1
Thermodynamic Modeling of the ZnS and FeZnS System Youngeun Kim, Supervisor: Prof. InHo Jung Department of Mining and Materials Engineering, McGill University ZnS System FeZnS System Introduc:on Objec0ve To complete the thermodynamic op:miza:on of the ZnS binary system and the FeZnS ternary system Thermodynamic Op0miza0on Obtaining opEmized equaEons of the Gibbs energies of different phases that best represent the exisEng experimental data A computer soLware, FactSage, performs calculaEons based on the thermodynamic data The accuracy & internal consistency of all the equaEons are tested by comparing with data FeZnS System : Welding Zn is oLen used as a protecEve coaEng in order to prevent Fe or steel from rusEng Due to its relaEvely low melEng point, Zn melts into the grain boundary of Fe during the welding process S forms a very stable compound with Zn, hence being a potenEal flux to remove Zn from Fe Fe Zn Fe Zn Zn Liquid Solu0on: Modified Quasichemical Model Atom A and B form (AA), (BB) and (AB) pairs and the interacEon between the atoms determines the equilibrium condiEon Accounts for shortrange ordering and clustering, therefore overcomes the limitaEon of Regular Solu<on Model which only approximates random mixing in a single sublaTce, requiring a large number of parameters Ternary Interpola0on: Toop Technique Chosen for FeZnS soluEon modeling due to the the similar negaEve interacEon forces exisEng in S – Fe and Zn – S binary systems and almost 0 interacEon in Fe – Zn system. Results Discussion There is insufficient thermodynamic data available for the Zn rich region in ZnS binary system The soluEon of Znrich region of the ZnS system was assumed to behave similarily to that of the Srich region Though there is no experimental data on compounds other than ZnS available for the binary system, the data of the Fe ZnS system (ZnSrich solid soluEon) indicates the existence of no more intermetallic compounds in the ZnS system Methodology References Pelton, A. D., Degterov, S. A., Eriksson, G., Robelin, C. and Dessureault, Y., Metall. Mater. Trans. B 31B, 651659 (2000). Applica:on S S Fe Fe Fe S Zn Fundamental Equa0on: Gibbs Energy G T = H T ! TS T Solid Stoichiometric Compound: ZnS (αZnS=Sphalerite, βZnS = Wurtzite) G° T = H ° T ! TS ° T H ° T = !H 298 o + Cp dT 298 T " g sol = ( x Zn g° Zn + x S g° S ) ! T "S config + ( x ZnS / 2)"g ZnS , S ° T = S 298 o + Cp T dT 298 T ! Solid Solu0on: ZnSrich Solu0on g sol = ( x ZnS g° ZnS + x FeS g° FeS ) + RT ( x ZnS ln x ZnS + x FeS ln x FeS ) + g ex where g ex = ! ZnSFeS x ZnS x FeS ! ZnSFeS = 0 Ideal Solution Model !g ZnS = !g° ZnS + g ZnS i 0 ( x ZnZn ) i + i" 1 # g ZnS 0 j ( x SS ) j j " 1 # where Where A= Zn, B=S B B A A B A ( )+( ) = 2( ) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 S Fe Zn mole fraction Fe s.s. boundary FeS s.s. boundary Beta-ZnS (Sphalerite) s.s. bou Phase Boundaries at 1100K (Itoh 1999) Zn(l) boundary Zn - Fe - S 1100 K, 1 atm 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 S Fe Zn mole fraction Fe s.s. boundary FeS s.s. boundary Sphalerite s.s. boundary Zn(l) Phase Boundaries at 1200K (Itoh 1999) Wurtzite s.s. boundary Zn - S - Fe 1200 K, 1 atm Rubenstein 1977 Sysoev et al 1967 1718 ± 10 °C 1830 ± 20 °C Addamiano & Dell 1957 Liquid + Liquid#2 Liquid Liquid + ZnS(s2) Liquid + Liquid#2 Liquid + ZnS(s2) ZnS(s2) + ZnS 2 (s) ZnS(s) + ZnS 2 (s) Liquid + ZnS 2 (s) Liquid + ZnS 2 (s) ZnS 2 (s) + S(s2) Zn(s) + ZnS(s) Liquid + ZnS(s) Liquid + ZnS(s2) Liquid + ZnS(s2) Optimized Zn-S Phase Diagram 1 atm S/(Zn+S) (mol/mol) T(°C) 0 0.2 0.4 0.6 0.8 1 0 500 1000 1500 2000 2500 wz + po + iron sp + po + iron sp + po + L2 sp + po + iron + wu sp + po + py sp + po + py + mag wz + po + melt Sphalerite + Pyrite Liquid Sulfur + Sphalerite Scott & Kissin 1973 boundary Sphalertie + Pyrrhotite Scott & Barnes 1971 Lusk & Calder (2004) Chernyshev & Anfilogov (1968) Boorman 1967 sp+py+L2 Liquid S+Wurtzite Sphalerite+Pyrrhotite+ BCC Fe Sphalerite+Pyrrhotite+Fe(s) Optimized ZnS - FeS - S S/(ZnS+FeS) (mol/mol) = 0.00001, 1 atm FeS/(ZnS+FeS) (% mol) T(°C) 0 10 20 30 40 50 60 70 80 90 100 0 200 400 600 800 1000 1200 1400 1600 1800 Liquid Liquid + Liquid#2 Liquid + ZnS(s2) Liquid + ZnS(s) Zn(s) + ZnS(s) Optimized Zn-S Phase Diagram (Zn-rich region) 1 atm 8/13/2012 C:\Documents and Settings\Youngeun Kim\Desktop\Joey\Figures\SURE poster2.emf S/(Zn+S) (mol/mol) T(°C) 0 0.01 0.02 0.03 0.04 0.05 0 500 1000 1500 2000 2500

