20
Thermo-Mechanical Reliability Assessment of TSV Die Stacks by Finite Element Analysis Dr. Roland Irsigler, Siemens AG Corporate Technology, CT T P HTC

Thermo-Mechanical Reliability Assessment of TSV Die · PDF fileTSV application FEA modeling appoaches Material parameter set TSV FE/BE build-up process Impact of TSV geometry on internal

  • Upload
    dothu

  • View
    223

  • Download
    1

Embed Size (px)

Citation preview

Page 1: Thermo-Mechanical Reliability Assessment of TSV Die · PDF fileTSV application FEA modeling appoaches Material parameter set TSV FE/BE build-up process Impact of TSV geometry on internal

Thermo-Mechanical ReliabilityAssessment of TSV Die Stacks byFinite Element Analysis

Dr. Roland Irsigler, Siemens AGCorporate Technology, CT T P HTC

Page 2: Thermo-Mechanical Reliability Assessment of TSV Die · PDF fileTSV application FEA modeling appoaches Material parameter set TSV FE/BE build-up process Impact of TSV geometry on internal

Corporate Technology, CT T P HTC2010/03/16 Dr. Roland Irsigler,Page 2

Outline

�TSV application�FEA modeling appoaches�Material parameter set�TSV FE/BE build-up process� Impact of TSV geometry on internal die

level stress �Regions of critical loading�Packaging related stress on TSVs�Options to lower the risks�Summary

SOLID µBump

Stacking

TSV

Packaging

Page 3: Thermo-Mechanical Reliability Assessment of TSV Die · PDF fileTSV application FEA modeling appoaches Material parameter set TSV FE/BE build-up process Impact of TSV geometry on internal

Corporate Technology, CT T P HTC2010/03/16 Dr. Roland Irsigler,Page 3

TSV Application: DRAM

Via Ø5-10 µm

Signal PadPower Pad

Dummy Pad

TSV-Interconnect Chip (UP-TV) TSV´s

DRAM wafer

TSV-Testvehicle

SOLID Interconnect TSV stack (4-fold)

TSV-Package

Benefits:

Challenges:

• memory/volume• low parasitics

• new technology• new equipment• cost, yield• reliability

12,4 mm

8,0

mm

Page 4: Thermo-Mechanical Reliability Assessment of TSV Die · PDF fileTSV application FEA modeling appoaches Material parameter set TSV FE/BE build-up process Impact of TSV geometry on internal

Corporate Technology, CT T P HTC2010/03/16 Dr. Roland Irsigler,Page 4

FEA modeling approaches

Global/Submodel approach3D via model2D via model

Cu

W

Si

Polymer

Ti/Cu

Cu

SiO2

WCu

SiO2

Al

Ti/CuCu

• rotatio symmetry• periodic bounderies• variation in:- via diameter & pitch- layer thickness- material set

• full 3D model• variation in:- via shape, dimensions- via arrays- pad geometry

• fixed material set• include build-up process flow

• 3D model of complete TSV-package• boundary conditions for TSV submodelare determined by the global model

• variation in:- # of dies/stack- package construction

FraunhoferInstitutZuverlässigkeit undMikrointegration

IZM

Symmetric BCSymmetric BC

Coupled x – DOFs

Coupled z – DOFs

Page 5: Thermo-Mechanical Reliability Assessment of TSV Die · PDF fileTSV application FEA modeling appoaches Material parameter set TSV FE/BE build-up process Impact of TSV geometry on internal

Corporate Technology, CT T P HTC2010/03/16 Dr. Roland Irsigler,Page 5

Material Regions and Dimensions3D – FE quarter Cu-Via model with circular via cross section

*Coupled degrees of freedom of the nodesat the outside area

Via Ø 10 µm

15 µm

17 µm

30 µm

Dielectric layeropening

Al-pad

Cu-pad

SiOSiO2, 2, 1,5 1,5 µµm m

Cu, Cu, ØØ10 10 µµmm

Polymer, Polymer,

herehere 1 1 µµmm

Si, 50 Si, 50 µµmm

Al, Al, 850 nm850 nm

Ti/Cu, Ti/Cu, 50/150 nm50/150 nm

Cu, 4 Cu, 4 µµmm

Sn, 2 Sn, 2 µµmm

Cu, 4 Cu, 4 µµmm

SiOSiO2, 2, 100 nm 100 nm

Coupled z – DOFs*

top region

bottom region

Pad of next die

Pad of next die

Page 6: Thermo-Mechanical Reliability Assessment of TSV Die · PDF fileTSV application FEA modeling appoaches Material parameter set TSV FE/BE build-up process Impact of TSV geometry on internal

Corporate Technology, CT T P HTC2010/03/16 Dr. Roland Irsigler,Page 6

3D Global Stacked Die Model and Submodelling

Via region

Interconnect side view

Top CuTop Cu--padpad

Bottom CuBottom Cu--padpad

Bottom die

Top die IMC IMC CuCu33SnSn

Submodel: single via

Simplified die global model

global-local

matching

At the so-called cut boundaries the displacements, which were calculated in the global model, are extrapolated on the finer mesh of the submodel.

