15
E. Golubev , on behalf of the Millimetron team ASC LPI Millimetron Workshop 2019: Capabilities and Science Objective of Millimetron Space Observatory, 9-11 September 2019, Observatoire de Paris / LERMA, Paris Thermal design of the Millimetron payload module

Thermal design of the Millimetron payload moduleworkshop2019.millimetron.ru/doc/Golubev_Paris-2019_Thermal_design_final.pdfPulse Tube Cooler PT15K (Air Liquide) 2ST - Double stage

  • Upload
    others

  • View
    2

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Thermal design of the Millimetron payload moduleworkshop2019.millimetron.ru/doc/Golubev_Paris-2019_Thermal_design_final.pdfPulse Tube Cooler PT15K (Air Liquide) 2ST - Double stage

E. Golubev, on behalf of the Millimetron team

ASC LPI

Millimetron Workshop 2019: Capabilities and Science Objective of Millimetron Space Observatory, 9-11 September 2019, Observatoire de Paris / LERMA, Paris

Thermal design of the Millimetron payload module

Page 2: Thermal design of the Millimetron payload moduleworkshop2019.millimetron.ru/doc/Golubev_Paris-2019_Thermal_design_final.pdfPulse Tube Cooler PT15K (Air Liquide) 2ST - Double stage

117.09.2019

Sunshields

Overall dimensions

20 m

11.2 m

2-sided aluminum-plated Kapton films

1st Sunshield

(MLI blanket)

Cryoshield

(actively cooled down to 20K)

2nd Sunshield

3rd Sunshield

4th Sunshield

Sun

-5°/ +85°

+X

+Y

+Z

Page 3: Thermal design of the Millimetron payload moduleworkshop2019.millimetron.ru/doc/Golubev_Paris-2019_Thermal_design_final.pdfPulse Tube Cooler PT15K (Air Liquide) 2ST - Double stage

217.09.2019

Sunshield structure

А - ААА

1st Sunshield (external)

2nd,3rd, 4th Sunshields

Sunshields consist of:

1. tubes from CFRP

2. flexible cord from aramid fiber

3. Two-sided aluminum-plated

polyimide film

4. MLI (R=50 𝒎𝟐∙𝑲

𝑾) 4

1

1

3

2

1

Page 4: Thermal design of the Millimetron payload moduleworkshop2019.millimetron.ru/doc/Golubev_Paris-2019_Thermal_design_final.pdfPulse Tube Cooler PT15K (Air Liquide) 2ST - Double stage

317.09.2019

Cryoshield structure

Structural ring with

synchronous deployment mechanics

Sandwich panel

(pure aluminum coating)

Two-sided aluminum-plated film

Flexible cord from aramid fiber

Page 5: Thermal design of the Millimetron payload moduleworkshop2019.millimetron.ru/doc/Golubev_Paris-2019_Thermal_design_final.pdfPulse Tube Cooler PT15K (Air Liquide) 2ST - Double stage

417.09.2019

Objectives of tests:

• film management

• film packaging

• deployment

• gravity offload system

Mock-up of cryoshield (full-scale)

1

Development status

Mock-up of the 1st sunshield (full-scale)

2

Engineering model of the deployment system

3

Page 6: Thermal design of the Millimetron payload moduleworkshop2019.millimetron.ru/doc/Golubev_Paris-2019_Thermal_design_final.pdfPulse Tube Cooler PT15K (Air Liquide) 2ST - Double stage

517.09.2019

Effective Radiation cooling

4,5K

39 mW 1.37 W 12.71 W 187.94 W 237.3 kW

heat radiated in to the Space

radiated heat flux

Cryo-container

Warm container

Level 4.5K

Level 300K

Level 100K

Level 20K

Page 7: Thermal design of the Millimetron payload moduleworkshop2019.millimetron.ru/doc/Golubev_Paris-2019_Thermal_design_final.pdfPulse Tube Cooler PT15K (Air Liquide) 2ST - Double stage

617.09.2019

“Matreshka” design

Cryo instrument container

«Warm» container

Actively cooled shield

~300 K

100 K

Radiator

Thermal shields(MLI blankets)

Actively cooled shield20 K

dramatically reduced thermal conductanceafter on-orbit deployment

Isogrid lattice structure

Decouple interface

low thermal conductivity

lightweight

100 K thermal interface

20 K thermal interface

Throw-over locks with prestressed cord

20 K

100 K

to Space

Thermalpanels

300 K

Cryo instrument container

Antenna4.5 K

Equivalent scheme of structure in terms of conductance

20 K

R1 R2

R3

R4

R5

R6

Page 8: Thermal design of the Millimetron payload moduleworkshop2019.millimetron.ru/doc/Golubev_Paris-2019_Thermal_design_final.pdfPulse Tube Cooler PT15K (Air Liquide) 2ST - Double stage