Thermodynamic-Modeling-of-the-Zn4S-and-Fe4Zn4S-System-Thermodynamic-Modeling-of-the-Zn4S-and-Fe4Zn4S-System-Youngeun’Kim,’Supervisor:’Prof.’In6Ho’Jung’ Departmentof)Mining)and)Materials)Engineering,)McGill

  • Upload
    others

  • View
    1

  • Download
    0

Embed Size (px)

Citation preview

Page 1: Thermodynamic-Modeling-of-the-Zn4S-and-Fe4Zn4S-System-Thermodynamic-Modeling-of-the-Zn4S-and-Fe4Zn4S-System-Youngeun’Kim,’Supervisor:’Prof.’In6Ho’Jung’ Departmentof)Mining)and)Materials)Engineering,)McGill

Thermodynamic  Modeling  of  the  Zn-­‐S  and  Fe-­‐Zn-­‐S  System  Youngeun  Kim,  Supervisor:  Prof.  In-­‐Ho  Jung  

Department  of  Mining  and  Materials  Engineering,  McGill  University  

Zn-­‐S  System                  Fe-­‐Zn-­‐S  System                        

Introduc:on  Objec0ve  To  complete  the  thermodynamic  op:miza:on  of  the  Zn-­‐S  binary    system  and  the  Fe-­‐Zn-­‐S  ternary  system  Thermodynamic  Op0miza0on  •  Obtaining  opEmized  equaEons  of  the  Gibbs  energies  

of  different  phases  that  best  represent  the  exisEng  experimental  data  

•  A  computer  soLware,  FactSage,  performs  calculaEons  based  on  the  thermodynamic  data  

•  The  accuracy  &  internal  consistency  of  all  the  equaEons  are  tested  by  comparing  with  data  

 Fe-­‐Zn-­‐S  System  :  Welding  •  Zn  is  oLen  used  as  a  protecEve  coaEng  in  order  to  prevent  Fe  or  steel  

from  rusEng  •  Due  to  its  relaEvely  low  melEng    point,    Zn  melts  into  the  grain  

boundary  of  Fe  during  the  welding  process  •  S  forms  a  very  stable  compound  with  Zn,  hence  being  a  potenEal  flux  

to  remove  Zn  from  Fe  

 Fe  Zn   Fe  Zn  Zn  

Liquid  Solu0on:  Modified  Quasichemical  Model  

 •  Atom  A  and  B  form  (A-­‐A),  (B-­‐B)  and  (A-­‐B)  pairs  and  the  interacEon  

between  the  atoms  determines  the  equilibrium  condiEon  •  Accounts  for  short-­‐range  ordering  and  clustering,  therefore  

overcomes  the  limitaEon  of  Regular  Solu<on  Model  which  only  approximates  random  mixing  in  a  single  sublaTce,  requiring  a  large  number  of  parameters  

Ternary  Interpola0on:  Toop  Technique    •  Chosen  for  Fe-­‐Zn-­‐S  soluEon  modeling            due  to  the  the  similar  negaEve  interacEon  forces        exisEng  in  S  –  Fe  and  Zn  –  S  binary  systems  and          almost  0  interacEon  in  Fe  –  Zn  system.  