Global model: 8 –fold stack in package

Package warpage

Page 7: Thermo-Mechanical Reliability Assessment of TSV Die · PDF fileTSV application FEA modeling appoaches Material parameter set TSV FE/BE build-up process Impact of TSV geometry on internal

Corporate Technology, CT T P HTC2010/03/16 Dr. Roland Irsigler,Page 7

Material Parameter Set

• Thin film material parameter can differ significantly from bulk material parameter• They can also depend on the deposition process and the source chemistry• Measurements on dedicated testsamples required

*Microelectronics Packaging Materials Database developed at Purdue University, Center for Numerical Data Analysis and Synthesis (CINDAS) under the Sponsorship of Semiconductor Research Corporation (SRC), Version 2.32, 1999

Micro Materials CenterBerlin and ChemnitzHead: Prof. B. Michel

Material Constitutive law

(Instantaneous-) E-Modulus [MPa]

Poissons ratio

CTE [1/K]

Initial yield stress [MPa]

Source

Chip Elastic 168,000 0.30 2.8 10-6 Normally used for Si <100>

SiO2-Passivation

Elastic 72,000 0.20 1.7 10-6 Normally used in semiconductor fabrication

SixN4-Passivation

Elastic 160000 0.20 2.1 10-6 Normally used in semiconductor fabrication

Al-Pad Elastic-plastic 70,000 at 233 K

50,000 at 523 K

0.32

24 10-6 σ0: 210;Etan: 4000 at 233K σ0: 180;Etan: 5000 at 523K

CINDAS

W-via

Elastic-plastic 210,000 at 233 K

180,000 at 523 K

0.32

4.5 10-6 σ0: 3100;Etan: 6900 at 233K σ0: 2810;Etan: 6900 at 523K

(after Nanoindentation and simulation)

Cu-via/Cu-pad

Elastic-plastic 103,000 at 233 K

83,000 at 673 K

0.35

17 10-6 σ0: 410;Etan: 1090 at 233K σ0: 350;Etan: 1090 at 553K

(after Nanoindentation and simulation updated)

Ti/Cu Elastic-plastic 110,000 at 233 K

90,000 at 523 K

0.31

15 10-6

σ0: 540;Etan: 16000 at 233K σ0: 450;Etan: 7353 at 523K

CINDAS

WPR Viscoelastic,

Tg=100 °C

4,200 at 218 K

2,800 at 423 K

0.3

0.32

45 10-6 < 373K

85 10-6 > 373K

Shear:a1: 0.0351; a2: 0.0659 at t1: 45.68; t2: 914.64

Measured in previous project

IMC Cu3Sn Elastic-plastic 115,000 0.32

19 10-6 σ0: 400 Applied in previous projects

BacksidePolymer

Page 8: Thermo-Mechanical Reliability Assessment of TSV Die · PDF fileTSV application FEA modeling appoaches Material parameter set TSV FE/BE build-up process Impact of TSV geometry on internal

Corporate Technology, CT T P HTC2010/03/16 Dr. Roland Irsigler,Page 8

TSV build-up process

• The process steps up to the starting point (initial condition) can be neglected in the FE analysis because only elastic strains occur• Process steps with elastic-plastic conditions were realized as loading steps with fictive time scale. • Layer is stress free at deposition temperature. Non-thermal intrinsic stress (e.g. chemical shrink) were not considered. • The first time step with real process time becomes effective after the deposition of the viscoelastic polymer at the wafer bottom due to its time dependent properties.

