29
Chapter 15 Thermochemistry

Thermochemistry. What is energy? Energy is the ability to do work or produce heat. The Law of Conservation of Energy: ◦ This law states that can

Embed Size (px)

Citation preview

Page 1: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

Chapter 15Thermochemistry

Page 2: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

What is energy? Energy is the ability to do work or produce

heat. The Law of Conservation of Energy:

◦ This law states that can not be created or destroyed only transferred.

Two types of energy:◦ Kinetic◦ Potential

Energy

Page 3: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

Heat is energy transferred from a warmer object to a cooler object.

Heat is represented mathematically as q The amount of heat energy required to raise

the temperature of one gram of pure water by one degree Celsius is called…

a calorie The SI unit for energy is the Joule 1 Joule = 0.2390 calories 1 calorie = 4.184 Joules

Heat

Page 4: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

A breakfast of cereal, orange juice, and milk contains 230 Calories. Convert this amount of energy in to Joules.

9.6 x 105 J

Problems

Page 5: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

Glucose is a simple sugar found in fruit. Burning 1.00 g of glucose releases 15.6 kJ of energy. How many Calories are released?

3.73 Calories

An fruit and oatmeal bar contains 142 Calories. Convert this energy to Joules

5.94 x 105

A chemical reaction releases 86.5 kJ of heat. How many Calories are released?

20.7 Calories

Page 6: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

The specific heat of any substance is the amount of heat required to raise the temperature of one gram of that substance by 1 degree Celsius.

The specific heat of water is: 1 cal/g-oC 4.184 J/g-oC The specific heat of concrete is 0.84 J/g-oC This is why in the summer concrete gets hot

and water says cool.

Specific Heat

Page 7: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

The specific heat of a substance can be used to calculate the heat energy absorbed or given off when that substance changes temperature.

q = (C)(m)(ΔT) remember ΔT = Tfinal – Tinitial Calculate the heat absorbed by a 5 x 103 g

block of concrete when its temperature is raised from 20 oC to 26 oC.

25,000 J or 25 kJ

Using Specific Heat

Page 8: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

The temperature of a sample of iron with a mass of 10.0 g changed from 50.4 oC to 25.0 oC and released 114 J. What is the specific heat of iron?

0.449 J/g-oC

If the temperature of 34.4 g of ethanol increase from 25.0 oC to 78.8 oC, how much heat has been absorbed buy the ethenol. (C for ethanol is 2.44 J/g-oC)

4.52 x 103 J

Page 9: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

A 155 g sample of an unknown substance was heated from 25.0 oC to 40.0 oC. In the process, the substance absorbed 5696 J of energy. What is the specific heat of the substance?

2.45 J/g-oC

A 38.8 g piece of metal alloy absorbs 181 J as its temperature increases from 25 oC to 36 oC. What is the alloy’s specific heat?

0.424 J/g-oC

Page 10: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

Thermochemistry is the study of heat changes during chemical reactions or phase changes.

When studying thermochemistry we look at two things:

System◦ The system is the specific part of the universe

that we are studying. Surroundings

◦ The surroundings are everything else in the universe.

Thermochemistry

Page 11: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

Enthalpy is defined as the heat content of a system at constant pressure.

The change in enthalpy for a reaction is called the enthalpy (heat) of reaction.

ΔHrxn ΔHrxn = Hproducts – Hreactnats

Enthalpy and Enthalpy Change

Page 12: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

A thermochemical equation is a balanced equation that includes the physical states of all reactants and products and the enthalpy change.

4 Fe(s) + 3 O2(g) 2 Fe2O3(s) ΔH = -1625 kJ

NH4NO3(s) NH4+(aq) + NO3

- ΔH = 27 kJ

Thermochemical Equations

Page 13: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

Hess’s Law states that if you can add two or more equations to produce a final equation for a reaction than the sum of the enthalpy changes of the individual reactions is the enthalpy change of the overall reaction.

Hess’s Law

Page 14: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

Calculate ΔH for the reaction 2 H2O2(l) 2 H2O(l) + O2(g)

2 H2(g) + O2(g) 2 H2O(l) ΔH = -572 kJ

H2(g) + O2(g) H2O2(l) ΔH = -188 kJ

Page 15: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

Use equations (a) and (b) to determine ΔH for the following reaction:

2 CO(g) + 2 NO(g) 2 CO2(g) + N2(g)

a) 2 CO(g) + O2(g) 2 CO2(g) ΔH = -566.0 kJ

b) N2(g) + O2(g) 2NO(g) ΔH = -180.6 kJ

Page 16: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

ΔH for the following reaction is -1789 kJ. Use equation (a) to determine ΔH for reaction (b).