Results  

Discussion  •  There  is  insufficient  thermodynamic  data  available  for  the  Zn-­‐

rich  region  in  Zn-­‐S  binary  system  •  The  soluEon  of    Zn-­‐rich  region  of  the  Zn-­‐S  system  was  

assumed  to  behave  similarily  to  that  of  the  S-­‐rich  region  •  Though  there  is  no  experimental  data  on  compounds  other  

than  ZnS  available  for  the  binary  system,  the  data  of  the  Fe-­‐Zn-­‐S  system  (ZnS-­‐rich  solid  soluEon)  indicates  the  existence  of  no  more  intermetallic  compounds    in  the  Zn-­‐S  system  

Methodology    

References      Pelton,  A.  D.,  Degterov,  S.  A.,  Eriksson,  G.,  Robelin,  C.  and  Dessureault,  Y.,  Metall.  Mater.  Trans.  B  31B,  651-­‐659  (2000).      

Applica:on  

S

SFe  

Fe  

Fe  

SZn  

Fundamental  Equa0on:  Gibbs  Energy    

GT = HT !TST

Solid  Stoichiometric  Compound:  ZnS  (α-­‐ZnS=Sphalerite,  β-­‐ZnS  =  Wurtzite)  

G°T = H°T !TS°T

H°T = !H298o + CpdT

298

T

"

gsol = (xZng°Zn+ xSg°S )!T"Sconfig + (xZnS / 2)"gZnS

,S°T = S298o +

CpTdT

298

T

!

Solid  Solu0on:  ZnS-­‐rich  Solu0on  

gsol = (xZnSg°ZnS + xFeSg°FeS )+ RT (xZnS ln xZnS + xFeS ln xFeS )+ gex

where gex =!ZnSFeSxZnSxFeS!ZnSFeS = 0 à Ideal Solution Model

!gZnS = !g°ZnS + gZnSi0 (xZnZn )

i +i"1# gZnS

0 j (xSS )j

j"1#where

Where A= Zn, B=S B B A A B A      (                      )  +  (                      )  =  2(                        )   0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.10.20.30.40.50.60.70.80.9

0.10.2

0.30.4

0.50.6

0.70.8

0.9

S

Fe Znmole fraction

Fe s.s. boundaryFeS s.s. boundaryBeta-ZnS (Sphalerite) s.s. boundary

Phase Boundaries at 1100K (Itoh 1999)

Zn(l) boundary

Zn - Fe - S1100 K, 1 atm

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.10.20.30.40.50.60.70.80.9

0.10.2

0.30.4

0.50.6

0.70.8

0.9

S

Fe Znmole fraction

Fe s.s. boundaryFeS s.s. boundarySphalerite s.s. boundary

Zn(l)

Phase Boundaries at 1200K (Itoh 1999)

Wurtzite s.s. boundary

Zn - S - Fe1200 K, 1 atm

Rubenstein 1977

Sysoev et al 1967

1718 ± 10 °C1830 ± 20 °C

Addamiano & Dell 1957

Liquid + Liquid#2

Liquid

Liquid + ZnS(s2)Liquid + Liquid#2

Liquid + ZnS(s2)

ZnS(s2) + ZnS2(s)

ZnS(s) + ZnS2(s)Liquid + ZnS2(s)

Liquid + ZnS2(s)ZnS2(s) + S(s2)

Zn(s) + ZnS(s)

Liquid + ZnS(s)

Liquid + ZnS(s2)

Liquid + ZnS(s2)

Optimized Zn-S Phase Diagram1 atm

S/(Zn+S) (mol/mol)

T(°C

)

0 0.2 0.4 0.6 0.8 10

500

1000

1500

2000

2500

wz + po + ironsp + po + ironsp + po + L2

sp + po + iron + wusp + po + pysp + po + py + mag

wz + po + melt

Sphalerite + Pyrite

Liquid Sulfur + Sphalerite Scott & Kissin 1973 boundary

Sphalertie + Pyrrhotite Scott & Barnes 1971

Lusk & Calder (2004)Chernyshev & Anfilogov (1968)Boorman 1967

sp+py+L2

Liquid S+Wurtzite

Sphalerite+Pyrrhotite+ BCC Fe

Sphalerite+Pyrrhotite+Fe(s)

Optimized ZnS - FeS - SS/(ZnS+FeS) (mol/mol) = 0.00001, 1 atm

FeS/(ZnS+FeS) (% mol)

T(°

C)

0 10 20 30 40 50 60 70 80 90 1000

200

400

600

800

1000

1200

1400

1600

1800

Liquid

Liquid + Liquid#2

Liquid + ZnS(s2)

Liquid + ZnS(s)

Zn(s) + ZnS(s)

Optimized Zn-S Phase Diagram (Zn-rich region)1 atm

8/13/2012C:\Documents and Settings\Youngeun Kim\Desktop\Joey\Figures\SURE poster2.emf

S/(Zn+S) (mol/mol)

T(°

C)

0 0.01 0.02 0.03 0.04 0.050

500

1000

1500

2000

2500