:e68867.

    Sohl G,Joussen A,Kociok N,Willecke K 2010. Expression of con

    nexin genes in the human retina. BMC Ophthalmol,10:27.

    Stasiak I M,Smith D A,Ganz T,Crawshaw G J,Hammermueller J D,

    Bienzle D,Lillie B N. 2018. Iron storage disease (hemochromato

    sis)and hepcidin response to iron load in two species of pteropodid

    fruit bats relative to the common vampire bat. Journal of Comparative

    Physiology B,188:683 - 694.

    Taruno A,Vingtdeux V,Ohmoto M,Ma Z,Dvoryanchikov G,Li A,

    Adrien L,Zhao H,Leung S,Abernethy M,Koppel J,Davies P,

    Civan M M,Chaudhari N,Matsumoto I,Hellekant G,Tordoff M

    G,Marambaud P,Foskett J K. 2013. CALHM1 ion channel medi

    ates purinergic neurotransmission of sweet,bitter and umami tastes.

    Nature,495:223 - 226.

    Thompson R D,Elias D J,Shumake S A,Gaddis S E. 1982. Taste

    preferences of the common vampire bat (Desmodus rotundus). Jour

    nal of Chemical Ecology,8:715 - 721.

    Turner D. 1975. The Vampire Bat,A Field Study in Behavior and E

    cology. Baltimore and London:The Johns Hopkins University Press.

    Volokhov D,Becker D,Bergner L,Camus M S,Orton R J,Chizhikov

    V E,Altizer S M,Streicker D G. 2017. Novel hemotropic myco

    plasmas are widespread and genetically diverse in vampire bats. Epi

    demiol Infect,145:3154 - 3167.

    Zepeda Mendoza M L,Xiong Z,EscaleraZamudio M,Runge A,Gil

    bert M. 2018. Hologenomic adaptations underlying the evolution of

    sanguivory in the common vampire bat. Nature Ecology and Evolu

    tion,2:659 - 668.

    Zhang Y,Hoon M,Chandrashekar J,Mueller K L,Cook B,Wu D,

    Zuker C S,Ryba N J. 2003. Coding of sweet,bitter,and umami

    tastes:different receptor cells sharing similar signaling pathways.

    Cell,112:293 - 301.

    Zhao H,Li J,Zhang J. 2015. Molecular evidence for the loss of three

    basic tastes in penguins Current Biology,25:R141 - R142.

    Zhao H,Xu D,Zhang S,Zhang J. 2012. Genomic and genetic evi

    dence for the loss of umami taste in bats Genome Biology and Evolu

    tion,4:73 - 79.

    Zhao H,Zhou Y,Pinto C,CharlesDominique P,GalindoGonzález J,

    Zhang S,Zhang J. 2010. Evolution of the sweet taste receptor gene

    Tas1r2 in bats Molecular Biology and Evolution,27:2642 - 2650.

    802

    兽类学报

    Acta Th

    eriologic

    a Sinica

    兽类学报

    Acta Th

    eriologic

    a Sinica

    兽类学报

    Acta Th

    eriologic

    a Sinica