4 Al(s) + 3 MnO2(s) 2 Al2O3(s) + 3 Mn(s)

a) 4 Al(s) + 3 O2 2 Al2O3(s) ΔH = -3352 kJ

b) Mn(s) + O2(g) MnO2 ΔH = ?

Page 17: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

The enthalpy of formation for any reaction is defined as the heat change when all reactants are in their elemental form and only one mole of product is produced.

S(s) + 3 F2(g) SF6 ΔHof = -1220 kJ

Sometimes we need to use fractional coefficients.

H2(g) + F2(g) HF ΔHof = -273 kJ

Enthalpy of Formation

Page 18: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

We can use the enthalpy of formation for components of a reaction to calculate the total enthalpy change of the reaction (ΔHrxn).

H2S(g) + 4 F2(g) 2 HF(g) + SF6(g)

a) ½ H2(g) + ½ F2(g) HF ΔHof = -273 kJ

b) S(s) + 3 F2(g) SF6 ΔHof = -1220 kJ

c) H2(g) + S(s) H2S(g) ΔHof = -21 kJ

Using Enthalpy of Formation

Page 19: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

Determine ΔH for CH4(g) + 2 O2(g) CO2(g) + 2 H2O(l)

Using: ΔHo

f(CO2) = -394 kJ ΔHo

f(H2O) = -286 kJ ΔHo

f(CH4) = -75 kJ ΔHo

f(O2) = 0 kJ

Page 20: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

When things rust the reaction taking place is: 4 Fe(s) + 3 O2(g) 2 Fe2O3(s) ΔH = -1625 kJ

Any physical or chemical that occurs with no outside intervention is a spontaneous process.

If we reverse the above reaction: 2 Fe2O3(s) 3 O2(g) + 4 Fe(s) ΔH = 1625 kJ

This process would be non-spontaneous

Reaction Spontaneity

Page 21: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

Entropy is a measure of the number of possible ways a system can be configured.

If we have a piece of paper cut into 8 different sections there would be 56 different ways we could arrange them. (8 x 7)

If we cut the paper into 16 different pieces there would be 240 different ways we could arrange them. (16 x 15)

We have increased the papers entropy.

Entropy

Page 22: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

The second law of thermodynamics states that a spontaneous reaction will always occur in such a way that entropy increases.

Remember that the change in enthalpy (ΔH) is defined as:

Hproducts – Hreactants

Similarly: ΔS = Sproducts – Sreactants

If ΔS is positive the entropy of the system is increasing. If ΔS is negative the entropy of the system is

decreasing.

The Second Law Of Thermodynamics

Page 23: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

• Phase Changes:◦ When a phase change occurs from a more

ordered state to a less ordered state ΔS will be positive.

◦ Solid Liquid ΔS > 0

◦ When a phase change occurs from a less ordered state to a more ordered state ΔS will be negative.

◦ Gas Liquid ΔS < 0• Dissolving a gas into a solvent always

results in a decrease in entropy.

Predicting Entropy Changes

Page 24: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

Assuming no change in physical state, entropy increases when the number of moles of products is greater than the number of moles of reactants.◦ 2 SO3(g) 2 SO2(g) + O2(g)

Entropy increases when a solute dissolves in a solvent.◦ NaCl(s) Na+(aq) + Cl-(aq)

Entropy increases as temperature increases.

Page 25: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

Predict the sign of ΔS for each of the following chemical of physical processes

ClF(g) + F2(g) ClF3(g) ΔS =

NH3(g) NH3(aq) ΔS =

Entropy has the units Joules/Kelvin

Page 26: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

Named after physicist J. Willard Gibbs, free energy is the maximum amount of energy available during a chemical reaction.

Gibbs Free Energy Equation: ΔG = ΔH – TΔS

When a reaction occurs at standard conditions (298 K and 1atm)

ΔGo = ΔHo - ΔSo

Gibbs Free Energy

Page 27: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

ΔG = ΔH – TΔS

A reaction where ΔH is negative and ΔS is positive will always be spontaneous.

N2(g) + 3 H2(g) 2 NH3(g) ΔH = -91.8 kJ ΔS = -197 J/k

ΔG = ΔG = -33.1 kJ

Page 28: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

ΔH ΔS ΔG Reaction Spontaneity

ΔG = ΔH - TΔS

Page 29: Thermochemistry.  What is energy?  Energy is the ability to do work or produce heat.  The Law of Conservation of Energy: ◦ This law states that can

For a process ΔH is 145 kJ and ΔS is 322 J/K. Calculate ΔG for this reaction at 298 K. Is it spontaneous?