Process Flow I

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25

Time [s]

Pro

cess

tem

pera

ture

[°C

]

depositionhard passivationupside

Adjusting Cu deposition T

Initial condition

Heating up to polymer deposition

Al-layer deposition

Process step

Process Flow II

0

50

100

150

200

250

300

20 1020 2020 3020 4020 5020

Time [s]P

roce

ss te

mpe

ratu

re [°

C]

Polymer deposition

Ti/Cu depositionupside andbackside

Resistdeposition

Polymer etch

Cu plating and

backside

Resist strip

Ti/Cu etch

upside

Process Flow III

0

50

100

150

200

250

300

20 1020 2020 3020 4020 5020

Time [s]

Pro

cess

tem

pera

ture

[°C

]

Heating up to 270 °Cand adding Cu 3Snsolder

Reflow soldering and cooling

Molding -cooling to RT

Ti/Cu etch

Visco-elastic conditionsElastic-plastic conditions „Packaging“Wafer/die level Package level

Page 9: Thermo-Mechanical Reliability Assessment of TSV Die · PDF fileTSV application FEA modeling appoaches Material parameter set TSV FE/BE build-up process Impact of TSV geometry on internal

Corporate Technology, CT T P HTC2010/03/16 Dr. Roland Irsigler,Page 9

Single step vs. TSV build-up process results

1Equivalent plastic strain

after an intermediate step of the processing sequence

Al

after one “equivalent”cooling step

active elements

Max. 1.9 % Max. 3.9 %

Deactivated (dead)elements

• effects of the process steps have to be modeled adequately• differences in stress and strain distribution patterns as well as in their amplitudes are obvious• single-step approach even fails qualitatively.

TSV / Padinterface edge

CuW

SiO2

CuW

SiO2

Al

Page 10: Thermo-Mechanical Reliability Assessment of TSV Die · PDF fileTSV application FEA modeling appoaches Material parameter set TSV FE/BE build-up process Impact of TSV geometry on internal

Corporate Technology, CT T P HTC2010/03/16 Dr. Roland Irsigler,Page 10

Schematic representation of results and tendencies

Results afterprocess flow 2

Ø 2,5 µm

Ø 15 µm

<1 µm10 µm

Page 11: Thermo-Mechanical Reliability Assessment of TSV Die · PDF fileTSV application FEA modeling appoaches Material parameter set TSV FE/BE build-up process Impact of TSV geometry on internal

Corporate Technology, CT T P HTC2010/03/16 Dr. Roland Irsigler,Page 11

Results from 2D and 3D Modeling

Maximum stress values in Si and Cu

circ.TSV arrays Single rect. TSV´s

5x1 via array

13 via array

10x10 via

10x20 via

10x40 via

Page 12: Thermo-Mechanical Reliability Assessment of TSV Die · PDF fileTSV application FEA modeling appoaches Material parameter set TSV FE/BE build-up process Impact of TSV geometry on internal

Corporate Technology, CT T P HTC2010/03/16 Dr. Roland Irsigler,Page 12

Regions of stress concentrations (Indicator: v.Mises stress and equiv. plastic strain) in the via structure independent of the via shape, dimension, and the level of modeling

2D Model

3D Model

Εpl,eqv

Seqv [MPa]

Al-pad

Al-pad

Top region Bottom region

Al-pad

Al-pad

Cu

CuCu Si

Si

SiCu

CuCu pad

Cu pad

Top region, Al Pad

Si

Si

Polym.

SiO2

W

W

SiO2

SiO2

Regions of critical loading

Page 13: Thermo-Mechanical Reliability Assessment of TSV Die · PDF fileTSV application FEA modeling appoaches Material parameter set TSV FE/BE build-up process Impact of TSV geometry on internal

Corporate Technology, CT T P HTC2010/03/16 Dr. Roland Irsigler,Page 13

FE modeling procedure to include process flow 3 (“p ackaging”)

Create submodel (TSV) Create global model (package)

Deposition temperature is stress free (reference) temperature

Write cut boundary nodes

Execute cut boundary interpolation for

molding step

Delete boundary conditions set for build-up

Save submodel

CalculationSequential building of the TSV structure up to molding

temperature 180 °C

CalculationMolding 180 °C to RT

Set cut boundary DOF specificationsfor molding-step

CalculationMolding 180 °C to RT

Page 14: Thermo-Mechanical Reliability Assessment of TSV Die · PDF fileTSV application FEA modeling appoaches Material parameter set TSV FE/BE build-up process Impact of TSV geometry on internal

Corporate Technology, CT T P HTC2010/03/16 Dr. Roland Irsigler,Page 14

Via loading depending on the number of Si-chips in the stack

Z – displacements [µm] of the global model

Page 15: Thermo-Mechanical Reliability Assessment of TSV Die · PDF fileTSV application FEA modeling appoaches Material parameter set TSV FE/BE build-up process Impact of TSV geometry on internal

Corporate Technology, CT T P HTC2010/03/16 Dr. Roland Irsigler,Page 15

Results after process flow 3 (“packaging”)

New quality and quantity of stress loading for the via structure after the inclusion of soldering and molding in the sequence of the build-up process

The via is located at the edge of a 4fold stack in package in the 2nd die from bottom of.