717.09.2019

Preliminary heat flow map (calculated)

Page 9: Thermal design of the Millimetron payload moduleworkshop2019.millimetron.ru/doc/Golubev_Paris-2019_Thermal_design_final.pdfPulse Tube Cooler PT15K (Air Liquide) 2ST - Double stage

817.09.2019

Budget of the heat loads on the temperature levels

* 100% margin estimated

Level

Radiation

Exchange,

W

Structure

Conduction,

W

Cable

network

Conduction*,

W

Heat

Dissipation of

instruments,

W

ΣQ, W

1-2K - - - 0.01 0.01

4K 0.030 0.002 0.018 0.10 0.15

20K 0.489 0.211 0.200 0.50 1.40

100K 1.480 2.940 1.580 10.00 16.00

Page 10: Thermal design of the Millimetron payload moduleworkshop2019.millimetron.ru/doc/Golubev_Paris-2019_Thermal_design_final.pdfPulse Tube Cooler PT15K (Air Liquide) 2ST - Double stage

917.09.2019

What could be implemented up to date?

Pulse Tube Cooler PT15K(Air Liquide)

2ST - Double stage Stirlingcooler (Sumitomo H.I.)

4K-class Joule Thomsoncooler (Sumitomo H.I.)

1K-class Joule Thomson cooler (Sumitomo H.I.)

TRL TRL5/6 (planned in 2019) TRL8 TRL8 TRL5 (life time test is ongoing)

Cooling power

800mW at 20K5W at 100K

>200mW at 20K>1W at 100K (EOL)

40mW at 4.5K (EOL) 10mW at 1.7K (EOL)19mW at 1.77K (withPT15K precooling)

Input power

300 W 80 W at EOL 90 W at EOL 75 W at EOL

Mass 21 kg 9.5 kg 15 kg 28 kg

Life time

? 3 years (5yrs as a goal) > 3 yrs (5yrs as a goal) >5 yrs

Compressor

Cold HeadCold Head →

Compressors (х4)

Cold Head →

Compressors (х2)

Cold Head

Compressor

Page 11: Thermal design of the Millimetron payload moduleworkshop2019.millimetron.ru/doc/Golubev_Paris-2019_Thermal_design_final.pdfPulse Tube Cooler PT15K (Air Liquide) 2ST - Double stage

1017.09.2019

How it could be realized? Active cooling system

Page 12: Thermal design of the Millimetron payload moduleworkshop2019.millimetron.ru/doc/Golubev_Paris-2019_Thermal_design_final.pdfPulse Tube Cooler PT15K (Air Liquide) 2ST - Double stage

1117.09.2019

Summary of active cooling system

Cryocooler type1-2 К

(J-Т)

4 К

(J-Т)

15 К

(2РТ)

20 К

(2РТ)

100 К

(2РТ )Total

Cooling power, W 0,02 0,04 - 0,80 5,00 -

Input power*, W 75 90 300 300 - 2535

Mass, kg 28,0 15,0 35,0 35,0 - 446

Required amount of coolers 1 4 1 6 - 12

Redundant cooler 1 1 1 1 - 4

Total amount 2 5 2 7 - 16

Page 13: Thermal design of the Millimetron payload moduleworkshop2019.millimetron.ru/doc/Golubev_Paris-2019_Thermal_design_final.pdfPulse Tube Cooler PT15K (Air Liquide) 2ST - Double stage

1217.09.2019

Thermal mockup (Scale 1:10)

The Cryo Test in the chamber

Primary Mirror

Sunshields

Development status

Page 14: Thermal design of the Millimetron payload moduleworkshop2019.millimetron.ru/doc/Golubev_Paris-2019_Thermal_design_final.pdfPulse Tube Cooler PT15K (Air Liquide) 2ST - Double stage

1317.09.2019

Conclusions

• The thermal design of the overall payload module and preliminary heat

load budget has been developed

• Implementation of 15K PT coolers (Air liquide) and 1K-, 4K-class Joule

Thomson coolers (Sumitomo H.I.) is one of the promising way to build the

active cooling system

• First validation test with the scale model demonstrated the very critical

parts of the thermal design

• Many aspects of the thermal design still need to be studied

Page 15: Thermal design of the Millimetron payload moduleworkshop2019.millimetron.ru/doc/Golubev_Paris-2019_Thermal_design_final.pdfPulse Tube Cooler PT15K (Air Liquide) 2ST - Double stage

1417.09.2019

Thank you for attention!