εεεεpl,eqvDisplacement scaling: 3x

Si

Cu

WPR

SiO2

Cu pad

Top region Bottom region

Cu

Si

Polym.

Cu-Pad

Si

Cu-Pad

Factor 6 higherthandie levelstress!

tilt and shear!

Max. stress moved to outeredge of Cu pad

1% higher

Page 16: Thermo-Mechanical Reliability Assessment of TSV Die · PDF fileTSV application FEA modeling appoaches Material parameter set TSV FE/BE build-up process Impact of TSV geometry on internal

Corporate Technology, CT T P HTC2010/03/16 Dr. Roland Irsigler,Page 16

Results after process flow 3 (“packaging”)

Top region

Bottom region

Plastic straining is induced at the via bottom region, which accumulates during thermal cycling � Cu fatigue risk

Sz [MPa]

Cu-via filling

εpleqv

Page 17: Thermo-Mechanical Reliability Assessment of TSV Die · PDF fileTSV application FEA modeling appoaches Material parameter set TSV FE/BE build-up process Impact of TSV geometry on internal

Corporate Technology, CT T P HTC2010/03/16 Dr. Roland Irsigler,Page 17

0

500

1000

1500

2000

2500

72 36 18 3.6 3.1

Young's Modulus of Bottom Insulator Film [GPa]

van-

Mis

es S

tres

s [M

Pa

]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Pla

stic

Str

ain

per

T

herm

al C

ylce

[%]

Stress in ViaPassivation

Plastic Strain inthe Cu Via

InitialDesign

PI

SiO2

Impact of bottom isolation layer material substituti on

Temperature Cycle: 125°C � -55°C

A more rigid bottom isolation layer can lower stresses and strains in the TSV bottom region

Page 18: Thermo-Mechanical Reliability Assessment of TSV Die · PDF fileTSV application FEA modeling appoaches Material parameter set TSV FE/BE build-up process Impact of TSV geometry on internal

Corporate Technology, CT T P HTC2010/03/16 Dr. Roland Irsigler,Page 18

Impact of underfiller between dies

Seqv [MPa]Seqv [MPa]

Package without underfilling Package with underfilling

Sz [MPa]Cu

Sz [MPa]Cu

Si

Seqv [MPa]

SiSeqv [MPa]

Page 19: Thermo-Mechanical Reliability Assessment of TSV Die · PDF fileTSV application FEA modeling appoaches Material parameter set TSV FE/BE build-up process Impact of TSV geometry on internal

Corporate Technology, CT T P HTC2010/03/16 Dr. Roland Irsigler,Page 19

Summary

General:

• TSV process temperature sequence has to be modeled adequately to identifycritical regions and stress levels.

• Thin film material parameter needs to be determined properly � measurements

Die level:

• No clear failure risk for all simulated variants of via shapes found.

• Circuar vias and via arrays show less stress in Si than single, rectanular vias

• Local stress concentrations are Cu/SiO2/Al at the top region and Si/SiO2/Polymer at the bottom region.

Package level:

• No clear failure risk at via top region identified

• Clear failure risk on via bottom region due to the low stiffness of the polymer layer.

• Use of rigid bottom isolation layer or underfill significantly reduces stress at the via

Page 20: Thermo-Mechanical Reliability Assessment of TSV Die · PDF fileTSV application FEA modeling appoaches Material parameter set TSV FE/BE build-up process Impact of TSV geometry on internal

Corporate Technology, CT T P HTC2010/03/16 Dr. Roland Irsigler,Page 20

Contact

Dr. Roland IrsiglerSiemens AG, CT T P HTC, ErlangenE-mail: [email protected]

Dr. Rainer DudekFraunhofer ENAS, Micro Materials Center Berlin and ChemnitzE-mail: [email protected]

Dr. Sven RzepkaFraunhofer ENAS, Micro Materials Center Berlin and ChemnitzE-mail: [email protected]

• Thermo-Mechanical Reliability Assessment for 3D Through-Si Stacking, R. Dudek et al.EuroSimE 2009, Delft, April 2009

• Virtual Prototyping in Microelectronics and Packaging, S. Rzepka et al., 33th International Conference and Exhibition IMAPS – Poland 2009, 21-24 September 2009